THE RELATIONSHIP BETWEEN SELF-KNOWLEDGE ACCESSIBILITY
AND THE PREDICTIVE UTILITY OF PERSONALITY SCALE
RESPONSES

by

Angelika Mellema

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Psychology
University of Toronto

© Copyright by Angelika Mellema 1997
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.
The Relationship Between Self-Knowledge Accessibility and the Predictive Utility of Personality Scale Responses

by

Angelika Mellema

Doctor of Philosophy

Department of Psychology

University of Toronto

1997

ABSTRACT

The main goal of the present thesis is to examine the relationship between the accessibility of self-knowledge in a personality domain as indexed by response latency to items contained in the relevant personality scale and the predictive utility of such responses. Assuming that self-knowledge is represented in an associative network and that the accessibility of the relevant self-knowledge increases as a function of its use, it is hypothesized that those who are schematic in the domain (i.e., fast responders) show more category-consistent behavior than those who are aschematic in the domain (i.e., slow responders). The first two studies are a correlational exploration of the relationship between response latency to items tapping the relevant self-knowledge in the self-monitoring and in the need for cognition domain, and the predictive utility of these responses. Study Three constitutes an experimental induction of self-knowledge accessibility in the self-monitoring domain and explores its effect on response latency
to items contained in the Self-Monitoring Scale and their predictive utility. In all three studies, the relevant outcome measures are those on which individuals who fall at opposite ends of each of these two scales were found to differ in the past.

Individuals who quickly answered questions about their self-monitoring tendencies (i.e., schematic low and high self-monitors) showed trends of behavior more consistent with the tenets of the self-monitoring construct than individuals who answered the questions more slowly (i.e., aschematic low and high self-monitors). Individuals who answered the Need for Cognition Scale questions quickly (i.e., schematic low and high need for cognition individuals) showed trends of behavior more consistent with the tenets of the need for cognition construct than individuals who answered the questions more slowly (i.e., aschematic low and high need for cognition individuals). Experimentally induced self-monitoring self-knowledge accessibility led to faster responses to the Self-Monitoring Scale items, but its effect on their predictive utility remained equivocal. The findings suggest that response latency to personality scale items may be a useful additional tool to fine-tune personality assessment and to obtain insight into the cognitive dynamics underlying the self-inference process and the relationship between personality and behavior.
ACKNOWLEDGEMENTS

There are several people I would like to thank for their help in producing this doctoral dissertation. First of all, I would like to express my gratitude to my supervisor, Dr. John Bassili, for giving me the opportunity to undertake this project, his insightful and expert advice, and for his continuous support. I extend my thanks to the other PhD committee members, Dr. Jonathan Freedman and Dr. Patty Pliner for their constructive and expert contributions. I would also like to thank numerous friends for their support and encouragement. Finally, I would like to thank my husband, Andries, and my children, Johan Andries, Robert, and Tatiana for their loving understanding and emotional support throughout this long and difficult process, and for patiently sacrificing an enormous amount of time with me to make this project possible.

I acknowledge with pleasure the financial support provided for this doctoral dissertation by a University of Toronto Open Fellowship for five years, and two SSHRC grants (#410-91-0232 and #410-94-0170) to Dr. John Bassili.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xii</td>
</tr>
<tr>
<td><strong>CHAPTER 1. INTRODUCTION</strong></td>
<td>1</td>
</tr>
<tr>
<td>RESPONSE LATENCY AS INDEX OF THE PREDICTIVE UTILITY OF ATTITUDES</td>
<td>13</td>
</tr>
<tr>
<td>Evidence for Response Accessibility as Index of Nonvacuity: Fazio’s Contributions</td>
<td>13</td>
</tr>
<tr>
<td>The Relation Between the Accessibility of Attitudes and their Predictive Utility</td>
<td>19</td>
</tr>
<tr>
<td>RESPONSE LATENCY AS INDEX OF THE PREDICTIVE UTILITY OF PERSONALITY SELF-REPORTS</td>
<td>24</td>
</tr>
<tr>
<td>The Representation of Self-Knowledge in Memory</td>
<td>26</td>
</tr>
<tr>
<td>Response Latency and the Retrieval of Abstract Trait Information</td>
<td>32</td>
</tr>
<tr>
<td>Research on Self-Schemata: Additional Support for Response Latency as Index of Inference Retrieval and Nonvacuity</td>
<td>35</td>
</tr>
<tr>
<td>THE ACCESSIBILITY OF SELF-KNOWLEDGE AND BEHAVIOR</td>
<td>40</td>
</tr>
<tr>
<td>OVERVIEW</td>
<td>49</td>
</tr>
<tr>
<td><strong>CHAPTER 2. THE MODERATING EFFECT OF SELF-MONITORING ON THE RELATIONSHIP BETWEEN VALUES AND ATTITUDES, AND ON ADVERTISEMENT RATINGS</strong></td>
<td>53</td>
</tr>
<tr>
<td>THE SELF-MONITORING CONSTRUCT</td>
<td>53</td>
</tr>
<tr>
<td>Self-monitoring and the Relationship Between Attitudes, Values, and Behavior</td>
<td>54</td>
</tr>
<tr>
<td>Self-Monitoring and Image- Versus Quality-Oriented Advertisements</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER 3. STUDY ONE: THE RELATIONSHIP BETWEEN RESPONSE LATENCY TO THE SELF-MONITORING SCALE ITEMS RELATED TO A GREATER PREDICTIVE UTILITY OF THE SCALE: A CORRELATIONAL EXPLORATION

OVERVIEW

METHOD

Participants
Design
Procedure
Materials

RESULTS

Categorizing Subjects into High and Low Self-Monitoring Groups
Factor Analysis of the Value Questions
Values as Predictors of Low and High Self-Monitors’ Attitudes
Categorizing Respondents into Schematic and Aschematic Low and High Self-Monitors
The Relationship Between Scale Score Extremity and Self-Monitoring Schematicity
Self-Monitoring Schematicity as a Moderator of the Value–Attitude Relationship

CONCLUSION

CHAPTER 4. ON THE RELATIONSHIP BETWEEN ATTITUDES, PERSUASION, AND INTENTIONS TO BEHAVE: THE MODERATING EFFECT OF NEED FOR COGNITION

THE NEED FOR COGNITION CONSTRUCT

Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion
Need for Cognition and the Consistency Between Attitudes and Intentions to Behave
Need for Cognition and Resistance to Counterargumentation

CHAPTER 5. STUDY TWO: THE RELATIONSHIP BETWEEN RESPONSE LATENCY TO THE NEED FOR COGNITION SCALE ITEMS AND THE PREDICTIVE UTILITY OF THE SCALE: A CORRELATIONAL ANALYSIS

OVERVIEW
METHOD
Participants 94
Design 94
Procedure 95
Measures 96
RESULTS 102
Factor Analytic and Reliability Data for the Need for Cognition Scale 102
Categorization of Respondents into High and Low Need for Cognition Groups 103
Response Latency Adjustment 103
The Relationship Between Scale Score Extremity and Need for Cognition Schematicity 104
Categorizing Respondents into Schematic and Aschematic High and Low Need for Cognition Groups 105
Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion 106
Need for Cognition and the Consistency of Attitudes and Intentions to Behave 119
Need for Cognition and Resistance to Counterargumentation 121
DISCUSSION 122
Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion 123
Need for Cognition and Consistency Between Attitudes and Intentions to Behave 125
Need for Cognition and Resistance to Counterargumentation 127

CHAPTER 6 STUDY THREE: THE EFFECT OF INCREASED SELF-MONITORING SELF-KNOWLEDGE ACCESSIBILITY ON THE PREDICTIVE UTILITY OF THE SCALE: AN EXPERIMENTAL MANIPULATION 130

OVERVIEW 129
METHOD 134
Participants 134
Design 134
Procedure and Materials 136
RESULTS 142
Categorizing Subjects into Low and High Self-Monitors 142
The Effect of Scenario Priming on the Accessibility of Self-Monitoring Self-Knowledge 142
Self-Monitoring and the Relationship Between Attitudes and Values 144
Advertisement Ratings 149
DISCUSSION 154
Self-Monitoring Schematicity, Values, and Attitudes 154
Self-Monitoring Schematicity and Advertising Preferences 156

CHAPTER 7 SELF-MONITORING, NEED FOR COGNITION, AND THE ACCESSIBILITY OF SELF-KNOWLEDGE 157
RESULTS 162
Differences in Self-Knowledge Accessibility as a Function of Self-Monitoring 162
Differences in Self-Knowledge Accessibility as a Function of Need for Cognition 164
CONCLUSION 165

CHAPTER 8 GENERAL DISCUSSION 166
SELF-MONITORING AND NEED FOR COGNITION SELF-KNOWLEDGE ACCESSIBILITY AND THE PREDICTIVE UTILITY OF THE SELF-MONITORING AND NEED FOR COGNITION SCALE: A CORRELATIONAL EXPLORATION 167
EXPERIMENTALLY INDUCED SELF-MONITORING SELF-KNOWLEDGE ACCESSIBILITY, RESPONSE LATENCY, AND THE PREDICTIVE UTILITY OF THE SELF-MONITORING SCALE 169
WHAT WAS LEARNED ABOUT ASCHEMATICS FROM THE PRESENT INVESTIGATION? 170
DIFFERENCES IN PERSONALITY SELF-KNOWLEDGE ACCESSIBILITY: A FUNCTION OF PERSONALITY? 172
CAN RESPONSE LATENCY BE USED EQUALLY WELL IN THE ASSESSMENT OF OTHER PERSONALITY CONSTRUCTS? 173
CONTRIBUTIONS OF THE THESIS 175
Theoretical Contributions 175
Methodological Strengths 179
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Number of Subjects by Self-Monitoring Tendency and Self-Monitoring Schematicity</td>
<td>62</td>
</tr>
<tr>
<td>Table 2</td>
<td>Improvement in Chi-Square in Predicting Attitudes from Values by Self-Monitoring Tendency and Attitude Issue</td>
<td>67</td>
</tr>
<tr>
<td>Table 3</td>
<td>Point-Biserial Correlations Between Value Endorsement and Attitudes as a Function of Self-Monitoring Tendency and Attitude Issue</td>
<td>70</td>
</tr>
<tr>
<td>Table 4</td>
<td>Improvement in Chi-Square in Predicting Attitudes from Values by Self-Monitoring Tendency, Self-Monitoring Schematicity, and Attitude Issue</td>
<td>74</td>
</tr>
<tr>
<td>Table 5</td>
<td>Point-Biserial Correlations Between Value Endorsement and Attitudes as a Function of Self-Monitoring Tendency, Self-Monitoring Schematicity, and Attitude Issue</td>
<td>77</td>
</tr>
<tr>
<td>Table 6</td>
<td>Number of Subjects by Argument Quality and Need for Cognition Schematicity</td>
<td>106</td>
</tr>
<tr>
<td>Table 7</td>
<td>Number of Subjects by Priming Condition and Self-Monitoring Tendency</td>
<td>135</td>
</tr>
<tr>
<td>Table 8</td>
<td>Improvement in the Prediction of Attitudes from Values by Self-Monitoring Tendency</td>
<td>146</td>
</tr>
<tr>
<td>Table 9</td>
<td>Response Latency in Milliseconds to Self-Monitoring Scale Items by Self-Monitoring Tendency (Study One)</td>
<td>163</td>
</tr>
<tr>
<td>Table 10</td>
<td>Response Latency in Milliseconds to Self-Monitoring Scale Items by Self-Monitoring Tendency (Study Three)</td>
<td>163</td>
</tr>
<tr>
<td>Table 11</td>
<td>Response Latency in Milliseconds to Need for Cognition Scale Items by Need For Cognition Tendency</td>
<td>165</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Mean Convincingness Rating by Need for Cognition, Argument Quality, and Need for Cognition Schematicity</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>Mean Postmessage Attitude by Need for Cognition and Argument Quality for Schematics and Aschematics</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>Mean Effort in Evaluating Arguments by Need for Cognition and Schematicity</td>
<td>117</td>
</tr>
<tr>
<td>4</td>
<td>Mean Average Consistency by Need for Cognition and Need for Cognition Schematicity</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>Favorability Index by Self-monitoring Tendency and Priming Condition</td>
<td>151</td>
</tr>
<tr>
<td>6</td>
<td>Drambuie Advertisement Favorability Ratings by Self-monitoring Tendency and Priming Condition</td>
<td>152</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX FOR STUDY TWO:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A: Strong and Weak Arguments</td>
<td>206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDICES FOR STUDY THREE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B: Introduction to the Experimental Tasks</td>
<td>208</td>
</tr>
<tr>
<td>Appendix C: Scenarios</td>
<td>216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDITIONAL APPENDIX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix D: Logistic Regression Tables</td>
<td>228</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Self-reports have long been central in social-science investigations. They have been the principal method for the assessment of attitudes, opinions, interests, values, and of personality. generally; their use has rapidly become widespread (Anastasi. 1988: Burger. 1993: Oskamp. 1991; Riggio, 1996). Polling and marketing research companies use self-reports to gather information about political preferences, consumer behavior, national health, and the effect of government programs (Bradburn & Sudman. 1988). Thus the analysis of people’s self-reports plays an important role in selecting political candidates, planning effective political campaigns, choosing information presented in public education campaigns on various major social issues, and evaluating economic and social programs; as well market research underlying development of consumer products (Bradburn & Sudman. 1988). Private and public companies increasingly use self-reports to assess organizational climate, job satisfaction, quality of work life, and training needs of their employees: such assessments, in turn, are the basis for organizational decisions with respect to policies, recruitment, selection, and promotions (e.g., Hogan, Hogan. & Roberts, 1996; Riggio, 1996). Interest measures based on self-reports in the area of career and educational counselling have also rapidly proliferated since the 1960s (Riggio, 1996) and personality assessments based on self-reports are increasingly accepted as predictors of real-world performance (Hogan et al., 1996).
Within social psychology research, a great number of theories and models of attitudes, their antecedents, consequences, and structure are based on self-report data (see Eagly & Chaiken, 1993, for review). In the field of personality assessment, hundreds of personality self-report inventories have appeared over the past 50 years, and new inventories continue to be introduced (Burger, 1993). Clinical psychologists use self-reports to more fully understand the inter- and intra-personal dynamics and shape their treatment interventions. In research in personality, most studies devoted to the well-known five-factor model of personality have been based on self-reports (Burger, 1993; Digman, 1990; Ozer & Reise, 1994).

The popularity of self-reports is easily understood. They allow the collection of massive amounts of data with relatively low expense. Moreover, they can be given in groups, can be administered quickly by someone with relatively little training, can be objectively scored, and have face validity (Burger, 1993; Riggio, 1996). However, the use of self-reports has not remained without its criticisms. In eliciting self-reports, it is typically assumed that test takers are able and willing to provide accurate information about themselves (Burger, 1993). Thus some researchers have questioned the accuracy of such responses (e.g., Bassili, 1996a, 1996b; Carson, 1989; Mellema & Bassili, 1995; Pervin, 1985).

For example, self-reports can be subject to faking, social desirability effects, and response effects. Respondents may intentionally "fake good" on self-report inventories when the outcome is important to them. Alternatively, they may "fake bad." Others may unintentionally present themselves as more favorably than is true. Carelessness as a result of boredom, and even sabotage, are other problems that may occur in self-report. In addition, some people have
response bias, a tendency to agree or disagree with most items or even give very bizarre and uncommon responses.

Sometimes, self-reports may be based on a nonexistent or inadequate knowledge base about the topic of the query. For example, Converse’s (1970) analysis of a three-wave panel study that examined the basis underlying political attitudes and their stability among the American electorate suggests that people are willing to render an opinion on issues about which they have actually no views, an inadequate knowledge base, or little understanding. He concluded that these people hold “nonattitudes” which fluctuate over time, appear statistically random, and do not form a distinguishable pattern from which attitudes towards other political issues can be predicted. Schuman and Presser (1981) reported that an average of 22% of respondents in a survey on foreign-affairs items and other domestic issues shifted from rendering an opinion to a “don’t know” category when filter questions were included to filter out the “don’t know” responses.

Not only are people ready to give responses on issues about which they have not previously thought, have little understanding or information, or no prior established attitude, they are even willing to express an attitude on fictitious issues. An extensive number of anecdotal reports of people’s readiness to fabricate attitudes about fictitious issues has been documented since the early years of public opinion research (Bishop, Oldendick, Tuchfarber, & Bennett, 1980; Bishop, Tuchfarber, & Oldendick, 1986). More recently, Bishop and his colleagues (1980) carried out a telephone survey polling respondents on a series of social issues among which a fictitious issue, the so-called "1975 Public Affairs Act" was embedded, asking respondents whether this act should be repealed. They reported that one third of the respondents
claimed to have an opinion about the issue. In another study, Bishop et al. (1986) embedded three fictitious issues, the so-called "1975 Public Affairs Act" (again), "The Agricultural Trade Act of 1983," and the "Monetary Control Bill of 1983"; they found again that a substantial percentage of respondents rendered opinions about these issues, particularly, when no filter questions were included. Schuman and Presser (1981) reported that one third of their sample of respondents were willing to give opinions on highly obscure issues about which it was presumed that they would have little or no knowledge (Schuman & Presser, 1981).

The utility and efficiency of self-reports, and the extensiveness and impact of the amount of information which is gathered make it particularly important for investigators to use self-report instruments which reliably yield the most predictive responses. This not only applies to people's opinions on broad ranging topics and social issues, but also to research in personality assessment. It is, in particular, the predictive utility of personality measures which is the focus of the present dissertation. More valid measures will lead to a better understanding of personality organization, its antecedents and consequences. Moreover, the increasing application of personality assessment to real world issues makes the validity of self-reports contained therein increasingly important. For example, in organizational and industrial psychology, self-report is critical in making fair decisions in respect to equal opportunity hiring and social justice (e.g., Hogan et al., 1996).

A range of solutions has been used to identify and counteract threats to the validity of the self-report in attitude and personality assessment such as response sets, tendencies to present oneself in a more favorable light, or faking and sabotage. Some of the remedial measures consist of questions and scales which are added to the items of interest and which themselves are self-
reports. Other solutions in the field of personality assessment have been clarification and refinement of test validation procedures (e.g., for review, see Anastasi, 1986; Schmidt & Hunter, 1977), development of new measures of personality, revision of familiar scales and inventories, the development of sophisticated psychometric techniques, and a reevaluation of the appropriate units of measurement (see Ozer & Reise, 1994, for review). Although these techniques have led to more valid measures, the quest continues for even better predictive instruments (Burger, 1993; Ozer & Reise, 1994); in personality assessment, a method which has not been extensively explored, however, derives from a cognitive approach that focuses on the information substrate of the response.

The present dissertation takes a cognitive perspective to personality assessment and explores response latency to questions contained in a personality scale as an additional method to distinguish between more and less predictive responses to self-reports. More specifically, the research focuses on response latency to questions contained in a given personality scale as a moderator of the predictive utility of the scale. The idea that a relationship between response latency and response validity may exist is, in particular, based on findings in social cognition and attitude research about the availability and accessibility of the relevant knowledge in memory. The availability of a relevant knowledge base refers to the presence or absence of the information, stored in memory; the accessibility of information refers to the speed with which it is retrieved from memory and used in stimulus encoding (e.g., Higgins & King, 1981). Response latency between the presentation of the stimulus (e.g., a query) and the response (see Fazio, 1990b) has proven extremely useful in examining the availability and the accessibility of a representation of information in memory and processes carried out on this information.
For example, response latency has been used to obtain insight into social judgment processes (Smith, Branscombe, & Borman, 1988; Smith & Lerner, 1986), associative network representations of stimulus persons (Carlston & Skowronski, 1986), the ease of information processing (Judd & Kulik, 1980), and into the relationship between attitudes and behavior (e.g., Fazio, 1995). Response latency has typically been used to index the accessibility of relevant information from memory and it has commonly been assumed that a shorter response latency is indicative of a stronger association between the stimulus and the relevant information in memory.

In the field of attitudes, Fazio has used the accessibility of attitudes, as indexed by response latency to attitude questions, in a comprehensive research program to examine the relationship between attitudes and behavior (for review, see Fazio, 1995). The accessibility of an attitude from memory, as measured by response latency to an attitudinal query, was used as an index to distinguish between strong and weak attitudes. Strong attitudes are those which come to mind quickly as a result of a strong association between the attitude object and its evaluation. Strong attitudes show greater durability and impact than weak attitudes (see Krosnick & Petty, 1995). For example, the former are related to relatively greater attitude-behavior consistency, resistance to counterargumentation, and persistence over time; they are more predictive than weak attitudes (Bassili, 1995, 1996a, 1996b; Bassili & Fletcher, 1991; Fazio, Chen, McDonel, & Sherman, 1982, expt. 4; Fazio & Williams, 1986).

The particular utility of response latency as an index of more predictive responses to attitudinal queries suggest the possibility that response latency could also function as an index of the accessibility of the information substrate of personality self-reports and, thereby, as an
additional tool to distinguish between responses which are more and less predictive. Findings in the field of personality research suggest that individuals may differ with respect to the information substrate of their responses to queries tapping their self-knowledge in a particular personality domain. For example, Allport (1937) and various personality theorists since then (e.g., Baumeister & Tice, 1988; Bem & Allen, 1974) have argued that not all traits apply to all people, suggesting that individuals may be at neither pole assessed by the personality scale. Baumeister and Tice call individuals to whom the trait applies "traited" on the dimension and individuals to whom the trait does not apply "untraited" on the dimension: they argue that individuals may not only differ according to their levels of a given trait, but also according to their typical constellation of trait dimensions.

Various measures have been proposed to identify individuals to whom a trait does or does not apply (Baumeister & Tice, 1988; Bem & Allen, 1974: see also Paunonen, 1988). For example, Bem and Allen suggested that individuals to whom the trait does apply are those who show cross-situational consistency in their behavior relevant to the trait because, by definition, only the behavior of consistent individuals can be meaningfully characterized by these individuals. In order to assess this notion, they used individuals' self-reported cross-situational consistency in the trait domain or an ipsatized variance index (i.e., a measure of consistency across items) to identify such consistency. In support of their notion, they found trait consistent behavior to a larger extent for less variable individuals.

Measures of traitedness which have been used are, for example, self-reported cross-situational consistency in trait-relevant behavior, extremity of trait self-rating, ipsatized variance index, and inter-item variance of scale responses on the scale of interest (see Baumeister & Tice,
Baumeister and Tice favor the latter measure, proposing that low variance indicates the person responded consistently to all items, which suggests therefore. that the person is traited on the dimension. High variance indicates erratic, variable, or inconsistent responses, and suggests that the person is untraited on the dimension.

Thus, not all individuals may have a coherent cognitive representation of relevant information tapped by the questions contained in a personality scale available in and accessible from memory. After all, in order to have a coherent self-inference about one’s typical behavior in a domain, available in and accessible from memory, one needs to have been exposed to such information and this information would have to be consistent. It is likely that individuals to whom the trait does not apply (i.e., who are untraited on the dimension) have not had an opportunity to make such an inference because of their lack of exposure to the information or because of the lack of consistency of the information.

Untraited individuals may, therefore, have to construct an answer on the spot based on whatever information is salient and available in the context. Traitied individuals, on the other hand may be able to retrieve their response as a pre-integrated package from memory and may, therefore, be able to answer more promptly to a self-report item tapping the trait. For untraited individuals, responding to a question about their standing in the relevant personality domain is likely to be more difficult and slower.

Baumeister and Tice (1988) reported that for two personality constructs (i.e., locus of control, self-esteem), trait-scale scores only predicted behavior for traited individuals, supporting their notion of more trait-consistent behavior among traited than among untraited individuals.
Taken together these findings are not inconsistent with the suggestion put forward here that faster personality self-report responses are likely to be more predictive than slower ones.

According to well-known response models (e.g., Bassili, 1996a; Strack & Martin, 1987; Tourangeau, 1987; Tourangeau & Rasinski, 1988) the following four distinct stages can be identified in the response process: (1) the interpretation of the question; (2) the retrieval of the relevant information from memory; (3) the integration of the information into a judgment; and (4) the translation of the judgement into a response. Although cognitive processes at each of these four stages can influence how long it takes a respondent to answer a question, for the present purpose stages (2) and (3) are of particular interest: these two stages involve idiosyncrasies of respondents which are related to the information substrate relevant to the query. Stages (1) and (4) depend on fixed properties of the questions and are of interest for interquestion response-latency comparisons (Bassili, 1996a).

Regardless of whether a similar judgment was made in the past, the speed with which the relevant information is accessed from memory, inconsistency in one's past behavior, and ambivalence or conflict about one's standing in the domain can all influence the speed of response to a relevant question (Bassili, 1996a). A similar judgment made in the past makes it possible to retrieve this judgement and give a faster response than when the judgment has to be made on the spot. Information in memory which is internally consistent is likely to take less time to integrate than information which is not.

The position taken here is that a number of factors can contribute to slow responses among individuals. For example, there are at least three types of mechanisms that can lead to slow responses. Slow responses may be given: (1) by individuals who do not possess the trait,
who have not behaved in the trait domain, and are, therefore, unsure about where they stand with respect to their behavior in the domain (have not made a similar judgment in the past); (2) by individuals who have behaved in the trait domain, but inconsistently so, know about it, but are not sure how to respond to the query as a result of this inconsistency; or (3) by individuals who have behaved in the trait domain, whose behavior may have been consistent or inconsistent, but who have not reflected on it. Although the mechanisms underlying these slower responses differ, answers relating to any of these three situations are likely to contain more noise and random error than faster responses as a result of their inherent uncertainty.

Fast responses, on the other hand, are likely to be given by individuals who possess a clear and coherent cognitive representation of their standing in the domain in memory, and for whom, therefore, the answer comes easily to mind when presented with a question tapping this information. These individuals are likely to have behaved consistently in the domain in the past, and to have made an inference about their behavior which they are likely to have readily accessible. Even when they have not made the relevant inference in the past, the necessary information is likely to come to mind quickly. They may be individuals who possess the trait to a great extent and fall in the extreme ranges on the personality dimension, or they may be individuals who possess the trait to a lesser extent and fall in the moderate or lower ranges on the personality dimension but know very well where they stand.

"Fast moderates," for example, may be individuals who behave consistently inconsistent in the relevant trait domain (e.g., when individual differences in self monitoring are of interest, they may be individuals who sometimes behave as a high self-monitor, and sometimes as a low self-monitor, but know so very well). When presented with the various items of a personality
scale aimed at assessing their behavior in the domain. They quickly know where they stand with respect to the behavior tapped by the item. They may endorse some items on the scale in one direction, and other items in the opposite direction leading to a moderate score, or may rate themselves as moderate on the dimension, but do so relatively quickly. In other words, they are aware of their inconsistency and not unsure. As a result, their answers are more likely to be accurate than the answers of individuals who are inconsistent and not sure how a relevant item applies to them.

Similarly, fast responders who fall in the lower ranges on the personality dimension are also likely to know this very well. It is also possible, but less likely that even individuals who have not behaved in the trait domain at all, know so very well and give a relatively fast response, particularly on scales that have response options that allow them to indicate such "trait neutrality." However, in each of these cases, the relatively faster answers are likely to contain less noise and random error than the slower responses because of their inherent certainty.

Thus various factors involving different underlying mechanisms may affect response latency, but they all suggest that there may be differences in response latency according to whether one has or lacks a coherent and accessible abstraction about oneself on the personality dimension. More specifically, they suggest that any factors that contribute to behavior that does

\[1\] Although not directly tested here, research reviewed later in this chapter suggests that having a self-inference about one's standing in a trait domain available and accessible from memory is likely to depend on the amount of experience one has had with one's behavior in the domain and on the extent to which this experience was consistent. Furthermore, the accessibility of this information depends in turn on the extent to which one has noted and used this information in the past. It seems intuitively plausible that, in general, individuals who have not behaved in the trait domain will not have such a self-inference readily accessible from memory. They are, therefore, less likely to respond quickly than individuals who have had extensive experience with their behavior in the domain.
not lend itself to a coherent abstraction may lead to slower responses, which are by definition less predictive.²

However, the present investigation is not designed to distinguish empirically between the various groups of fast responders (whom I call "schematic" because they are more likely to possess a coherent cognitive representation about their typical behavior in the domain in memory), nor to distinguish between the various groups of slow responders (whom I call "aschematic" because they are more likely to lack such a coherent cognitive representation in memory). Neither is the investigation designed to address theoretical issues about traitedness. More specifically, the present research seeks to explore at a more global level whether relatively fast responses to personality scale items are more predictive than slow responses, to take a first look at response latency as a tool to improve measurement and assessment.

A basic assumption of this investigation is that differences in people's behavior are associated with differences in personality. Although this assumption has been at issue, there is general agreement that behavior is a function of both personality and the situational context, so that the greatest amount of variance in people's behavior is explained when both are taken into account (e.g., Bowers, 1973; Carson, 1989; Kenrick & Funder, 1988; Mischel, 1973; Pervin, 1985; Wright & Mischel, 1987). The next section contains a review of the literature in the areas of attitudes and social cognition, from which I derived hypotheses of a possible relationship between response latency and response utility.

²It could be argued that people give fast responses out of carelessness. However, this is not consistent with findings in attitude research which suggest that relatively faster responses are more predictive of future behavior (e.g., see Fazio, 1995).
RESPONSE LATENCY AS INDEX OF THE PREDICTIVE UTILITY OF ATTITUDES

Evidence for Response Accessibility as Index of Nonvacuity: Fazio’s Contributions

Findings from research on attitudes is particularly informative here: Fazio’s (1986; 1990a; 1995) model of the relationship between attitudes and behavior is therefore explored: I seek to ascertain whether it can be applied to the relationship between self-knowledge about one’s standing in a personality domain and behavior relevant to this self-knowledge. More specifically, Fazio’s specification of various parameters relevant to the attitude–behavior relationship is extrapolated to the relationship between self-reports about one’s standing in a personality domain and the predictive utility of these self-reports.

Knowledge, in Fazio’s model, is stored in memory in an associative network: an attitude, then, is conceptualized as an association in memory between an attitude object and its evaluation. According to associative network theorists (e.g., Anderson, 1976; Anderson & Bower, 1973), knowledge, whether it is in the form of concepts or propositions, is represented as nodes in memory which are interrelated through associations or complex links. These associations differ in the strength of their bonds which, in turn, depends on the extent to which a given association has been learned. The more well-learned an association is, the stronger its bond, and the faster and easier the association comes to mind. Thus, the stronger the association between an attitude object and its evaluation, the more quickly the attitude will come to mind.

Factors which have been found to lead to a stronger bond between the attitude object and its evaluation and, therefore, to an increase in the accessibility of the attitude are plausibly factors which are suggestive of a more substantive attitude. Moreover, factors facilitating more
accessible attitudes are consistent with reports on factors which have been suggested to lead to more accessible social constructs in general (see Higgins & King, 1981). For example, associative strength between an attitude object and its evaluation develops by frequent pairings of these items of association in memory (e.g., Anderson, 1983).

Support for this notion was found in a series of studies where the frequency with which individuals repeatedly expressed their attitude to each of a variety of attitude objects was varied (Fazio et al., 1982, expt. 3; Powell & Fazio, 1984). These objects ranged from puzzle types to socially important or controversial issues. In order to elicit the repeated expression of the attitudes, subjects indicated their attitudes using scalar response options of two types: either the codes used to enter answers, or the labelling of the endpoints of the scale were varied. Noteworthy in the findings of these studies is, that while repeated expression of an attitude significantly increased its accessibility, it had a negligible effect on attitude extremity.

Some researchers had, in fact, argued that attitude accessibility resulting from a repeated expression of the attitude is a result of an increase in attitude extremity (Downing, Judd. & Brauer, 1992). Yet the findings given above were corroborated by later findings by Fazio and his colleagues: repeated attitudinal expression led only to increases in attitude accessibility, but not to attitude polarization regardless of initial attitude extremity (Fazio & Powell, 1994; Roskos-Ewoldsen & Fazio, 1992). Although further research is necessary to come to firmer conclusions about the relationship between attitude extremity and attitude accessibility, the balance of the evidence so far suggests that strengthening the associative bond by repeatedly expressing or noting one’s attitude primarily leads to an increase in accessibility. Thus, attitudes which are essentially similar in score, can differ markedly in their strength and accessibility.
In considering Fazio’s model for the relationship between self-reports about one’s standing in a personality domain and the predictive utility of such responses, it should be kept in mind, however, that the evaluative component which is inherent in attitudes (i.e., positive or negative) is likely to be absent from self-inferences about one’s typical past behavior in a personality domain. This evaluative component may play a major role in the mechanisms leading to attitude polarization as a result of, for example, repeated expression of the attitude and of repeatedly thinking about the attitude object (e.g., Judd & Brauer, 1995). Hence a repeated expression or repeated noting of one’s standing in a personality domain may be less susceptible to polarization of such ratings.

Similarly, ambivalence as a result of conflicting feelings and/or thoughts about an attitude object is a reflection of the presence of both positive and negative summary evaluations of the attitude object. Although one may be unsure about one’s standing in a personality domain (which is likely to be reflected in a slower response when responding to items tapping this information), it is unlikely that ambivalence of the sort observed in social attitudes would be triggered when one is responding to queries about one’s standing in a personality domain. One can, of course, be “ambivalent” about one’s standing in a domain in the sense that one knows very well that one behaves consistently with a particular trait construct in some respects and inconsistently in other respects. However, as pointed out earlier, such a clear self-view about each of these types of behaviors is likely to manifest itself in fast responses to items querying the relevant domain and often results in a moderate score on the personality dimension. If we call the fast responders “schematic” on the dimension, and the slow responders “aschematic,” such individuals may be moderately “schematic.” On the other hand, those who are unsure about
their standing in the domain in general or about each of the typical past behaviors queried by the scale would likely respond to the relevant items more slowly and be considered aschematic in the domain.

Providing a different interpretation of Converse's (1970) dichotomy between attitudes and nonattitudes to account for the apparent instability of some attitudes. Fazio suggests that attitudes can be aligned on a continuum based on their strength, regardless of their score. Nonattitudes characterized by high instability—representing relatively vacuous responses—can be located at one end of the continuum, and attitudes which are characterized by an increasingly stronger object-evaluation association towards the other end. For the former, essentially no relevant cognitive representation exists in memory. The further one moves along the continuum towards the other end, the greater the likelihood of the presence of a relevant cognitive representation in memory, and the greater the strength of the associative bond between the attitude object and its evaluation. A corollary of this notion is that the further one moves towards the attitude pole, the more accessible from memory the attitude becomes. Attitudes characterized by a strong object-evaluation association may even be activated automatically from memory and may come to mind effortlessly and inescapably (Fazio, Sanbonmatsu, Powell, & Kardes, 1986; Shiffrin & Dumais, 1981).

Attitudes which are automatically activated by a relevant stimulus may exert their effect even when individuals attempt to ignore or bypass this distraction. For example, Fazio et al. (1986) demonstrated that attitudes towards particular types of attitude objects (e.g., animals, food, activities) which are highly accessible or which are made highly accessible can be activated automatically. Such accessibility is brought about through strengthening of the bond between
the attitude object and its evaluation in memory by repeatedly expressing one's attitude. In one study, the researchers simply assessed attitude accessibility by measuring response latency to attitudinal inquiry about such objects and presented these attitude objects during a later adjective-connotation-rating task without prompting the attitude. Attitude objects to which subjects had previously shown highly accessible attitudes facilitated the connotation rating of the subsequently shown adjectives when the preceding attitude object was similar in valence to the adjective. However, attitude objects to which subjects did not possess readily accessible attitudes did not produce any facilitation. In a second study, where attitude accessibility was experimentally increased by having subjects repeatedly express their attitudes, a similar pattern of results was obtained.

A second factor which leads to a stronger bond between the attitude object and its evaluation and, therefore, to greater attitude accessibility is direct experience with the attitude object. A typical experimental procedure to demonstrate this notion is to give subjects an opportunity to play with various puzzles and have them later participate in a response-time task in which they were asked to indicate which of a series of adjectives is descriptive of their attitude towards each of the various puzzle types. Subjects' response latency to the attitudinal query has then been compared to that of other subjects who did not have the opportunity to manipulate the puzzles directly but saw a video in which another person completed the puzzles (indirect experience condition) (Fazio et al., 1982, expt. 1). Subjects who had direct experience with the puzzles were able to respond much faster to the adjective connotation task. In another experiment (Fazio et al., 1982, expt. 2) where some subjects were given an opportunity to express their attitude towards the puzzle after the direct experience but before the response-time
task, and others were not given this opportunity, the investigators found that consolidating one’s attitude and direct experience both increased the speed with which subjects were able to respond to the attitudinal query.

In summary, attitudes which are clear and based on a more substantive knowledge base (direct behavioral experience, inferences from relevant past behavior, or attitude consolidation) appear to have a stronger associative bond between the attitude object and its evaluation than those which are based on more indirect information. This bond is evidenced by the former’s greater accessibility from memory. If attitudes are easily accessible, individuals can promptly respond to the query. If attitudes are not available or accessible, attitudes must be constructed on the spot based on whatever information is salient in that context. Attitudes formed in this manner may be easily influenced by situational or other biasing factors, and the response may, therefore, have less predictive utility.

An example of the influence of the information which is salient in the context of the assessment of an attitude or self-judgment was identified in a series of studies carried out by Salancik and Conway (1975). These investigators asked subjects to react to descriptions of proreligious and various antireligious behaviors, and state whether each description applied to them. The intent was to make either pro or antireligious behavior salient to the subject. Consistent with the prediction, subjects for whom the proreligious behaviors were made salient reported more favorable attitudes towards religion than subjects for whom the antireligious behaviors were made salient. Moreover, the former group perceived themselves as more religious than the latter group.
The Relation Between the Accessibility of Attitudes and their Predictive Utility

Response latency is not only an efficient index to distinguish between more and less substantive attitudes, but particularly interesting is the finding of its relationship to their durability (i.e., stability, persistence, and resistance to attack) and impact (i.e., influencing information processing, judgments, and behavior) (e.g., Bassili, 1993; Bassili & Fletcher, 1991: Fazio, 1986, 1995). More specifically, accessible attitudes relative to those which were less accessible have shown greater predictive utility, whether they are chronically accessible or made more accessible using laboratory manipulations. They show greater consistency between attitudes and behavior, greater persistence over time, and greater resistance to counterargumentation (Bassili & Fletcher, 1991; Fazio et al., 1982, expt. 4; Fazio, Powell, & Williams, 1989; Fazio & Williams, 1986).

Manipulations which were used in studies described earlier which led to increases in attitude accessibility, also led to their greater predictive validity. For example, groups of subjects were provided with the opportunity to review and evaluate their past behaviors towards religions: these groups showed greater consistency between their attitude and their behavioral intentions to perform certain religious behaviors in the future than groups who were not so provided (Fazio & Zanna, 1981; Zanna, Olson, & Fazio, 1981). In addition, attitudes towards temporary housing of students who had direct experience with temporary housing versus those who had formed their attitude through discussions with others and through other information about the topic showed greater consistency between their attitudes and the actions they said they might take to alleviate the crisis (Regan & Fazio, 1977). Students' attitude towards volunteering
to serve as a subject in an experiment increased the predictive utility of their expressed interest in serving again in an experiment as the number of experiments in which they had participated increased (Fazio & Zanna, 1978). When direct experience with a series of puzzles was manipulated in the laboratory, where subjects either did the puzzles themselves or listened to an experimenter who described the puzzle and solution, subjects’ attitude towards the puzzles was more predictive of their later, play behavior (Fazio & Zanna, 1978; Regan & Fazio, 1977).

Other studies have examined the relation between chronic attitude accessibility and the predictive utility of the attitude. For example, Fazio and Williams (1986) polled voting age residents about their attitudes and voting behavior regarding the 1984 presidential candidates and examined the latency of response to their answers. Dividing respondents into high and low accessibility groups using a median split procedure at each level of the scalar response scale, they found that the attitudes of the high accessibility group were more predictive of voting behavior than the attitudes of the low accessibility respondents. In addition, accessible attitudes seem to influence the judgment of the attitude object (Fazio & Williams, 1986; Houston & Fazio, 1989). Accessibility was found to be related to greater attitude stability over time (Fazio & Williams, 1986) even after recent attitude change (Zanna, Fazio, & Ross, 1994), and to less susceptibility to attitude manipulations (e.g., considering one’s reasons for one’s attitude) (Hodges & Wilson, 1994). Similarly, Bassili (1993) found that subjects who gave their voting intentions more quickly were less likely to switch their voting preference.

In addition, there is evidence that more accessible attitudes are less susceptible to counterattack by a persuasive message. In one experiment, Bassili and Fletcher (1991) explored whether respondents who are less likely to change their attitude upon counterargumentation
("nonmovers") respond more quickly to the relevant attitudinal query than respondents who do change their attitude upon counterargumentation ("movers"). Nonmovers may respond more quickly because they may be more likely to retrieve attitudes from memory as preintegrated packages. Alternatively, movers may respond more quickly because nonmovers give more careful thought to the issue than movers who may tend to give quick, unreflective answers. Bassili found support for the first notion. The data gave a sound basis for predicting the attitudes of nonmovers, suggesting that their attitudes were integrated in a more extensive belief system; nonmovers’ response latency was also shorter than that of the response latency of movers. Furthermore, Bassili (1993) found that faster responses to voting intentions were more likely to result in voting behavior consistent with those intentions than were slower responses.

Attitude accessibility can thus function as an index of attitude strength as conceptualized by the extent to which such attitudes show durability and impact (Krosnick & Petty, 1995). Studies have also identified other attributes of attitudes which are indicative of attitudinal strength (see Krosnick & Petty, 1995, for review). Most of the measures used to assess these attributes, however, have been in the form of self-reports such as asking respondents about how certain they are of their attitudes, or how important or relevant the attitude issue is for them; such measures may be subject to the weaknesses of self-reports discussed earlier. Similarly, self-schemata in a trait domain have typically been operationalized by including subjects’ responses to an importance rating of the relevant trait to their self-concept (e.g., Markus, 1977).

Bassili (1996b) offered a useful distinction between attitude-strength measures: Those which indicate the cognitive processes underlying the self-inference, and those which are impressionistic assessments of the strength concept; he suggested the terms, respectively, of
operative and meta-attitudinal indices of strength. A primary distinction between the two types of indices of attitude strength is that they constitute differences in method of measurement rather than differences in the actual properties being measured. Meta-attitudinal measures are those which are based on respondents’ impressions of their attitudes, such as self-reports about the importance of one’s attitude or the certainty of one’s attitude; such measures reflect individuals’ introspective reports about their cognitive processes. By contrast, operative indices of attitude strength are directly linked to the judgment processes which underlie the attitudinal responses such as the accessibility of an attitude as indexed by response latency to the attitudinal query, the extremity, and the ambivalence as assessed by an indirect measure rather than a self-report about one’s ambivalence. Operative indices are an outgrowth from the representation of this knowledge base and the information processing carried out on it and constitute an important aspect of the attitudinal response. Thus, they tap properties of the judgment processes which individuals use in arriving at an answer which may be implicit and to which respondents do not have conscious access (e.g., Nisbett & Wilson, 1977).

Consistent with Greenwald and Banaji’s (1995) compelling argument to use more indirect measures to assess social constructs, Bassili argued that operative indices provide more valid assessments of attitude strength than meta-attitudinal indices. He presented support for the distinction between meta-attitudinal and operative indices of strength and the superiority of attitude accessibility as an index of strength relative to other strength indices; a series of studies was carried out in the context of a CATI (computer-assisted telephone interview) survey where response latency is recorded by the computer. In a first study, Bassili (1993) compared response latency (i.e., an operative index) and reported finality of one’s attitude (i.e., a meta-attitudinal
index) as predictors of respondents' voting intentions. Although finality and response latency were both predictors of respondents' subsequent voting behavior, only response latency remained a significant predictor after controlling for subjective certainty. Bassili estimated that for every second that a respondent delays in expressing a voting intention, the probability of that intention correctly predicting that individual's vote decreases by 8%. In a more recent series of studies, Bassili (1996b) factor analysed meta-attitudinal (i.e., certainty, importance, strength, knowledge ability, level of attention, frequency of thought about the focal issues) and operative indices (i.e., response latency, extremity, ambivalence) of attitude strength and found two factors which clearly distinguished between the two types of measures. Only the operative index of attitude strength (i.e., average of all three measures) significantly predicted attitude pliability; the meta-attitudinal index (i.e., average of all meta-attitudinal measures) did not predict outcome.

In another study, Bassili assessed the properties represented by the operative indices using both meta-attitudinal measures (e.g., "How accessible is your attitude?") and operative measures (e.g., response latency to the attitudinal query) to tease apart method of measurement and the property of the attitude. He performed a regression analysis of an index of impressionistic meta-attitudinal measures, an index of the operative measures in meta-attitudinal form, and an index of the operative measures on attitude pliability and on attitude stability; he found superior predictive utility of the operative index. Only the operative index significantly predicted attitude pliability and attitudinal stability over two weeks. Further analysis using all strength measures revealed that only response latency and reported certainty remained as predictors of attitude pliability and stability after controlling for the other strength measures.
The superior predictive validity of the meta-attitudinal strength measure of certainty may have occurred, according to Bassili's argument, because of its closer relationship to the outcome measures of pliability and stability than the relationship of the other meta-attitudinal measures to these outcome measures. Certainty which intrinsically implies unpliability, may be more easily derived from cognitive and behavioral cues and is more likely to be represented in summary form in memory than the other meta-attitudinal measures. Further, meta-attitudinal responses may even be based on cues obtained from operative processes. In other words, attitudes which come to mind quickly may, therefore, be considered important. In support of this notion, Roese and Olson (1994) found that repeated attitudinal expression of attitudes towards each of four social issues, not only increased the accessibility of subjects' attitudes as measured by response latency to the attitudinal query, but also caused subjects to rate those attitudes as more personally important than subjects who had not repeatedly expressed their attitudes. Bassili's findings suggest that response latency is the most effective predictor among the strength measures. His results strongly indicate that response latency effectively indexes the predictive utility of substantive responses.

RESPONSE LATENCY AS INDEX OF THE PREDICTIVE UTILITY OF PERSONALITY SELF-REPORTS

Can these findings and suggestions in the field of attitude research be extended to personality self-reports? Can response latency to self-reports contained in a personality inventory function as an index of diagnostic responses and their predictive utility? There are various historical, conceptual, and methodological parallels between personality and attitudes
which suggest that substantial insight may be gained from cross-referencing the two fields (e.g., Fazio & Zanna, 1981; Sherman & Fazio, 1983). For example, Sherman and Fazio suggest that both attitudes and personality are presumed to be related to overt behavior and that for both constructs the extent of this relationship has been questioned. In both areas research has focused on a specification of the factors which affect the relationship between the predictive utility of attitudes and of the particular personality respectively, such as situational factors, the equivalence of the level of specificity of measurement, person factors, the quality of the attitudes and traits; both fields have become more optimistic.

Various researchers (Baumeister & Tice, 1988; Sherman & Fazio, 1983) have suggested that some traits could be regarded as attitudes, as is indicated when individuals attribute traits which have an evaluative connotation to themselves, or when personality is assessed using attitude questions. Sherman and Fazio posit that traits could be conceived as affect towards or beliefs about a situation or class of situations. As with the greater predictive validity of attitudes which have been grounded in past behavior with respect to an attitude object, Fazio and Zanna (1981) suggest that trait self-ascriptions which are grounded in past behavior may also be relatively more predictive of later behavior than self-ascriptions based on nonbehavioral information. This self-knowledge may even guide later behavior (Baumeister & Tice, 1988; Sherman & Fazio, 1983).

Research findings in social cognition of relevance to self-inference and the representation of self-knowledge in memory also suggest that Fazio’s notion of the relationship between attitude accessibility and their predictive utility may be successfully applied to personality self-reports and their predictive utility; these findings further suggest that the accessibility of self-
report responses to questions contained in personality questionnaires as indexed by response latency to the attitudinal query may indeed provide an index of their predictive utility.

The Representation of Self-Knowledge in Memory

Similar to Fazio’s conceptualization of an attitude as stored in an associative network, the representation of self-knowledge in memory has also been modelled in an associative format (see Kihlstrom & Klein, 1994; Linville & Carlston, 1994; for reviews). Thus, knowledge about oneself such as trait information, typical behaviors, and/or specific past behavior can be represented as a set of propositions linked to a central self-node representing oneself. Three general models have been proposed about how knowledge about oneself is represented in memory (Kihlstrom & Klein, 1994), although they each differ in some respects. Some assume that trait information is represented in the form of summary abstractions; others in the form of behavioral exemplars; in some models both are found. All three models however are based on the assumption that knowledge of one’s traits is based on memory of one’s behavior and that the representation of information about oneself in memory is centered on a single node representing the self; to this node, behavioral episodes and abstract trait information are connected. However, as a result of these different assumptions, they also differ in their assumption as to which kind of information is accessed when individuals make relevant trait self-judgements.

For example, according to the "exemplar" models of the representation of self-knowledge (e.g., Bellezza, 1984; Bower & Gilligan, 1979; Locksley & Lenauer, 1981; Warren, Chattin, Thompson, & Tomsky, 1983), trait-relevant self-knowledge takes the form of separate
representations of a person's different behaviors (e.g., behavioral exemplars). Self-judgments on a trait involve the retrieval of trait-relevant behavioral examples from memory and the "computing" of a response to the question from the consideration of these relevant behaviors. According to the "abstraction model" of the representation of self-knowledge, knowledge of one's traits is abstracted from behaviors relevant to those traits but represented in memory in summary form (e.g., Buss & Craik, 1983, 1984; Cantor & Mischel, 1979; Hampson, 1982; Hampson, John, & Goldberg, 1986; John, Hampson, & Goldberg, 1991; Klein, Loftus, & Burton, 1989; Klein, Loftus, & Plog, 1992). When making a self-judgment on a trait, it has been proposed within this model that people directly access the appropriate summary response.

Finally, according to the "mixed model" of the representation of self-knowledge (Kihlstrom, Cantor, Albright, Chew, Klein, & Niedenthal, 1988; Klein & Loftus, 1992a, 1992b, 1993; Klein, Loftus, & Sherman, 1993; Klein, Loftus, Trafton, & Fuhrman, 1992), trait information is represented both at the level of behaviors and in summary form, and both types of information play a role in trait judgments about oneself. Which type of information plays a more important role in responding to a question regarding one's standing on the trait dimension depends on one's amount of behavioral experience with the trait being judged. In order to form abstract knowledge about one's standing on a trait dimension, one needs first to have had sufficient trait-relevant experience. Thus the amount of behavioral experience with the trait being judged determines whether the abstraction is called to mind upon responding to a relevant query. When such trait-relevant behavioral experience does not exist and it is, therefore, less likely that one can retrieve a prior abstraction from memory, one needs to call to mind behavioral exemplars to form such an inference. Recent research has provided substantive support for this
mixed model of self-knowledge representation where both behavioral examples and abstract trait information are linked to the self-node.

For example, in a series of innovative studies Klein and his colleagues tested the various predictions of the three models about the self-inference process using paradigms from memory research which are based on the notion of task facilitation. The task facilitation approach is based on the assumption that one particular task can prime information necessary in a second task, so that performance on a memory test is an increasing function of the overlap between the information required by the two tasks. Thus, when two tasks are carried out in succession, the time required to perform a second task is assumed to be shorter when information relevant to performing a second task is made available in the process of performing a first task than if that information were not available.

In order to assess whether trait self-judgments involve the retrieval of one's specific behaviors exemplifying the trait, Klein et al. (1989) asked subjects to perform two of the following in succession: (a) a descriptive task which required subjects to judge a stimulus trait word for self-descriptiveness; (b) an autobiographical task, which required subjects to retrieve from memory a specific incident in which they manifested the stimulus trait; (c) a semantic task which required subjects to generate a definition for the stimulus trait. The outcome of all possible combinations of the three task types was examined and response time to performance was measured for each task. The investigators reasoned that if self-judgments on a trait involve the retrieval of specific behavioral examples relevant to the trait, then performing the autobiographic task first and the descriptive task second should facilitate the response on the second task; thus there would be a shorter response latency, than in the case where the semantic
task was performed first. Similarly, performing the descriptive task first and the autobiographical task second should produce facilitation of the latter.

Klein et al. (1989) found that the retrieval of autobiographical information did not facilitate rating oneself on a particular trait adjective. Response latency for the descriptive task was the same, regardless of whether the initial task was autobiographical or semantic. Similarly, first rating oneself on a trait did not facilitate the retrieval of a specific behavioral example. Moreover, this lack of facilitation did not appear to be a function of the extent to which the trait was self-descriptive. In a second study, Klein, Loftus, and Plog (1992) used a recognition paradigm assuming that recognition should be an increasing function of the degree of overlap between information provided at study and information provided at retrieval. Thus, if autobiographical information is required for self-descriptiveness judgments, recognition accuracy should be higher for subjects who performed the descriptive task first when the second task is autobiographical rather than semantic. Similarly, performing an autobiographical task first should lead to greater recognition accuracy when the second task is descriptive than when it is semantic. Klein et al. did not find a facilitation effect for recognition. Performing the autobiographical task first and the descriptive task second did not increase recognition accuracy with respect to the semantic task. Similarly, performing the descriptive task first and the autobiographical task second did not lead to greater recognition accuracy than in the case of performing the semantic task second.

In a third test of the question whether describing oneself on a trait involves the retrieval of autobiographical information, Klein et al. (1989) used an encoding variability paradigm. According to the encoding variability notion, the more varied the information encoded about a
stimulus word, the greater the probability that the information will be recalled. Klein et al. found that combined (descriptive-autobiographical) tasks did produce greater recall than either of the single encoding tasks (descriptive or autobiographical) in succession, suggesting that rating oneself on a trait and retrieving autobiographical information did make available different types of information. Based on the results of these studies, Klein and his colleagues concluded that when one is judging oneself for a trait, abstract trait information and behavioral exemplars are likely to be independently stored and accessed.

Since in the autobiographical task in the previous studies subjects were asked to retrieve only one behavioral example of the trait, and since one behavioral exemplar may not be considered a reliable index of one's trait which may have affected the results in these studies. Klein et al. (1993) repeated the task facilitation paradigm using summary behaviors rather than one behavioral exemplar. Summary behavioral memories (e.g., "what have you typically done when you were being sociable?") provide information about the behavioral frequency and may be considered a more reliable indicator of one's traits. The results showed that subjects were significantly faster in judging themselves on a trait when they first retrieved summary behaviors relevant to the trait than when they first had defined the trait adjective. On the other hand, subjects who first rated themselves on the trait did not retrieve summary behavioral information more quickly. Thus, when summary behaviors are available they can be used when rating oneself on a trait, but rating oneself on a trait dimension does not necessarily require the retrieval of summary behavioral information. It is noted, however, retrieving summary behaviors does not mean that people call to mind specific behavioral examples when rating themselves on an abstract trait dimension. Summary behaviors are also abstract inferences about one's standing
on a trait dimension which may be stored in memory and retrieved when such judgments are asked for.

In a recent study, Klein, Loftus, Trafton, and Fuhrman (1992) asked subjects to make a self-judgment with respect to various traits, keeping in mind either the last two months since they had been in college (low experience) or the time before they entered college (high experience). Subjects in the high experience condition did not retrieve autobiographical information when making a trait self-judgment, whereas those in the low experience condition seemed to rely on the retrieval of specific behavioral examples to make their judgment. Furthermore, the investigators compared two high-experience contexts (i.e., four years at high school versus the same four years at home); they found no facilitation effect when autobiographical information was retrieved first. In another study, Klein and Loftus (1993) compared first-year undergraduates (low experience) and fourth-year undergraduates (high experience), and found that describing oneself on a trait was faster after initially remembering specific behavioral experiences for first-year (low experience) students only.

Abstractions about one's typical behavior in the past are often the form in which questions are asked in personality scales. These questions are based on the assumption that individuals who possess the personality trait in question have displayed consistency in such behavior in the past and have had experience with their behavior in the domain. Because the extent of experience people have with their behavior in a trait domain appears to moderate the retrieval of such abstract trait inferences, it is likely that, in particular, individuals who possess the personality trait have made an abstraction about their behavior in the domain in the past which they can retrieve as a package from memory. Because making an abstraction about one's
past behavior in a domain implies consistency in that behavior. The presence of such an abstraction is arguably related to such consistency and thus to predictive utility. Individuals who have made such an inference will also be likely to respond more quickly to queries about such abstractions than individuals who have had less experience with their behavior in the domain who will have to construct their answer on the spot.

Response Latency and the Retrieval of Abstract Trait Information

The notion that individuals differ in whether they retrieve a prior trait abstraction or specific behavioral examples is consistent with findings in person perception. For example, in a great variety of judgment domains (e.g., social impressions, attributions of causes for behavior, evaluations of legal culpability, probability and frequency estimates) the relation between memory for specific stimulus information and judgment is often lacking and sometimes contradictory (Anderson & Hubert, 1963; Hastie & Kumar, 1979; see Hastie & Park, 1986, for review) and appears to depend on the task conditions under which a social judgment is made (Hastie & Park, 1986; Hastie & Pennington, 1989). The findings of no evidence for this relation suggest that individuals do not always call to mind raw stimulus information when making a judgment.

For example, when making a social judgment similar to one made in the past, one may retrieve this judgment if it is available and accessible from memory. In such cases, the relationship between memory for this information and judgment is often lacking. On the other hand, when asked to make a judgment which one is unlikely to have made earlier, where the
judgment depends on retrieval of relevant stimulus information from memory. one is more likely to consult one's memory for the relevant stimulus information on which to base one's judgment, so that a relationship between memory and judgment is found. For example, Carlston (1980) reported that an earlier judgment (i.e., trait evaluation for job selection based on a variety of events) influences later trait judgments and the recall of the original stimulus information. The new judgment is assimilated towards the evaluative implications of the earlier inference; the recalled stimulus information is reported as more evaluatively congruent with the earlier judgment; and more episodes relevant to the earlier judgment than to other trait dimensions are recalled. Even when stimulus information is present (i.e., trait information), people tend to base a new, similar, trait judgment on an earlier one rather than on an analysis of the stimulus information if the earlier impression is available from memory (Schul & Burnstein, 1985).

There is some evidence (Hastie & Park, 1986; Newman & Uleman, 1989) that, in particular, trait abstractions are types of judgment which are likely to be made spontaneously while individuals process the stimulus information ("on-line"). Indeed, research data have accumulated in support of spontaneous trait judgments about other persons, although the extent of spontaneity of such judgments is still at issue (e.g., Bassili, 1989; Carlston & Skowronski, 1994; Newman & Uleman, 1989; Whitney, Davis, & Waring, 1994). Other researchers propose that trait inferences about oneself may be made spontaneously (Newman & Uleman, 1989).

Together these findings suggest that when one has had extensive experience with one's behavior in a trait domain in the past, one is likely to have formed an abstraction about one's standing in the domain and is likely to retrieve this abstraction from memory when presented with a relevant query. The retrieval of such a prior abstraction is likely to be faster than that of
raw stimulus information such as behavioral examples and forming a judgment on the spot. Moreover, assuming that self-knowledge is represented in an associative network, the stronger the relation between the self-node and the relevant trait abstraction in memory, the more accessible is this abstraction when one is presented with a cue relevant to the abstraction. The more often individuals notice or use this abstraction, the stronger the association between the abstraction and the self-node in memory becomes; thus increasingly faster responses. The strengthening of the association between the self-node and the abstraction is more likely to occur for individuals who have had more experience with their behavior in the domain. Thus, a more accessible inference upon presentation of a relevant query may index responses of individuals with more extensive and consistent behavioral experience.

Individuals without extensive experience in the domain may never have given any consideration to their standing on the trait construct prior to being asked the question and are, therefore, less likely to have formed an association between the relevant self-inference and the self-node in memory. As a result they may not have the answer readily available in memory and are forced to construct the self-inference on the spot on the basis of whatever relevant information might come to mind in the current context. They may try to recall specific instances of their behavior in the past and form an abstraction based on these recollections, or may simply guess in answering the query. It thus appears likely that these latter individuals will, therefore, respond more slowly to queries about their standing in the relevant personality domain than the former group.

In summary, the research evidence reviewed is generally consistent with the notion that faster response latency to questions about one's standing in a particular trait domain is likely to
be related to the retrieval of abstract inferences or, possibly, to more frequent use of such information, which in turn, is likely to be related to more extensive experience with one’s behavior in the domain. This extensive experience with one’s behavior in the domain is, in turn, likely to be related to more consistent behavior in the domain in the past. It appears plausible that if such extensive experience with one’s behavior in the domain is consistent, individuals can more readily make inferences about their standing in the domain. If one’s behavioral experience in the trait domain were not consistent, such inferences would be more difficult, perhaps impossible. Since the notion of personality is based on the assumption of behavioral consistency, such consistency in one’s past behavior is a good predictor of the likelihood of behaving consistently in the future, and thus constitutes a determining factor of the predictive utility of self-reports about one’s standing on the trait dimension. Considering the evidence overall, it therefore appears likely that more accessible personality self-reports are more predictive of relevant future behavior than those which are less accessible.

Research on Self-Schemata: Additional Support for Response Latency as Index of Inference Retrieval and Nonvacuity

The suggestion that greater experience with one’s behavior in a domain is related to a greater likelihood of having made the relevant abstraction about this behavior and to the faster retrieval of such an abstraction from memory is also consistent with research on self-schemata. Individuals who possess a “self-schema”—are “schematic”—in a trait domain are suggested to have a well-differentiated abstract idea of their standing in the domain as a result of extensive experience in categorizing and evaluating their behavior with respect to the trait (Markus, 1977).
Numerous studies have supported the notion that individuals who are schematic with respect to a trait domain make self-judgments relevant to the domain more efficiently. Moreover, schematic individuals' self-judgments, in turn, show greater durability and impact than trait self-judgments of individuals who are aschematic with respect to the trait. For example, subjects who were schematic on the dependence-independence dimension relative to those who were aschematic on the dimension were found to make faster self-judgments on schema-consistent trait adjectives, to be more certain in predicting their future behavior in the trait domain, were more resistant to counterschematic information about themselves, and to supply more specific behavioral evidence pertaining to the trait (Markus, 1977).

Markus, Crane, Bernstein, and Siladi (1982) reported that subjects who possessed masculine and feminine self-schemas required shorter processing times for "me" judgments on schema-consistent than on schema-inconsistent attributes, and endorsed more schema-consistent than schema-inconsistent qualities; they were more confident of their judgments, and were able to supply more examples of past feminine and masculine behaviors when asked to rate themselves on the trait adjectives contained in a schema-relevant questionnaire. Similar findings are also reported by various other researchers who examined the difference between individuals who did relative to those who did not possess self-schemas about gender (Markus et al., 1982; Mills, 1983; Payne, Connor, & Colletti, 1987).

Applying the notion of self-schemata to another trait domain, Bruch, Kaflowitz, and Berger (1988) found that individuals who possessed an assertiveness self-schema recalled more assertiveness-related adjectives, recalled more past instances of assertive behaviors, were more certain that they would behave assertively situations where assertiveness was appropriate as well
as in situations where compromise was more appropriate. Deutsch, Kroll, Weible, Letourneau, and Goss (1988) used spontaneously generated lists of self-descriptive traits as a measure of self-schemas; they found that subjects rated self-generated traits relative to traits generated by random subjects as more self-descriptive, made self-judgments about whether or not the trait was self-descriptive faster, and recalled them better.

Extending self-schema research to traditional personality scale measures, Holden and his colleagues (e.g., Fekken & Holden, 1992; Holden, Woermke, & Fekken, 1993) suggest that traditional personality traits as captured by various personality inventories can also be conceptualized in terms of a self-schema. Similarly to other researchers on self-schemas, they operationalize the presence of a self-schema in terms of the extremity of a person’s scale score on the relevant personality dimension, and propose that individuals who score high on the dimension endorse trait-relevant items more quickly and reject trait-relevant items more slowly than individuals who score low on the dimension. They base this proposal on the assumption that when an individual compares the content of a personality test item to the self-schema, the presence of the self-schema speeds up the decision to endorse a relevant item because the good organization of information in the schema reduces the time needed to find an item-schema match, but inhibits the decision to reject a relevant item due to the great amount of information contained in the self-schema. In support of their proposal they report negative correlations between response latencies for endorsing trait-consistent personality test items and individuals’
personality scale scores, and positive correlations between rejecting trait-consistent personality test items and individuals' personality scale scores.\(^3\)

In general, research on self-schemata is consistent with the suggested relationship between more extensive and predictive self-knowledge in a trait domain and greater accessibility of relevant self-knowledge about one's standing in the domain. However, research on self-schemata has been based on an operationalization of the presence of a self-schema in terms of individuals' self-reported extremity of their trait rating and of their rating of importance of the trait to their self-concept. A disadvantage of such an operationalization is the inherent exclusion of individuals who score in the middle of the scale (Baumeister & Tice, 1988; Burke, Kraut, & Dworkin, 1984; Deutsch et al., 1988; Kihlstrom & Cantor, 1984; Tellegen, 1988). Those individuals may also possess a self-schema in the domain considering themselves, for example, as having a moderate standing on the trait. It therefore appears plausible that the accessibility of the relevant self-knowledge in a trait domain as measured by the response latency to the questions assessing one's standing on the trait, may provide an index of the presence of a self-schema for subjects who fall at all levels on a trait dimension. Although fast response latencies

---

\(^3\)The assumption in this dissertation is different from the assumption made by Holden and his colleagues. More specifically, it is assumed here that the speeds of rejecting and endorsing relevant personality scale items may not necessarily differ. For example, it is assumed that when individuals have a clear and coherent representation about their standing in a domain, rejecting a relevant item may occur as quickly as endorsing a relevant item. Similarly, when individuals are unsure about their standing in a domain, endorsing a relevant item may be as slow as rejecting a relevant item. However, the difference, if any, in response latency for rejecting and for endorsing schema-relevant items is not within the purview of this dissertation. Moreover, when the results in this dissertation were analysed for differences in response latency in endorsing and rejecting the relevant scale items according to Holden et al.'s methods, the analyses did not yield any significant results.
may often coincide with more extreme scale scores. fast retrieval of prior trait inferences does not necessarily imply extreme self-ratings.

Moreover, importance ratings of a trait to one's self-concept, which have been used as an additional index to identify the presence or the absence of a self-schema, have been argued to be conceptually confounded with trait level (e.g., Burke et al., 1984; Paunonen, 1988). For example, the designation of the importance of a trait may be derived from endorsing an extreme for one's standing on the scale or from endorsing a greater number of behaviors relevant to the trait. Moreover, it has been suggested that importance ratings may derive from the speed with which the answer comes to mind (Bassili, 1996b: Roese & Olson, 1994).

Trait importance, trait extremity, and the accessibility of self-knowledge about one's behavior in a trait domain may often be related; but response latency to items querying one's self-knowledge in a personality domain is conceptually closer to the substrate of the relevant information in memory and the processes carried out on this information than either extremity or importance ratings (e.g., Bassili, 1996b). Although extremity and importance ratings have been used as an index of a self-schema, more extensive empirical and theoretical justification exists for the present choice of response latency as an index of the availability and accessibility of relevant information in memory.

The goal of the present research, however, is not to address theoretical issues about self-schematicity, but to explore the relationship between response latency to personality scale items and their predictive utility. Empirical comparison with other indices of self-schemas was, therefore, not considered within the scope of the dissertation.
THE ACCESSIBILITY OF SELF-KNOWLEDGE AND BEHAVIOR

The evidence reviewed so far is consistent with the proposition that the accessibility of one's self-knowledge may provide an index of a more substantive response to a question relevant to such self-knowledge and, thereby, of the predictive validity of the self-report. However, some theorizing in the field of attitudes posits that the accessibility of an attitude is not only an index of its strength (durability and impact), but is a possible indicator of the extent to which the attitude affects future behavior. It has been suggested, for example, that an accessible attitude guides information processing and perceptions in a manner which makes attitude-consistent behavior more likely (Fazio, 1986; 1990a; 1995; Fazio & Williams, 1986; Houston & Fazio, 1989; Fazio et al., 1986; Sherman & Fazio, 1983). Once an attitude is activated from memory, it influences the perception of the attitude object, which in turn, leads to noticing, attending to, and processing information pertaining to the attitude object or to the qualities of the attitude object in a manner which is evaluatively congruent with the valence of the attitude. Thus, the situation in which an attitude object is encountered is construed in a manner which is consistent with the attitude, and the selection of the adopted behavior among the various possibilities follows from this construal. No conscious effort, intent, or control by the individual is necessary for this process to occur. On the other hand, if an attitude is not easily or automatically accessible, sufficiently salient features of the situation and the attitude object influence the definition of the event and subsequently chosen behavior.

On the other hand, when an individual is motivated to scrutinize the available information and to engage in a more extensive analysis of the positive and negative features, and costs and
benefits of a particular behavioral decision, a more deliberate reasoning process may be followed, where possible. This process may take the form outlined in models of the attitude–behavior relation which are based on a more deliberate decision process such as the theory of reasoned action (e.g., Fishbein, 1980). Alternatively, the more reasoned process may contain spontaneous elements. However, Fazio suggests that in many daily situations it is not likely that individuals engage in an extensive analysis of the pros and cons of various behaviors; they are more likely to engage in a spontaneous response process.

Sherman and Fazio (1983) proposed that processes parallel to those by which attitudes guide behavior can also be identified for the relationship between traits and behavior. These researchers suggest that possessing a particular trait may simply mean that one has particular beliefs and affects towards a situation or class of situations. A trait, according to this conceptualization is considered a summary label for these elements. Depending on the strength of the association between these elements and the situation, they become accessible when triggered by an appropriate cue and subsequently influence the perception of the event from which behavior follows. Sherman and Fazio suggest that, although this process occurs in a relatively spontaneous fashion, one’s traits may guide one’s behavior also in a more deliberate fashion as, for example, outlined by models of self-awareness and self-regulation (e.g., Carver, 1979; Duval & Wicklund, 1972; Wicklund, 1975). These investigators made a further proposal: Under conditions of heightened self-awareness, when individuals are likely to access and consider their self-schemas, they may compare their self-schema with a template for each behavioral option available and select the behavioral option which best matches their self-schema.
More specific information about the impact of self-knowledge on subsequent behavior under various conditions is provided by a number of self-regulation models, of which a detailed review is beyond the scope of this dissertation. However, of particular interest for the present discussion is the conceptualization of self-awareness offered by Hull and his colleagues which is consistent with Sherman and Fazio's suggestions just outlined (Hull & Levy, 1979; Hull, Van Treuren, Ashford, Propsom, & Andrus, 1988). According to the former researchers, self-awareness can be conceptualized in terms of encoding. Individuals who differ in self-awareness differ in how they organize the social environment.

According to this notion, self-awareness influences the encoding of information in terms of its relevance to the self. Individuals who are self-aware are more likely to encode information as self-relevant and are more responsive to the self-relevant aspects of the environment, in particular, to the environmental contingencies which are relevant to their goals and activities. This is because self-aware individuals have a higher activation level of knowledge about themselves. However, the effects of self-awareness are dependent on the nature of the information that is encoded as self-relevant which, in turn, is a function of the availability and accessibility of particular self-schemata. Based on this model, information about past performance is self-relevant to the extent that it specifies particular kinds of relationships between oneself and the environment. Because of this greater responsivity to situational variations, self-aware individuals are likely to behave more consistently across situations by responding as they typically do in such situations than individuals who are not self-aware. This process may even occur automatically (Hull & Levy, 1979).
Self-awareness can be induced by situational cues which are self-symbolic such as mirrors, video, or audiotapes. Alternatively, it may be associated with the presence of a self-schema in a particular domain or it may exist as a dispositional tendency such as private self-consciousness (Hull & Levy, 1979). Private self-consciousness refers to the extent to which individuals pay attention to covert aspects of the self such as their subjective feelings, thoughts, goals, intentions, and values and has been related to a more articulated self-schema (e.g., Fenigstein, Scheier, & Buss, 1975; Hull & Levy, 1979. expt. 1; Nasby, 1985, 1989). For example, subjects high in private self-consciousness recalled more words encoded as self-referent than subjects low in private self-consciousness: only the former subjects showed a self-reference effect with respect to the words recalled, suggesting deeper levels of encoding self-relevant information by these subjects (Hull & Levy, 1979. expt. 1).

Consistent with the proposals advanced by Hull and his colleagues (Hull & Levy, 1979; Hull et al., 1988), Geller and Shaver (1976) found that subjects who were made self-aware by being seated in front of a mirror and video-camera, showed interference in a Stroop color-naming task as suggested by their greater latency in naming the color of self-relevant words relative to subjects who named the color of neutral words, whereas for subjects who were not made self-aware these differences were not significant. In a series of studies, Hull and his colleagues (Hull & Levy, 1979; Hull et al., 1988) found evidence supporting their proposals. For example, when situational contingencies in terms of their implications for the subjects were altered, self-awareness (induced by placing subjects in front of a mirror during a self-description and attribution task) led to subjects varying their self-descriptions as a function of this change (Hull & Levy, 1979, expt. 2 and 3).
Hull et al. (1988) found support for the notion that the efficiency of self-referent encoding is related to dispositional tendencies for self-awareness, such as self-consciousness, and to the nature of the self-knowledge which is made accessible by situational and dispositional factors. They found that the self-reference effect (i.e., greater recall after self-referent relative to semantic encoding) was greatest for nondepressed content words following success and for depressed content words following failure. But this effect was found only for individuals high in private self-consciousness. Thus the nature of the self-knowledge which was made accessible only affected the self-reference process of individuals who were relatively self-aware: it thus appears plausible that self-referent processing of information among these individuals is likely to be more influenced by situationally self-relevant cues.

In a second study, they compared individuals who differed in whether they possessed a religious self-schema (operationalized according to extremity and importance) and made self-knowledge salient which was either consistent or inconsistent with their self-schema. The bias only influenced the self-perception of high self-conscious individuals in the direction of their self-schema. This effect on self-perception occurred at each level of schematization. Furthermore, private self-consciousness was positively related to the number of self-relevant words recalled and mediated subjects' mood (expt. 3). After failure feedback, subjects high in private self-consciousness reported greater sadness as long as the memory effects of self-relevant encoding were not controlled for in the analysis.

The suggestion that self-schemata may guide subsequent behavior is also consistent with the prevalent sentiment of the self as playing a dynamic, mediating role in intrapersonal (e.g., information processing, affect, and motivation) and interpersonal (e.g., social perception,
situational choice, reaction to feedback, interaction strategy processes (Bandura, 1989; Brown & Smart, 1991; Markus & Ruvolo, 1989; Swann, 1987; see Markus & Wurf, 1987 for review). In addition, it is consistent with the finding that chronically accessible trait-information may lead to automatic processing of this information outside one's conscious awareness without one's intent to do so (Bargh, 1982).

Some findings in the literature suggest that one's standing in a trait domain influences perceptions in ways that make trait-consistent behavior more likely (see also Sherman & Fazio, 1983). For example, possessing a self-schema in a particular trait domain appears to influence one's interpretation of the social world through influencing trait judgments of other people. Individuals who possess a self-schema in a trait domain make much finer and more exact judgments of another person's behavior relevant to the domain and are more likely to organize the stimulus information in terms of meaningful elements of their self-schema (Markus & Smith, 1981). Lambert and Wedell (1991) found that individuals' own positions on a trait dimension moderate their judgments of other people's behavior when that behavior is ambiguous with respect to the trait dimension. Subjects high in sociability made more extreme judgements than subjects low in sociability for other people's behavior which was ambiguous with respect to sociability, in the direction of their own standing on the trait. A similar pattern was found for subjects high or low on independence and for subjects high or low on patience. Lambert and Wedell suggested that subjects may categorize the other person's behavior in terms of their own trait to the extent that their standing on the trait is accessible; or subjects use their knowledge about this characteristic to derive their judgments. The interpretation of another person's behavior, in turn, influences one's own subsequent behavior (Darley & Fazio, 1980).
There is more direct evidence supporting the notion that self-representations, once activated, guide behavior (Brown & Smart, 1991). Based on past research Brown and Smart hypothesized that an immediate precursor of helping behavior is one's self-perception of being a helpful person. They designed a situation in which the likelihood of perceiving oneself as a helpful person was increased, by providing individuals high and low in self-esteem with a failure experience at an intellectual achievement task. It was expected that, in particular, individuals high in self-esteem would respond to the failure experience by accessing a perception of themselves as a helpful person and exaggerating their positive social qualities. Consistent with the predictions, these individuals, as opposed to individuals low in self-esteem, rated themselves more positively on a series of interpersonal attributes after failure than after success. In a second study, individuals high in self-esteem, again increased their positive self-ratings on interpersonal attributes and tended to offer more help after failure than after success: the reverse was true for individuals low in self-esteem. Once self-perception of their social qualities was controlled, the effect of failure on behavior was no longer significant.

Additional suggestions that one's self-concept may guide behavior in a manner consistent with the self-concept is the notion that individuals often choose to enter situations which offer them an opportunity to behave consistently with their self-conceptions (e.g., Snyder, 1983; Swann, 1987). For example, Setterlund and Niedenthal (1993) tested whether individuals who differ in self-esteem also differ in the extent to which they use a prototype matching strategy (i.e., imagining the prototype of person who is typically in this situation and how this prototype matches their own self-concept) to assess how they would fit in available social situations and to find the best fit between their self-concept and the choice of a particular situation. There is
evidence (Baumgardner, 1990; Campbell, 1990) suggesting that high self-esteem individuals, relative to low self-esteem individuals, have a more clearly defined self-concept as indicated by their more extreme and confident self-ratings on several traits. Moreover, high self-esteem individuals exhibit greater temporal stability in their self-conceptions, greater congruence between their self-conceptions and their self-ratings of behavior in a prior interaction, and greater internal consistency of and faster response latency to their self-ratings. These findings are consistent with Setterlund and Niedenthal’s assumption that the degree to which individuals feel certainty about their attributes moderates the extent to which they engage in behavior consistent with the attribute.

Setterlund and Niedenthal provided high and low self-esteem individuals with a description of the attributes of a typical person who would buy each of five cars (Study One) and would frequent each of five restaurants (Study Two); subsequently subjects rank-ordered their car (Study One) and restaurant (Study Two) preference. High self-esteem individuals appeared to use the prototype-matching strategy to a greater extent than low self-esteem individuals. In a third experiment using a similar paradigm, these researchers experimentally induced either self-concept clarity or self-concept confusion. Subjects in the self-concept clarity condition used prototype-matching strategy in their preference for restaurants regardless of their self-esteem level, whereas subjects in the self-concept confusion condition did not.

Furthermore, when one’s self-concept is changed, this change is reflected in subsequent behavior. For example, several theorists have suggested that self-concept change occurs through a biased scanning process according to which one’s behavior makes certain facets of oneself more salient which are subsequently integrated into one’s self-concept or “internalized,” bringing
one's self-assessment in line with one's recent behavior (e.g., Tice, 1992). In a series of studies, Tice showed that such self-concept change is not merely a transient shift in verbal self-rating but is also reflected in subsequent behavior consistent with such change. Portraying oneself as being emotionally stable (Study One), or as introverted or extroverted (Study Two) leads to more extreme self-ratings in the direction of the image cast. Moreover, performing a behavior publicly as opposed to privately led to stronger and more consistent internalization effects, which is reflected in subsequent behavior. Individuals who publicly portrayed themselves as being emotionally stable (Study One), introverted or extroverted (Study Two) showed greater internalization effects than subjects who did so in private. Only the former individuals' internalization was reflected in subsequent behavior consistent with their internalized attributes. This effect was moderated by individual differences in self-monitoring (e.g., Snyder, 1974), where the internalization effects were found, in particular, for high self-monitors, whereas low self-monitors were not influenced by their self-portrayals whether performed in public or private.

This finding is consistent with research reported by Fazio, Effrein, and Falender (1981) who showed that subjects who were first led to think of themselves as extroverts subsequently behaved in a more outgoing manner than did subjects who were first led to think of themselves as introverts. In addition, self-awareness has been related to more valid self-reports. For example, Pryor, Gibbons, Wicklund, Fazio, and Hood (1977) found that experimentally inducing self-focus by having subjects complete self-reports while seated in front of a mirror led to self-reports with greater predictive and postdictive validity. Subjects who were made more self-aware while they completed a sociability scale behaved more consistently with their self-reports two days later relative to subjects who had completed the questionnaire without a mirror present.
Furthermore, subjects who stated their SAT score in front of the mirror more accurately reported this score. In a third study, subjects rated their interest in a series of paper-and-pencil problems more consistently with their prior selection of these problems.

The findings of these studies are not inconsistent with the intriguing possibility that self-schemas, particularly those which are highly accessible, may guide behavior in a manner consistent with the self-schema which is, in turn, consistent with the notion that more accessible self-schemas are indicative of more schema-consistent behavior and thus of more predictive responses. In Study Three (where the accessibility of self-monitoring self-knowledge is experimentally manipulated), an initial attempt is made at exploring self-schema accessibility as a mediator of schema-consistent behavior. Yet the investigation as a whole is predicated on the assumption that making a relevant self-schema accessible will mediate more predictive responses to the relevant personality scale because of the availability and accessibility of a relevant knowledge basis for these responses; the investigation is not designed to distinguish among various mediating mechanisms through which self-schemas may guide behavior.

OVERVIEW

Because the use of self-reports is so widespread and the question of their predictive validity so important, a great many measures have been suggested to improve their predictive accuracy. In this dissertation a cognitive approach to personality assessment using self-report instruments is suggested as a way to fine-tune these measures. More specifically, the main goal of this dissertation is to examine whether response latency to questions contained in a personality
scale can function as an index of the predictive utility of the scale. Are fast responses to self-report items contained in personality inventories more predictive than slow responses? The various points of view reviewed in the introduction provide evidence that this may be so.

Drawing on findings in social cognition research from the domain of person memory and attitudes, a model of a response process to items tapping abstractions about one's behavior in a personality domain is examined; in this model the accessibility of self-reports about one's standing in the domain is used as an index of the predictive utility of such responses. In particular, Fazio had modelled the relationship between attitudes and behavior and specified the accessibility of attitudes as an index of more predictive attitudes. This model is extended to self-reports about one’s standing in a personality domain. It is proposed that faster responses to personality scale items are also more predictive of construct-consistent behavior than slower responses.

This notion is based on the assumption that individuals who respond more quickly (compared to those responding more slowly) to questions contained in a personality scale are more likely to have a coherent cognitive representation of the relevant information stored in memory which they can access upon being presented with the question. These individuals are, therefore, more likely to give a predictive answer. Individuals who respond more slowly are less likely to have a coherent cognitive representation of the relevant information available in and accessible from memory on which they can draw when presented with the question. They are, therefore, more likely to improvise and construct their answer on the spot, based on whatever information is salient in the context. As a result, their responses are less likely to be predictive. While various mechanisms have been pointed out which may underlie relatively faster and
relatively slower responses, the present investigation is not designed to distinguish between such mechanisms.

A basic assumption in this dissertation is that self-knowledge is stored in an associative network in memory in abstract as well as in exemplar form which may be independently accessed. It is considered likely, based on the evidence reviewed, that individuals who have had more experience with their behavior relevant to the personality of interest are more likely to have made abstractions about their standing in the domain than individuals who have had less experience with their behavior in the domain. Because the extent of using or thinking about relevant information leads to greater accessibility of this information from memory, the former group of individuals are more likely to have such information readily accessible and to respond more quickly to items tapping the trait, in particular when this information is consistent.

Three studies were designed to test the propositions that response latency to self-report questions contained in the Self-Monitoring Scale (Snyder & Gangestad, 1986) and the Need for Cognition Scale (Cacioppo, Petty, & Kao, 1984) is related to the predictive utility of subjects’ responses to questions contained in these scales. In the first two studies, individuals’ accessibility of relevant self-knowledge in the respective personality domain is used as an index of the predictive utility of the two scales; in Study Three, the accessibility of such trait self-knowledge is experimentally manipulated. The particular paradigms used in the three studies are based on previous research in these two personality domains, and the present research examined whether these findings are replicated and moderated by the accessibility of the relevant trait self-knowledge. This approach appears well founded because a moderator variable is more easily detected where a finding is firmly established (Chaplin, 1991).
In Study One, accessibility to the items contained in the Self-Monitoring Scale is assessed using response latency to the questions contained in the scale as an index. The predictive utility of the responses of individuals who respond quickly (i.e., below the median) relative to those who respond slowly (i.e., above the median) is assessed according to various dependent measures relevant to the behavior of high and low self-monitors. It is hypothesized that responses of individuals who respond quickly are more predictive than the responses of individuals who respond more slowly. Study Two is a conceptual replication of Study One using the Need for Cognition Scale.

In Study Three, I seek to provide experimental evidence for the proposition that thinking about one's behavior in a personality domain leads to more accessible (faster) inferences about one's standing in the domain. In that study, subjects are given the opportunity to reflect on their past behavior relevant to the self-monitoring domain; the accessibility of subjects' self-monitoring self-knowledge, as indicated by the response latency to queries tapping this information, is compared to the accessibility of the relevant self-knowledge of individuals who did not have this opportunity. Moreover, because reflecting about one's past behavior in the domain is likely to make the relevant information more accessible from memory, such responses are likely to be based on a relevant knowledge basis and, therefore, likely to be more accurate. In Study Three, there are two conditions regarding induction of self-schematicity in the self-monitoring domain: priming, and no priming. The hypothesis is that in the former condition, subjects' responses will be quicker and more predictive of trait-consistent behavior.
CHAPTER 2

THE MODERATING EFFECT OF SELF-MONITORING ON THE
RELATIONSHIP BETWEEN VALUES AND ATTITUDES,
AND ON ADVERTISEMENT RATINGS

THE SELF-MONITORING CONSTRUCT

Individual differences in self-monitoring refer to the extent to which individuals vary in monitoring and controlling their expressive behavior and self-presentation (e.g., Snyder, 1979, 1987; Snyder & Gangestad, 1986). High self-monitors monitor the images they project in social situations and adapt their behavior to what is most appropriate based on the social cues in the situation. Low self-monitors, on the other hand, base their actions on what they actually think and feel even when doing so is not consistent with cues inherent in the situation as to what would be the most appropriate response. Consistent with this conceptualization, high self-monitors have been found to show more variability across situations than low self-monitors (Snyder & Monson, 1975).

In research on the self-monitoring construct, individuals are categorized into high and low self-monitors based on their scores on the Self-Monitoring Scale (Snyder & Gangestad, 1986). In completing this scale, individuals are asked to indicate on either 18 (revised short scale) or 25 (original scale) statements whether or not these items tapping the construct apply to them. Since the development of the Self-Monitoring Scale, a large number of studies attesting
to the validity and reliability of the construct in various domains has appeared (a general review is beyond the scope of this dissertation; see Snyder, 1987). Issues that have been raised about the Self-Monitoring Scale concern the factor structure of the scale. In particular, it has been suggested that, rather than being unidimensional, the scale consists of two relatively orthogonal factors (i.e., "public performance" and "other directedness") and that the scale (especially the short version) taps long-studied personality dimensions such as social surgency, exhibitionism, self-confidence, instrumentality and extroversion rather than self-monitoring tendencies (Briggs & Cheek, 1988). Such issues are not addressed here because the present research seeks to replicate past findings relevant to the self-monitoring construct and tests the moderating effect of the accessibility of self-monitoring self-knowledge on the predictive utility of the scale; it does not seek to distinguish among the factors and to assess their respective relations to the various dependent measures. The paradigms used in this dissertation are drawn from investigations of the self-monitoring construct and its relation to values, attitudes and behavior, and to advertising preferences, which are now reviewed.

Self-Monitoring and the Relationship Between Attitudes, Values, and Behavior

Several studies have shown that low self-monitors show more consistency between their attitudes and their behavior than high self-monitors (see Kraus, 1995 for meta-analytic review). Particularly relevant for the present research is the proposal that the attitudes of low self-monitors are also more likely to be grounded in their value system than are the attitudes of high self-monitors (DeBono, 1987). This notion is based on the assumption that attitudes have motivational bases and serve certain individualistic needs (e.g., Katz, 1960; Smith, Bruner, &
White, 1956). More specifically, attitudes are suggested to serve a value-expressive need for low self-monitors by allowing these individuals to express their underlying values and dispositions. On the other hand, attitudes are suggested to serve a social-adjustive need for high self-monitors, because by tailoring their attitudes to the social environment, high self-monitors obtain the most appropriate fit to particular social situations (DeBono, 1987).

For example, DeBono (1987) conducted a study in which institutionalizing the mentally ill was used as the focal attitude issue; students in general held negative attitudes towards such institutionalization. He found that values predict attitudes to a greater extent for low than for high self-monitors. Low and high self-monitors were told that their negative attitude was no longer serving its function, that favorable attitudes towards the mentally ill were more consistent with their functional need; they listened to arguments about the pros and cons of the issue. For example, it was pointed out to low and high self-monitors respectively that holding a negative attitude towards institutionalization of the mentally ill is not consistent with values they endorsed and that a positive attitude would better reflect these values: or that a positive rather than a negative attitude was predominantly held by their peer group. The measure of interest was high and low self-monitors' subsequent attitude as a function of message type.

Low self-monitors were most in favour of institutionalization of the mentally ill after hearing the message which was targeted at the value–attitude relationship. On the other hand, high self-monitors were most in favor of institutionalizing the mentally ill after hearing the message which was targeted at the consistency of subjects' attitude with the attitude of their peer group. Moreover, for both groups, attitudes were more favorable than the attitudes of a control group who only listened to the pro and con arguments (DeBono, 1987, Study One). Thus,
subjects' attitudes were most influenced by the message when the message addressed the functional value of these attitudes.

Results from a second study (DeBono, 1987. Study Two) suggest that the process by which attitude change took place was relatively peripheral; subjects changed their attitude as a result of the information about the functional value rather than as a result of the evaluation of the arguments. Whereas in the previous study subjects were told specifically of the appropriate attitude consistent with their functional motivation, in Study Two subject groups were only told, respectively, that the attitude was consistent with either the value-expressive or the social adjustive function; no arguments about the pros and cons of either side of the issue were presented. High self-monitors showed greater attitude change after hearing the message appealing to a social adjustive need than after hearing the message appealing to a value-expressive need. Low self-monitors, on the other hand, showed greater attitude change after having heard the message appealing to a value-expressive need than after having heard the message appealing to a social-expressive need.

Another study of the extent to which values function as a justification for previously expressed attitudes was that of Kristiansen and Zanna (1988). They reported that value-justification effects were stronger among low than among high self-monitors. High and low self-monitors stated their attitudes towards two social issues and ranked the importance of 18 values as well as the relevance of these values to each attitude issue. The extent to which low self-monitors justified their attitude by relating to relevant values was found to be greater than the extent to which high self-monitors engaged in this behavior.
In Study One and in Study Three of this dissertation, the assumption that values are predictors of low, but not of high self-monitors’ attitudes is used in an investigation of whether response latency to the Self-Monitoring Scale items moderates this relationship. The present approach to test the value-attitude relationship differs from earlier approaches in that it more directly examines the extent to which values relevant to an issue predict attitudes among low and high self-monitors within a particular context: an opinion survey tapping respondents’ attitudes towards two policy issues. Previous studies which have investigated the relationship between values and attitudes among high and low self-monitors have taken relatively indirect approaches to the issue (e.g., DeBono, 1987; Kristiansen & Zanna, 1988).

Self-Monitoring and Image- Versus Quality-Oriented Advertisements

A corollary of the proposition that attitudes serve different functions for low and high self-monitors is that high and low self-monitors differ in their susceptibility to particular types of advertisements (Snyder, 1987; Snyder & DeBono, 1985). High self-monitors appear to be particularly influenced by advertisements which appeal to the image one may project by using the product. On the other hand, low self-monitors appear to be particularly influenced by claims about the inherent quality, intrinsic merit, and functional value of the product which provide them with the opportunity to interpret the projected quality in terms of their underlying attitudes and values (e.g., Snyder, 1987; Snyder & DeBono, 1985; Snyder & Monson, 1975).

For example, Snyder and DeBono (1985) investigated the hypothesis that high self-monitors are more influenced by image-oriented advertisements, and that low self-monitors are more influenced by quality-oriented advertisements in the following study. Subjects were
presented with three sets of magazine advertisements and asked to evaluate the advertisements on various dimensions. Each set contained two identical advertisements for each of three products (whisky, cigarettes, coffee) which only differed in the written message or slogan associated with the picture. One slogan was always an appeal to the image associated with the use of the product, and the other slogan was always a claim about the product's quality. Subjects were asked to compare the two advertisements in each of these three sets.

Consistent with Snyder and DeBono's hypothesis, high self-monitors responded more favorably to the image-oriented ads than did low self-monitors. whereas low self-monitors reacted more favourably than high self-monitors to the product-quality-oriented ads. In a second study (Snyder & DeBono, 1985), these investigators used the same procedure but asked subjects how much they would be willing to pay for the product. They found that high self-monitors were willing to pay more for products advertised with an image appeal than for those advertised with claims about quality. Low self-monitors, on the other hand, were willing to pay more for identical products when the advertising focused on quality rather than images.

In a third study, Snyder and DeBono (1985) contacted subjects by telephone and offered them an opportunity to take part in a test-marketing study. The participants were given information about a new shampoo which portrayed either an image or a product quality appeal and were asked to indicate their willingness to use the shampoo. The results show that high self-monitors, more than low self-monitors, were willing to try the shampoo after listening to the image-oriented message, whereas low self-monitors were more willing than high self-monitors to try the shampoo after listening to the quality-oriented message.
In another study (referred to in Snyder, 1987), image-oriented and quality-oriented appeals were used to encourage individuals not to consume a product. Subjects were presented with an advertisement about the negative effects of smoking which either appealed to a deterioration of one's image with continued smoking or which appealed to the negative health effects of smoking. Both advertisements were similar in pictorial content. High self-monitors preferred the advertisement which appealed to the deteriorating image and rated it as more persuasive than the advertisement which appealed to the negative health effects. Low self-monitors, on the other hand, preferred the advertisement which suggested the negative health effects and considered that advertisement as more persuasive.

In a different study (reported in Snyder, 1987), two cars which were functionally equivalent in performance and handling were evaluated by high and low self-monitors. One car projected a sporty-looking image, whereas the other car was boxy looking but projected an image of reliable and durable quality. Consistent with the predictions, high self-monitors preferred the sporty-looking car and even evaluated its quality more highly than that of the boxy looking car; the pattern of results was opposite for low self-monitors.

In Study Three in the present dissertation, Snyder and DeBono's (1985) paradigm involving the difference between high and low self-monitors' susceptibility to image- versus quality-oriented advertisement appeals is used as a basis for examining self-monitoring self-knowledge schematicity as a moderator of this suggested effect. In the study, self-monitoring schematicity is experimentally induced by making self-monitoring self-knowledge more accessible to subjects.
CHAPTER 3

STUDY ONE

THE RELATIONSHIP BETWEEN RESPONSE LATENCY TO THE SELF-MONITORING SCALE ITEMS AND THE PREDICTIVE UTILITY OF THE SCALE: A CORRELATIONAL EXPLORATION

OVERVIEW

The aim of Study One is to explore the usefulness of self-monitoring schematicity as indexed by response latency to the questions contained in the Self-Monitoring Scale as a moderator of the predictive utility of the scale. In other words, individuals who respond quickly (i.e., below the sample median) to questions contained in the Self-Monitoring Scale are said to be "schematic" with respect to their self-knowledge in the self-monitoring domain: such individuals are compared in terms of the predictive utility of their responses to individuals who respond slowly (i.e., above the sample median), who are said to be "aschematic" with respect to their self-knowledge in the self-monitoring domain.

The research paradigm used to examine the notion of response latency as a moderator of the predictive utility of the Self-Monitoring Scale is based on the finding that high and low self-monitors differ in whether their expressed values predict their attitudes. The study directly assesses whether values predict low but not high self-monitors’ attitudes, and is carried out in
the context of an opinion survey where opinions towards two policy issues constitute the focal attitude topics. The first issue is related to employment quotas, and the other to pornographic films. The survey also includes several questions tapping respondents’ endorsement of values found relevant to these issues in past research (Bassili & Fletcher, 1991; Fletcher & Chalmers, 1989, 1990).

In line with past research (DeBono, 1987; Kristiansen & Zanna, 1988), it is expected that values are related to low but not to high self-monitors’ attitudes, and it is hypothesized that response latency to the Self-Monitoring Scale questions will moderate this relationship. More specifically, it is hypothesized that the relationship between values and attitudes will be accentuated among respondents who are schematic with respect to their self-monitoring tendencies relative to respondents who are aschematic. An individual is classed as schematic if he or she responds quickly to the items contained in the Self-Monitoring Scale; an individual is classed as aschematic if he or she responds more slowly. Thus, it is expected that values will predict attitudes for schematic low self-monitors, but not for schematic high self-monitors, and that this relationship will not be as clear among aschematic high and aschematic low self-monitors.

METHOD

Participants

A random sample of 714 University of Toronto male (47.2%) and female (52.4%) students selected by a computer program from the most recent registration lists held by the
university's Office of Statistics and Records participated as subjects in the study. This number represents the total number of completed protocols out of 1252 eligible candidates: a response rate of 57% using a criterion of six call-backs without case replacement.

**Design**

In order to examine the moderating effect of self-monitoring schematicity on the extent to which values predict attitudes among high and low self-monitors, a 2(self-monitoring tendency: high/low) x 2(self-monitoring schematicity: schematic/aschematic) between-subjects design was employed. The number of subjects in each cell is presented in Table 1.

| Table 1 |
|---|---|---|
| **Number of Subjects by Self-Monitoring Tendency and Self-Monitoring Schematicity** |

<table>
<thead>
<tr>
<th>Self-monitoring tendency</th>
<th>Schematic</th>
<th>Aschematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>High self-monitors</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>Low self-monitors</td>
<td>163</td>
<td>165</td>
</tr>
</tbody>
</table>

Note. Subjects (n = 92) scoring at the median were not included.

---

1The sample was split approximately equally between graduate (48.6%) and undergraduate (51.4%) students.
Procedure

The opinion survey which formed the context of this study was conducted on the telephone using computer-assisted telephone interviewing (CATI) procedures. A small team of interviewers administered the survey from stations equipped with a desk computer, a video screen, and a telephone. Response latencies to the self-monitoring questions were measured using a computer clock with millisecond resolution and a voice-key (see Bassili, 1993, 1995, 1996a, 1996b; Bassili & Fletcher, 1991). Immediately after enunciating the last word of a question, the interviewer pressed the spacebar on the keyboard to initialize the computer clock. A recording of the time between the pressing of the spacebar and the first sound emitted by the respondent was triggered by the voice-key. In addition, the interviewer independently monitored the respondent’s answer by pressing the spacebar again after judging that the respondent had given an answer, to effect another reading of the computer clock. The interviewer then entered the answer and coded the validity of the two clock readings. Because the latencies to the focal questions in the present survey were relatively long (i.e., > 1500 milliseconds), this study focuses on latencies measured by the interviewer (see Bassili, 1996a).²

²Recent investigations (e.g., Bassili & Fletcher, 1991) with this methodology reported that latencies measured by the voice-key and by the interviewer are highly correlated ($r = .94$). In cases of long response latencies, however, times measured by the voice-key are invalidated more frequently (by the hemming and hawing of the respondent) than those measured by the interviewer. The resulting latencies were weighted for the loss of latencies as a result of invalid response latencies.
Materials

The questionnaire comprised 92 questions, only some of which are relevant to the present investigation. Of primary interest were the following two questions: "Do you think that large companies should have quotas to ensure that a fixed percentage of women are hired or should women get no special treatment?" and "Do you think that pornographic films should be allowed or should they be banned?" A number of questions relevant to the values of equality, merit, freedom, religiosity, and respect for authority were also asked (see Appendix in Mellema & Bassili, 1995). Previous research has found that the values tapped by these questions are associated with attitudes towards employment quotas and laws about pornographic films (Fletcher & Chalmers, 1989, 1990). After responding to the attitude and value questions, subjects answered the 18 questions contained in the revised Self-Monitoring Scale (Snyder & Gangestad, 1986).³

RESULTS

Categorizing Subjects into High and Low Self-Monitoring Groups

Following past research on self-monitoring (e.g., DeBono, 1987), respondents were categorized into high and low self-monitoring groups by median split (Mdn = 8). This category assignment resulted in 294 (41.2%) high self-monitors and 328 (45.9%) low self-monitors; 92 (12.9%) of respondents who scored exactly at the median were not categorized.

³The order of first presenting subjects with the attitude and value questions before they responded to the self-monitoring questions was chosen in order not to prime subjects with self-monitoring self-knowledge before they responded to the attitude and value questions.
Factor Analysis of the Value Questions

In order to explore whether, as expected, the value questions loaded on the five factors representing the values equality, merit, religiosity, freedom, and authority, principal component factor analysis using varimax rotation was carried out. The analysis yielded five factors before eigenvalues fell below 1. Together, these factors accounted for 58.1% of the total variance. The first factor accounted for 21.1% of the explained variance and reflects sentiments pertinent to religiosity having factor loadings of .45 or higher: "How important is following God's will?" (.82); "How important is it to you to attend religious services on a regular basis?" (.82); and "How important is it to seek TRUE happiness through one's religion?" (.79).

The second factor accounted for 12.6% of the explained variance and comprised questions focusing on respect for authority: "How important is maintaining decent behavior?" (.65); "How important is it to strengthen respect and obedience for authority?" (.68); "How important is it for children to learn respect for authority?" (.75).

The third factor accounted for 9.7% of the variance and reflects concerns having to do with equality: "This country would be better off if we worried less about how equal people are" (.70); "We have gone too far in pushing equal rights in this country" (.68); "It is important to make a special effort to protect ethnic and racial minorities" (.65).

The fourth factor accounted for 7.5% of the variance and is relevant to freedom: "Free speech is just not worth it if it means we have to put up with the danger to society of radical and extremist views" (.81); "It is better to live in an orderly society than to allow people so much
freedom that they can become disruptive" (.74).

The fifth factor accounted for 7.5% of the variance and is relevant to the value of merit: "Do you think that getting ahead in the world is mostly a matter of ability and hard work, or getting the breaks?" (.84): "Do you think the profit system often brings out the worst in human nature or does it teach people the value of hard work and personal achievement?" (.68).

Value indices were computed for each of the values represented by the five factors by averaging ratings for items that loaded above .45 on each of the factors. Reverse keying was effected when appropriate, so that higher scores on these indexes reflected greater support for a value.

Values as Predictors of Low and High Self-Monitors' Attitudes

The first goal was to test the hypothesis that values are predictive of attitudes of subjects low in self-monitoring but not of those high in self-monitoring. Because the dichotomous nature of the answers to the quota and pornography questions made the assumption of normality of the distribution unlikely, logistic regression analyses which relax these assumptions were used to test the relationship between subjects' attitudes on these issues and the five values identified earlier.4 Logistic regression procedures directly estimate the probability that a certain event will

4The conclusions in these analyses are based on the improvement in prediction of the logistic regression model with inclusion of given predictors. "Improvement" indicates the improvement in chi-square of using the predictors entered in the model relative to not using them.
occur, and the results are expressed in terms of indicators of the odds that a particular independent variable is related to the dependent variable.\(^5\)

Because of the a priori nature of the self-monitoring hypotheses, logistic regression analyses were conducted for each of the self-monitoring categories separately to assess the relationship between attitudes and values (see Table 2).

Table 2

Improvement in Chi-Square in Predicting Attitudes from Values by Self-Monitoring Tendency and Attitude Issue

<table>
<thead>
<tr>
<th>Self-Monitoring Category</th>
<th>Quotas</th>
<th>Pornographic films</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2_{\text{diff}})</td>
<td>df</td>
<td>n</td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>37.27****</td>
<td>5</td>
<td>256</td>
</tr>
<tr>
<td>High Self-Monitors</td>
<td>10.12</td>
<td>5</td>
<td>230</td>
</tr>
</tbody>
</table>

Note. \(\chi^2_{\text{diff}}\) = Improvement in chi-square (i.e., the improvement in the logistic regression model using the five values as predictors relative to not using them).

** \(p < .01\). **** \(p < .0001\).

\(^5\)The odds of an event occurring are expressed as the ratio of the probability that the event will occur to the probability that it will not occur. Exp(B) indicates the factor by which the odds change when the relevant independent variable (ith independent variable) increases by one unit. When \(B_i\) is positive, this factor will be greater than 1, which means that the odds are increased. When \(B_i\) is negative, this factor will be less than one, which means that the odds are decreased. When \(B_i\) is 0, the factor equals 1, which leaves the odds unchanged.
Logistic regression of the values on high and low self-monitors' attitude towards employment quotas revealed that only for low self-monitors did the relevant values help in predicting their attitude towards quotas relative to when these values are not used as predictors. While the structure of these results does not allow one to conclude that values predicted attitudes significantly more for low than for high self-monitors, the differences in magnitude in the improvement values as well as the probability values associated with them suggest that the present patterns are consistent with a greater value-attitude relationship among low than among high self-monitors. Looking at the relationships between each individual value and high and low self-monitors' attitudes towards quotas revealed that only the value of equality was related to low and high self-monitors' attitude towards employment quotas, where higher levels of endorsement of the value of equality were related to a greater likelihood of favoring quotas (Exp(B) = .04, p < .00001 for low self-monitors; Exp(B) = .27, p < .01 for high self-monitors, respectively).

For the issue of whether pornographic films should be banned, values significantly helped to predict both low and high self-monitors' attitudes. Low self-monitors' attitudes towards banning pornographic films were related to their endorsement of the values of freedom (Exp(B) = .38, p < .02), religiosity (Exp(B) = 2.08, p < .001), and authority (Exp(B) = 2.33, p < .02), whereas high self-monitors' attitudes towards banning pornographic films were only significantly related to their endorsement of freedom (Exp(B) = .29, p < .002). For both low and

---

6The design of the study did not allow a direct statistical comparison between the various groups, so that the inference about this difference is based on the absolute magnitude of improvement in the prediction of the attitudes when the relevant values are considered as predictors, without a significance test to compare the two groups.
high self-monitors, higher levels of the endorsement of the value of freedom led to a greater likelihood of endorsing tolerance of pornographic films. In addition, for low self-monitors, higher levels of endorsement of the value of authority and of the value of religiosity led to a greater likelihood of endorsing prohibition of pornographic films. Thus, contrary to expectation, for this subject sample, values appeared to be related to both high and low self-monitors’ attitudes towards the two issues assessed, albeit to a lesser degree for high than for low self-monitors.

In order to gain more insight into the difference between low and high self-monitors in the relationship between values and attitudes, point-biserial correlations were subsequently computed for these two groups respectively, between their endorsement of each of the values and their attitudes towards quotas, and between their endorsement of each of the values and their attitudes towards pornographic films (see Table 3).

Comparing high and low self-monitors for the quota issue with respect to each of these correlations yielded only a significant difference in the relationship between their endorsement of equality and their attitude towards quotas, $Z = 2.26, p < .01$, indicating a stronger relationship for low than for high self-monitors. Comparing high and low self-monitors for the pornographic film issue with respect to each of these correlations yielded a significant difference in the relationship between their endorsement of authority and their attitude towards banning pornographic films, $Z = 1.89, p < .03$, and in the relationship between their endorsement of religiosity and their attitude towards banning pornographic films, $Z = 2.33, p < .01$. In both cases, the value–attitude relationship was stronger for low than for high self-monitors. These
Table 3

Point-Biserial Correlations Between Value-Endorsement and Attitudes as a Function of Self-Monitoring Tendency and Attitude Issue

<table>
<thead>
<tr>
<th>Values</th>
<th>Quotas LSM</th>
<th>HSM</th>
<th>Pornographic films LSM</th>
<th>HSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merit</td>
<td>.14*</td>
<td>.07 (233)</td>
<td>-.01 (250)</td>
<td>-.07 (231)</td>
</tr>
<tr>
<td>Equality</td>
<td>-.36**</td>
<td>-.19** (270)</td>
<td>-.10 (295)</td>
<td>.03 (269)</td>
</tr>
<tr>
<td>Freedom</td>
<td>-.06</td>
<td>-.08 (268)</td>
<td>-.24** (292)</td>
<td>-.25** (268)</td>
</tr>
<tr>
<td>Authority</td>
<td>.03</td>
<td>.12* (269)</td>
<td>.29** (294)</td>
<td>.13* (269)</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.006</td>
<td>.03 (269)</td>
<td>.34** (294)</td>
<td>.14* (269)</td>
</tr>
</tbody>
</table>

Note: LSM = Low self-monitors; HSM = high self-monitors; a higher score on the value-index indicates a greater endorsement of the relevant values; a higher attitude score indicates being against quotas/pornographic films; a lower attitude score indicates being in favor of quotas/pornographic films. ( ) = n.
* p < .05, two-tailed. ** p < .01, two-tailed.

Findings are consistent with the trends in the logistic regression analyses which also suggested a stronger value-attitude relationship among low than among high self-monitors. But, contrary to expectations and in line with the logistic regression analyses, some values were also significantly related to high self-monitors' attitudes.

However, it has been hypothesized in this dissertation that distinguishing between schematic and aschematic self-monitoring groups will provide a clearer picture of the hypothesized relationship between attitudes and values for high and low self-monitors, because individuals who are schematic relative to those who are aschematic in the self-monitoring
domain are more likely to manifest behavior that is consistent with the expectation of their self-monitoring category. More specifically, the stronger value–attitude relationship is expected to be particularly evident among schematic respondents.

Categorizing Respondents into Schematic and Aschematic Low and High Self-Monitors

Thus, the next goal was to determine whether trait schematicity in the domain of self-monitoring would accentuate the expected effects. Following Fazio et al.’s (1986) procedure for testing attitude accessibility as a moderator of the predictive utility of subjects’ responses, respondents within each self-monitoring category were divided into schematic and aschematic groups on the basis of a median split\(^7\) on their average response latencies to the 18 questions of the Self-Monitoring Scale (\(\text{Mdns} = 2.094 \text{ ms, 2.224 ms for high and low self-monitors, respectively}\)).\(^8\) This categorization resulted in the following four groups: (a) schematic (fast) low self-monitors (\(n = 163\)); (b) aschematic (slow) low self-monitors (\(n = 165\)); (c) schematic high self-monitors (\(n = 147\)); (d) aschematic high self-monitors (\(n = 147\)).

\(^7\)Within-category medians rather than the sample median were used in order not to have an overrepresentation of high self-monitors in the schematic category, because high self-monitors responded more quickly to the items on the Self-Monitoring Scale than low self-monitors (see Chapter 7).

\(^8\)Acceptable internal consistency coefficients were obtained for response latency to the self-monitoring questions for the total sample and each of the self-monitoring groups. Cronbach’s alpha for response latency to the Self-Monitoring Scale questions for the total sample was .78, for low self-monitors .75, and for high self-monitors .76, suggesting acceptable internal consistency of the measure of the accessibility of self-monitoring self-knowledge.
The Relationship Between Scale Score Extremity and Self-Monitoring Schematicity

Studies of self-schemata have typically used the extremity of self-ratings of a trait as an index of a self-schema in that trait domain (Markus, 1977; Markus et al., 1982; Payne et al., 1987; Von Hippel, Jonides, Hilton, & Narayan, 1993). The present approach has emphasized the moderating effect of the accessibility of a self-schema on the diagnosticity of scores at different levels of the self-monitoring continuum. In order to examine whether scale score extremity and self-report accessibility are redundant measures for this sample, differences in self-monitoring scores were examined in the four groups identified earlier: (a) schematic low self-monitors, (b) aschematic low self-monitors, (c) schematic high self-monitors, and (d) aschematic high self-monitors.

The analysis revealed that schematic low self-monitors (M = 4.80) did not significantly differ from aschematic low self-monitors (M = 5.05) in their score on the Self-Monitoring Scale, t(326) = 1.32, p < .19. Similarly, schematic high self-monitors (M = 11.45) did not significantly differ from aschematic high self-monitors (M = 11.10) in their score on the Self-Monitoring Scale, t(292) = 1.50, p < .13. These findings suggest that the effect of self-monitoring schematicity on the predictive utility of subjects' self-report responses to the Self-Monitoring Scale is not a result of the extremity of their scale score.9

---

9The correlation between extremity and accessibility was not significant and was almost zero for the total subject sample.
Self-Monitoring Schematicity as a Moderator of the Value-Attitude Relationship

Logistic regression analyses parallelling the ones presented earlier were conducted for the schematic and aschematic groups separately to test the hypothesis that self-monitoring schematicity would moderate the relationship between values and attitudes. Thus, it was expected that values would predict the attitudes of schematic low self-monitors, but not of schematic high self-monitors. It was hypothesized that this relationship would be less clear among aschematic high and aschematic low self-monitors. The results appear to show a trend that is generally consistent with the prediction (see Table 4).

Using the five values in the prediction model relative to not using them helped to predict schematic low self-monitors' attitudes towards quotas, but not schematic high self-monitors' attitudes. In particular, endorsement of the value of equality predicted schematic low self-monitors' attitudes towards employment quotas (Exp(B) = .04, p < .0005). A greater endorsement of equality was related to a greater likelihood of favoring quotas. Endorsement of none of the values, nonetheless, was significantly related to the attitudes of schematic high self-monitors on this issue. Among aschematic respondents, however, values significantly helped in predicting both low and high self-monitors' attitudes towards employment quotas. For both groups, equality was the significant predictor (Exp(B) = .04, p < .001 for low self-monitors; and Exp(B) = .08, p < .004 for high self-monitors respectively), where greater endorsement of equality was related to a greater likelihood of favoring quotas. It is worth noting that the absolute magnitude in improvement in predicting attitudes from values for both aschematic low
Table 4

Improvement in Chi-Square in Predicting Attitudes from Values by Self-Monitoring

Tendency, Self-Monitoring Schematicity, and Attitude Issue

<table>
<thead>
<tr>
<th>Self-monitoring category</th>
<th>Quotas</th>
<th></th>
<th></th>
<th>Pornographic films</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\chi^2_{\text{diff}}$</td>
<td>df</td>
<td>n</td>
<td>$\chi^2_{\text{diff}}$</td>
<td>df</td>
<td>n</td>
</tr>
<tr>
<td>Schematic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>19.68***</td>
<td>5</td>
<td>133</td>
<td>33.92****</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>High Self-Monitors</td>
<td>5.08</td>
<td>5</td>
<td>120</td>
<td>4.41</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Aschematic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>19.81***</td>
<td>5</td>
<td>123</td>
<td>14.12*</td>
<td>5</td>
<td>118</td>
</tr>
<tr>
<td>High Self-Monitors</td>
<td>18.17**</td>
<td>5</td>
<td>110</td>
<td>19.24**</td>
<td>5</td>
<td>110</td>
</tr>
</tbody>
</table>

Note: $\chi^2_{\text{diff}} = \text{Improvement in chi-square (i.e., the improvement in the logistic regression model using the five values as predictors relative to not using them).}$

* $p < .05$. ** $p < .01$. *** $p < .001$. **** $p < .0001$.

self-monitors and aschematic high self-monitors was similar to the absolute value in improvement shown by schematic low self-monitors. This result was not predicted; it is difficult to derive from available theory the reason for high value-attitude consistency among aschematic high and low self-monitors. However, because this result did not generalize to pornographic films, it is not discussed further.

Logistic regression analysis of the pornography-question data showed that among schematic respondents, consistent with expectations, values only significantly helped in
predicting low self-monitors' attitudes towards banning pornographic films, but not high self-monitors' attitudes. In particular, endorsement of the values of freedom (Exp(B) = .15, p < .003), religiosity (Exp(B) = 2.18, p < .02), and authority (Exp(B) = 2.89, p < .04) were significantly related to attitudes towards banning pornographic films for schematic low self-monitors, whereas none of the values significantly improved the logistic regression model for schematic high self-monitors. For low self-monitors a greater endorsement of authority and greater endorsement of religiosity was related to a greater likelihood of being in favor of banning pornographic films, whereas greater endorsement of freedom was related to a greater likelihood of tolerating pornographic films.

For aschematic respondents, the improvement of the prediction model when entering the relevant values was significant for both aschematic high and aschematic low self-monitors. Endorsement of the value of freedom significantly helped to predict aschematic high self-monitors' attitudes towards banning pornographic films (Exp(B) = .12, p < .0008) and endorsement of the value of religiosity significantly helped to predict aschematic low self-monitors' attitudes (Exp(B) = 2.27, p < .01) in the same direction.10

10 Additional analyses entering response latency to the Self-Monitoring Scale items as a continuous variable into the logistic regression equations were conducted, including all the relevant 2- and 3-way interactions between response latency, self-monitoring, and each of the values. These analyses yielded results that were generally in the same direction, but did in no way improve the clarity or the strength of the results reported in the text.

In other reports, Holden and his colleagues (Fekken & Holden, 1992; Holden, Woermke, & Fekken, 1993) have suggested that a double standardization procedure of response latency, would yield a truer score of response latency to personality scale items, and, therefore, more powerful results. In order to test whether this method would yield different results in the present study, a composite index according to Holden et al.'s method was computed for response latency to the Self-Monitoring Scale, and this composite index was entered as a continuous variable in the various logistic regression analyses. This analysis did not yield results that were inconsistent with, clearer, or stronger than the results reported in the text. Similarly, in Study Two, response latency to the Need for Cognition Scale items
It was decided to examine further the differences between schematic high and schematic low self-monitors, and between aschematic high and aschematic low self-monitors in the relationship between their endorsement of each of the values and their attitudes towards quotas, and between their endorsement of each of the values and their attitudes towards banning pornographic films: Point-biserial correlations for each of these value-attitude relationships were computed for each of these groups. The results were generally in the direction suggested by the findings of the logistic regression analyses (see Table 5).

Examining schematic respondents and comparing low and high self-monitors with respect to each of the value-attitude relationships for the quota issue yielded only a significant difference between high and low self-monitors in the relationship between their endorsement of equality and their attitude towards favoring quotas, $Z = 2.20$, $p < .01$. Low self-monitors showed a stronger relationship than high self-monitors. On the other hand, looking at aschematic respondents and comparing low and high self-monitors with respect to each of the value-attitude relationships did not yield any significant differences between these two groups.

Looking at schematic respondents and comparing low and high self-monitors with respect to each of the value-attitude relationships for the pornographic film issue, yielded a significant difference between low and high self-monitors in the relationship between their endorsement of authority and their attitude towards banning of pornographic films, $Z = 2.53$.

---

was adjusted using Holden's double standardization procedure, and entered in the analyses of Study Two as a covariate. Again, the results were not inconsistent with, clearer, or stronger than the results reported in the text.
Table 5

Point-Biserial Correlations Between Value-Endorsement and Attitudes as a Function of Self-Monitoring Tendency, Self-Monitoring Schematicity, and Attitude Issue

<table>
<thead>
<tr>
<th>Values</th>
<th>Quotas</th>
<th>Pornographic films</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSM</td>
<td>HSM</td>
</tr>
<tr>
<td>Schematic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merit</td>
<td>.10</td>
<td>(133)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equality</td>
<td>-.30**</td>
<td>(157)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>-.006</td>
<td>(157)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authority</td>
<td>-.04</td>
<td>(157)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiosity</td>
<td>-.05</td>
<td>(157)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aschematic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merit</td>
<td>.18*</td>
<td>(125)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equality</td>
<td>-.40**</td>
<td>(147)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>-.11</td>
<td>(144)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authority</td>
<td>.09</td>
<td>(146)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religiosity</td>
<td>.08</td>
<td>(146)</td>
</tr>
</tbody>
</table>

Note. LSM = Low self-monitors; HSM = High self-monitors; a higher score on the value-index means greater endorsement of the relevant value; a higher attitude score means being against quotas/pornographic films; a lower attitude score means being in favor of quotas/pornographic films. ( ) = n.

* p < .05, two-tailed. ** p < .01, two-tailed.

p < .006, in the relationship between their endorsement of religiosity and their attitude towards favoring the banning of pornographic films, Z = 2.78, p < .003. and in the relationship between their endorsement of freedom and their attitude towards banning pornographic films, Z = 2.11.
p < .02. In all cases the value–attitude relationship was stronger for schematic low self-monitors than for schematic high self-monitors.

Finally, looking at aschematic respondents and comparing low and high self-monitors with respect to each of the value–attitude relationships for the pornography issue only yielded a difference in the relationship between freedom and their attitude towards banning pornographic films, Z = 2.42, p < .008. However, contrary to the pattern of behavior expected of low and high self-monitors, the value–attitude relationship was stronger among aschematic high than among aschematic low self-monitors. Thus, the differences in the point-biserial correlations between high and low self-monitors among schematic and aschematic respondents suggest a similar pattern to the trends in the logistic regression analyses, namely behavior that is more as expected of low and high self-monitors among schematic than among aschematic respondents.

In order to explore whether within each of the self-monitoring categories, schematic low relative to aschematic low self-monitors, and schematic high relative to aschematic high self-monitors also showed behavior more consistent with the expectations for their self-monitoring categories, these groups were also compared with respect to each of the value–attitude relationships. The comparison of schematic and aschematic low self-monitors only yielded significant differences for the pornography issue. Schematic low self-monitors showed a significantly greater relationship between their endorsement of freedom and their attitude towards banning pornographic films than aschematic low self-monitors, Z = 2.12, p < .02.

The comparison of schematic and aschematic high self-monitors showed differences in the value–attitude relationship for both the quota and for the pornography issues. For the quota issue, aschematic high self-monitors showed a significantly greater relationship between their
endorsement of equality and their attitudes towards quotas than schematic high self-monitors. \( Z = 2.50, p < .006 \). For the pornographic film issue, schematic high self-monitors showed a significantly greater relationship between their endorsement of freedom and their attitude towards banning of pornographic films than schematic high self-monitors. \( Z = 2.33, p < .01 \).

Overall the differences in the results for each of the value-attitude point-biserial correlations appeared less pronounced when comparing schematic and aschematic respondents within each of the self-monitoring categories than when comparing schematic and aschematic respondents across the self-monitoring categories. Yet the behavior of schematic low and schematic high self-monitors based on the within-category comparisons also was generally more in line with the expectations for low and high self-monitors, respectively, than was the behavior of aschematic low and aschematic high self-monitors. In general, the findings for the point-biserial correlation analyses were consistent with the trends in the logistic regression analyses of more category-consistent behavior among schematic than among aschematic respondents.

**CONCLUSION**

Attitudes have been suggested to serve a value adjutisve function for low self-monitors, and a social adjutisve function for high self-monitors; it has been argued that low self-monitors' attitudes are related to relevant values, whereas high self-monitors' attitudes are not (DeBono, 1987; Kristiansen & Zanna, 1988). When all values are considered together, it appears that, consistent with the hypotheses of this study, there is some evidence suggesting a relationship between attitudes and values among individuals low in self-monitoring, but not among individuals high in self-monitoring. However, the expected relationship between values and
attitudes is only found when schematic high and schematic low self-monitors are compared. When schematicity is not taken into account, high and low self-monitors' attitudes are related to their value-endorsement, in particular for the pornographic film issue. Similarly, among aschematic respondents, values predict high as well as low self-monitors' attitudes towards each of the issues assessed.

Comparing low and high self-monitors among schematic respondents with respect to each of the individual value-attitude relationships also indicates a stronger value-attitude relationship for the relevant values among schematic low than among schematic high self-monitors for several values. On the other hand, when comparing low and high self-monitors among aschematic respondents, patterns of behavior are evident that are not consistent with the expectations for their self-monitoring category. From the theory reviewed, it is difficult to deduce the reason for the occasionally substantial value-attitude relationship among aschematic high self-monitors. Yet such a relationship is consistent with the notion proposed here, that aschematic respondents are less likely than schematic respondents to show category-consistent behavior.

Taken as a whole, the results of Study One are consistent with the hypothesis that the moderating effect self-monitoring has on the relationship between attitudes and values is likely to be, in turn, moderated by the schematicity of the self-monitoring construct. Although the design of this study did not permit a conclusive inference of the difference in the extent to which values predict high and low self-monitors' attitudes between schematic and aschematic respondents, the trends in the results suggest that individuals who are schematic in a personality
domain may provide more predictive self-assessments in that domain than individuals who are aschematic.
CHAPTER 4

ON THE RELATIONSHIP BETWEEN ATTITUDES, PERSUASION, AND INTENTIONS TO BEHAVE: THE MODERATING EFFECT OF NEED FOR COGNITION

THE NEED FOR COGNITION CONSTRUCT

The second personality measure used to examine the propositions put forward in this dissertation pertains to individual differences in the need for cognition (Cacioppo & Petty, 1982); need for cognition refers to a tendency to engage in and enjoy thinking. The concept was coined in the 1950s by Cohen and his colleagues (Cohen, 1957; Cohen, Stotland, & Wolfe, 1955) who suggested that individuals who differ in need for cognition, differ in their need to reduce an unpleasant state of arousal which may be induced by complex or ambiguous stimuli. In particular, engaging in extensive information processing was suggested to reduce this unpleasant state.

In the 1980s Cacioppo and Petty (1982) developed a formal scale to measure the construct, but conceptualized the need for cognition as a chronic tendency to engage in effortful cognitive activity out of an intrinsic motivation or enjoyment to do so rather than out of a need to reduce an unpleasant drive state (Cacioppo & Petty, 1982; Thompson, Chaiken, & Hazlewood, 1993). Individuals are categorized into high and low need for cognition categories.
based on their responses to the Need for Cognition Scale in which they indicate their degree of
agreement with each of 34 (long form; Cacioppo & Petty, 1982) or 18 (short form; Cacioppo et
al., 1984) statements tapping the construct. Individuals high in need for cognition are motivated
to engage in effortful cognitive processing, whereas individuals low in need for cognition are
not.

Cacioppo, Petty, Feinstein and Jarvis' (1996) meta-analytic review of over 100 empirical
studies since the development of the construct in fields as diverse as social, personality,
developmental, and cognitive psychology, as well as in behavioral medicine, education,
marketing, and law attest to the popularity of the scale. These researchers also report high
internal consistency of the scale (alphas typically >= .85), adequate test-retest reliability (r = .88
over 7 weeks), and support for the predictive utility of the construct.

An issue that has been raised is that need for cognition is likely redundant with measures
of verbal intelligence, particularly with respect to accounting for the different effects in message
processing and persuasion between high and low need for cognition individuals. Indeed there
is some evidence of a moderate relationship between the two concepts (Cacioppo & Petty, 1982;
Cacioppo, Petty, Kao, & Rodriguez, 1986; Olson, Camp, & Fuller. 1984; Waters & Zakrajsek.
1990; see also Cacioppo et al., 1996). Yet, on balance it appears that the two constructs are
statistically and functionally independent (Cacioppo et al., 1996). For example, Cacioppo et al.
(1986) found that verbal intelligence only contributes to the prediction of the recall of arguments
contained in the persuasive message, whereas differences in need for cognition are related to

1Need for cognition is unrelated to abstract reasoning ability (Cacioppo et al., 1996).
differences in discriminating between strong and weak arguments, in the extent to which argument quality affects persuasion, and in the reported cognitive effort when evaluating the merit of the communication. They suggest that, although intelligence may impose boundaries on an individual's ability to engage in extensive deliberations, the need for cognition captures the motivation to engage in this process. The hypothesis put forward in the present dissertation that response latency to the Need for Cognition Scale items moderates the predictive utility of the Need for Cognition Scale is assessed using outcome measures taken from three realms of need for cognition research. These three areas are now reviewed.

Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion

Of particular interest for the purpose of this thesis is research on need for cognition which has been carried out in the context of the Elaboration Likelihood Model of Persuasion (e.g., Petty & Cacioppo, 1986). This model is premised on the assumption that people are motivated to hold correct attitudes but are disinclined to process every persuasive argument vigilantly. The model specifies conditions under which individuals are likely to engage in extensive thinking about a persuasive message. Individuals who follow this method of information processing are said to follow a "central processing route."

When the conditions specified by the Elaboration Likelihood Model are not met, individuals process information at a shallower level and follow a so-called "peripheral route." This peripheral route may take place via any mechanism that mediates persuasion which implicates a lack of argument-based thinking. The motivation and/or ability to engage in such
effortful cognitive processing affects the likelihood that individuals follow the central route. This motivation, in turn, is influenced by situational factors such as involvement, distraction, and time constraints, and by chronic individual differences such as the need for cognition. High need for cognition individuals are suggested to be more highly motivated than low need for cognition individuals to follow a central route of information processing, although low need for cognition individuals do not lack the ability to process systematically. Of particular interest in the present research is the extent to which individual differences in need for cognition moderate the likelihood of following the central route in processing a persuasive message.

An investigative approach which has been central in testing the contentions of the Elaboration Likelihood Model which is of relevance here, explores the effects of the quality of the persuasive arguments and assesses its role in information processing and in subsequent persuasion (Axsom, Yates, & Chaiken, 1987; Cacioppo et al., 1986; Cacioppo, Petty, & Morris, 1983). High and low need for cognition subjects are typically asked, in the context of a cover story, to listen to or to read a communication involving either strong or weak arguments and to respond subsequently to questions which tap various dependent variables such as the tendency to distinguish the quality of the arguments, the extent of persuasion, the reported expended effort in evaluating the communication, and the number of arguments recalled. The hypothesis is that high need for cognition individuals distinguish and are influenced to a greater extent by the quality of the arguments, and that they expend more effort in evaluating the communication. Cacioppo et al.'s (1996) review of studies examining these notions reports substantial support for those hypotheses.
Most relevant in the present context are several studies carried out by Cacioppo and his colleagues (1983, 1986). In one study, Cacioppo et al. (1983, Study Two) told subjects that their university was re-evaluating its policies and was seeking recommendations about possible policy changes. They then asked subjects to rate a policy statement for readability which had been (allegedly) prepared for possible broadcast and publication in the local media. The statement pertained to tuition increases and contained either four strong or four weak arguments in favor of such increases. After reading the statement, subjects were asked to answer the questions which constituted the various dependent measures. All subjects rated the strong arguments more positively than the weak arguments. In line with Cacioppo et al.’s hypotheses, high relative to low need for cognition individuals distinguished to a greater extent between the strong and the weak arguments and were more persuaded by the strong than by the weak arguments. Furthermore, high need for cognition subjects showed a greater association between the evaluation of the message and their postmessage attitude than did low need for cognition subjects.

In another study, Cacioppo et al. (1983, Study One) used a different attitude issue and cover story, and reported similar results. Subjects were told that the psychology department was helping the Journalism branch of the university by studying the subjective impact of various journalistic styles and were asked to help by evaluating an editorial written by a journalism student. This editorial contained either six strong or six weak arguments in favor of comprehensive exams as a graduation requirement. The results showed that although all subjects rated the strong arguments more positively than the weak arguments, high relative to low need for cognition subjects did discriminate to a greater extent between the quality of the arguments,
and recalled more message arguments. The former also reported expending more effort in evaluating the arguments, and rated the communicator as more trustworthy and as having more expertise, when presented with the strong rather than when presented with the weak arguments. In this study, no measures of attitude change were taken.

Tuition increases were again the focus in a study on "extrasensory perception" (Cacioppo et al., 1986, Study One). Cacioppo et al. asked subjects to listen to an audio-taped message, and to try to "transmit" their thoughts about the message to a receiver located in another room. Subjects were told that the message concerned a change in university policy which was considered for 1990. The message contained either eight strong or eight weak arguments in favor of the tuition increases. In line with the previous results, all subjects evaluated strong arguments more positively than weak arguments and reported a more positive attitude towards tuition increases after listening to the strong than after listening to the weak arguments. These effects were, again, more pronounced for high than for low need for cognition individuals. High need for cognition individuals also recalled more message arguments and reported expending more effort in evaluating the message than low need for cognition individuals.

The argument quality paradigm is one of the paradigms used in Study Two of this thesis to test the notion that "need for cognition schematicity" as indexed by response latency to the Need for Cognition Scale items, moderates the predictive utility of the scale with respect to the suggested difference between the two groups in the influence of strong versus weak arguments, reported expended effort in evaluating the arguments, and consistency of message evaluation and postmessage attitude.
Need for Cognition and the Consistency Between Attitudes and Intentions to Behave

A second measure used in Study Two to test the accessibility of need for cognition self-knowledge or need for cognition schematicity as a moderator of the predictive utility of the scale pertains to differences between high and low need for cognition individuals in the consistency of their attitudes and behavioral intentions. Various researchers have suggested that the predictive utility of attitudes in terms of attitudinally consistent behavior is positively associated with the (reported) amount of cognitive processing effort expended during attitude formation or change (Cacioppo et al., 1986; Fazio, Powell. & Herr, 1983; Petty & Cacioppo, 1986; Petty, Cacioppo, & Schumann, 1983). In particular, it has been suggested that high need for cognition individuals, because of their greater propensity for engaging in extensive information processing show greater consistency between their attitudes and their subsequent behavior (Cacioppo et al., 1986, Study Two; Verplanken, 1989).

For example, Verplanken (1989) polled residents in the Netherlands on their attitudes, beliefs, and behavioral intentions regarding the large-scale use of coal and the large-scale use of nuclear energy for generating electricity and found that high need for cognition individuals showed greater consistency between their attitudes and their behavioral intentions to support or oppose these modes of energy generation than low need for cognition individuals. Cacioppo et al. (1986) polled students on their attitudes towards the presidential and vice-presidential candidates during the period of the 1984 American presidential election. In line with the predictions, high need for cognition individuals showed a greater consistency between their attitudes and their stated, voting intentions than low need for cognition individuals.
Furthermore, high need for cognition individuals also showed a greater consistency between their attitudes and their voting behavior over a timespan of eight weeks than low need for cognition individuals. Further analyses indicated that these results were related to differences in the amount of issue-relevant thinking among high need for cognition individuals when forming attitudes, rather than to differences in the stability or extremity of their attitude towards the candidates.

In Study Two, I examined the moderating effect of need for cognition schematicity on the suggested difference between high and low need for cognition individuals in the consistency between their attitudes towards three social policy issues, and their behavioral intentions towards signing a petition in favor of their expressed attitude.

Need for Cognition and Resistance to Counterargumentation

A third measure to test the notion that need for cognition schematicity moderates the predictive validity of self-reports about one’s standing in the need for cognition domain focused on the extent to which high and low need for cognition individuals differ in their resistance to counterargumentation. Haugtvedt and Petty (1992) proposed that individuals who form or change their attitudes via the central route will naturally resist the influence of a persuasive counterargument because their own cognitive responses to defend their viewpoint will readily come to mind (see McGuire, 1964). Because high need for cognition individuals are particularly likely to have previously thought about and integrated such arguments in their belief system (Leone & Ensley, 1986), they are especially likely to resist counterargumentation. On the other
hand, individuals who tend to form or change their attitudes via a peripheral route, such as low need for cognition individuals, are more susceptible to counterargumentation because they do not have cognitive defences readily available to resist persuasive pressures.

Some support for this proposal comes from the previously reported findings of high need for cognition individuals' greater attitude-behavioral consistency (Cacioppo et al., 1986, Study Two; Verplanken, 1989), a notion that is consistent with the assumption of a greater resistance to persuasive influences. This is because individuals may be exposed to such persuasive influences in the time interval between the measuring of the attitude and be unlikely to show attitude-behavioral consistency. Furthermore, the finding that high need for cognition individuals' attitudes are more stable than are the attitudes of low need for cognition individuals is also consistent with the hypothesis. For example, Verplanken (1991) found that high need for cognition individuals' attitudes towards large-scale use of coal remained more stable over a period of up to 14 months than did the attitudes of low need for cognition individuals. Haugtvedt and Petty (1992, Study One) reported that high need for cognition individuals' newly formed attitude remained more stable over a two-day period than those of low need for cognition individuals. Although, these findings do not constitute a measure of differences between high and low need for cognition individuals in the resistance to persuasion, they do suggest that high need for cognition individuals may generally possess a stronger attitude than low need for cognition individuals.

More direct support for the notion that high need for cognition individuals' attitudes are more resistant to persuasive attack than those of low need for cognition individuals comes from Haugtvedt and Petty (1992, Study Two). These investigators experimentally induced similarly
negative beliefs towards a popular food additive among high and low need for cognition subjects. Subjects read a persuasive message delivered by a highly credible source about the negative aspects of the additive. Shortly thereafter, subjects read a second persuasive message, again delivered by a highly credible source, which was intended to undermine the credibility of the preceding message. Only low need for cognition subjects were swayed by the second message and moved back toward their initial pre-experimental beliefs that the additive was safe. High need for cognition subjects, on the other hand, recalled significantly more pro and antiproduct message arguments, generated counterarguments to the second message, and were relatively uninfluenced.

In Study Two high and low need for cognition individuals’ resistance to persuasion in the context of various social policy issues is explored and I examine the hypothesis that need for cognition schematicity is a moderator of the suggested greater resistance to persuasion among high need for cognition individuals. Rather than presenting various arguments on each side of the issue, the counterargumentation consists simply of mentioning a “down-side” of the respondents’ just-expressed opinion.
CHAPTER 5

STUDY TWO

THE RELATIONSHIP BETWEEN RESPONSE LATENCY TO THE NEED FOR COGNITION SCALE ITEMS AND THE PREDICTIVE UTILITY OF THE SCALE: A CORRELATIONAL ANALYSIS

OVERVIEW

Study Two is a conceptual replication of Study One and examines whether schematicity in the need for cognition domain, as indexed by response latency to items contained in the Need for Cognition Scale (Cacioppo & Petty, 1982; Cacioppo, Petty, & Kao, 1984), functions as an indicator of the predictive utility of individuals’ responses to this scale. Trends in the data of Study One suggest that response latency to the items contained in the Self-Monitoring Scale (Snyder & Gangestad, 1986) or “self-monitoring schematicity” may moderate the scale’s predictive utility. Schematic high self-monitors and schematic low self-monitors showed patterns of behavior that were more consistent with the tenets of the self-monitoring construct than aschematic high self-monitors and aschematic low self-monitors.

To test whether need for cognition schematicity functions as a moderator of the predictive utility of individuals’ responses to the Need for Cognition Scale, Study Two focuses on dependent measures on which individuals high and low in need for cognition have been found
to differ in the past (Cacioppo et al., 1983, 1986). The polling context in which the present study is carried out makes it possible to include a number of outcome measures. The first measure of interest focuses on differences between high and low need for cognition individuals which have been reported in research testing various contentions of the Elaboration Likelihood Model of Persuasion (Cacioppo et al., 1983, 1986).

In line with past findings, it is expected that high relative to low need for cognition individuals will be more likely to discern argument quality, will be more likely to be affected by the quality of the arguments in their postmessage attitude, will report having expended more effort in evaluating the communication, and will show greater consistency between their message evaluation and their postmessage attitude. It is hypothesized that these effects will be stronger in the comparison of schematic high and schematic low need for cognition subjects as contrasted with the comparison of aschematic high and aschematic low need for cognition individuals.

In addition, two more exploratory measures are used to assess need for cognition schematicity as a moderator of the predictive utility of the Need for Cognition Scale. These measures are considered more exploratory because the hypothesized relationship between need for cognition and these outcome measures has been less well established than has the relationship between need for cognition and the measures related to the argument quality paradigm. One of these measures focuses on differences between high and low need for cognition individuals in the extent to which they demonstrate consistency in their attitudes and intentions to behave.

In the present study, respondents are polled on their attitudes towards three social issues (i.e., AIDS confidentiality, protection of the environment, and foreign aid), and their intentions to behave in a manner consistent with their attitudes is subsequently assessed. In line with past
findings (Cacioppo et al., 1986, Study Two; Verplanken, 1989) it is expected that high need for cognition individuals will be more likely to show consistency between their attitudes and their intentions to behave than low need for cognition individuals. It is hypothesized that this effect will be accentuated when schematic high and schematic low need for cognition individuals are compared relative to when aschematic high and aschematic low need for cognition individuals are compared.

The third measure focuses on differences between high and low need for cognition individuals in the likelihood of exhibiting resistance to counterargumentation to their just-expressed opinion. This outcome is assessed by polling respondents on their attitudes towards each of two social issues (i.e., employment quotas, and banning hate literature) and presenting them with a counterargument to their just-expressed opinion. In line with past findings (Haugtvedt & Petty, 1992, Study Two), it is expected that high need for cognition individuals will be less likely to yield to a counterargument than low need for cognition individuals. It is hypothesized that this effect will be stronger in the comparison between schematic high and schematic low need for cognition individuals as contrasted to the comparison of aschematic high and aschematic low need for cognition individuals.

METHOD

Participants

A sample of 295 University of Toronto students (119 males and 176 females) was randomly selected from the most recent registration list held by the university’s Office of
Statistics and Records and participated as subjects in the present study. This number of subjects represents the total number of completions using a call-back criterion of three call-backs with case replacement and yielded a response rate of 81.5%.  

Design

The survey context in which the present study was carried out made it possible to examine the moderating effect of need for cognition schematicity using three different paradigms. First, the effects of schematicity, argument quality, and need for cognition on the processing of a persuasive communication and on subjects' postmessage attitude were explored in a 2(argument quality: strong/weak) x 2(need for cognition: high/low) x 2(schematicity: schematic/aschematic) between subjects design.

Second, the effects of schematicity on the expected differences between high and low need for cognition individuals in their likelihood of exhibiting attitude-intention consistency, and third, in their likelihood of exhibiting resistance to counterargumentation were explored in a 2(need for cognition tendency: high/low) x 2(schematicity: schematic/aschematic) between-subjects design for both measures.

In order to rule out confounding effects because of systematic differences between high and low need for cognition individuals in their initial attitude towards the focal attitude issue (i.e., tuition increases), in the personal relevance of the issue, and in their feeling of being well-

---

1 This call-back criterion was a strategy of convenience reflecting the fact that the opinions rendered were not of interest per se, so that it was not of utmost importance that the sample be representative of the University of Toronto population.

2 Between the first and the second contact, fifty-two subjects (14.9%) were lost.
informed about the issue, a "baseline" condition which was not part of the experimental design was also included. Subjects (n = 22) were randomly assigned to this condition and were not presented with the strong and weak arguments, but merely responded to the same follow-up questions about tuition increases as the subjects in the experimental conditions. ¹

Procedure

Two questionnaires were administered in the context of a computer-assisted telephone interview (CATI) which dealt with various current and social issues, some of which are not relevant to the hypotheses examined here. A team of eight interviewers contacted the respondents to elicit participation in a survey regarding "important issues having to do with rights and freedoms," and read the questions as they came up on the computer screen. At the time of calling, subjects were randomly assigned to one of the two argument quality conditions. A computer program controlled the randomization procedure and determined the sequence and content of the questions for the subjects in the various experimental cells. Response latencies were measured for the answers to all questions in the survey.

The first questionnaire contained all questions relevant to the experimental manipulations. The tuition increase section of the survey was introduced to the respondents by telling them that the next topic pertained to the recently announced tuition increases at the University of Toronto and that they would first hear the various reasons which had been given

¹This approach was chosen rather than a pre and postmessage attitude assessment in order not to introduce the possibly obfuscating effects of having subjects give their opinions, hear the persuasive message, and subsequently give their opinion on the issue again (see also Cacioppo et al., 1983).
in favor of these tuition hikes. Immediately after subjects had listened to the strong or weak arguments, they were asked to give their opinion about the tuition increases and subsequently about various other questions relevant to the tuition increase issue.

The second questionnaire, which was administered 2-4 weeks after the first questionnaire, and introduced as a “follow-up” interview to the first questionnaire contained the Need for Cognition Scale items. Subjects responded to the Need for Cognition Scale items after they had responded to a series of questions polling them on their attitudes towards various social issues which were not relevant for the hypotheses of this study.

Measures

Independent Variables

Need for Cognition Scale (Cacioppo et al., 1984)

Because the nine response options of each of the 18 Likert-style items of the Need for Cognition Scale were deemed unwieldy in the context of the telephone survey, each of these items was rescaled into a statement that subjects had to rate on an 11-point continuous scale ranging from -5 (does not apply at all) to +5 (applies very much) for the extent to which the statements applied to them. The short rather than the long version of the Need for Cognition Scale (18 versus 25 items) was chosen for the purpose of this study because of its efficiency, and its greater ease of administration in the survey context than the lengthy 34-item scale. Moreover, the 34-item and the 18-item scale show comparable internal consistency (alpha = .91 and alpha = .90; respectively) and correlate highly (r = .95). In an extensive review, Cacioppo et al.
Consistent with Cacioppo et al. (1983), subjects were categorized into high and low need for cognition groups using a tripartite split. Subjects who scored in the upper and lower tertile were classified as high and low need for cognition groups respectively. A tripartite rather than a median split procedure was used, because in various pilot studies Cacioppo et al. (1983) found that subjects from a homogeneous population (e.g., from introductory psychology classes) whose need for cognition scores fell near the median responded to a variety of experimental tasks in a similar fashion whether their score was marginally above or below the median (see also Axsom et al., 1987; Sorrentino & Short, 1977).

**Response Latency Measurement**

Response latencies to the questions contained in the Need for Cognition Scale were recorded by the computer using a method similar to the one used in Study One which was originated by Bassili and his colleagues and which has been used in a number of surveys (see Bassili, 1996a, 1996b). In a similar manner to Study One, voice-key and interviewer-recorded response latencies were obtained. As in Study One, because the response latencies in this survey were rather long (i.e., average response latency > 1500 milliseconds) interviewer-recorded response latencies were used in the following analyses (see Bassili, 1995).

**Filler Items**

Subjects’ responses to the following three statements in terms of whether they agreed or disagreed, which were also included in the survey but were irrelevant for the hypotheses under
investigation, were used to compute respondents' baseline speed of responding: (1) "Children's well-being is sacrificed these days because both parents work." (2) "The health care system in Canada does a good job of caring for people's health." (3) "In a multicultural society such as Canada, there must be laws to prevent the spread of hateful feelings against minorities."

**Strong and Weak Arguments**

In order to construct arguments in favor of tuition increases which were of concern to the subjects in the present study, a pool of strong and weak arguments were developed based on information regarding upcoming tuition increases contained in various University of Toronto newspapers which appeared between August 1993 and April 1994. The arguments were selected based on rankings by faculty members and graduate students in terms of their strengths and weaknesses. A manipulation check to test differences in argument quality was carried out by asking respondents in the survey how convincing they found the arguments.

A total of eight strong arguments and eight weak arguments were selected for use in this study (see Appendix A). Although Cacioppo, Petty, and their colleagues have been criticized for having confounded argument valence and argument strength (e.g., Areni & Lutz, 1988), no attempt has been made in this study to disentangle strength and valence in the arguments because the study sought to closely follow the Cacioppo et al. (1983) methodology and because it has been argued that this confound does not reduce the internal validity of the previously reported research (Eagly & Chaiken, 1993).^4

---

^4The strong and weak arguments strongly resembled those used by Cacioppo et al. (1983, 1986).
Dependent Variables

Argument Quality Manipulation

Subjects responded to the following questions on an 11-point scale:

i. **Message evaluation.** “How convincing do you think the reasons in favor of tuition increases we’ve just looked at are?”

ii. **Postmessage attitude.** “How desirable do you think tuition increases at the University of Toronto are?”

iii. **Effort in evaluating the arguments.** “How much effort did you put into evaluating the reasons in favor of tuition increases which were presented in this survey?”

iv. **Additional Measures.** “How much do tuition increases affect you personally?” “How well-informed do you consider yourself about the issue of tuition increases?”

Attitude–Behavioral Intention Consistency

The attitude–behavioral intention consistency index was based on subjects’ responses to the following attitude and behavioral intention questions: (1) “If a blood test shows that someone is infected with the AIDS virus, should that person be told confidentially, or should the doctor also be required to notify local health authorities?” (1 = told confidentially, 2 = notify health authorities, 3 = it depends); (2) “Should Canada do more to protect the environment even if jobs are lost in the process, or should jobs come first?” (1 = environment, 2 = jobs come first); (3) “Should the government in Ottawa reduce foreign aid in an effort to solve the economic problems of Canada, or should foreign aid continue to be funded at the present level?” (1 = reduce foreign aid, 2 = maintain present level, 3 = increase present level). Immediately after subjects had expressed their opinion on each of these issues, they were asked whether they would
be willing to sign a petition to lobby for their opinion. In order to compute a measure of the consistency between respondents' attitudes and their behavioral intentions, a dummy variable was created.

**Resistance to Counterargumentation**

The index of subjects' resistance to counterargumentation was based on the following attitude questions: (1) "Do you think that large companies should have quotas to ensure that a fixed percentage of women are hired, or should women get no special treatment?" (1 = there should be quotas, 2 = no special treatment); (2) "Do you think it should be against the law to write or speak in a way that promotes hatred towards a particular racial or religious group?" (1 = yes, 2 = no).

Immediately after subjects had expressed their opinion they were presented with a counterargument to their opinion. For example, when they answered that there should be quotas to the first question, they were asked whether they would feel the same if "this means not hiring the best person for the job?" (1 = feel the same, 2 = feel differently); and when they answered that women should get no special treatment, they were asked whether they would feel the same if "this means that women remain economically unequal?" (1 = feel the same, 2 = feel differently). When they answered that hateful expression should be against the law, they were

---

5The dummy variable which represented the measure of consistency between respondents' attitudes and their behavioral intentions was constructed by assigning subjects' responses to the behavioral intention questions a code of 1 when their answer reflected agreement to sign a petition consistent with their attitude and a code of 2 when their answer reflected an unwillingness to sign such a petition. Based on these codes a lower score (i.e., 1) indicated attitude–behavioral intention consistency and a higher score (i.e., 2) indicated attitude–behavioral intention inconsistency. Although for the AIDS and the foreign aid issue where a third (i.e., 3 = it depends) response option was included for the purpose of investigations carried out in the context of this study which are irrelevant to the present dissertation, only responses for the definite answers (i.e., (1) and (2)) were analysed and accordingly weighted.
asked "whether they would feel the same if this results in less freedom of speech about important public issues?" (1 = feel the same, 2 = feel differently); and when they answered hateful expression should not be against the law then they were asked "whether they would feel the same if this results in more racial and religious prejudice?" (1 = feel the same, 2 = feel differently). In order to compute a measure of respondents' resistance to counterargumentation a dummy variable was created.6

RESULTS

Factor Analytic and Reliability Data for the Need for Cognition Scale

Because the Need for Cognition Scale was rescaled for the purpose of this study, a factor analysis was carried out to examine whether its factor structure corresponded to the factor structure of the Need for Cognition Scale that has been reported in the literature. Cacioppo and his colleagues (Cacioppo & Petty, 1982; Cacioppo, et al., 1984) report a single-factor structure for both the short and the long version of the scale, where the single factor in the 18-item Need for Cognition Scale accounts for 37% of the variance and for 27% of the variance in the 34-item Need for Cognition Scale. Cacioppo et al.'s (1996) extensive review of need for cognition studies reports that the single factor solution has been replicated in many studies.

---

6These dummy variables represent the measure of resistance to counterargumentation and were constructed by assigning subjects' scores on the counterargumentation questions a code of 1 when subjects did not yield to the counterargumentation and a code of 2 when subjects did yield to the counterargumentation. Thus a greater extent of resistance to counterargumentation is reflected in a lower score on this variable.
A principal component analysis using varimax rotation of the responses of the present subject sample to the Need for Cognition Scale produced four factors before eigenvalues fell below 1. The results are not inconsistent with previous findings. The first factor explained the majority of the variance (31%) and seemed to reflect cognitive persistence. In addition, the present scale showed a satisfactory internal reliability (Cronbach’s alpha = .86) and split-half reliability (Guttman split-half $r = .84$ and Spearman-Brown $r = .85$).

Categorization of Respondents into High and Low Need for Cognition Groups

Respondents were first categorized by tripartite split into high and low need for cognition groups. This categorization resulted in 97 low and 94 high need for cognition individuals. The 104 subjects who fell in the middle group were excluded from the following analyses.

Response Latency Adjustment

Before the analyses involving response latency to the Need for Cognition Scale items were conducted, subjects’ response latency to the Need for Cognition Scale items was adjusted for baseline responding in order to minimize variability as a result of individual differences in speed of responding. Subjects’ baseline speed of responding was calculated by computing each subject’s average speed of responding to three filler items (see Filler Items in Method section).\(^7\) This baseline speed of responding was subsequently subtracted from their average raw need for

\(^7\)Following Fazio’s procedure, subjects’ baseline response latency was computed on their responses to three attitude items. Attitude items rather than additional personality items were chosen in order to extract individual differences in subjects’ general speed of responding to reasonably complex items rather than to extract subjects’ speed of responding to items relevant to a personality domain.
cognition response latency scores. The resulting need for cognition response latency index formed the basis of the following analyses.\(^8\)

The Relationship Between Scale Score Extremity and Need for Cognition Schematicity

In Study One, schematic low self-monitors and aschematic low self-monitors did not significantly differ in their score on the Self-Monitoring Scale, nor did schematic high self-monitors significantly differ from aschematic high self-monitors in their score on this scale. In order to examine the relationship between Need for Cognition Scale score extremity and the accessibility of need for cognition self-knowledge, schematic and aschematic individuals’ polarization scores within each of the need for cognition categories were compared.

Similar to the findings in Study One, these analyses did not yield significant differences between the two groups. Schematic high need for cognition individuals (\(M = 3.44\)) did not significantly differ from aschematic high need for cognition individuals (\(M = 3.27\)) in the extremity of their Need for Cognition Scale score, \(t(92) = 1.65, p < .11\). Similarly, schematic low need for cognition individuals (\(M = .57\)) did not significantly differ from aschematic low need for cognition individuals (\(M = .65\)) in the extremity of their Need for Cognition Scale score, \(t(91) = .94, p < .35\), suggesting that response extremity is not likely to have confounded the schematicity effects in the present analyses.\(^9\)

---

\(^8\)Substantial internal consistency coefficients were obtained for subjects’ response latency scores on the Need for Cognition Scale items. Cronbach’s coefficient alphas were for the overall sample .89, for the strong argument condition .87, for subjects in the weak argument condition .86, and for subjects in the baseline condition .93.

\(^9\)The correlation of the total sample between response latency and Need for Cognition Scale score extremity was also very low, \(r(295) = -.16, p < .005\).
Categorizing Respondents into Schematic and Aschematic High and Low Need for Cognition Groups

Subsequently, respondents were categorized into schematic high need for cognition, schematic low need for cognition, aschematic high need for cognition, and aschematic low need for cognition groups. In order to get a better representation of fast and slow low and high need for cognition individuals within each of their categories, respondents were categorized, similarly to the procedure used in Study One, into “schematic” and “aschematic” respondents based on a median split using the need for cognition response latency median within each need for cognition group (\(Mdn = 2842\) milliseconds; \(Mdn = 2421\) milliseconds for low and high need for cognition respondents respectively).\(^{10}\) Subjects who responded slower than their own group median were categorized as aschematic responders and subjects who responded faster than their own group median were categorized as schematic responders. This categorization resulted in the following four groups: schematic high need for cognition individuals; aschematic high need for cognition individuals; schematic low need for cognition individuals; and aschematic low need for cognition individuals (see Table 6).

---

\(^{10}\)Reported median latencies are raw median response latencies to the Need for Cognition Scale items. However, the median split was carried out on the adjusted median response latencies for high need for cognition individuals (\(Mdn = 413\) milliseconds) and for low need for cognition individuals (\(Mdn = 851\) milliseconds).
Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion

Baseline Condition

In order to rule out possible confounding effects, systematic differences between high and low individuals were examined vis-à-vis their initial attitude towards tuition increases, the personal relevance of the attitude issue to them, and the extent to which they felt informed about the issues. The scores on these measures of subjects in the baseline condition were entered into a series of one-way ANOVAs. High and low need for cognition individuals did not significantly differ in their initial attitude towards tuition increases, $F(1,20) = .006, p < .94$, in the extent to which they considered tuition increases as personally relevant, $F(1.20) = .42, p < .53$, or in the extent to which they felt they were well informed about tuition increases. $F(1.20) = .04, p < .84$. These results suggest that confounds as a result of interaction effects between need for cognition and the personal relevance of and/or between prior information about the attitude issue on the
dependent measures (see Axsom et al., 1987; Johnson & Eagly, 1989; Thompson et al., 1993) are not likely. Consistent with previous results (Cacioppo et al., 1983), high and low need for cognition individuals did not differ in their attitudes towards tuition increases which also rules out possible confounds as a result of this systematic difference.

Replication of Previous Results

Next, the relevant differences between high and low need for cognition individuals which have been reported in previous research were examined in the present subject sample. More specifically, these measures focused on whether high need for cognition individuals would discriminate more between the strong and weak arguments in the persuasive message, would be more affected by argument quality in their postmessage attitude, would show a greater message evaluation–postmessage attitude consistency, and would report expending more effort in thinking about the merits of the recommendation. Because the random assignment of subjects to the various experimental cells resulted in an unbalanced design, procedures for unbalanced design (i.e., proc glm ANOVAs) were used where appropriate.

Message Evaluation and Manipulation Check

Subjects’ scores on the message evaluation question (“How convincing do you think the reasons in favor of tuition increases we’ve just looked at are?”) were submitted to a 2(Argument Quality) x 2(Need for Cognition) ANOVA. The results indicate that the argument quality manipulation was successful as evidenced by a main effect for argument quality, F(1,144) = 26.33, p < .0001. Subjects who heard the strong arguments (M = 0.744) rated them as significantly more convincing than subjects who heard the weak arguments (M = -1.819).
However, the previously reported effect (Cacioppo et al., 1983, 1986) that high relative to low need for cognition individuals are more likely to provide discriminating evaluations between the strong and the weak arguments was not replicated. The interaction effect between argument quality and need for cognition was not significant. $F(1.144) = .00, p < .97$. High and low need for cognition individuals did not differ in their discrimination between the strong and weak arguments in this study.

**Postmessage Attitude Towards Tuition Increases**

Next, the data were analysed for the previously reported finding that high and low need for cognition individuals differ in the extent to which argument quality influences their attitude. Subjects' scores on the postmessage attitude towards the tuition increases question ("How desirable do you think tuition increases at the University of Toronto are?") were entered in a 2(argument condition) and 2(need for cognition) between-subjects ANOVA. A main effect for argument quality, $F(1.144) = 8.69, p < .004$ indicated that all subjects were more influenced by the strong than by the weak arguments.

Subjects who heard the strong arguments rated tuition increases more favorably ($M = -1.060$) than subjects who heard the weak arguments ($M = -2.707$). However, the need for cognition x argument quality interaction reported by Cacioppo et al. (1983) remained nonsignificant. $F(1.144) = 0.59, p < .44$. Thus, Cacioppo et al.'s (1983) finding that the difference in postmessage attitude for subjects who heard the strong relative to those who heard the weak arguments was greater for high than for low need for cognition respondents was also not replicated.
**Consistency Between Message Evaluation and Postmessage Attitude**

Next, the replication of Cacioppo et al.'s (1983) finding that high need for cognition individuals show a greater consistency between their evaluation of the message and their postmessage attitude was examined for the present subject sample. Cacioppo et al. contend that if high relative to low need for cognition individuals are more likely to derive their attitude through a considered evaluation of the arguments central to the recommendation, they should show greater consistency between their message evaluation and their postmessage attitude than low need for cognition individuals. Therefore, correlations between message evaluation and postmessage attitude were carried out separately for high and low need for cognition subjects. Although for both low and high need for cognition subjects, the relationship between message evaluation and postmessage attitude was substantial, these groups did not differ on that measure. \( r(97) = .45, p < .00001 \) versus \( r(93) = .34, p < .001 \) for low and high need for cognition subjects respectively, \( F = .88, \text{ns.} \)

**Reported Effort Put in Evaluating Message Arguments**

The assumptions underlying the research on need for cognition is that low need for cognition individuals tend to avoid effortful analyses of persuasive communication (Cacioppo et al., 1986). Entering subjects' scores to the effort question ("How much effort did you put into evaluating the reasons in favor of tuition increases which were presented in this survey?") into a one-way ANOVA with need for cognition as a factor yielded a trend in the expected direction, \( F(1,189) = 2.34, p < .13 \). Although the results were not significant, the trend shows some tentative support for a greater reported amount of effort in evaluating the persuasive arguments.
among high than among low need for cognition individuals \((M = 1.894 \text{ versus } M = 1.351)\) respectively).

**Additional Measures**

Additional analyses were carried out comparing low and high need for cognition subjects with respect to the extent to which the tuition increases affected them personally and with respect to how well-informed they felt they were about tuition increases. When respondents’ scores on these measures were entered into a series of 2(argument quality) x 2(need for cognition) ANOVAs, analyses of subjects’ rating of the extent to which tuition increases affected them personally yielded a marginally significant main effect for argument quality, \(F(1.144) = 3.02, p < .08\). Subjects who heard the weak arguments rated the recommendation as more personally relevant \((M = 2.041)\) than subjects who heard the strong version of the message\((M = 1.059)\). This result is exactly opposite of Cacioppo et al.’s (1983) finding that subjects who had read the strong arguments rated the recommendation as more personally relevant than subjects who had read the weak arguments. Furthermore, subjects did not differ as a function of argument condition nor need for cognition tendency in their report of how well-informed they felt they were about tuition increases. All main effects and interactions were not significant \((p > .33)\).

In summary, the effects reported by Cacioppo and his colleagues (Cacioppo et al., 1983, 1986) were not replicated among the present subjects, except for a trend in the direction of greater reported effort in evaluating the arguments among high than among low need for cognition individuals. Interestingly, although the difference was not significant, low rather than high need for cognition individuals showed greater consistency between message evaluation and postmessage attitude and in the absolute value of the correlation coefficients that were both
substantial and significant. However, the main focus of the research in this thesis is to explore whether adding need for cognition schematicity to the analysis provides a more sensitive test of the tenets of the need for cognition construct. The following analyses test, therefore, whether the expected effects will be found when schematic high and schematic low need for cognition subjects are compared, but will be less clear or absent when aschematic high and aschematic low need for cognition individuals are compared.

Response Latency as Moderator

In order to examine whether, as hypothesized, the argument quality manipulation will have a stronger effect on high need for cognition individuals than on low need for cognition individuals when schematicity is added as a factor, so that whether this finding will be accentuated among schematic respondents and less pronounced among aschematic respondents. analyses paralleling the previous ones were carried out for all dependent measures and need for cognition schematicity was added as a factor to the design.\textsuperscript{11} Because of the unequal number of subjects in the experimental cells, procedures for an unbalanced design (i.e., proc glm ANOVA) were used where appropriate.

\textsuperscript{11}Separate analyses using response latency to the Need for Cognition Scale items as a continuous variable and entering it in the analyses with all relevant 2- and 3-way interactions did not yield results that were inconsistent with, clearer, or stronger than the results reported in the text.
Message Evaluation

The results for the test of whether need for cognition schematicity would moderate differences between high and low need for cognition individuals in their perception of the persuasive message as a function of argument quality yielded a main effect for argument quality, $F(1,137) = 24.71, p < .0001$. Strong arguments were considered significantly more convincing than weak arguments. In addition, the 2-way interaction between argument quality x need for cognition reported by Cacioppo et al. (1983, 1986) remained nonsignificant, but a significant quality x need for cognition x schematicity interaction was obtained, $F(1,137) = 3.91, p < .05$ (see Figure 1).

In order to explore this interaction, separate general linear model ANOVAs were carried out of the schematic and aschematic groups separately. For schematic respondents, a main effect for argument quality was obtained, $F(1,72) = 9.67, p < .003$. Respondents rated the strong arguments as more convincing than the weak arguments. However, the need for cognition and argument quality interaction was not significant, $F(1,72) = 1.13, p < .29$. Schematic high and schematic low need for cognition individuals did not differ in their ratings as a function of argument quality. For the aschematic respondents a similar ANOVA revealed a main effect for argument quality, $F(1,66) = 17.69, p < .0001$ in the same direction as for schematic respondents. The need for cognition x argument quality interaction also did not reach significance, $F(1,66) = 2.11, p < .15$, but suggested a possible trend of a greater difference for low than for high need for cognition individuals in their convincingness rating of the arguments as a function of argument quality.
Figure 1. Mean convincingness rating by need for cognition, argument quality, and need for cognition schematicity.

In order to obtain further insight into schematic and aschematic need for cognition groups, simple effects were computed within each of the schematic and aschematic high and low need for cognition categories. This analysis revealed that schematic high need for cognition individuals rated the strong arguments as significantly more convincing than the weak arguments, $t(34) = 3.355, p < .001$, whereas this difference was not significant for schematic low need for cognition individuals, $t(37) = 1.045, p < .30$. Aschematic low need for cognition individuals rated the strong arguments as significantly more convincing than the weak arguments, $t(34) = 3.772, p < .002$. The results for aschematic high need for cognition individuals were nearly significant with the means in the same direction, $t(32) = 1.918, p < .06$. Thus, looking at each of the schematic and aschematic high and low need for cognition groups
separately with respect to convincingness ratings as a function of argument quality. The results were more consistent with the notion of category-typical behavior among schematic relative to aschematic high and low need for cognition individuals. However, the expected accentuation of the difference between high and low need for cognition individuals in convincingness rating as a function of schematicity and argument quality was not obtained, nor was the difference between these individuals in convincingness rating as a function of argument quality within each of the schematic groups significant.

**Postmessage Attitude**

The analysis of the postmessage attitude index also revealed a main effect for argument quality, $F(1, 137) = 7.19, p < .008$. Subjects who listened to the strong arguments ($M = -1.03$) considered tuition increases significantly more desirable than subjects who listened to the weak arguments ($M = -2.54$). This main effect was qualified by a marginally significant two-way interaction between need for cognition and schematicity, $F(1, 137) = 3.18, p < .08$, and a marginally significant three-way interaction between argument quality, need for cognition, and schematicity, $F(1, 137) = 2.96, p < .09$. The three-way interaction is shown in Figure 2.

In order to obtain greater insight into the differences between high and low need for cognition individuals in each of the schematicity categories, separate general linear ANOVAs were conducted for schematic and aschematic respondents separately. Looking at schematic respondents, the analysis yielded a main effect for need for cognition, $F(1, 71) = 3.86, p < .05$. Low need for cognition individuals reported a more positive postmessage attitude towards tuition increases than high need for cognition individuals. In addition, a near significant main effect for argument quality, $F(1, 71) = 2.90, p < .09$, was found, suggesting a trend for subjects who
Figure 2. Mean postmessage attitude by need for cognition and argument quality for schematics and aschematics.

heard the strong arguments to rate tuition increases more favorably than subjects who heard the weak arguments. However, the need for cognition and argument quality interaction was not significant, $F(1,71) = .48, p < .49$. Looking at the aschematic respondents, the analysis yielded a main effect for argument quality, $F(1,66) = 4.30, p < .04$ in the same direction, and a near significant need for cognition and argument quality interaction, $F(1,66) = 2.90, p < .09$, suggesting a trend in the direction of a greater difference in postmessage attitude for strong and weak arguments among aschematic low need for cognition individuals than among aschematic high need for cognition individuals.
Simple effects within each of the schematic and aschematic need for cognition categories indicate a near significant difference in postmessage attitude as a function of argument quality for schematic high need for cognition individuals \( t(37) = 1.764, \ p < .08 \), and no significant difference for schematic low need for cognition individuals \( t(34) = .64, \ p < .52 \). For aschematic low need for cognition individuals the difference of the effect of strong relative to weak arguments was significant, \( t(32) = 2.718, \ p < .007 \), whereas for aschematic high need for cognition individuals it was not, \( t(34) = 0.277, \ p < .78 \). Thus, looking at each of the schematic and aschematic high and low need for cognition groups separately, the results are suggestive of a trend of category-typical behavior for schematic high and schematic low need for cognition individuals, but not for aschematic high and aschematic low need for cognition individuals. However, similar to the previous measure, the expected difference between high and low need for cognition individuals’ postmessage attitude as a function of argument quality and need for cognition schematicity was not obtained.

**Reported Effort Put in Evaluating Message Arguments**

The expected need for cognition and schematicity interaction for the reported effort measure was not significant, \( F(1,183) = 1.27, \ p < .26 \). High and low need for cognition individuals did not differ in reported effort in evaluating the communication as a function of need for cognition schematicity. In order to further explore the direction of the effects within each of the schematic and aschematic groups, simple effects were computed for each of the schematic and aschematic groups. This analysis yielded results in the expected direction. Among schematic respondents, the difference between high and low need for cognition individuals in reported expended effort in evaluating the communication was near significance, \( t(91) = 1.92, \ p < .08 \).
Mean effort in evaluating arguments by need for cognition and schematicity.

Figure 3. Mean effort in evaluating arguments by need for cognition and schematicity.

$p < .06$. Schematic high need for cognition individuals reported having expended more effort than schematic low need for cognition individuals. This difference was not significant when aschematic high and aschematic low need for cognition individuals were compared. Figure 3 displays the mean reported effort ratings.

**Consistency Between Message Evaluation and Postmessage Attitude**

The difference between schematic high and schematic low need for cognition subjects on the consistency measure yielded only a trend in the expected direction for schematic respondents, where the absolute value of the correlation between message evaluation and postmessage attitude suggests greater consistency among schematic high need for cognition
individuals ($r(47) = .44, p < .002$) than among schematic low need for cognition individuals ($r(46) = .24, p < .11$), $Z = 1.03, p < .15$.

For aschematic high and aschematic low need for cognition individuals, the difference in the consistency between message evaluation and postmessage attitude was significant, $Z = 2.207, p < .02$. Aschematic low need for cognition individuals displayed greater consistency ($r(47) = .59, p < .0001$) than aschematic high need for cognition individuals ($r(46) = .20, p < .19$).

**Additional Measures**

Only two marginally significant main effects were found: one for argument quality, $F(1,137) = 3.39, p < .07$ and one for schematicity, $F(1,137) = 3.10, p < .08$. Similar to the finding when schematicity was not included as a factor, subjects rated the recommendation for tuition increases as more personally relevant after hearing the weak than after hearing the strong version of the messages. In addition, schematic respondents among high and low need for cognition subjects reported feeling more affected by tuition increases than aschematic respondents. However, care should be taken in interpreting the findings on these additional measures: systematic differences in personal relevance of the issue between subjects in the strong and in the weak argument condition, and in feeling affected by the increases between schematic and aschematic high and low need for cognition subjects. were measured after subjects had listened to the arguments rather than a priori; therefore subjects could be influenced by having just heard the reasons for tuition increases.
Need for Cognition and the Consistency of Attitudes and Intentions to Behave

A second, more exploratory measure to test the relationship between schematicity and the predictive utility of subjects' responses to the Need for Cognition Scale, focused on subjects' consistency between their attitudes and their behavioral intentions. It was hypothesized that high need for cognition individuals would be more likely to exhibit such consistency than low need for cognition individuals. It was further hypothesized that this effect would be accentuated among schematic relative to aschematic respondents. In order to test this hypothesis, respondents were categorized into consistent and inconsistent groups on each of the three relevant attitude issues (i.e., AIDS, environment, foreign aid) and loglinear analyses were carried out for each of these topics.

The data were first examined without taking schematicity into account in order to examine whether previous suggestions in the literature were also found among this subject sample. Loglinear analyses of the number of subjects in each of the experimental cells demonstrated the expected need for cognition and consistency interaction for the AIDS issue, \( Z = -2.02, p < .02 \). Closer analysis indicated that more high need for cognition individuals (\( n = 66 \)) were consistent than low need for cognition individuals (\( n = 58 \)), and that more low need for cognition individuals (\( n = 32 \)) were inconsistent than high need for cognition individuals (\( n = 18 \)), \( \chi^2 (1; N = 174) = 4.23, p < .04 \). For the environment and the foreign aid issues the expected interaction between need for cognition and consistency was not significant.

When schematicity was added to the analysis, the expected need for cognition, consistency, and schematicity interaction was only significant for the foreign aid issue, \( Z = 2.52, p < .006 \). Closer analysis of the 3-way interaction, however, revealed that, contrary to
expectation. more schematic low need for cognition individuals ($n = 43$) were consistent than schematic high need for cognition individuals ($n = 34$), and that fewer schematic low need for cognition individuals ($n = 1$) were inconsistent than schematic high need for cognition individuals ($n = 11$). $\chi^2 (1; N = 89) = 9.38, p < .002$. Among aschematic respondents the differences in consistency between high and low need for cognition individuals were not significant. $\chi^2 (1; N = 89) = .49, p < .48$.

In order to add more power to the analyses, subjects' average consistency index across all three attitude issues was computed. This index was subsequently entered into a $2(\text{need for cognition}) \times 2(\text{schematicity})$ ANOVA, which yielded a significant need for cognition and schematicity interaction, $F(1,182) = 6.06, p < .02$ (see Figure 4). An analysis of simple effects indicates that, while schematic high and schematic low need for cognition individuals did not significantly differ on this measure $t(91) = 1.22, p < .23$, aschematic high need for cognition individuals showed significantly greater consistency than aschematic low need for cognition individuals, $t(91) = 2.26, p < .03$. Thus for the consistency measure, the hypothesis that schematic high need for cognition and schematic low need for cognition individuals behave more consistently with the tenets of the need for cognition construct than aschematic high need for cognition and aschematic low need for cognition individuals was not supported.

---

12 For each of the issues examined here a greater number of respondents were consistent than inconsistent; these differences remained when schematicity was added as a factor.

13 Lower scores on the consistency measure indicate greater attitude–behavioral intention consistency.
Figure 4. Mean average consistency by need for cognition and need for cognition schematicity

Need for Cognition and Resistance to Counterargumentation

In order to examine the notion that high need for cognition individuals would be more resistant than low need for cognition individuals to a counterargument to their just-expressed opinion, subjects were first categorized into resistant and nonresistant categories for each of the two relevant attitude issues (i.e., employment quotas and banning hate literature). Loglinear analyses were carried out for each of these issues. These analyses focused first on differences

---

14 See footnote 6 for calculation of this index.
in need for cognition in the consistency of their attitudes and their intentions to behave. without adding schemacity as a factor, in order to explore whether the previously reported findings that high need for cognition individuals are less likely to yield to counterargumentation than low need for cognition subjects were also supported for the present subject sample. However, the results did not show the expected need for cognition and resistance to persuasion interaction. All main effects and interactions remained nonsignificant. When schemacity was entered in the analysis, the expected effects were also not found. The expected need for cognition, resistance to persuasion, and schemacity interaction was not significant for either of the two issues. Interestingly, for the quota issue a significant schemacity and resistance to persuasion interaction was found, suggesting that schematic respondents were less likely to be persuaded by the counterargument than aschematic respondents. \( Z = 2.61, p < .005 \).

**DISCUSSION**

The present study was a conceptual replication of Study One and explored the hypothesis that need for cognition schemacity, as indexed by response latency to the questions contained in the Need for Cognition Scale, would moderate differences between high and low need for cognition individuals that have previously been reported in the literature. More specifically, this study tested whether schematic high and schematic low need for cognition individuals would behave more consistently with the tenets of the construct than aschematic high and aschematic low need for cognition individuals.
Need for Cognition in the Context of the Elaboration Likelihood Model of Persuasion

The most strongly established and extensive measure focused on the extent to which argument quality would affect the processing of persuasive information as a function of need for cognition. Because the hypothesized effects were based on previous findings related to need for cognition, the results were first analysed to ascertain whether these findings were replicated. The results failed to replicate the previously reported difference between high and low need for cognition individuals in distinction of argument quality, in postmessage attitude as a function of argument quality, in consistency between message evaluation and postmessage attitude, and in amount of reported effort in evaluating the persuasive message.

There are several possible reasons which might account for why the results were not replicated in this study. It is possible that Cacioppo et al.'s operations do not apply to the present context. Although the study closely followed the procedure used by Cacioppo et al. (1983), some changes were made. For example, the present study was conducted in a survey context, whereas previous studies were typically carried out in the laboratory. Furthermore, new strong and weak arguments were constructed. To the extent that high and low need for cognition individuals differ in their susceptibility to the latent factor underlying these arguments, the effects of argument quality on the various dependent variables assessed in the present study may have been less powerful or absent (see Areni & Lutz, 1988; Eagly & Chaiken, 1993). In addition, the dependent measures used here may not have been sensitive enough to pick up the hypothesized effect (i.e., one-item measures in the present study versus five-item measures in the Cacioppo et al. studies)
Furthermore, the "recently announced" tuition increases used in the present study rather than the "possible future" tuition increases used in previous studies may have led to sufficient involvement among subjects to lead to extensive deliberations in both high and low need for cognition groups so that it may have been difficult to discern differences on the relevant measures between these groups. Along similar lines, other researchers (Axsom et al., 1987; Johnson & Eagly, 1989) had suggested that only under moderate involvement conditions, are differences likely to be found in the extent of deliberation of a persuasive message between high and low need for cognition individuals. Moreover, subjects who read the weak arguments reported greater involvement with the tuition increase issue than those who read the strong arguments, which may also have raised the extent of deliberations about the arguments among low need for cognition subjects in that condition, adding to the difficulty in detecting differences on the relevant measures between high and low need for cognition individuals.

When subjects were divided into more and less typical need for cognition categories by adding schematicity as a factor in the design, the results again did not yield the expected effects. Although there were some trends in the expected direction, the effects failed to clearly demonstrate the expected differences between high and low need for cognition individuals as a function of argument quality and schematicity. Factors affecting the lack of replication of the expected effects may also have made it more difficult to obtain the moderating effect of need for cognition schematicity (see Chaplin, 1991). On the other hand, within each of the schematic and aschematic high and low need for cognition categories, schematic high and schematic low need for cognition individuals showed trends of behavior that were consistent with the expectations
for their need for cognition categories; aschematic high and aschematic low need for cognition individuals did not.

Among aschematic respondents on the first three measures (i.e., convincingness rating, postmessage attitude, and consistency between message evaluation and postmessage attitude), a trend of a reversal of typical high and low need for cognition behavior was apparent. Aschematic low need for cognition individuals behaved as would be expected of high need for cognition individuals, whereas aschematic high need for cognition individuals behaved as would be expected of low need for cognition individuals. This result is not consistent with any reviewed need for cognition theory and remains perplexing.

Need for Cognition and Consistency Between Attitudes and Intentions to Behave

The second, more exploratory measure of the moderating effect of need for cognition schematicity focused on differences between high and low need for cognition individuals in the consistency of their attitudes and intentions to behave. This notion was based on the assumption that the predictive validity of attitudes is positively associated with the amount of cognitive processing effort individuals expend when forming or changing their attitudes. Because of their greater penchant for cognitive effort, a greater consistency was hypothesized for high relative to low need for cognition individuals. In addition, it was hypothesized that this effect would be moderated by need for cognition schematicity. The results did not support either hypothesis. The expected attitude–behavioral intention consistency was not obtained. Adding schematicity as a factor in the analyses did not moderate the expected effect.
When the results across all three issues were combined again, the hypothesized effects were not found. When schematicity was taken into account, schematic low need for cognition individuals were more consistent than schematic high need for cognition individuals on this combined measure, whereas the effect was reversed among aschematic respondents. Aschematic high need for cognition individuals showed greater consistency than schematic low need for cognition individuals. Clearly, schematic respondents did not show behavior that was in line with the expectations for their need for cognition categories, whereas aschematic respondents did.

The reason for this unexpected result is not apparent. The much greater number of subjects who were consistent than inconsistent may have led to this inconsistency. This large number of consistent responses may be a result of assessing subjects' behavioral intentions immediately after assessing their attitudes; this sequence may have made it possible and easy for them to follow a "consistency rule." In particular, schematic low need for cognition individuals may have adopted a consistency, because they are by definition inclined to use cognitive heuristics to process information. Schematic high need for cognition individuals, on the other hand, may have thought longer about the implication of such intentions and responded less consistently when they considered the implications of their actions. Aschematic high and low need for cognition individuals may have shown opposite tendencies. In addition, the petition question may not appropriately reflect attitude-behavioral consistency, since subjects may perceive this as some kind of "activism" (i.e., signing a petition) in which respondents may not be prepared to engage. The consistency may be specific to the particular issues involved and the personality dynamics of the need for cognition profile. In addition, it is possible that systematic
differences exist between these groups in the extremity of their attitudes towards these issues and/or involvement with, or importance of the issues to them may have contributed to these unexpected results.

Thus, for the consistency measure, no evidence was found which clearly supported the hypothesis being tested. It is possible that future research will yield clearer data insofar as it incorporates some or all of the following features: examination of the relationship between need for cognition, attitudes, and intentions to behave using more sensitive continuous attitude measures, a larger timespan between the assessment of the attitudes and the behavioral intentions, and inclusion of attitude issues towards which high and low need for cognition individuals feel both moderately involved.

Need for Cognition and Resistance to Counterargumentation

The third measure focused on differences between high and low need for cognition individuals in their resistance to counterargumentation. This measure was also exploratory and was based on the assumption that high need for cognition individuals would be more likely to have cognitive responses readily available and accessible to defend their viewpoint than low need for cognition individuals and would, therefore, be less swayed by a counterargument to their just-expressed opinion. Contrary to expectations, the results did not yield any significant effects, whether or not need for cognition schematicity was added as a factor for each of these attitude issues, nor when the resistance indices for each of these issues were combined.

Across both issues, however, schematic respondents showed more resistance to counterargumentation than aschematic respondents. Since resistance to counterargumentation
was suggested to be a function of the greater number of more differentiated belief systems among high need for cognition individuals than among low need for cognition individuals so that they would be better “inoculated” against attack, the greater resistance among schematic respondents begs the question whether self-schematic respondents have more differentiated belief systems and are more schematic in general.

The lack of the expected effects on this measure may be a result of the various changes in methodology and the use of different attitude topics which made this study sufficiently different from Haugtvedt and Petty’s (1992) study and may have led to conditions under which their suggestions may not apply. For example, Haugtvedt and Petty examined resistance to counterattack using attitudes towards a food additive, whereas in the present study, subjects’ pre-existing attitudes towards two relatively controversial social issues were used. Moreover, Haugtvedt and Petty first induced subjects’ attitudes and subsequently changed their induced attitudes in the laboratory by presenting persuasive arguments, whereas in the present study another side of complex attitude issues was highlighted, countering subjects’ just-expressed opinion.

Thus, also for this measure, no evidence was found which clearly supports the hypothesis about the relationship between need for cognition, resistance to counterargumentation, and the moderating effect of need for cognition schematicity. It is possible that future research will yield clearer data insofar as it incorporates some or all of the following features: a closer adherence to the Haugtvedt and Petty paradigm; the use of more sensitive measures of subjects’ initial and postmessage attitudes, and the exploration of possible involvement and knowledge about the attitude issues as a factor. The present conditions may constitute boundary conditions for
Haugtvedt and Petty’s suggestion about the difference in resistance to counterargumentation between high and low need for cognition individuals of which the present context may be one.

In summary, the results of the present study did not confirm the hypothesis of need for cognition schematicity as moderator of the predictive utility of the Need for Cognition Scale. At best some trends in the expected direction were evident for the argument quality manipulation measures.
CHAPTER 6

STUDY THREE

THE EFFECT OF INCREASED SELF-MONITORING
SELF-KNOWLEDGE ACCESSIBILITY ON THE
PREDICTIVE UTILITY OF THE SCALE:
AN EXPERIMENTAL MANIPULATION

OVERVIEW

In Study One and Study Two, correlational support was sought for the proposition put forward here that respondents who are self-schematic in a personality domain (i.e., fast responders to the items contained in the scale tapping the construct) behave more consistently with the tenets of the personality construct than respondents who are aschematic in the domain (i.e., slow responders to the items contained in the scale tapping the construct). In Study One, the results suggest possible trends that schematic high and schematic low self-monitors behave more consistently with the tenets of the self-monitoring construct than aschematic high and aschematic low self-monitors. Study Two yielded equivocal evidence with respect to the proposition that there is more category-consistent behavior among schematic high and schematic low need for cognition individuals than among aschematic high and aschematic low need for cognition individuals.
In Study Three, the investigator sought to provide an experimental test of the predicted relationship between response latency to the Self-Monitoring Scale items and response validity. The accessibility of self-knowledge relevant to the self-monitoring domain is experimentally induced by providing subjects with an opportunity to reflect on their self-monitoring behaviors. It is assumed that thinking about one's behavior strengthens the association between the relevant information and a self-node in memory, leading to faster (more accessible) inferences about one's standing in the domain. Such strengthened association would occur because anything which calls attention to one's behavior relevant to the domain can serve as a trial of associative learning and can strengthen the association between the relevant self-knowledge and the self-node in memory, making the relevant self-knowledge more accessible (see Fazio, 1995). It is further assumed that reflecting on one's past behavior in the domain (as contrasted with a situation where such a context is not provided) will make the relevant information not only more accessible, but provide a more substantive basis from which to infer later responses to items tapping the information. A corollary of this assumption is that this process of reflection will also lead to more predictive responses.¹

¹It could be argued that priming subjects who have behaved inconsistently in the past with self-knowledge in the self-monitoring domain, will bring this inconsistency to mind and lead to a relatively slower response. Although it is possible that such inconsistency is primed among inconsistent respondents, it is likely that these individuals respond faster than individuals who behaved inconsistently in the past and who were not primed: If the former group has brought to mind this inconsistency during the priming procedure, it is likely to be further along the process of giving an answer which, in turn, is likely to speed up the response; they may even have resolved the inconsistency during this process. The latter group may only bring the inconsistency to mind when presented with the Self-Monitoring Scale item, or may not do so at all and simply be unsure when presented with the item. Because the priming procedure is assumed also to provide a relevant self-knowledge basis about one's inconsistent past behavior, the responses of primed inconsistent respondents are thus arguably more likely to be predictive than the responses of nonprimed inconsistent respondents.
In essence, a temporary state of more accessible self-monitoring self-knowledge is induced in the laboratory by having subjects think about the relevant information before responding to the questions contained in the Self-Monitoring Scale (see Higgins, 1989; and Higgins & King, 1981 for review). This temporary state of increased self-monitoring self-knowledge accessibility is expected to be evident among all subjects (i.e., both those who do and those who do not have self-monitoring self-knowledge chronically accessible) who are primed relative to those who are not primed with the scenarios, because situationally induced and chronic construct accessibility have been found to be additive (Bargh, Bond, Lombardi, & Tota, 1986; Higgins, 1989).

The priming manipulation used in this study to make behaviors salient which are relevant to subjects’ standing in the self-monitoring domain consists of giving subjects an opportunity to imagine themselves in a series of situations and to reflect on whether they would typically behave in a manner described in each of these situations. Each imaginary situation consists of a description of a scenario which exemplifies a behavior captured by an item of the Self-Monitoring Scale. Subjects are presented with two scenarios for each item of the Self-Monitoring Scale and are asked to indicate how the behavior described in each of these scenarios applies to them. It is hypothesized that subjects who are presented with the scenarios (i.e., “primed” subjects) will respond more quickly to queries about their standing in the self-monitoring domain than subjects who are not presented with such scenarios (i.e., “nonprimed” subjects). It is further hypothesized that primed subjects will behave more consistently with the tenets of the self-monitoring construct than nonprimed subjects.
To test the relationship of the accessibility of self-knowledge to the predictive utility of subjects' responses to the Self-Monitoring Scale questions, two paradigms were used. The first paradigm is similar to the paradigm used in Study One and addresses the difference in the relationship between values and attitudes between high and low self-monitors. With respect to this paradigm, it is expected that values will predict attitudes for low self-monitors, but not for high self-monitors. It is hypothesized that the relationship between values and attitudes will be more prominent among subjects who have been primed relative to those who have not been primed.

The second paradigm is closely modelled on Snyder and DeBono's (1985) study which explored the difference between high and low self-monitors in their advertising preferences. Their notion was that high self-monitors are, as a result of their particular sensitivity to the image they project in social situations, likely to pay attention to and be influenced by advertising messages which stress the image associated with the product or with the use of the product. On the other hand, low self-monitors are, as a result of their inclination to base their behavior on their attitudes, feelings, and dispositions, more likely to be influenced by advertisements that appeal to a product's quality. Consistent with Snyder and DeBono's past findings, it is hypothesized in the present study that high self-monitors will favor the image-oriented advertisements more than low self-monitors, whereas low self-monitors will favor the quality-oriented advertisements more than high self-monitors. Secondly, it is hypothesized that this effect will be stronger for subjects whose properties in the self-monitoring domain have been primed relative to those who have not been primed in this manner.
METHOD

Participants

A sample of 96 University of Toronto students (38 males and 58 females) took part in this study. They were recruited for an experiment on "self-knowledge, opinions, and the art of advertising," and received either course credit or $10 for their one-hour participation.

Design

The study used a 2(priming or no priming) x 2(self-monitoring tendency: high/low) between-subjects design. The experimental materials were presented to subjects on a computer screen and consisted of various tasks. The experimental condition the subjects were in, determined the order in which these tasks were presented. In the priming condition subjects were first presented with the priming material (i.e., scenarios), then the Self-Monitoring Scale, subsequently the relevant attitude and value questions, and finally questions pertaining to the advertisements. In the no priming condition subjects were first presented with the attitude and value questions, then the questions pertaining to the advertisements and finally with the Self-Monitoring Scale. In a third condition which was not part of the experimental design, subjects (n = 35) completed the Self-Monitoring Scale first. This condition was included in order to examine whether the difference in the response latency to the Self-Monitoring Scale items
between high and low self-monitors that was found in Study One would be replicated in the present subject sample.²

A computer program controlled the order in which the questions pertaining to each of these various experimental tasks appeared on the computer screen and the experimental conditions to which subjects were assigned. At the end of the experiment, subjects were categorized within each of the priming conditions into high and low self-monitors based on their responses to the Self-Monitoring Scale (Snyder & Gangestad, 1985, 1986). The resulting number of subjects in the various cells of the experimental conditions is shown in Table 7.

Table 7

<table>
<thead>
<tr>
<th>Priming Condition</th>
<th>LSM</th>
<th>HSM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario Priming</td>
<td>17</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>No Priming</td>
<td>10</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>27</td>
<td>54</td>
</tr>
</tbody>
</table>

Note. LSM = Low Self-Monitors; HSM = High Self-Monitors. Eight subjects scored on the median of the Self-Monitoring Scale (10) and were not included in this study.

²The results of this condition are of relevance to the relationship between self-knowledge accessibility as a function of self-monitoring tendency and are discussed in Chapter 7.
Procedure and Materials

Upon arriving at the laboratory, subjects, in groups of 1 to 3, were asked to take a seat at one of the computer terminals that were located in separate booths and were told that the experimental materials would be presented to them on the computer screen. Subjects were asked to enter their responses directly from the keyboard into the computer using the response options provided after each question. After subjects were seated in front of the computer terminal, a welcome message was displayed on the computer screen, followed by an introduction to the task and the task material itself relevant to the experimental condition to which the subjects were assigned (see Appendix B). The introduction was slightly reworded for each of the different experimental conditions to fit the order in which the tasks were presented.

Scenario Section

In introducing the priming task (i.e., "scenario section") of the study, it was pointed out to the subjects that the study focused on how much effort it takes students to imagine themselves in various situations and on how well they feel they are able to predict the feelings and thoughts they may have and the behaviors they may engage in when they find themselves in such situations. They were asked to read each scenario, to imagine themselves in the situation described by the scenario, and to indicate what they would typically do in such a situation using the response options provided after each scenario.

A total of 36 scenarios which depicted a situation exemplifying a particular statement of the Self-Monitoring Scale were presented to the subjects (see Appendix C). A typical scenario would read:
"You're at your graduation dinner sitting with some friends. They're telling stories which sound really embarrassing and make them seem real foolish. You remember a story almost identical to theirs. Do you tell them your story?"

and exemplified the Self-Monitoring Scale statement:

"At a party I let others keep the jokes and stories going."

For each self-monitoring statement two different scenarios were presented in random order to each of the subjects.³

The scenarios were developed by the experimenter and various undergraduate and graduate students. Several students who were present in the university library were approached by the experimenter and were asked to write a scenario exemplifying each of a number of self-monitoring statements. In addition, several graduate students also wrote some scenarios each exemplifying one of the Self-Monitoring Scale statements. In total 48 scenarios were generated which were tested in a pilot study where 15 students rated the scenarios for the extent to which they exemplified the relevant Self-Monitoring Scale statements. The 36 scenarios which were deemed to exemplify the 18 statements of the Self-Monitoring Scale best, were used in the present study. In keeping with the cover story, subjects were asked after they had completed the scenario task to indicate on a 5-point scale how much effort it took them to imagine themselves in these scenarios.

³Most of the questions subjects' responded to at the end of each scenario were framed in the high self-monitoring direction because it is much more difficult to produce examples of behavior reflecting low self-monitoring tendencies which are often nonoccurrences of behavior. Because the scenarios allowed a "yes" or "no" response, no potential confounds were anticipated as a result.
Self-Monitoring Scale Section

In introducing the 18 true/false questions contained in the short version of the Self-Monitoring Scale (Snyder & Gangestad, 1985, 1986), subjects were told that they would be presented with some general statements about themselves and that the researchers would like to know how they feel about the response options following each statement. In compliance with the cover story, subjects were asked, after they had completed the Self-Monitoring Scale, to indicate on a 5-point scale how easy they found the response options to use.

Attitude and Value Section

The attitude and value section of the questionnaire consisted of a total of 31 questions. In introducing this section, subjects were told, “We would like to know how students feel about some important social issues having to do with rights and freedoms.” Of primary interest in this task were the following two attitude questions: “Do you think that large companies should have quotas to ensure that a fixed percentage of women are hired or should women get no special treatment?” and “Do you think that films that show pornographic acts should be allowed or should they be banned?” These were the same focal attitude questions as those which were used in Study One. In addition, a total of fifteen questions queried subjects about their views on issues related to the values of equality, merit, freedom, religiosity, and respect for authority. For each value, subjects’ were asked three questions. These questions were the same as the value questions which were used in Study One. The remaining questions of this section of the experiment focussed on other social issues and served as filler items (see “Filler Questions and General Information” section).
Advertisements Section

The present study used a set of existing magazine advertisements for each of two products. The advertisements in each set were adapted to either focus on a quality or an image appeal in their message. One set of advertisements centered around “Drambuie liqueur” and the other around “Cassini perfume.” The advertisement rating task was introduced by pointing out to the subjects that the study focused on how they would rate the relative merits of advertisements currently being studied by researchers at the university, and that they would be asked to compare the two ads in each set of advertisements. Subjects were then presented with the set of advertisements for each of the two products (i.e., Drambuie liqueur, Cassini perfume) and asked to choose between the two ads in each set by responding to each of the following questions: “Overall which advertisement do you think is better?” Which advertisement appeals to you more?” and “Which advertisement do you think would be more successful?”

Advertisements

In order to develop appropriate advertisements for this study, a total of seven ads which promoted seven different products (i.e., Cassini perfume, Smirnoff vodka, Range Rover automobile, Herera perfume, Drambuie liqueur, and McClintock aftershave) were taken from magazines. For each of these ads two slogans were constructed. One slogan presented an image-oriented message and the other a quality-oriented message. Each advertisement was assembled so as to present either an image- or a quality-oriented message.

In a pilot study, 15 subjects rated the ads on how much they appealed to an image, how much they focused on claims about quality, how successful they thought the ad would be, and

---

4The order of presentation of the two sets of ads was randomized by the computer program.
how much the ad appealed to them. The criteria for selection of the advertisements were that subjects who had seen the image-oriented ad rated the ad higher on its appeal to image than on its appeal to quality; that subjects who had seen the quality-oriented ad rated the ad higher on its appeal to quality than on its appeal to image; and that the quality- and image-oriented ads were approximately equal in their appeal and success rating. Two ads were chosen based on these criteria. These two sets of advertisements centred around Cassini perfume and Drambuie liqueur and looked as follows:

i. **Cassini perfume**

The advertisement depicted a suggestive picture of a woman’s face and upper body inclined over a bottle of Cassini perfume. Underneath this picture either an image-oriented or a quality-oriented slogan was printed. The image-oriented slogan read: “A love affair that never ends.....” The quality-oriented slogan read: “When it comes to scent, everyone loves Cassini.”

ii. **Drambuie liqueur**

This advertisement shows a bottle of Drambuie liqueur together with a half-filled liqueur glass on a table next to a silver icebucket and a vase with flowers and underneath the edge of a picture frame in a dimly lit environment. Underneath this picture either an image- or quality-oriented slogan was printed. The image-oriented slogan read: “The attraction of Drambuie.” The quality-oriented slogan read: “Drambuie, made with fine aged Scotch, delicate herbs and a touch of heather honey.”

---

5 Because the ads were included in the same pilot study where the scenarios were tested and also rated, experimental time constraints did not allow proper random assignment of subjects to the ads. Therefore, the choice was not based on formal statistical tests, but merely on an examination of the means in terms of the selection criteria.

6 All advertisements were rated higher for their image than for their quality appeal. However, for the two advertisement chosen for this study, the advertisements intended as image ads were rated much higher on image appeal than on quality appeal. The Drambuie advertisement which was intended to project a quality appeal was rated only slightly higher on image than on quality, whereas this difference was somewhat larger for the Cassini intended to project a quality appeal. However, for both products the advertisements intended to project a quality appeal were rated much higher on quality than the ads intended to project an image appeal. Although the results have to be interpreted with caution, the forced choice between the image and quality ads which subjects were required to make was assumed to still lead high and low self-monitors to select their typical preferences for an image or quality ad respectively.
Filler Questions and General Information

In addition to the two focal attitude and value questions subjects responded during this task to the following attitude questions: “In fighting the spread of a dangerous contagious disease, all relevant information from people who have the disease must be made available, by law, to health authorities;” “It is important for Canada to be involved in providing aid to poor countries around the world;” “The health care system in Canada does a good job of caring for people’s health;” “The protection of the environment is the most important issue in the future of Canada;” “The identity of patients must be kept confidential by their doctor even if they suffer from a dangerous contagious disease;” “When it comes to economic policy, the government should solve our national problems before sending aid to other countries.” Subjects were asked whether they agreed or disagreed with each of these questions. These questions were used to assess subjects’ baseline speed of responding. In addition, subjects were also asked the following general information questions at the end of the survey: “Are you male or female?” “What is your major or specialization?”

Response Latency

Response latencies to the Self-Monitoring Scale questions as well as to all other questions contained in the questionnaire were measured using a computer clock with millisecond resolution. The computer was programmed so that the timer was initiated upon appearance of the question on the screen and so that the clock was read as soon as the subject pressed the appropriate response key on the keyboard. In order to reduce variability in response latency as a result of individual differences in response rate, subjects were asked to respond as quickly but
as accurately as possible to each of the questions appearing on the computer screen and the response latencies of interest were adjusted for the subject’s baseline speed of response (see Fazio, 1990b).

RESULTS

Categorizing Subjects into Low and High Self-Monitors

Subjects were categorized into low and high self-monitoring categories by median split using the sample median of subjects’ responses to the Self-Monitoring Scale. This categorization resulted in 45 low and 43 high self-monitors. Eight subjects who scored exactly at the median were not included in this analysis.

The Effect of Scenario Priming on the Accessibility of Self-Monitoring Self-Knowledge

First, in order to minimize variability in response latency as a result of individual differences in baseline speed of responding, the response latencies to the Self-Monitoring Scale questions were adjusted for subjects’ baseline speed of responding (see Fazio, 1990b). For this adjustment, subjects’ baseline speed of responding was computed by calculating each subjects’ average speed of responding to the filler items (see Method section). This baseline was

7The sample median value of 10 was used in this study to carry out the median split categorization procedure. Subjects who scored below this value were categorized as low self-monitors, and subjects who scored above this value were categorized as high self-monitors.

8The correlation between the mean filler latencies and the mean target latency was substantial (r = .73, p < .0001) and clearly suggests the necessity to control for this individual difference in the baseline speed of response in this subject sample.
subsequently subtracted from subjects’ average response latency to the Self-Monitoring Scale items.

It is suggested here that reading and imagining themselves in the scenarios would make subjects’ self-monitoring self-knowledge more accessible. The comparison of interest to examine this effect is the contrast between the response latencies to the Self-Monitoring Scale items of subjects in the “scenario priming” and of subjects in the “no priming” experimental condition. The comparison of this adjusted self-monitoring response latency between subjects in the priming and no-priming condition yielded a significant effect in the expected direction. \( t(56) = 1.83, p < .04 \), one-tailed. Subjects who had read and imagined themselves in the scenarios responded faster to the Self-Monitoring Scale items (\( M = -2114 \) milliseconds) than subjects who responded first to the attitude and value questions (\( M = -1285 \) milliseconds).\(^9\) Although the effect was not very strong, the priming manipulation appears to have had an impact in the expected direction. Subjects in the priming condition showed greater accessibility of their self-monitoring self-knowledge than subjects in the no-priming condition. Additional analyses yielded no interaction effect between priming condition and self-monitoring category. \( F(1,53) = .17, p < .68 \), suggesting that high and low self-monitors did not differ in the accessibility of their self-monitoring self-knowledge as a function of the priming manipulation.\(^10\)

\(^9\)Reported mean response latencies are the adjusted latencies. The negative value for the response latencies is a result of subtracting the baseline speed of response. More negative values indicate a faster response to the Self-Monitoring Scale items.

\(^10\)The priming manipulation had no significant effect on subjects’ Self-Monitoring Scale score.
Self-Monitoring and the Relationship Between Attitudes and Values

The next hypothesis which is tested is the prediction that the scenario priming manipulation will accentuate the difference in the extent to which values predict high and low self-monitors' attitudes compared to subjects who are not primed in this manner. In line with past research, it is expected that values will predict attitudes for low, but not for high self-monitors, and that this pattern will be more prominent for subjects in the scenario priming condition relative to subjects who are not so primed.

First, value indices were computed for each of the values of interest (equality, merit, religiosity, authority, and freedom). Each value index was derived by calculating the average of subjects' responses to the value questions assessing each of these values. Based on the factor analytic results of Study One, subjects' responses to all three questions assessing each of the values of religiosity, equality, and authority were used to compute the value indices for these values, but subjects' responses to only two questions assessing each of the values of merit and freedom (i.e., "Do you think that getting ahead in the world is mostly a matter of ability and hard work, or of getting the breaks?" "Do you think that the profit system often brings out the worst in human nature, or does it teach people the value of hard work and personal achievement?"); and "Free speech is just not worth it if it means we have to put up with the danger to society of radical and extremist views." "It is better to live in an orderly society than to allow people so much freedom that they can become disruptive."); respectively) were used to compute the value indices for these latter values.\footnote{The weighting of subjects' responses to compute the value-indices was based on the factor analytic results of Study One rather than on the factor analytic results of the present study because the}
In order to examine the effect of priming on the difference in the extent to which values predict low and high self-monitors' attitudes towards employment quotas and towards the banning of pornographic films, the attitude scores of subjects in each of the experimental conditions were regressed on the relevant value indices separately for each attitude issue. Thus, subjects' opinions on pornography were regressed on freedom, religiosity, and authority within each of the priming and the no-priming conditions, and subjects' opinions on quotas were regressed on merit and equality within each of the priming and the no-priming conditions. Similar to Study One, logistic regression analyses were used to carry out these analyses, because the dichotomous nature of the dependent variables makes unreasonable the assumption of a normal distribution of errors.

**Pornography Issue**

Looking first at the pornography issue for low self-monitors in the priming condition, the regression of these subjects' opinions about pornography on the value indices of authority, religiosity, and freedom yielded a significant improvement in the prediction model relative to not using them (see Table 8). For primed high self-monitors, on the other hand, the logistic regression of their responses to the pornography question on the value indices of authority, religiosity, and freedom did not yield a significant improvement in the prediction model.

---

12Only merit and equality were used as predictors for the quota issue, and only freedom, religiosity, and authority were used as predictors for the pornographic films issue, because these values were most relevant to these issues respectively, and to reduce the instability in the regression coefficients as a result of the collinearity between these values.
Table 8

Improvement in the Prediction of Attitudes from Values by Self-Monitoring Tendency and Priming Condition

<table>
<thead>
<tr>
<th>Priming Condition</th>
<th>Quotas</th>
<th>Pornographic Films</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\chi^2_{diff}$</td>
<td>df</td>
</tr>
<tr>
<td>Primed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>1.252</td>
<td>2</td>
</tr>
<tr>
<td>High Self-Monitors</td>
<td>2.785</td>
<td>2</td>
</tr>
<tr>
<td>Nonprimed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>11.090**</td>
<td>2</td>
</tr>
<tr>
<td>High Self-Monitors</td>
<td>8.256*</td>
<td>2</td>
</tr>
</tbody>
</table>

Note. $\chi^2_{diff} =$ Improvement in chi-square (i.e., the improvement in the logistic regression model using the relevant values as predictors relative to not using them).
* $p < .05$. ** $p < .01$.

Looking at low and high self-monitors who were not primed and regressing their responses to the pornography question on their endorsement of authority, religiosity, and freedom did not yield a significant improvement in the prediction model relative to when these values were not used as predictors for either of these groups. Thus, when all relevant values are considered jointly as predictors, the results for the logistic regression analyses are consistent with the

---

13 None of the individual regression coefficients of each of these values reached significance for any of these groups: primed high self-monitors, primed low self-monitors, nonprimed high self-monitors, and nonprimed low self-monitors.
expected relationship between values and attitudes for low and high self-monitors in the priming condition, whereas in the nonpriming condition they are not.

In order to gain more insight into the relationship between values and attitudes among primed and nonprimed high and low self-monitors, point-biserial correlations were computed for primed low self-monitors, primed high self-monitors, nonprimed low self-monitors, and nonprimed high self-monitors separately; between their endorsement of freedom and their attitude towards pornographic films, their endorsement of authority and their attitude towards pornographic films, and between their endorsement of religiosity and their attitude towards pornographic films. Looking at primed low self-monitors, the relationship between their endorsement of freedom and their attitude towards banning pornographic films, and the relationship between their endorsement of authority and their attitude towards banning pornographic films was not significant. However, a significant relationship was found for primed low self-monitors' endorsement of religiosity and their attitude towards pornographic films, $r(17) = .49, p < .05$. For primed low self-monitors, a greater endorsement of religiosity was related to endorsing the banning of pornographic films. Moreover, primed low self-monitors showed a trend of a stronger value-attitude relationship for this value than primed high self-monitors, $r(15) = .06, p < .84, Z = 1.26, p < .10$. None of the correlations were significant among nonprimed low and among nonprimed high self-monitors.

**Quota Issue**

Subsequently, the results were examined for the quota issue, for low self-monitors in the priming condition. Regressing their attitudes towards quotas on merit and equality did not yield
a significant improvement in the prediction model (see Table 8). Similarly, for high self-monitors in the priming condition, regressing their attitudes towards quotas on merit and equality did not yield a significant improvement in the prediction model.

However, in the no-priming condition, regressing high and low self-monitors’ attitudes towards quotas on their endorsement of merit and equality yielded significant results for both these groups. For low self-monitors, their endorsement of merit and equality significantly improved the prediction of their attitudes towards quotas. Similarly, for high self-monitors, their endorsement of merit and equality significantly improved the prediction of their attitudes towards quotas.

Point-biserial correlations were also computed for primed low self-monitors, primed high self-monitors, nonprimed low self-monitors, and nonprimed high self-monitors between their endorsement of merit and their attitude towards quotas, and between their endorsement of equality and their attitude towards quotas. Looking at primed subjects, none of the correlations were significant for low or for high self-monitors. On the other hand, among nonprimed subjects, the relationship between high self-monitors’ endorsement of merit and their attitude towards quotas was significant, indicating that a greater endorsement of merit was related to being against quotas. Moreover, this relationship was greater among nonprimed high than among nonprimed low self-monitors, \( r(12) = .64, p < .02; r(10) = -.27, p < .46 \); respectively, \( Z = 2.08, p < .02 \).

In general, the pattern of results of the point-biserial correlations for both the quota and the pornographic film issue were in the same direction as the results of the logistic regression

---

\(^{14}\)For both groups, neither of the regression coefficients for merit nor equality were significant.
analyses. The results were as expected for the pornography issue, where the expected value–attitude relationship was found for low and high self-monitors among the primed, but not among the nonprimed subjects, whereas the results for the quota issue did not support the hypotheses.\textsuperscript{15}

Advertisement Ratings

The second measure used in this study to examine the effect of the priming of self-monitoring self-knowledge on the predictive validity of the Self-Monitoring Scale focused on differences in the extent to which high and low self-monitors are influenced by image- and quality-oriented advertisements. Snyder and DeBono (1985) suggest that low self-monitors favor quality-oriented advertisements more than high self-monitors, and that high self-monitors favor image-oriented advertisements more than low self-monitors. The hypothesis, therefore, is that the difference between high and low self-monitors in the extent to which they favor a quality- or an image-oriented advertisement will be more pronounced for subjects who are primed with the scenarios relative to those who are not primed in this manner.

In order to carry out these analyses, advertisement favorability indices were computed for each product following Snyder and DeBono’s (1985) procedure. Subjects were assigned a score of 1 each time they favored the image-oriented ad, and a score of 0 each time they favored a quality-oriented ad when making an evaluative comparison between the two ads. For each product these scores were based on subjects’ responses to each of three evaluative questions.

\textsuperscript{15}Collapsing subjects’ responses across the two priming conditions and entering response latency as a continuous variable in the logistic regression analyses with all relevant 2- and 3-way interactions also did not yield results inconsistent with, clearer, or stronger than the results reported in the text.
regarding the ad. The product favorability index was then computed by summing for each subject the scores on these three evaluative questions. Higher scores on this index indicate a greater favorability toward the image-oriented ad and lower scores on this index indicate a greater favorability toward the quality-oriented ad.\footnote{The range of the index is 0 - 3, so that 1.5 is assumed to constitute the neutral point. It is assumed that favorability for the quality-oriented ad is captured by scores < 1.5, and favorability for the image-oriented ad is captured by scores > 1.5.}

Following Snyder and DeBono’s procedure, subjects’ scores on the favorability index were entered into a general linear model analysis of variance with two between-subject factors (self-monitoring, priming condition) and one within-subject factor (product). The analysis shows a main effect for self-monitoring, $F(1,50) = 4.5$, $p < .04$, suggesting that, consistent with past findings, high self-monitors favor the image-oriented advertisement more than low self-monitors ($M = 2.44$ and $M = 1.98$). Tests of the within-subject effects yielded a main effect for product, $F(1,50) = 6.42$, $p < .01$, and a 3-way product, self-monitoring, and priming condition interaction, $F(1,50) = 4.54$, $p < .04$ (see Figure 5 for a presentation of these interactions).

Subjects rated the Cassini perfume advertisement significantly more favorably than the Drambuie liqueur advertisement ($M = 2.50$ and $M = 1.93$, respectively). Low and high self-monitors’ favorability rating of the advertisement differed in the two priming conditions as a function of the product. In order to obtain more insight into the differences between high and low self-monitors in advertisement favorability rating in the two priming conditions, general linear model ANOVAs were carried out for each of the products separately.
Figure 5. Favorability index by self-monitoring tendency and priming condition.

Drambuie Liqueur

For Drambuie liqueur the results showed a trend of a main effect of self-monitoring tendency, $F(1,50) = 3.05, p < .09$. In line with Snyder and DeBono's (1985) findings, high self-monitors ($M = 2.23$) reacted more favorably towards the image ad than low self-monitors ($M = 1.66$). The effects of the priming manipulation also showed some hints of support for the predictions in the marginal trend for the priming and self-monitoring interaction, $F(1,50) = 2.09, p < .16$. In order to obtain further insight into this trend, simple effects were computed to examine the difference in favorability rating between high and low self-monitors within each of the priming conditions. Consistent with the expectations, high and low self-monitors differed

---

Since both favorability indices seemed to be on the image preference side of neutral ($> 1.5$), it cannot be concluded that low self-monitors preferred the quality ad more than high self-monitors.
in their advertisement favorability rating in only the priming condition, $F(1.30) = 6.07, p < .02$. High self-monitors favored the image-oriented ad more than low self-monitors and low self-monitors leaned more towards the quality-oriented ad (see Figure 6). The mean ratings of the Drambuie ad among nonprimed high and low self-monitors did not differ significantly, $F(1.20) = .04, p < .84$.

Figure 6. Drambuie advertisement favorability ratings by self-monitoring tendency and priming condition.\textsuperscript{18}

\textsuperscript{18}Higher scores reflect greater favorability for the image-oriented advertisement; lower scores reflect greater favorability for the quality-oriented advertisement.
Cassini Perfume

For the Cassini perfume advertisements, evidence did not support the hypothesis; however, as pointed out earlier, the Cassini ad was much weaker in terms of its manipulation of quality and image appeal (see footnote 6) which may have contributed to this unexpected effect. For the Cassini perfume advertisement, Snyder and DeBono's (1985) findings of a difference in advertising preference between high and low self-monitors was not replicated. The main effect for self-monitoring in favorability rating did not reach significance. Both high and low self-monitors preferred the image-oriented advertisement (i.e., means for both groups above the neutrality cutoff). In addition, the priming and self-monitoring interaction only yielded a marginal trend, $F(1,50) = 2.28, p < .14$. An analysis of the simple effects of the difference between high and low self-monitors' perfume favorability ratings within each of the priming conditions showed that the means were in a direction contrary to what was expected. Only the difference between high and low self-monitors who were not primed with the scenarios, $F(1,20) = 4.31, p < .05$ was significant. High self-monitors ($M = 2.75$) favored the image-oriented ad more than low self-monitors ($M = 2.00$). On the other hand, high ($M = 2.53$) and low ($M = 2.58$) self-monitors who were primed with the scenarios did not significantly differ in their preference for the advertisements, $F(1,30) = .02, p < .88$. Thus, the data for this advertisement were not consistent with the hypothesis that the difference between high and low self-monitors in favorability rating as a function of type of advertisement appeal would be more pronounced for subjects who were primed than for subjects who were not primed.19

---

19Collapsing across the two priming conditions and entering response latency as a continuous variable with all relevant 2- and 3-way interactions did not yield results that were inconsistent with, clearer, or stronger than the results reported in the text.
DISCUSSION

The attempt to induce a temporary state of self-monitoring self-knowledge accessibility in the laboratory had an impact in the expected direction. The laboratory induction was carried out by providing subjects with a context in which to review their typical behaviors in the self-monitoring domain by imagining themselves in various relevant scenarios. Subjects who were primed responded more quickly to the items of the Self-Monitoring Scale. providing support for the notion that thinking about the relevant information may strengthen the associative bond between the information and a self-node in memory, thus leading to more accessible responses to the Self-Monitoring Scale items.

Self-Monitoring Schematicity, Values, and Attitudes

The experimentally induced accessibility of self-monitoring self-knowledge with respect to its relationship to the predictive utility of self-reports about one's standing in the self-monitoring domain was first explored with respect to the difference between high and low self-monitors in the relationship between their endorsed values and attitudes. The analysis of the present data yielded equivocal results.

The results for the quota issue were not consistent with expectations. Among subjects who were primed with the scenarios, low self-monitors did not show an improvement in the prediction of their attitudes towards employment quotas from the relevant values as would be expected of typical low self-monitors. On the other hand, values improved the prediction of both
nonprimed low and nonprimed high self-monitors’ attitudes towards quotas. Thus, for this issue, among nonprimed respondents, evidence supporting the hypothesis was not obtained.

On the other hand, for the pornography issue, the results were more consistent with the expectations and replicated the results found in Study One. Only among subjects who were primed with the scenarios (i.e., schematic low and schematic high self-monitors) did both high and low self-monitors behave as typical members of their category. Values only improved the prediction of primed low self-monitors’ attitudes, but not of primed high self-monitors’ attitudes towards banning pornographic films. The expected relationship between values and attitudes as a function of self-monitoring was seemingly absent among subjects who were not primed (i.e., aschematic low and aschematic high self-monitors). Values did not improve the prediction of either nonprimed high or nonprimed low self-monitors’ attitudes towards banning pornographic films.

The reasons for these equivocal results are not obvious. The number of subjects in each of the experimental cells may have led to unstable regression coefficients and may have contributed to the reverse effect. Moreover, in Study One, the relationship between values and attitudes among high and low self-monitors and the moderating effect of self-monitoring schematicity was also less pronounced for the quota issue, suggesting the usefulness of possible further research into the attitude–value relationship for this issue. Taken together with the results of Study One, however, where the subject sample was much larger, the trends in the data obtained so far are consistent with the notion that the accessibility of self-monitoring self-knowledge may function as a moderator of the relationship between attitudes and values among high and low self-monitors.
Self-Monitoring Schematicity and Advertising Preferences

Looking at the results of the priming effect on the difference in favorability rating of the advertisements between high and low self-monitors, the results are also inconsistent, so that no unambiguous inferences can be made about the relationship between temporary accessibility of self-monitoring self-knowledge as a moderator of differences between high and low self-monitors' advertising preferences. For each of the products, there were no differences between high and low self-monitors' favorability rating as a function of priming condition. Further analyses revealed that the means were in the expected direction for the Drambuie advertisement, but not for the Cassini perfume advertisement. For the former advertisement, primed low and high self-monitors did show the expected difference in their preference for the image- versus quality-oriented ad, whereas nonprimed subjects did not. On the other hand, the results for the Cassini advertisement did not support the hypothesis. The trend of the direction of the means in favorability ratings for this advertisement suggests more category-typical behavior among nonprimed subjects than among primed subjects.
CHAPTER 7

SELF-MONITORING, NEED FOR COGNITION
AND THE ACCESSIBILITY OF SELF-KNOWLEDGE

Although the main focus of this dissertation is on the diagnosticity of more or less accessible self-knowledge in the domain of self-monitoring and need for cognition, individuals who fall at opposite ends of these scales may also differ in the speed with which they respond to scale items. This is because both the self-monitoring construct and the need for cognition construct imply asymmetries in how accessible self-knowledge relating to these dimensions will be for individuals who fall at either end of the scale. For example, the idiosyncratic personality dynamics of high and low self-monitors and of high and low need for cognition individuals may predispose them to differential self-knowledge accessibility. High self-monitors may have self-monitoring self-knowledge more accessible than low self-monitors, because engaging in self-monitoring may make it more likely that they will make abstractions about their typical tendencies in various situations. Alternatively, it could be argued that the propensity of low self-monitors leads them to have self-monitoring self-knowledge more readily accessible than high self-monitors because they act on the basis of their personal values, attitudes, beliefs, and dispositions which presupposes an awareness of these dispositions.

There is some research evidence consistent with a possible difference in self-monitoring self-knowledge accessibility between high and low self-monitors. For example, it has been
suggested that high and low self-monitors differ in the manner in which they structure social information. High self-monitors tend to structure social information around situations, whereas low self-monitors tend to structure social information around their own specific attitudes, traits, and dispositions (Snyder & Cantor, 1980). High self-monitors possess richer and more accessible images of persons prototypic of a particular trait dimension than low self-monitors, whereas low self-monitors have richer and more accessible images of themselves in various trait domains than high self-monitors. Furthermore, high self-monitors are more likely to make situational attributions, whereas low self-monitors are more likely to make dispositional attributions for their behavior (Sampson, 1978). Snyder (1987, p. 192) even suggests that high self-monitors may be in a chronic state of public self-awareness, and that low self-monitors may be in a chronic state of private self-awareness.

Similarly, high and low need for cognition individuals may also differ in the accessibility of their self-knowledge in the need for cognition domain. High need for cognition individuals because of their greater tendency to engage in extensive cognitive analysis, may be more likely than low need for cognition individuals to make abstractions from their behavior in a domain. For example, Lassiter and his colleagues (Lassiter, Briggs, & Bowman, 1991; Lassiter, Briggs, & Slaw, 1991) reported that high need for cognition individuals engage in more explanatory thinking about other people's behavior, recall more of these actions, and unitize behavior sequence into more meaningful actions than low need for cognition individuals. Mueller, Haupt, and Grove (1988) found that high need for cognition individuals respond faster to trait ratings on a self-reference task than low need for cognition individuals and show better recognition memory for such traits. Cacioppo et al. (1996) identified a moderate but insignificant positive
correlation between need for cognition and private self-consciousness (i.e., an indicator of self-awareness).

Furthermore, an asymmetry in self-knowledge accessibility between individuals at opposite ends of these scales may also be a result of the manner in which these tendencies are assessed. For example, self-reports to questions tapping information about prior engagement in behaviors relevant to the domain of interest are likely to be more accessible than self-reports to questions tapping information about prior failure to engage in such behaviors. The personality inventories used to assess self-monitoring and need for cognition are both inventories that show an asymmetry in the use of observable and nonobservable behaviors to assess the two categories inherent in each scale. In other words, these inventories predominantly use items tapping the presence of self-monitoring behavior, and the presence of behavior consistent with a need for cognition, to categorize high self-monitors and high need for cognition individuals, respectively; they use the absence of such behaviors to categorize low self-monitors and low need for cognition individuals.

Thus, in the case of self-monitoring, one would expect high self-monitors to be more aware of their propensity to monitor their behavior in social situations than low self-monitors to be aware of their propensity not to do so. Similarly, in the case of need for cognition, one would expect high need for cognition individuals to be more aware of their tendency to seek out cognitive activities than low need for cognition individuals to be aware of avoiding them. Based on this latter reasoning it appears likely that high self-monitors may have trait-relevant self-knowledge more readily accessible than low self-monitors, and individuals high in need for
cognition may have trait-relevant self-knowledge more readily accessible than individuals low in need for cognition.

Support for the self-inferential potency of behavioral versus nonbehavioral cues comes from various research areas. For example, Fazio (1995) suggests that direct behavioral experience with the attitude object provides particularly reliable and relevant information from which to infer one's attitude which, in turn, leads to the strengthening of the associative bond between the attitude object and its evaluation and thus to more accessible attitudes. This strengthening process occurs because, as a result of past learning, individuals find certain kinds of information more diagnostic than others. For example, sensory information, emotional reactions, and freely chosen behavior constitute classes of information which are considered particularly diagnostic and which have been found to lead to relatively more accessible attitudes. During direct behavioral experience with the attitude object, sensory and emotional reactions may occur next to the behavior itself which may provide particular diagnosticity to this information and consequently lead to a strong bond between the attitude object and its evaluation, reflected in a more accessible attitude.

Fazio, Sherman, and Herr (1982) suggested that nonoccurrences of behavior may be less salient, cognitively available, and vivid than overt action. For example, according to the "feature positive effect," people have difficulty processing negative information and using nonoccurrences of behavior as cues for making judgments and solving problems (e.g., Jenkins & Sainsbury, 1970; Newman, Wolff, & Hearst, 1980). Fazio, Sherman, and Herr reported a feature positive effect in self-perception. Subjects in the study used their freely chosen behavior more than their freely chosen nonbehavior in making attitudinal inferences. Although both
behaviors and nonbehaviors were objectively equally informative, subjects had more extreme attitudes when they were induced to use active behaviors (i.e., pressing a button) to indicate their judgments about the funniness of a series of cartoons which they had previously rated as neutral as contrasted with occasions when they indicated their judgment by not doing a certain behavior (i.e., not doing anything).

Additional support for this suggestion comes from Cioffi and Garner (1996) who reviewed research on the self-inferential potency of behavior relative to nonbehavior; they also reported that concrete, vivid, and available cues are more relied on by subjects for inference and judgment. In a conceptual replication of Fazio et al.'s (1982) study using real world issues, Cioffi and Garner carried out a series of studies to explore this asymmetry further in a persuasion and commitment context. They asked subjects about their willingness to participate in a committee (expt. 1), and in volunteer activity projects (elementary sex education and AIDS awareness project; expt. 2). They found that subjects who had expressed their willingness to participate actively by checking or darkening a box with a pencil and copying a relevant statement were more willing than those who had expressed their willingness by just skipping to their response. Similarly, those who had expressed their unwillingness to participate actively were more extreme in their unwillingness to participate than those who had expressed their unwillingness passively. Furthermore, those who had expressed their willingness actively were more certain about it than those who had expressed it passively and more of these individuals showed up later to follow up on their offer (expt. 2). Although in the majority of studies just described the accessibility of the attitudes was not assessed, the more extensive informational basis in which the decisions of subjects who had actively stated their intention were grounded
(i.e., greater number of reasons for their decisions) together with their greater certainty suggest that these attitudes may very well be more accessible than the attitudes of subjects who had not done so.

Thus, there may be several reasons why high and low self-monitors, and high and low need for cognition individuals may differ in the accessibility of their self-monitoring and need for cognition self-knowledge respectively. The use of these two personality scales in the three studies in this dissertation makes it possible to explore whether differences in self-knowledge accessibility as a function of individual differences in self-monitoring and of individual differences in need for cognition exist at all. What follows is a description of these explorations.

RESULTS

Differences in Self-Knowledge Accessibility as a Function of Self-Monitoring

Using the data from Study One, a comparison of high and low self-monitors’ average response latencies in endorsing the statements contained in the Self-Monitoring Scale suggests a trend for high self-monitors: self-knowledge in the self-monitoring domain was marginally more accessible than for low self-monitors as reflected in their faster response latencies to the Self-Monitoring Scale items, $t(620) = 1.73, p < .08$. Please refer to Table 9.

---

$^1$The relationship between scale score extremity and response latency to the Self-Monitoring Scale questions was almost zero for this subject sample and not significant.
Table 9

**Response Latency in Milliseconds to Self-Monitoring Scale Items by Self-Monitoring Tendency**

(Study One)

<table>
<thead>
<tr>
<th>Self-Monitoring Category</th>
<th>M</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Self-Monitors</td>
<td>2342</td>
<td>1116</td>
<td>294</td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>2501</td>
<td>1166</td>
<td>328</td>
</tr>
</tbody>
</table>

Differences in self-monitoring self-knowledge accessibility between high and low self-monitors were again explored using the data from Study Three. In that study, an additional group of subjects was run (n = 35) which was not part of the original experimental design. These subjects completed the Self-Monitoring Scale without being primed with the scenarios; they did not complete the questions for the attitude and value and advertisement manipulations before they completed the Self-Monitoring Scale. Please refer to Table 10.

Table 10

**Response Latency in Milliseconds to Self-Monitoring Scale Items by Self-Monitoring Tendency**

(Study Three)

<table>
<thead>
<tr>
<th>Self-Monitoring Category</th>
<th>M</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Self-Monitors</td>
<td>7145</td>
<td>2186</td>
<td>16</td>
</tr>
<tr>
<td>Low Self-Monitors</td>
<td>7310</td>
<td>1982</td>
<td>18</td>
</tr>
</tbody>
</table>
The contrast between high and low self-monitors' average response latency to the Self-Monitoring Scale questions yielded a significant effect.\(^2\) \(t(31) = 2.51, p < .02\). High self-monitors responded significantly faster to the items of the Self-Monitoring Scale than low self-monitors.\(^3\) Taken together, the results of Study One and Three suggest that self-monitoring self-knowledge is likely to be more accessible for high self-monitors than for low self-monitors.

**Differences in Self-Knowledge Accessibility as a Function of Need for Cognition**

Using the data from Study Two, high and low need for cognition individuals' average response latencies to the Need for Cognition Scale items were compared. Please see Table 11. This analysis shows that high need for cognition individuals responded significantly more quickly than low need for cognition individuals to the self-report items contained in the Need for Cognition Scale.\(^4\)\(^5\) \(t(185) = 2.99, p < .003\).

\(^2\)The reported response latency is the raw response latency unadjusted for baseline responding. However, the t-test is based on the response latency adjusted for baseline responding (average raw response latency minus baseline response latency: \(M = -.933\) milliseconds; \(M = -2.412\) milliseconds for low and high self-monitors, respectively). The much greater response latencies reported in Table 10 relative to the response latencies reported in Tables 9 and 11 are a result of the inclusion of reading time in the longer latencies because of the laboratory context of that study where subjects read the scale items themselves. Latencies reported in Tables 9 and 11 were taken in the context of the CATI surveys and involved the time to respond after the question was read to them by the interviewer.

\(^3\)Similar to Study One, a relationship between response latency and Self-Monitoring Scale extremity was not found.

\(^4\)Response latencies here are mean raw response latencies to the Need for Cognition Scale items. T-test results pertain to the adjusted latencies (i.e., average raw response latency to the Need for Cognition Scale items minus baseline speed of responding) for high need for cognition individuals (\(M = 226\) milliseconds) and low need for cognition individuals (\(M = 833\) milliseconds).

\(^5\)The relationship between response latency and Need for Cognition Scale score extremity was very low, \(r(290) = -.16, p < .005\) for the total sample, suggesting some overlap with extremity, but well
Table 11

Response Latency in Milliseconds to Need for Cognition Scale Items by Need for Cognition Tendency

<table>
<thead>
<tr>
<th>Need for Cognition Category</th>
<th>M</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Need for Cognition</td>
<td>2620</td>
<td>919</td>
<td>94</td>
</tr>
<tr>
<td>Low Need for Cognition</td>
<td>3072</td>
<td>1113</td>
<td>95</td>
</tr>
</tbody>
</table>

CONCLUSION

Self-knowledge in the self-monitoring domain is more accessible for high self-monitors than for low self-monitors, and self-knowledge in the need for cognition domain is more accessible for high than for low need for cognition individuals. Although various reasons for the difference in self-knowledge accessibility as a function of personality are possible, the present design did not make it possible to tease out the mechanisms underlying this difference. However, the present findings clearly point to the importance of a further investigation of the self-inference process as a function of personality and as a function of the observability of the behavior tapped by the question.

within what has been suggested in the literature (see Fazio, 1990b).
CHAPTER 8

GENERAL DISCUSSION

When people are presented with self-report questions, it has typically been assumed that they have an adequate knowledge base from which to derive their responses. However, past research suggests that the presence of such a knowledge base cannot always be taken for granted. Such presence is, of course, a necessary condition for rendering a nonvacuous and predictive response. It is often assumed that when endorsing statements such as “I guess I put up a show to impress or entertain others” (Self-Monitoring Scale) or “Thinking is not my idea of fun” (Need for Cognition Scale), the relevant information about one’s typical behavior comes to mind so that one can adequately respond to the query. However, this information may not be available in, or accessible from memory.

Based on research findings and theoretical assumptions from domains such as person memory, social judgement, and the social cognitive approach for the relationship between attitudes and behavior (as suggested by Fazio and his colleagues), the present dissertation set out to explore the relationship between response latency to personality scale items and the predictive utility of such responses. In particular, it was hypothesized that more accessible (faster) responses are more predictive than those that are less accessible (slower). This notion follows from the assumption that response latency to these questions provides an index of the strength of the association of the relevant self-knowledge and a self-node in memory, and thereby of the
extent to which one’s relevant self-knowledge is well-anchored in memory. Individual differences in self-monitoring and need for cognition served as the two focal domains in which this notion was tested.

SELF-MONITORING AND NEED FOR COGNITION SELF-KNOWLEDGE ACCESSIBILITY AND THE PREDICTIVE UTILITY OF THE SELF-MONITORING AND THE NEED FOR COGNITION SCALE: A CORRELATIONAL EXPLORATION

The results of Study One, where the accessibility of self-knowledge in the self-monitoring domain was examined as an index of the predictive utility of the Self-Monitoring Scale, showed trends that were consistent with the proposition that self-monitoring self-knowledge can function as a moderator of self-report–behavior consistency. Although for the two focal attitude issues (i.e., employment quotas and banning pornographic films), values predicted both low and high self-monitors’ attitudes, the results were more consistent with expectations for low as compared to high self-monitors when schematic high and schematic low self-monitors were compared, where a relationship between values and attitudes was only obtained for low self-monitors on both issues.

Evidence for the accessibility of self-knowledge as an index of more predictive personality self-reports in the need for cognition domain was less clear, but showed some trends in the expected direction. Although previous findings in the literature that high need for cognition individuals are more susceptible to the quality of persuasive arguments were not replicated, including need for cognition schemacity as a factor in the design apparently yielded evidence for trends of more category-typical behavior among schematic respondents. Thus,
taking schematicity into account may have provided a somewhat more sensitive test of the hypotheses, although the results were not strong enough clearly to corroborate the hypothesis of differences between high and low need for cognition individuals.

Hypothesized and previously reported differences between high and low need for cognition individuals on two additional, but more exploratory dependent measures were not obtained. The measures were of the consistency between attitudes and intentions to behave, and the resistance to counterargumentation, which were assessed in the context of two additional paradigms in Study Two. As pointed out earlier, because the findings of these measures did not precisely follow previous manipulations, it is possible that these modifications led to paradigms that did not properly work and/or to paradigms where more complex mechanisms are involved. However, because of their exploratory nature, the results on these measures should be given less weight than to the argument-quality-manipulation results.

Taken as a whole, the results of Study One and Two allow a cautious inference that when relevant self-knowledge accessibility is used to distinguish between schematic and aschematic individuals in the self-monitoring or in the need for cognition domain, schematic individuals may behave more consistently with the tenets of the construct than aschematic individuals. Although on some measures schematic and aschematic respondents (within a self-monitoring or need for cognition category) did not appear to differ in the extent to which they showed behavior expected for their personality category, the present hypothesis focused on contrasts in the size of differences in prediction between individuals who fell at opposite ends of the relevant personality scale. With respect to these differences, some evidence of trends consistent with the hypotheses of greater predictive utility of more accessible responses was found.
EXPERIMENTALLY INDUCED SELF-MONITORING SELF-KNOWLEDGE ACCESSIBILITY, RESPONSE LATENCY, AND THE PREDICTIVE UTILITY OF THE SELF-MONITORING SCALE

The assumption that more accessible self-reports about one's standing in a personality domain will yield more predictive responses may be derived from the assumption that response latency to the questions contained in the relevant personality scale is an index of the strength of the association of the relevant self-knowledge and a self-node in memory. According to associative network theory, the strength of an association between information in memory increases as a function of the frequency of its contiguous use, so that after many pairings the relevant information comes to mind quickly and sometimes even automatically when individuals are presented with a cue prompting this information. Thus, individuals who have a relevant knowledge base available and well-anchored in memory, are more likely to respond quickly to such a cue than individuals who do not.

Study Three provided an experimental test of this hypothesis regarding self-knowledge in the self-monitoring domain. As expected, subjects who had contemplated various aspects of their functioning in the self-monitoring domain, gave faster responses to the Self-Monitoring Scale items than those who had not done so, suggesting more accessible, relevant self-knowledge in the domain among the former group. In addition, the greater accessibility of self-knowledge among the former group of respondents was predicted to be linked with more predictive responses, because the opportunity to examine various relevant behaviors was assumed to provide them with an accessible relevant knowledge base for their response. Evidence for this linkage, however, was equivocal for each of the two paradigms used to explore this notion.
Future research is clearly necessary to explore more fully the effect of induced states of (self-monitoring) self-knowledge accessibility and the predictive utility of responses to questions tapping this self-knowledge.

WHAT WAS LEARNED ABOUT ASCHEMATICS FROM THE PRESENT INVESTIGATION?

The hypothesis of a moderator effect of schematicity on the predictive utility of the Self-Monitoring and Need for Cognition Scale responses was tested: some trends in the patterns of results were consistent with this hypothesis in the comparison of individuals who fell in the opposite categories in each of these two personality domains. The basis for this hypothesis was the assumption that individuals with more accessible self-knowledge, as compared to those with less, are more likely to behave as typical members of their category as shown in their more diagnostic responses. Based on this reasoning it can be expected that within each of the opposing self-monitoring and need for cognition categories, schematic and aschematic individuals would also differ in the extent to which they evidence category-typical behaviors. It is to be noted, however, that there was a lack of consistent evidence within each of these personality categories.

Consider the evidence regarding the following comparisons: schematic high self-monitors and schematic high self-monitors, aschematic low self-monitors and schematic low self-monitors, aschematic high need for cognition individuals and schematic high need for cognition individuals, and aschematic low need for cognition individuals and schematic low need for cognition individuals. The data indicating a pattern of behavior of aschematic respondents
are quite contradictory. Aschematic respondents sometimes show behavior that is different in degree from their schematic counterparts, and at other times they may show patterns of behavior that is expected of the opposite category on the relevant trait construct. From existing theories reviewed, it is difficult to derive a reason for the behavior of the aschematic respondents; thus no inferences about the patterns of behavior of the aschematic respondents can be made at present. As pointed out earlier, aschematics may be composed of groups of individuals who arrive at their relatively slower response to the personality scale items in different ways. A question that arises is: If aschematics show particular systematic responses, do these depend on the particular personality of the individual or are they idiosyncratic to being aschematic in a personality domain in general?

It should be kept in mind that the dependent measures used in the present studies to assess the hypotheses (about the accessibility of self-knowledge in a personality domain and its moderating effect on the predictive utility of the scale responses) were taken from paradigms used in past research to tap differences in the behavior of individuals falling at opposite ends of the given scales. These differences in behavior were reflected dichotomously in the occurrence of behavior for one group as compared to the nonoccurrence of such behavior for the other group, rather than with respect to the occurrences of behaviors more and less typical for each of these categories.

Exploring more in depth the particular behavior patterns of schematic versus aschematic individuals in each of the relevant personality categories using, for example, measures which are more explicitly based on what exactly would constitute typical occurrences of behavior for each of those groups may provide more powerful distinctions between schematic and aschematic
individuals and provide more insight into the dynamics underlying their particular personality profiles.

DIFFERENCES IN PERSONALITY SELF-KNOWLEDGE ACCESSIBILITY: A FUNCTION OF PERSONALITY?

Another theme which was introduced in this dissertation is the suggestion that the accessibility of self-knowledge relevant to a personality domain may be a function of the idiosyncratic personality dynamics of a particular personality and/or of the manner in which a particular personality is assessed. The results of the studies in this dissertation indeed suggest that individuals do differ in the accessibility of the relevant self-knowledge as a function of their personality. Studies One and Three yielded evidence that self-monitoring self-knowledge is more accessible for high self-monitors than for low self-monitors. Study Two provided evidence that need for cognition self-knowledge is more accessible for high than for low need for cognition individuals.

Questions remain, however, about the mechanisms leading to this difference, and future research needs to address whether a personality view or a "feature positive" view is the basis for this difference in the two personality domains. For instance, is the difference in self-knowledge accessibility idiosyncratic to the particular personality involved? Are, for example, high self-monitors and high need for cognition individuals more likely to adopt a "meta-cognitive" stance so that they are more likely to make the relevant abstraction about their standing in the domain than their counterparts? Alternatively, is the difference in self-knowledge accessibility a function of the manner in which the trait construct is assessed? Further, it is possible that both
mechanisms may be at work or that they interact in some way. Clearly a deeper examination of the self-inference process as a function of personality is warranted.

**CAN RESPONSE LATENCY BE USED EQUALLY WELL IN THE ASSESSMENT OF OTHER PERSONALITY CONSTRUCTS?**

It could be argued that response latency to personality scale items is a more appropriate index of the predictive utility of scale responses for some types of personality constructs than for others. In particular, for personality scales assessing traits that have a strong valence attached to them and/or are highly susceptible to social desirability effects, response latency may be less suitable as an index of response validity. For such scales, the response latency index may be confounded by these factors, leading to either relatively faster or slower responses. More specifically, valence and social desirability may have an independent impact on response latency. The scales used in this dissertation—individual differences in self-monitoring and in need for cognition—are scales that are not particularly likely to be subject to these confounding effects, and responses to these two scales may, therefore, be more likely to constitute inferences based on a simple “review” of past behavior.

For example, even when individuals know very well where they stand with respect to their behavior in the trait domain, social desirability considerations may slow them down in responding to questions tapping that information, because they may need time to construct a socially desirable answer; in this case, their answers may not correspond to their actual behavior. Alternatively, some people may have a schema of socially desirable behavior in the domain
readily available and accessible from memory, and may respond quickly when giving socially desirable responses even when these responses do not correspond to their actual behavior (Holden, Kroner, Fekken, & Popham, 1992).

Other scales may not be so much subject to social desirability effects but have a strong positive or negative valence attached to them. A strong, positively valenced item may lead to a faster response, regardless of whether this response is based on a relevant knowledge base or an accessible self-inference, just because one feels attracted to the behavior. A strong, negatively valenced item may lead to a slower response; this may occur simply because such an item may produce cognitive discomfort, or because individuals feel their response requires censorship, even when they know very well where they stand with respect to their behavior in the domain. Alternatively, a negatively valenced item may lead to faster responses if a person immediately rejects the item because of its negative valence.

The valence of a scale or scale item may even interact with social desirability. In all of these cases the response may not actually correspond to a person's actual behavior. Thus a variety of mechanisms may possibly underlie the response process and affect response latency to items on a scale that is susceptible to social desirability effects. Future research will need to explore the extent to which valence and social desirability may place boundary conditions on the use of response latency as an index of the predictive validity of personality scale responses. However, whenever a construct is subject to very strong valence and/or social desirability effects, assessment is vastly complicated. In such cases it is generally difficult to obtain a valid answer; the confounding is likely to not only affect response latency, but also the response itself. The question then falls in the realm of how well we can assess personality in general.
CONTRIBUTIONS OF THE THESIS

It is suggested that the research in this dissertation has contributed to the field—both theoretically and methodologically. The investigations integrated personality assessment and social cognition and explored a new methodology based on findings in memory and social cognition to fine-tune the predictive utility of personality scales. In addition, it raises intriguing questions relevant to the field of self-inference, self-awareness, self-concept, and self-schemata, and about the interface between situation and personality in determining behavior. Some further questions and theoretical implications are now discussed.

Theoretical Contributions

Personality assessment using self-report instruments has traditionally been examined from a psychometric perspective with little attention to whether the requisite informational basis to respond to given questions is available in and accessible from memory. By integrating research from person memory and social cognition with personality assessment, a new perspective is offered to personality assessment which takes into account the likelihood of the availability and accessibility of the relevant information in memory. More specifically, by proposing an index of whether or not the relevant information is likely to be available in and accessible from memory, an additional approach of fine-tuning personality scales is suggested with respect to the predictive utility of individuals’ responses to items contained in these scales. This approach, at the same time, may provide insight into the cognitive process underlying subjects’ responses to such items.
Research on self-schemata has been suggestive of the importance of the representation of information about oneself relevant to a trait domain in memory for the processing of social information and trait-consistent behavior. Yet self-schemata have traditionally been operationalized using as criteria, scale-score extremity and (self-stated) importance of the trait dimension to one’s self-concept. The central hypothesis in this dissertation is based on a different approach: response latency was positioned as an index of the presence of a self-schema by virtue of its conceptual link to the anchoring of the response in memory, irrespective of scale extremity. More specifically, it has been proposed here that individuals who are generally fast at answering questions on the scale may be considered schematic with respect to the personality domain, whereas respondents who are generally slow may be considered aschematic, independently of where respondents fall on the dimension of the respective personality scale at issue.

This method of indexing self-schematicity in a personality domain is intended to prevent the consistent confounding of intermediate levels on a dimension and the absence of a dimension (Baumeister & Tice, 1988; Burke, Kraut, & Dworkin, 1984). Indeed, individuals who are less extreme may also consistently show such “moderate” behavior on a personality dimension, and the accessibility of relevant self-knowledge may be an efficient manner to distinguish between individuals who are “schematic moderates” from “aschematic moderates.” Moreover, as pointed out earlier, using response latency may make it also unnecessary to add the criterion of importance of a trait to one’s self-concept in order to identify the presence or absence of a self-schema.
The proposition of personality self-knowledge accessibility as a measure of self-schematicity in a personality domain may also provide a closer link between this information and its influence on perception and behavior. Although the present studies speak to the notion of accessibility as a diagnostic process to identify more and less predictive self-report responses to personality questionnaire items, and essentially present a non-mediational view of such accessible self-knowledge, it is possible that accessible self-knowledge plays a mediational role in the relationship between such self-reports and behavior consistent with those self-reports. Although the evidence of Study Three is equivocal, showing a trend in the expected direction for some measures only, it is consistent with the suggestion of a possible mediating role of accessible self-knowledge. The present design, however, was not intended to test a mediational model. There have been various propositions about self-awareness and behavior (e.g., those of Hull and his colleagues, 1979, 1988). A mediational notion seems a promising area for further research.

Research on self-schemata and self-awareness raise a number of issues. For example, in order to influence perception and behavior, self-schemata need to be activated in memory. Extremity and importance ratings to identify self-schemata do not provide a test of the availability of the information in memory nor of the extent of its activation. Moreover, if relevant information needs to be activated in memory in order for it to influence behavior, the question arises as to what happens among individuals with less extreme scores on the dimension and/or who rate the domain as not important to their self-concept? If extremity and importance are taken as criteria of the presence of a self-schema in a personality domain, who are the individuals who do not possess a self-schema in the domain? A question is whether they have
available in memory the relevant self-knowledge with respect to the domain which could influence their behavior?

More specifically, future research should address, for example, the question of what, given accessible self-monitoring self-knowledge, happens in a situation that is relevant to the kind of behavior represented by this self-knowledge? There is the issue whether this self-knowledge guides behavior in a manner proposed by the self-awareness model proposed by Hull and his colleagues (1979, 1988), for example. Does this process occur when individuals are consciously aware of the relevant self-knowledge or is this process more automatic, taking place without full awareness, but accessibility of the information? Using the accessibility of the relevant self-knowledge not only as an index of the availability and accessibility of a self-schema, but also as an alternative operationalization of self-awareness may shed further light on these processes.

Intriguing findings were recently published by Higgins, Shah, and Friedman (1997) suggesting that self-guide strength as indexed by self-guide accessibility (i.e., a composite of the response latency to give ideal or ought self attributes, one's standing on these attributes, and an actual self-rating on these attributes) moderates the frequency and intensity of the emotional responses resulting from perceived self-discrepancy. These findings bring to mind the question of whether more accessible self-knowledge in a personality domain (i.e., "actual self-ratings" in the domain) would trigger stronger or more accessible self-guides.

A theoretical contribution of this research is the identification of two personality moderators of the self-inference process, namely self-monitoring and need for cognition; hence the need for further study of the mechanisms underlying the difference in the accessibility
between individuals scoring at opposite poles on these dimensions. Some suggestions have been offered for possible mechanisms underlying these differences.

Methodological Strengths

The widespread use of personality measures based on self-assessment because of their ease of administration, face validity, and broad range of information they provide, comes at the price of placing unreasonable demands on respondents. For example, respondents may not possess the relevant self-knowledge to answer queries about particular domains of social functioning because of the enormous complexity of the psychological events involved in this process. The present investigation used a recently developed reaction-time technique which is efficient, unobtrusive, and less susceptible to response biases than the traditional scales which have been used to fine-tune personality measures. This method provides, at the same time, the opportunity to take into account the complexity of responding to questions contained in a personality scale by linking self-report responses about one’s standing in a personality domain to the cognitive processes underlying these responses.

Questions or scales which have commonly been used to increase the predictive utility of personality scale responses may be subject to the same problems of all self-reports and thus of the scale they are intended to improve upon. For these “remediating” questions, an adequate knowledge basis may also not be available and accessible from memory. Furthermore, the sophisticated psychometric procedures used to obtain more predictive personality-scale item responses do not yield much data about the cognitive process underlying the response. The
method proposed here not only helps to fine-tune such responses but at the same time offers a window on the cognitive processes underlying them.

In addition, Studies One and Two have involved the use of a personality scale in computer-assisted telephone interview (CATI) surveys that incorporated the measurement of response latencies as well as experimental manipulations to test various hypotheses. These studies, thereby, extend the CATI methodology which has recently been successfully used in public opinion surveys and election studies to the domain of personality measurement. This empirical procedure may prove to be an efficient and powerful alternative or complement to laboratory investigations to test personality theories. For example, in Study One, this method made it possible to poll a large number of subjects in order to assess more directly the relationship between value endorsement and attitudes among low and high self-monitors.

Methodological Weaknesses

Some of the methodological weaknesses of this investigation have been pointed out earlier. To mention one such case: For Studies One and Three, it was not possible directly to compare the extent of improvement in the prediction model using values as predictors of high and low self-monitors' attitudes for the various experimental groups. This approach, based on noncontinuous variables, had severe drawbacks. Future researchers should use continuous dependent variables to assess respondents' attitudes so that a more direct comparison is possible. Additionally, the assessment of some of the values in Studies One and Three, and the manipulation of the quality- and image-oriented advertisements in Study Three was not as strong
as would have been desirable. Fewer subjects than anticipated took part in this study. Future research may address such shortcomings and may thus obtain more conclusive results.

Response latency can be influenced by many factors at any of the stages in the response process; its interpretation depends on the various assumptions made in its use (e.g., Fazio, 1990b). In the present dissertation, response latency was taken as a measure of the associative strength of the relevant abstraction about one’s standing in a personality domain and a self-node in memory. This rationale was based on the assumption that self-knowledge is represented in memory according to a mixed model of self-knowledge representation because of recent experimental evidence supporting this model. Notwithstanding this assumption, faster response latency may be indicative of, for example, the efficiency in performing the judgmental task or of the spontaneity in forming an abstraction; thus even based on an assumption of self-knowledge representation as outlined by the other two models of self-knowledge representation, the predictions of response latency as a diagnostic index of the presence of the relevant information in memory and, thereby, of a more predictive response for faster responses are also likely to apply. Future research should more fully address these different underlying mechanisms.

FUTURE DIRECTIONS

Various research questions were suggested throughout the discussion sections of the chapters of this dissertation. Additional research should focus on self-knowledge accessibility in other personality domains in order to obtain convergent validity for response latency to the
questions contained in the scale assessing the construct as an index of the predictive utility of the responses.

Other areas that would benefit from investigation are the relationship between ambivalence about one's standing in the domain, response latency to the relevant queries, and the predictive utility of such responses. An intriguing question to explore would be whether individuals who are self-schematic in one personality domain are also self-schematic in others. If this is the case, is a generally self-schematic person likely in general to give predictive responses? In addition, for individuals whose scores are moderate on a scale, self-schematicity and their particular behavior pattern need to be more fully explored.

Furthermore, comparing response latency indices as discussed here, specific remediation scale scores, and the relative predictive utility of the remediated responses using either of these techniques may provide some convergent validity of response latency as an index of predictive utility and insight into their relative effectiveness.

CONCLUSION

Taken together, the trends in the findings of the three studies of the present investigation suggest that response latency may be an effective tool to fine-tune personality scale responses although further research is clearly necessary. Moreover, response latency to personality scale items may also be a useful method to explore further the mechanisms underlying the response process in personality scale question responding. If further research substantiates response latency as a moderator of the predictive utility of personality scale responses, such latency offers a multitude of exciting applications in all areas where personality measurement is of interest.
Beyond the personality scales examined in this dissertation, the index may also be effective for projective measures, and for other forms of personality assessment such as the assessment of personal constructs and various forms of the self-concept.
REFERENCES


Hastie, R., & Park, B. (1986). The relationship between memory and judgment depends on whether the judgment task is memory-based or on-line. Psychological Review, 93(3), 258-268.


STRONG ARGUMENTS

I am now going to change the topic and ask you about an issue that has frequently been discussed at the university, namely tuition increases.

Recent tuition hikes have been announced at the University of Toronto. It has been argued that the university is in a financial crisis as a result of a $4.4 million dollar cut in government funding, and that even further tuition increases are necessary to support the university's operating costs.

Let me begin by giving you an idea of the types of reasons which have been proposed in support of a tuition hike.

It has been argued that tuition increases are necessary in order:

--- to maintain enrolment size and avoid overcrowded classes
--- to prevent quality faculty from leaving for better paying jobs at other universities
--- to prevent a decline in teaching quality as a result of having to rely on part-time faculty or graduate students for teaching
--- to avoid having to cut even more undergraduate programs and courses
--- to maintain university prestige so that the number of job offers and starting salaries for undergraduates will not decline
--- to maintain adequate library services such as access to an optimal number of books and journals
--- to prevent lab facilities from further deteriorating and computer facilities from shutting down

and

--- to set Ontario students' tuition fees, which are the second lowest in the country on par with fees at other top Canadian universities
WEAK ARGUMENTS

I am now going to change the topic and ask you about an issue that has frequently been discussed at the university, namely tuition increases.

Recent tuition hikes have been announced at the University of Toronto. It has been suggested that the university would LIKE to raise tuition by approximately 50 percent by 1995, so that even further tuition increases are necessary.

Let me begin by giving you an idea of the types of reasons which have been proposed in support of a tuition hike.

It has been argued that tuition increases are necessary:

--- because residents and businesses have funded the renovation and building of recreational facilities while students are the main benefactors
--- because having to pay more will make students appreciate being in university more
--- because having to pay more will decrease course change and drop out rates
--- because higher tuition will allow the university to add more sports programs
--- because at present teaching assistants and staff have to work too hard
--- because it is important to have money to improve the physical appearance of the university
--- because tuition only accounts for a small part of students' expenses anyway

and

--- because the university got by on lower tuition in the past and it's time for things to change now
HELLO!
YOU ARE ABOUT TO ENGAGE IN THE EXPERIMENT

When you are ready to start please press <enter> to read the introduction to your first task.
SCENARIO SECTION (either first or last)

In your first task (In the following task) were are interested in how much effort it takes you to imagine yourself in various situations.

We are also interested in how able you are to predict feelings and thoughts you may have and the behaviors you engage in these situations.

Various hypothetical scenarios describing a particular situation will appear on the screen.

Please read each scenario and imagine yourself in the situation described by the scenario. Then think of what you would typically do in such a situation and enter your response by using the key which corresponds to the response you choose.

It is important that you answer these questions accurately....... 

For example,

"You are in a restaurant and glossing over the menu. The waiter approaches and asks if you would like to order a drink to start with. Would you order something to drink to start with?"

1=yes
2=no

Please enter your response at the response prompt.

After you entered the response the next screen automatically appeared.

Similarly, when you enter your response to the questions posed at the end of each scenario. the next scenario will automatically appear on the computer screen.

If you have any questions please ask the experimenter.

If you want to reread the instructions, press <R>

If you are ready to start, press <enter>
The following question is about the amount of effort it took you to imagine yourself in the situations described in the scenarios.

Thinking back when you imagined yourself in the various scenarios, please indicate how much effort it took you to do so by picking a number between 1 and 5, where 1 means that it took ‘no effort at’ and 5 means that it took ‘a lot of effort’ to imagine yourself in the situations described in the scenarios.

On a scale from 1 (no effort at all) to 5 (a lot of effort):

How much effort did it take you?
SELF-MONITORING SCALE SECTION

Condition 1 and 3 (experimental conditions)

You will now be presented with some more general statements about yourself and we would like to know how you feel about the response options following each statement.

Condition 2. (additional baseline condition)

In your first task you will be presented with some general statements about yourself and we would like to know how you feel about the response options following each statement.

Then for all conditions:

Various statements will appear on the screen and we would like you to simply respond TRUE or FALSE to each of these statements, where TRUE means that the statement applies to you and FALSE means that the statement does not apply to you.

It is important that you rate each statement as accurately and as quickly as you can.

Please enter your response directly from the keyboard using the number key which corresponds to your answer.

For example, when presented with the statement:

"My hair is blue"

1=TRUE
2=FALSE

You would enter 1 if your response is TRUE and you would enter 2 if your response is FALSE.

Please press <enter> when you are ready to try an example.

Try this statement as an example and enter your response:

"I am ready to proceed"

1=TRUE
2=FALSE

Okay! As soon as you entered your response the next screen appeared automatically.

Similarly, as soon as you will have entered the response to the statements, the next statement will automatically appear on the computer screen.
If you want to reread the instructions press <R>
If you are ready to start, press <enter>
HERE COMES THE FIRST STATEMENT:

RESPONSE OPTION RATING (after the Self-Monitoring Scale)

Now, thinking back to the TRUE/FALSE response options, indicate how easy you would say they were to use, by picking a number between 1 and 5, where 1 means NOT EASY AT ALL, and 5 means VERY EASY.

On a scale from 1 (not easy at all) to 5 (very easy):

How easy were the response options to use?
ATTITUDES AND VALUES SECTION

First (now) we would like to know how students feel about some important social issues having to do with rights and freedom.

Various questions and statements will appear on the computer screen. Please let us know how you feel about these issues by entering your response directly from the keyboard using the number key which corresponds to your answer.

Please press <enter> for an example.

For example, when presented with the statement:

"I am a first year student"

1=agree
2=disagree

If you agree, you enter 1 at the response prompt
If you disagree, you enter 2 at the response prompt

Please enter your response.

Here is another example:

When presented with the question:

"Are you ready to go on?"

1=yes
2=no

If you are ready, you enter 1 at the response prompt
If you are not ready, you enter 2 at the response prompt

Please enter whether you are ready at the response prompt now.

Please read each question carefully and respond as quickly and accurately as you can.
If you want to reread the instructions press <R>
If you are ready to start, press <enter>

First, we would like to know how you feel about some general issues.
Here comes the first question:
ADVERTISEMENT SECTION

Now, we would like to know how you would rate the relative merits of advertisements currently being studied by researchers at the university.

You will be shown two sets of ads and you will be asked to compare the two ads in each set.

Please ask the experimenter to show you the ads in set number ....

After seeing the ads:

We would like you to answer the following question pertaining to the ads in the first set:

1) Overall which advertisement do you think is better: advertisement ... or advertisement ..

2) Which advertisement appeals to you more: advertisement ... or advertisement ..

3) Which advertisement do you think would be more successful: advertisement .. or advertisement ..

You are now ready for the second set of ads. Please ask the experimenter to show you set ... now.

Now, please answer the following questions:

repeat of 1) 2) and 3) pertaining to the second set.
HURRAY!

THIS IS THE END OF YOUR LAB SESSION.

YOU’VE EARNED YOUR CREDITS!!!

BUT, DON’T LEAVE YET!!!

WE JUST NEED SOME GENERAL INFORMATION ABOUT YOURSELF

PLEASE PRESS <ENTER> FOR THE NEXT SCREEN TO APPEAR

We would like to know:

1) Are you male or female?
   1=male
   2=female

2) What is your major or specialization?
   1=social sciences
   2=sciences
   3=humanities
   4=engineering
   5=medicine
   6=law
   7=other
APPENDIX C

SCENARIOS (STUDY THREE)

01
You are at a carnival wearing a Michael Jackson costume. People around you in the streets are all behaving outrageously.

Would you start singing one of his songs to lend credence to your appearance?

1=YES
2=NO

RESPONSE:

02
You have just joined a new college and are asked to do crazy things in order to be accepted into your new peer group. You are asked to jump on top of the table at a local restaurant and pretend you are a chicken.

Would you easily do so?

1=YES
2=NO

RESPONSE:

03
You are having a drink with your friends and you are talking about who should be the new representative of your student body. You know that one of the people present would really like the job. You do not think he/she would be suited.
Would you say that he/she would be perfect for the job because you know he/she would like to hear that?

1=YES
2=NO

RESPONSE:

04
Your party-animal friend, who's over from another college, wants to take you to a school buddy's bash, but you do not really like the boisterousness and loudness of those parties. You agree to come along.

Would you join in and pretend to be boisterous as well?

1=YES
2=NO

RESPONSE:

05
You are at a political seminar. The topic is the main problem the country is facing today. All present argue that social problems are most important. You are convinced that economic problems should have priority.

Could you argue convincingly for the priority of social problems?

1=YES
2=NO

RESPONSE:

06
You are out with your date for the first time and you really like him/her. You just went to see "Philadelphia"—a movie about an AIDS victim—and you are discussing the movie over dinner. During dinner you find out that your date thinks very differently about the various issues surrounding AIDS.
Would you argue his/her side?

1=YES
2=NO

RESPONSE:

07
You are at a party. All kinds of crazy games are played. You have a choice of making an impromptu speech about the impact of answering machines—a topic about which you do not know anything—or to hand out doughnuts.

Would you choose to make the speech?

1=YES
2=NO

RESPONSE:

08
You are raising funds for the installation of television sets in a local old people's home. A particular firm you just called upon asks you to tell a gathering of its employees about the relationship between the rate of television viewing among the elderly and their well-being.

You do not really know much about that. Could you do it?

1=YES
2=NO

RESPONSE:

09
You are teaching a course in a field in which you have published a lot.

Would you mention to students that you are actually the authority in the field?

1=YES
2=NO

RESPONSE:
10
You are one of the top players at your tennis club and are having a tennis game with a new tennis partner.

Would you take on an air of importance and talk to your partner about your past tennis achievements?

1=YES
2=NO

RESPONSE

11
You are looking for a summer job. The drama camp of the local high school is looking for a counsellor. Requirements: good acting skills.

Would you apply?

1=YES
2=NO

RESPONSE:

12
You are playing "murder mystery"—a game where everyone plays a role in a staged "murder mystery." You play the murderer and you have to try hard not to be found out.

Do you think they will easily guess?

1=YES
2=NO

RESPONSE:

13
You are at a party where you don't know anyone. One person is dominating the conversation and is attracting a lot of attention.
Would you match that person's behavior to rival the other for the limelight?

1=YES
2=NO

RESPONSE:

14
You are doing a project with some of your fellow students and you are brainstorming about ways to proceed.

Would your friends most likely listen to you the most?

1=YES
2=NO

RESPONSE:

15
You are at a business seminar and most people there act very professional and confident. Later you go to a lab meeting where people are rather reticent, shy, and contemplative.

Would you change your manners to suit either group?

1=YES
2=NO

RESPONSE:

16
Canada is a country full of ethnic diversity. At the university, you often socialize with people from different ethnic groups.

When you are socializing with an ethnic group different from your own, would you adopt that group's mannerisms to fit in?

1=YES
2=NO

RESPONSE:
17
You have moved to a different area and would like to make friends with your new neighbors.

Do you think it is most likely that they will rebuff your overtures to spend time with you?

1=YES
2=NO

RESPONSE:

18
It is the beginning of the semester and you are taking a seat in the classroom to listen to a first lecture. None of your friends are in the class. You notice an empty seat next to a few people. The professor has not arrived yet.

Do you try to strike up a conversation with the person next to you until the professor arrives?

1=YES
2=NO

RESPONSE:

19
You just had a very sad event happening in your life and for many days you have felt really down.

Are you likely to show these feelings to others?

1=YES
2=NO

RESPONSE:

20
There is a pretty woman named Lauren on the television screen. Lauren looks pensive. “I’m very into attitudes,” Lauren says. “I have dozens of them sort of hovering in my room. I take them out when I need them.”
Can you identify with Lauren's thoughts?

1=YES
2=NO

RESPONSE:

21
You're talking to a person you really like on the phone and that person says that he/she likes classical music, but you like country.

Do you tell him/her that you like classical music?

1=YES
2=NO

RESPONSE:

22
You are sitting with your boss in a meeting when the conversation drifts off topic to the Monday night football game. Your boss says that he thinks that Buffalo will win, but you think that Minnesota will win.

Do you tell your boss that you do not agree with him?

1=YES
2=NO

RESPONSE:

23
You are hired as a tour guide for Club Med. Part of your job is to entertain a wide spectrum of people.

Would you like that job?

1=YES
2=NO

RESPONSE:
24
You are telling a few jokes at a party. Everyone is laughing. Someone suddenly asks: "Have you considered being an entertainer?"

How would you respond?

1=YES
2=NO

RESPONSE:

25
You are in your drama class and it's your turn to give a skit about Hallowe'en. You haven't got a single idea about what to say or do and the more you think about it the more nervous you get.

Does that describe how you would feel?

1=YES
2=NO

RESPONSE:

26
You are at a party and it's your turn to act out "Mickey Mouse."

Would you feel that you will make a fool of yourself and have no idea how to go about it?

1=YES
2=NO

RESPONSE:

27
You are trying to decide whom to call upon for this afternoon's tennis game, your friend Paul or your friend Mike. You like Paul more than Mike, and have much more in common with him, but Mike is the better tennis player.
Would you phone Mike?

1=YES
2=NO

RESPONSE:

28
"When I engage in an activity, I want to be with someone I feel comfortable with and usually my closest friend will fill this role."

Can you identify with this statement?

1=YES
2=NO

RESPONSE:

29
You're at your graduation dinner sitting with some friends. They're telling stories which sound really embarrassing and make them seem really foolish. You remember a story almost identical to some of theirs.

Do you tell them your story?

1=YES
2=NO

RESPONSE:

30
You know that in order to become really popular, telling jokes and lots of great stories helps. However, not everyone does so easily. What about you?

Do you think it is much easier to let others be the communicators?

1=YES
2=NO

RESPONSE:
31
You are asked to defend your standpoint in public.

Would you prefer to have someone else do it rather than do it yourself?

1=YES
2=NO

RESPONSE:

32
Your friend just graduated. You are at the celebration and are asked to give a toast and commemorate your time together.

Would you feel comfortable doing that?

1=YES
2=NO

RESPONSE:

33
You are trying to sell university T-shirts to raise money for new lab equipment. You find these T-shirts outrageously overpriced and you know that they even shrink when washed.

Would you keep a straight face and convince others to buy them, stressing their good quality and advantageous price?

1=YES
2=NO

RESPONSE:

34
Your friend is wearing something completely uncoordinated at a dance and looks ridiculous. She feels she looks great and asks you how you feel about her outfit.
Would you tell her it’s great?

1=YES
2=NO

RESPONSE:

35
At a party at your best friend’s house you meet your rival for a $2,000 scholarship. He/she has always tried to upstage you in front of members of the panel giving the award. You really dislike him/her.

Would you act friendly towards him/her in order not to create tension at the party?

1=YES
2=NO

RESPONSE:

36
You have worked in your firm for a long time and your next promotion depends on the opinion of Mr. X. Unfortunately you really dislike him.

Would you invite him for dinner to your house in order to increase your chances for the promotion?

1=YES
2=NO

RESPONSE:

Note:
Scenarios 01 and 02 correspond to Self-Monitoring Statement #1.
Scenarios 03 and 04 correspond to Self-Monitoring Statement #2.
Scenarios 05 and 06 correspond to Self-Monitoring Statement #3.
Scenarios 07 and 08 correspond to Self-Monitoring Statement #4.
Scenarios 09 and 10 correspond to Self-Monitoring Statement #5.
Scenarios 11 and 12 correspond to Self-Monitoring Statement #6.
Scenarios 13 and 14 correspond to Self-Monitoring Statement #7.
Scenarios 15 and 16 correspond to Self-Monitoring Statement #8.
Scenarios 17 and 18 correspond to Self-Monitoring Statement #9.
Scenarios 19 and 20 correspond to Self-Monitoring Statement #10.
Scenarios 21 and 22 correspond to Self-Monitoring Statement #11.
Scenarios 23 and 24 correspond to Self-Monitoring Statement #12.
Scenarios 27 and 28 correspond to Self-Monitoring Statement #14.
Scenarios 29 and 30 correspond to Self-Monitoring Statement #15.
Scenarios 31 and 32 correspond to Self-Monitoring Statement #16.
Scenarios 33 and 34 correspond to Self-Monitoring Statement #17.
Scenarios 35 and 36 correspond to Self-Monitoring Statement #18.
APPENDIX D

LOGISTIC REGRESSION TABLES
Results of Logistic Regression Analyses
Study 1
Quota Issue
Low Self-Monitors

Initial Log Likelihood Function
-2 Log Likelihood 340.6972
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>303.432</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>260.675</td>
</tr>
</tbody>
</table>

Model Chi-Square

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.6187</td>
<td>1</td>
<td>.1646</td>
</tr>
<tr>
<td>Equality</td>
<td>.0437</td>
<td>1</td>
<td>.0000</td>
</tr>
<tr>
<td>Freedom</td>
<td>.7326</td>
<td>1</td>
<td>.8631</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.7845</td>
<td>1</td>
<td>.3016</td>
</tr>
<tr>
<td>Merit</td>
<td>1.4711</td>
<td>1</td>
<td>.2419</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.0001</td>
</tr>
</tbody>
</table>

Note. The Log Likelihood is the criterion for selecting parameters in the logistic regression model and indicates the probability of the observed results, given the parameter estimates. It is a measure of how well the estimated model fits the data. A good model is one that results in a high likelihood of the observed results; generally -2 Log Likelihood is used because of its \( \chi^2 \) distribution; if a model fits perfectly, -2 Log Likelihood = 0 (Menard, 1995; Norusis, 1993).
## Results of Logistic Regression Analyses

**Study 1**

**Quota Issue**

**High Self-Monitors**

<table>
<thead>
<tr>
<th>Initial Log Likelihood Function</th>
<th>-2 Log Likelihood</th>
<th>315.43054</th>
</tr>
</thead>
<tbody>
<tr>
<td>(constant is included in the model; no terms in model)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>305.315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>231.208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>10.116</td>
<td>5</td>
<td>.0720</td>
</tr>
</tbody>
</table>

### Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.3400</td>
<td>1</td>
<td>.4104</td>
</tr>
<tr>
<td>Equality</td>
<td>.2680</td>
<td>1</td>
<td>.0115</td>
</tr>
<tr>
<td>Freedom</td>
<td>.8042</td>
<td>1</td>
<td>.5801</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.9955</td>
<td>1</td>
<td>.9851</td>
</tr>
<tr>
<td>Merit</td>
<td>1.3152</td>
<td>1</td>
<td>.4246</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td>1</td>
<td>.2750</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Pornography Issue
Low Self-Monitors

Initial Log Likelihood Function  -2 Log Likelihood 341.84682
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

-2 Log Likelihood 301.820
Goodness of Fit 244.618

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>( \chi^2 )</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>40.027</td>
<td>5</td>
<td>.0000</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>2.3336</td>
<td>1</td>
<td>.0187</td>
</tr>
<tr>
<td>Equality</td>
<td>.9687</td>
<td>1</td>
<td>.9491</td>
</tr>
<tr>
<td>Freedom</td>
<td>.3842</td>
<td>1</td>
<td>.0240</td>
</tr>
<tr>
<td>Religiosity</td>
<td>2.0772</td>
<td>1</td>
<td>.0012</td>
</tr>
<tr>
<td>Merit</td>
<td>.6784</td>
<td>1</td>
<td>.2576</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.4335</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Pornography Issue
High Self-Monitors

Initial Log Likelihood Function -2 Log Likelihood 298.43972
(constant is included in the model; no terms in model)

---

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>279.229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>231.876</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>19.211</td>
<td>5</td>
<td>.0018</td>
</tr>
<tr>
<td>Model Chi-Square</td>
<td>19.211</td>
<td>5</td>
<td>.0018</td>
</tr>
</tbody>
</table>

---

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.7274</td>
<td>1</td>
<td>.1749</td>
</tr>
<tr>
<td>Equality</td>
<td>1.4140</td>
<td>1</td>
<td>.5213</td>
</tr>
<tr>
<td>Freedom</td>
<td>.2867</td>
<td>1</td>
<td>.0019</td>
</tr>
<tr>
<td>Religiosity</td>
<td>1.2285</td>
<td>1</td>
<td>.4183</td>
</tr>
<tr>
<td>Merit</td>
<td>.5651</td>
<td>1</td>
<td>.1124</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.9756</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Quota Issue
Schematic Low Self-Monitors

Initial Log Likelihood Function  
-2 Log Likelihood 173.94686
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

| -2 Log Likelihood | 154.270 |
| Goodness of Fit    | 130.178 |
| \( \chi^2 \) \( df \) \( p \) |
| Model Chi-Square   | 19.677  | 5   | .0014 |
| Improvement        | 19.677  | 5   | .0014 |

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>( df )</th>
<th>( p )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.2768</td>
<td>1</td>
<td>.1925</td>
</tr>
<tr>
<td>Equality</td>
<td>.0409</td>
<td>1</td>
<td>.0005</td>
</tr>
<tr>
<td>Freedom</td>
<td>.7378</td>
<td>1</td>
<td>.6072</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.3513</td>
<td>1</td>
<td>.1218</td>
</tr>
<tr>
<td>Merit</td>
<td>1.3555</td>
<td>1</td>
<td>.5203</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.0012</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Quota Issue
Aschematic Low Self-Monitors

Initial Log Likelihood Function  -2 Log Likelihood  166.18797
(constant is included in the model; no terms in model)

---

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th></th>
<th>-2 Log Likelihood</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>146.380</td>
<td>130.700</td>
</tr>
</tbody>
</table>

\[ \chi^2 \] \[df\] \[p\]  

<table>
<thead>
<tr>
<th></th>
<th>[\chi^2]</th>
<th>[df]</th>
<th>[p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Chi-Square</td>
<td>19.808</td>
<td>5</td>
<td>.0014</td>
</tr>
<tr>
<td>Improvement</td>
<td>19.808</td>
<td>5</td>
<td>.0014</td>
</tr>
</tbody>
</table>

---

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.5286</td>
<td>1</td>
<td>.5243</td>
</tr>
<tr>
<td>Equality</td>
<td>.0373</td>
<td>1</td>
<td>.0010</td>
</tr>
<tr>
<td>Freedom</td>
<td>1.0326</td>
<td>1</td>
<td>.9597</td>
</tr>
<tr>
<td>Religiosity</td>
<td>1.0974</td>
<td>1</td>
<td>.8920</td>
</tr>
<tr>
<td>Merit</td>
<td>1.7030</td>
<td>1</td>
<td>.2633</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.0295</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Quota Issue
Schematic High Self-Monitors

Initial Log Likelihood Function       -2 Log Likelihood       162.29909
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

-2 Log Likelihood    157.216
Goodness of Fit      119.301

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Chi-Square</td>
<td>5.083</td>
<td>5</td>
<td>.4059</td>
</tr>
<tr>
<td>Improvement</td>
<td>5.083</td>
<td>5</td>
<td>.4059</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.3190</td>
<td>1</td>
<td>.7921</td>
</tr>
<tr>
<td>Equality</td>
<td>.8580</td>
<td>1</td>
<td>.8258</td>
</tr>
<tr>
<td>Freedom</td>
<td>.3436</td>
<td>1</td>
<td>.0637</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.3986</td>
<td>1</td>
<td>.1918</td>
</tr>
<tr>
<td>Merit</td>
<td>.8442</td>
<td>1</td>
<td>.7357</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.1609</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Quota Issue
Aschematic High Self-Monitors

Initial Log Likelihood Function -2 Log Likelihood 152.16494
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

| -2 Log Likelihood | 133.995 |
| Goodness of Fit    | 108.055 |

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.170</td>
<td>5</td>
<td>.0027</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>2.1645</td>
<td>1</td>
<td>.4613</td>
</tr>
<tr>
<td>Equality</td>
<td>.0812</td>
<td>1</td>
<td>.0038</td>
</tr>
<tr>
<td>Freedom</td>
<td>1.7637</td>
<td>1</td>
<td>.3512</td>
</tr>
<tr>
<td>Religiosity</td>
<td>2.4233</td>
<td>1</td>
<td>.2290</td>
</tr>
<tr>
<td>Merit</td>
<td>2.3914</td>
<td>1</td>
<td>.0961</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.9279</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study I
Pornography Issue
Schematic Low Self-Monitors

Initial Log Likelihood Function -2 Log Likelihood 179.44828
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>145.528</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>122.815</td>
</tr>
</tbody>
</table>

Model Chi-Square

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>2.8940</td>
<td>1</td>
<td>.0394</td>
</tr>
<tr>
<td>Equality</td>
<td>1.2371</td>
<td>1</td>
<td>.7661</td>
</tr>
<tr>
<td>Freedom</td>
<td>1.1452</td>
<td>1</td>
<td>.0026</td>
</tr>
<tr>
<td>Religiosity</td>
<td>2.1814</td>
<td>1</td>
<td>.0190</td>
</tr>
<tr>
<td>Merit</td>
<td>.9955</td>
<td>1</td>
<td>.9928</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td>.5918</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Pornography Issue
Aschematic Low Self-Monitors

Initial Log Likelihood Function  -2 Log Likelihood 162.36028
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.238</td>
<td>116.827</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.123</td>
<td>5</td>
<td>.0148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Improvement</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.123</td>
<td>5</td>
<td>.0148</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.6880</td>
<td>1</td>
<td>.3145</td>
</tr>
<tr>
<td>Equality</td>
<td>.7744</td>
<td>1</td>
<td>.7201</td>
</tr>
<tr>
<td>Freedom</td>
<td>.9978</td>
<td>1</td>
<td>.9971</td>
</tr>
<tr>
<td>Religiosity</td>
<td>2.2697</td>
<td>1</td>
<td>.0143</td>
</tr>
<tr>
<td>Merit</td>
<td>.5102</td>
<td>1</td>
<td>.1616</td>
</tr>
<tr>
<td>Constant</td>
<td>.5102</td>
<td>1</td>
<td>.5376</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Pornography Issue
Schematic High Self-Monitors

Initial Log Likelihood Function  -2 Log Likelihood 151.33945
(constant is included in the model; no terms in model)

---

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>146.931</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>121.812</td>
</tr>
</tbody>
</table>

\[
\chi^2 \quad df \quad p
\]

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>4.409</th>
<th>5</th>
<th>.4922</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>4.409</td>
<td>5</td>
<td>.4922</td>
</tr>
</tbody>
</table>

---

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.6805</td>
<td>1</td>
<td>.3753</td>
</tr>
<tr>
<td>Equality</td>
<td>1.1284</td>
<td>1</td>
<td>.8665</td>
</tr>
<tr>
<td>Freedom</td>
<td>.6020</td>
<td>1</td>
<td>.3667</td>
</tr>
<tr>
<td>Religiosity</td>
<td>1.2600</td>
<td>1</td>
<td>.5169</td>
</tr>
<tr>
<td>Merit</td>
<td>.5735</td>
<td>1</td>
<td>.2710</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td>.6930</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 1
Pornography Issue
Aschematic High Self-Monitors

Initial Log Likelihood Function   -2 Log Likelihood  146.28838
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th></th>
<th>-2 Log Likelihood</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>127.053</td>
<td>110.255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Chi-Square</td>
<td>19.236</td>
<td>5</td>
<td>.0017</td>
</tr>
<tr>
<td>Improvement</td>
<td>19.236</td>
<td>5</td>
<td>.0017</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.8645</td>
<td>1</td>
<td>.2785</td>
</tr>
<tr>
<td>Equality</td>
<td>1.3472</td>
<td>1</td>
<td>.7292</td>
</tr>
<tr>
<td>Freedom</td>
<td>.1209</td>
<td>1</td>
<td>.0008</td>
</tr>
<tr>
<td>Religiosity</td>
<td>1.2132</td>
<td>1</td>
<td>.6059</td>
</tr>
<tr>
<td>Merit</td>
<td>.4650</td>
<td>1</td>
<td>.1516</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.4980</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 3
Pornography Issue
Low Self-Monitors (Primed)

Initial Log Likelihood Function -2 Log Likelihood 23.508147
(constant is included in the model: no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th></th>
<th>-2 Log Likelihood</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15.247</td>
<td>13.719</td>
</tr>
</tbody>
</table>

\[
\chi^2 \quad df \quad p
\]

| Model Chi-Square | 8.261 | 3 | .0409 |
| Improvement      | 8.261 | 3 | .0409 |

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.0011</td>
<td>1</td>
<td>.1255</td>
</tr>
<tr>
<td>Freedom</td>
<td>.1349</td>
<td>1</td>
<td>.2234</td>
</tr>
<tr>
<td>Religiosity</td>
<td>286.1368</td>
<td>1</td>
<td>.0921</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td>1</td>
<td>.4414</td>
</tr>
</tbody>
</table>
### Results of Logistic Regression Analyses

**Study 3**

**Pornography Issue**

**High Self-Monitors (Primed)**

---

Initial Log Likelihood Function  
-2 Log Likelihood 20.727699  
(constant is included in the model; no terms in model)

---

Statistics for model containing the independent variables

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
<td>18.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>14.744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Chi-Square</td>
<td>1.810</td>
<td>3</td>
<td>.6127</td>
</tr>
<tr>
<td>Improvement</td>
<td>1.810</td>
<td>3</td>
<td>.6127</td>
</tr>
</tbody>
</table>

---

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>1.4706</td>
<td>1</td>
<td>.9378</td>
</tr>
<tr>
<td>Freedom</td>
<td>.1409</td>
<td>1</td>
<td>.2267</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.4698</td>
<td>1</td>
<td>.6984</td>
</tr>
<tr>
<td>Constant</td>
<td>.7323</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 3
Pornography Issue
Low Self-Monitors (Nonprimed)

Initial Log Likelihood Function -2 Log Likelihood 6.5016595
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

-2 Log Likelihood 2.773
Goodness of Fit 2.000

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.729</td>
<td>3</td>
<td>.2923</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.0000</td>
<td>1</td>
<td>.9756</td>
</tr>
<tr>
<td>Freedom</td>
<td>.0181</td>
<td>1</td>
<td>.9869</td>
</tr>
<tr>
<td>Religiosity</td>
<td>.0000</td>
<td>1</td>
<td>.9932</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td></td>
<td>.9610</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 3
Pornography Issue
High Self-Monitors (Nonprimed)

Initial Log Likelihood Function

\[-2 \text{ Log Likelihood} = 15.27634\]
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

| -2 Log Likelihood | 12.434 |
| Goodness of Fit   | 13.493 |

\[\chi^2\]  df  \(p\)
| Model Chi-Square | 2.843  3  .4165 |
| Improvement      | 2.843  3  .4165 |

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority</td>
<td>.1909</td>
<td>1</td>
<td>.7609</td>
</tr>
<tr>
<td>Freedom</td>
<td>.0870</td>
<td>1</td>
<td>.1802</td>
</tr>
<tr>
<td>Religiosity</td>
<td>15.5752</td>
<td>1</td>
<td>.4353</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td></td>
<td>.8561</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 3
Quota Issue
Low Self-Monitors (Primed)

Initial Log Likelihood Function  -2 Log Likelihood  23.508147
(constant is included in the model; no terms in model)

<table>
<thead>
<tr>
<th>Statistics for model containing the independent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>Goodness of Fit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.252</td>
<td>2</td>
<td>.5347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Improvement</th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.252</td>
<td>2</td>
<td>.5347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables in the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Equality</td>
</tr>
<tr>
<td>Merit</td>
</tr>
<tr>
<td>Constant</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses  
Study 3  
Quota Issue  
High Self-Monitors (Primed)

Initial Log Likelihood Function  
-2 Log Likelihood 20.727699  
(constant is included in the model; no terms in model)

<table>
<thead>
<tr>
<th>Statistics for model containing the independent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>Goodness of Fit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>$\chi^2$</th>
<th>df</th>
<th>$p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>2.785</td>
<td>2</td>
<td>.2484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables in the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Equality</td>
</tr>
<tr>
<td>Merit</td>
</tr>
<tr>
<td>Constant</td>
</tr>
</tbody>
</table>
Results of Logistic Regression Analyses
Study 3
Quota Issue
Low Self-Monitors (Nonprimed)

Initial Log Likelihood Function -2 Log Likelihood 13.862944
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

-2 Log Likelihood 2.773
Goodness of Fit 2.773

<table>
<thead>
<tr>
<th></th>
<th>$\chi^2$</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Chi-Square</td>
<td>11.090</td>
<td>2</td>
<td>.0039</td>
</tr>
<tr>
<td>Improvement</td>
<td>11.090</td>
<td>2</td>
<td>.0039</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>.0000</td>
<td>1</td>
<td>.9466</td>
</tr>
<tr>
<td>Merit</td>
<td>.0000</td>
<td>1</td>
<td>.9489</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1</td>
<td>.9466</td>
</tr>
</tbody>
</table>
Results Logistic Regression Analyses
Study 3
Quota Issue
High Self-Monitors (Nonprimed)

Initial Log Likelihood Function  -2 Log Likelihood  15.27634
(constant is included in the model; no terms in model)

Statistics for model containing the independent variables

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>7.020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodness of Fit</td>
<td>5.472</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Chi-Square</th>
<th>( \chi^2 )</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>8.256</td>
<td>2</td>
<td>.0161</td>
</tr>
</tbody>
</table>

Variables in the model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Exp(B)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>.1352</td>
<td>1</td>
<td>.4764</td>
</tr>
<tr>
<td>Merit</td>
<td>9.45E+09</td>
<td>1</td>
<td>.8979</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td>1</td>
<td>.9071</td>
</tr>
</tbody>
</table>