A CONTINUOUS FIELD OF PROJECTIONLESS C^*-ALGEBRAS

by

Andrew James Dean

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy,
Graduate Department of Mathematics,
University of Toronto.

© Copyright by Andrew James Dean 1999
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-41013-7
Abstract: In this paper we shall use the fact that a certain family of crossed products of the Cuntz algebra by the reals forms a continuous field, along with a careful analysis of some of the fibres, to show that many of the other members that are difficult to analyse directly are inductive limits of pullbacks of finite direct sums of matrix algebras over the continuous functions on the unit interval by finite dimensional C^*-algebras.
Acknowledgements

The author wishes to thank his supervisor, G. A. Elliott, for his good counsel, The Fields Institute and the University of Copenhagen for their hospitality, and the Department of Mathematics and NSERC for funding.
Contents

§1. Introduction .. 1

§2. The Case of Rational λ, Part I 9

§3. The Case of Rational λ, Part II 15

§4. Stable Relations and the Main Result for O_2 28

§5. O_n and Closing Remarks 35

§6. References ... 40
§1. Introduction

The subject of this thesis is a structure theorem for a class of C^*-algebras. We shall show that certain C^*-algebras built from actions of \mathbb{R} on the Cuntz algebra O_n can also be described as inductive limits of 'nice' type I C^*-algebras. This result is important to what has become known as the 'Elliott classification program.' In this introductory section we shall first review the construction of crossed product C^*-algebras, then define the particular ones we are going to study; and, finally, discuss the Elliott program and the particular result we are going to prove.

A crossed product C^*-algebra is built from three things: a C^*-algebra A, a locally compact group G, and an action $\alpha : G \to \text{Aut}(A)$ of G on A by *-automorphisms. The action α will always be assumed to be continuous with respect to the topology of norm convergence at each point. Such a triple (A, G, α) is called a C^*-dynamical system.

Given a C^*-dynamical system (A, G, α), a covariant representation of the system consists of a triple (H, π, λ), where H is a Hilbert space, π is a *-homomorphism mapping A into $B(H)$, and λ is a unitary representation of G on H, such that $\pi(\alpha_g(x)) = \lambda_g \pi(x) \lambda_g^*$ for all $x \in A$, $g \in G$. Any C^*-dynamical system possesses a covariant representation. If $\pi_u : A \to B(H)$ is the universal representation of A, and $\lambda : G \to L^2(G)$ is the left regular representation of G, given by $(\lambda_g \eta)(t) = \eta(g^{-1}t)$, then we may build a covariant representation $(L^2(G, H), \tilde{\pi}, \tilde{\lambda})$ of (A, G, α) as follows: $(\tilde{\lambda}_g \eta)(t) = \eta(g^{-1}t)$; $(\tilde{\pi}(a) \eta)(t) = \pi_u(\alpha_t^{-1}(a)) \eta(t)$. This particular covariant representation will be referred to as the regular representation of the C^*-dynamical system.

Given a C^*-dynamical system (A, G, α), one may make the Banach space $L^1(G, A)$ of L^1 functions from G into A into a *-algebra with the following
operations:

\[f \times g(s) = \int f(t)\alpha_t(g(t^{-1}s))dt \]

\[f^*(s) = \Delta(s)^{-1}\alpha_s(f(s^{-1}))^*. \]

(In the above expression \(\Delta \) denotes the modular function for the group and the integrals are defined weakly.) These operations are chosen so that any covariant representation of the \(C^* \)-dynamical system, \((H, \pi, \lambda)\) say, gives rise to a representation \((\pi \times \lambda)\) of the Banach \(*\)-algebra \(L^1(G, A) \) on \(B(H) \) by the formula \((\pi \times \lambda)(f) = \int \pi(f(t))\lambda_t dt\), where the integral is defined weakly, i.e. \((\pi \times \lambda)(f)\) is the unique element of \(B(H) \) such that for all \(\eta, \nu \in H \), \(\langle (\pi \times \lambda)(f)\eta | \nu \rangle = \int \langle \pi(f(t))\lambda_t \eta | \nu \rangle dt \). Using this map, for each covariant representation of the \(C^* \)-dynamical system \((A, G, \alpha)\) one gets a \(C^* \)-semi-norm on the Banach \(*\)-algebra \(L^1(G, A) \), and all such semi-norms are bounded above by the \(L^1 \) norm. We may now make the following definition.

Definition 1.1 The supremum over all of the \(C^* \)-semi-norms on \(L^1(G, A) \) coming from covariant representations of the \(C^* \)-dynamical system \((A, G, \alpha)\) is a \(C^* \)-norm. The completion of \(L^1(G, A) \) in this norm is a \(C^* \)-algebra, called the full crossed product, or universal crossed product, of the system \((A, G, \alpha)\), and is denoted \(A \rtimes_\alpha G \).

One may also use just the \(C^* \)-norm coming from the regular representation of \((A, G, \alpha)\), which leads to the following definition.

Definition 1.2 The completion of the \(*\)-algebra \(L^1(G, A) \) in the \(C^* \)-norm coming from the regular representation of the \(C^* \)-dynamical system \((A, G, \alpha)\) is called the reduced crossed product of the system and is denoted \(A \rtimes_{\alpha_r} G \).

The natural notion of isomorphism of \(C^* \)-dynamical systems is called covariant isomorphism. Two \(C^* \)-dynamical systems \((A, G, \alpha)\) and \((B, G, \beta)\) are
said to be covariantly isomorphic if there exists a \(*\)-isomorphism \(\varphi : A \to B\) such that \(\varphi(\alpha_g(a)) = \beta_g(\varphi(a))\) for all \(a \in A, g \in G\). Covariantly isomorphic \(C^*\)-dynamical systems give rise to isomorphic crossed products, in both the full and reduced constructions.

The identity map from \(L^1(G, A)\) to itself extends to a surjective \(*\)-homomorphism from \(A \rtimes_{\alpha} G\) to \(A \rtimes_{\alpha'} G\). In general, this map is not an isomorphism. One does however have the following theorem.

Theorem 1.3 (see [Ped] for a proof) Given a \(C^*\)-dynamical system \((A, G, \alpha)\), if the group \(G\) is amenable, then the natural map from \(A \rtimes_{\alpha} G\) onto \(A \rtimes_{\alpha'} G\) is an isomorphism.

All abelian locally compact groups are amenable, and we shall only consider this case, so the distinction between full and reduced crossed products will no longer concern us.

Example 1.4 Let \(G\) be an abelian group, and let \(G\) act trivially on a \(C^*\)-algebra \(A\). Then the Fourier transform \((Ff)(s) = \int_G f(t)(t, s)dt\), where \((t, s)\) denotes the pairing of an element of \(G\) with an element of \(\hat{G}\), extends to an isomorphism of \(A \rtimes_{id} G\) with \(C_0(\hat{G}, A)\). In the case of \(G = \mathbb{R}\), we see that the suspension of a \(C^*\)-algebra is a special case of a crossed product.

Example 1.5 The rotation algebra \(A_\theta\) is defined as the universal \(C^*\)-algebra generated by two unitaries \(U\) and \(V\) subject to the relation \(UV = e^{2\pi i \theta} VU\). This relation may be rewritten \(UVU^* = e^{2\pi i} V\). If one considers the crossed product \(C(\mathbb{T})\) by the action \(\alpha_\theta\) of \(\mathbb{Z}\) given by rotation by \(2\pi \theta\), one sees from the definition that this is the universal \(C^*\)-algebra generated by a copy of \(C(\mathbb{T})\) and a unitary \(U\) such that conjugating an element of \(C(\mathbb{T})\) by \(U\) results in a rotation by \(2\pi \theta\). As \(C(\mathbb{T})\) is the universal \(C^*\)-algebra generated by a unitary \(V\), one easily concludes that \(C(\mathbb{T}) \rtimes_{\alpha_\theta} \mathbb{Z} \cong A_\theta\).
Example 1.6 Given a C^*-dynamical system (A, G, α) in which G is an abelian group with dual group \hat{G}, there is an action $\hat{\alpha}$ of \hat{G} on $A \rtimes_{\alpha} G$ that, on elements of $L^1(G, A)$, is given by $(\hat{\alpha}_\sigma f)(t) = (\sigma, t)f(t)$ for all $t \in G$, $\sigma \in \hat{G}$. This action $\hat{\alpha}$ is referred to as the dual action on $A \rtimes_{\alpha} G$.

In this thesis, we shall be considering crossed products coming from C^*-dynamical systems in which the C^*-algebra is one of the Cuntz algebras O_n. The algebra O_n was defined in [Cu1] to be the universal C^*-algebra generated by n isometries S_1, \ldots, S_n satisfying the relation $S_1 S_1^* + \ldots + S_n S_n^* = 1$. Cuntz showed in [Cu1] that O_n is a simple C^*-algebra, so in fact any n isometries in a C^*-algebra satisfying the relation above generate a copy of O_n. The algebra O_∞ is defined as the universal C^*-algebra generated by a sequence $\{S_n\}$ of isometries such that $\sum S_n S_n^* \leq 1$.

There is also a Fock space construction of the O_ns, and using this Evans in [Ev] defined what he called quasi-free automorphisms of O_n. The construction is as follows. Let $F(H)$ denote the full Fock space $\bigoplus_{n=0}^\infty (\otimes^n H)$ for a separable Hilbert space H, where $\otimes^0 H$ denotes the one dimensional subspace spanned by the vacuum vector Ω. Define a linear map $O : H \to B(F(H))$ by $O(f)\Omega = f$ and $O(f)(f_1 \otimes f_2 \otimes \ldots \otimes f_n) = f \otimes f_1 \otimes \ldots \otimes f_n$. The map O satisfies the relations $O(f)^* O(g) = (g|f)1$ and $\sum_{i=1}^n O(h_i)O(h_i)^* \leq 1$ for any orthonormal basis $\{h_i\}$ with equality mod $K(F(H))$ if H is finite dimensional. Let $O(H)$ denote the C^*-algebra generated by the image of this map. If $\dim H = \infty$ then $O(H) \cong O_\infty$, and if $\dim H = n < \infty$ then $O(H)/K(F(H)) \cong O_n$. If U is a unitary on H, then U gives rise to an automorphism of $O(H)$, denoted $O(U)$, such that $O(U)O(f) = O(Uf)$ for all $f \in H$. These in turn induce automorphisms of the O_ns, and such automorphisms are called quasi-free.
In this paper, we shall consider the crossed products of O_n by \mathbb{R} actions induced by one-parameter subgroups of $U(n)$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis for \mathbb{C}^n and let $S_1 = \pi \circ O(e_1), \ldots, S_n = \pi \circ O(e_n)$, where π is the quotient map from $O(\mathbb{C}^n)$ onto O_n. Then, up to covariant isomorphism, all such automorphism groups are of the form $\alpha_t(S_1) = e^{2\pi i \lambda_1 t} S_1, \ldots, \alpha_t(S_n) = e^{2\pi i \lambda_n t} S_n$ for some real numbers $\lambda_1, \ldots, \lambda_n$. If all of the λs are zero, then we have just a trivial action and the crossed product is the suspension of O_n. If we assume that $\lambda_1 \neq 0$ then, since a real crossed product is not changed, up to isomorphism, by scaling the real parameter, we may assume that $\lambda_1 = 1$.

We then have an $(n - 1)$-parameter family of crossed products $O_n \rtimes_{\alpha^\lambda} \mathbb{R}$, where $\lambda = (\lambda_2, \ldots, \lambda_n)$.

In [Ks] Kishimoto showed that $O_n \rtimes_{\alpha^\lambda} \mathbb{R}$ is simple if and only if one of the following two conditions holds:

1. $\{1, \lambda_2, \ldots, \lambda_n\}$ generates \mathbb{R} as a closed subgroup and $\lambda_2, \ldots, \lambda_n$ are all positive.

2. $\{1, \lambda_2, \ldots, \lambda_n\}$ generates \mathbb{R} as a closed subsemigroup.

For the special case of O_2, this reduces to saying that λ_2 is irrational, case 1 holding when $\lambda_2 > 0$, case 2 holding when $\lambda_2 < 0$. In [KK2] Kishimoto and Kumjian showed that in either of the above cases $O_n \rtimes_{\alpha^\lambda} \mathbb{R}$ is stable.

This places these simple crossed products of O_n in the class of C^*-algebras targeted for classification by the Elliott program.

Elliott has conjectured that all stable, simple, separable, nuclear C^*-algebras not of type I are characterised up to isomorphism by K-theoretic and tracial invariants. More precisely, the proposed invariant consists of the K_1 group, the ordered K_0 group, the cone of densely defined, lower semi-continuous traces, denoted T^+, and the natural pairing between K_0 and T^+. A proof
of this conjecture would generalise many known results in this direction. We give the following two examples (see [E2] for a survey.)

Example 1.7 A C^*-algebra is called approximately finite dimensional, or AF, if it is the closure of an increasing union of finite dimensional sub-C^*-algebras. These include the uniformly hyperfinite, or UHF, algebras of Glimm, in particular the CAR algebra, also known as M_{2^∞}. In [Br] Bratteli gave the first classification of these algebras, in terms of diagrams displaying the multiplicity data for the sequences of finite dimensional algebras. In [E1], Elliott showed that they could be classified in terms of the invariant described above. In [EHS], Effros, Handelman, and Shen completed the classification picture for AF algebras by characterising precisely the class of ordered abelian groups that occur as K_0 of an AF algebra (the invariant reduces to just the ordered K_0 in the case of an AF algebra, as K_1 is zero and the tracial data is redundant).

Example 1.8 A C^*-algebra is called purely infinite if every hereditary sub-C^*-algebra contains an infinite projection, in other words, one that is Murray-von Neumann equivalent to a proper subprojection of itself. It has been shown by Kirchberg and Phillips (cf. [K] and [KP]) that simple, separable, nuclear, stable, purely infinite C^*-algebras satisfying a condition on their K-theory called the universal coefficient theorem are classified up to isomorphism by their K_0 and K_1 groups (for the algebras in this class the positive cone of K_0 is the whole group and $T^+ = 0$). The Cuntz algebras O_n described above are examples of C^*-algebras in this class. Also in [KK2] Kishimoto and Kumjian showed that in case 2 above $O_n \rtimes_\alpha \mathbb{R}$ is in this class.

It can be shown (cf. [E3]) that the classification conjecture divides into three
disjoint cases as follows.

\begin{align*}
\text{case I} & \quad K_0^+ = 0, \quad T^+ \neq 0 \\
\text{case II} & \quad K_0^+ \cap -K_0^+ = 0, \quad K_0^+ - K_0^+ = K_0, \quad T^+ \neq 0 \\
\text{case III} & \quad K_0^+ = K_0, \quad T^+ = 0
\end{align*}

The AF algebras of example 1.7 fall under case II, and the purely infinite \(C^* \)-algebras of example 1.8 fall under case III, in fact, they may be all of case III. Case I consists of projectionless \(C^* \)-algebras. The first example of an algebra in this class was given by Blackadar in [Bl1]. In [KK1], Kishimoto and Kumjian showed that if the first condition for simplicity is satisfied \(O_n \rtimes_{\alpha} \mathbb{R} \) is in this class.

In [Cu2], Cuntz computed the K-theory of the \(O_n \)'s: \(K_0(O_n) \cong \mathbb{Z}/(n - 1)\mathbb{Z} \) and \(K_1(O_n) \cong 0 \). In [Co], Connes showed that for any \(C^* \)-dynamical system \((A, \mathbb{R}, \alpha) \), \(K_0(A \rtimes_{\alpha} \mathbb{R}) \cong K_1(A) \) and \(K_1(A \rtimes_{\alpha} \mathbb{R}) \cong K_0(A) \). In [KK1], Kishimoto and Kumjian showed that in the first of their two cases \(O_n \rtimes_{\alpha} \mathbb{R} \) has a unique trace. Thus we have that the invariants for the projectionless crossed products of \(O_n \) given above are \(K_0 \cong 0, \quad K_1 \cong \mathbb{Z}/(n - 1)\mathbb{Z}, \) and \(T^+ \cong \mathbb{R}^+ \).

In [E3], Elliott showed that a wide variety of values of the above invariant occur for \(C^* \)-algebras satisfying the classification hypotheses and arising as inductive limits of type I \(C^* \)-algebras. Among the values given by Elliott's construction are those of the simple projectionless crossed products of \(O_n \) mentioned above. This suggested that these algebras could be inductive limits of type I \(C^* \)-algebras. The object of this thesis is to show that, for a dense category 2 subset of the positive multi-indices, the crossed product \(O_n \rtimes_{\alpha} \mathbb{R} \) is an inductive limit of pullbacks of finite direct sums of matrix algebras over the unit interval by finite dimensional \(C^* \)-algebras. The proofs
for general O_n are virtually the same as for the special case of O_2, with some additional bookkeeping. Thus for most of the paper we shall concentrate on O_2 and leave the general case to section §5, where we also deal with some other questions raised along the way. The proof requires that we first undertake a careful analysis of $O_2 \times_{\lambda} \mathbb{R}$ where λ is a rational number different from 1. This analysis is carried out in §2 and §3. The proof of the main result for the case of O_2 is then given in §4.
§2. The Case of Rational λ, Part I

In this section we shall begin to analyse the crossed products $O_2 \rtimes_{\alpha^\lambda} \mathbb{R}$ for λ a rational number not equal to one. Using elementary properties of the constructions, we shall deduce descriptions for them as mapping tori over algebras whose generators satisfy relations that we can describe using diagrams.

Suppose $\lambda = p/q$ is a rational number expressed in lowest terms. Then the action α^λ is periodic with period q. We make the change of variables $t \mapsto qt$ to get an action with period 1 for which the crossed product is isomorphic.

For the remainder of this section we shall call this new action α, explicitly, $\alpha_t(S_1) = e^{2\pi iqt} S_1$, $\alpha_t(S_2) = e^{2\pi iqt} S_2$. In [Bl2 prop. 10.3.2] it is shown that the crossed product $O_2 \rtimes_{\alpha} \mathbb{R}$ is isomorphic to the mapping torus of $O_2 \rtimes_{\alpha} T$ by an automorphism generating the dual action of Z (cf. [OP] for a more general version of this theorem).

To analyse these mapping tori it will be convenient to express O_2 in a different way. Write $M_{2^\infty} \otimes K$ as the infinite tensor product, indexed by the integers, of copies of M_2 trailing off as the identity to the right and as e_1 to the left. (This means that $M_{2^\infty} \otimes K$ is written as the inductive limit of tensor products of finitely many copies of M_2, with the inclusions $M_{2^n} \hookrightarrow M_{2^{n+1}}$ given by $x \mapsto e_{11} \otimes x \otimes 1$, where we have assumed that a fixed set of matrix units is given for each M_2 factor and that the factors are indexed by the integers.) Let β denote the automorphism of $M_{2^\infty} \otimes K$ given by shifting one position to the right in the infinite tensor product. Observe that β scales the unique trace on $M_{2^\infty} \otimes K$ by $1/2$, i.e. $\tau \circ \beta = (1/2)\tau$. If e is the unit of the 0th copy of M_2 (i.e. $e = \ldots e_{11}^{-2} \otimes e_{11}^{-1} \otimes 1 \otimes 1 \otimes \ldots$), then it follows from [Rsr] that $e((M_{2^\infty} \otimes K) \rtimes_{\beta} Z)e \cong O_2$, and in fact more is true. Define an action $\bar{\alpha}_t$ of $T \cong \mathbb{R}/\mathbb{Z}$ on $(M_{2^\infty} \otimes K) \rtimes_{\beta} Z$ as follows. On $M_{2^\infty} \otimes K$ in
its tensor product expression $\tilde{\alpha}_t$ is the product type automorphism given by infinitely many copies of $u_t = \gamma_1^t e_{11} + \gamma_2^t e_{22}$, where γ_1^t and γ_2^t denote $e^{2\pi i t}$ and $e^{2\pi i t}$ respectively. If V is the adjoined unitary in the multiplier algebra of $(M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z}$ implementing β, then $\tilde{\alpha}_t(V) = \gamma_1^t V$. This action fixes e, so we get an action, also denoted $\tilde{\alpha}_t$, of T on $e((M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z})e$. We then have the following.

Lemma 2.1 The C^* dynamical systems (O_2, α_t, T) and $(e((M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z})e, \tilde{\alpha}_t, T)$ are covariantly isomorphic.

Proof: At this point we introduce a simplification in our notation. When we write $e_{ij}^k \otimes \ldots \otimes e_{st}^{k+n}$ for an element of $M_{2^\infty} \otimes K$ it is assumed that all entries to the right of those shown are 1's and all those to the left are e_{11}'s, so for example $e_{11}^{-1} \otimes 1^0 \otimes 1^1$ is the element e. Let $T_1 = Ve$ and $T_2 = (e_{11}^{-1} \otimes e_{21}^0 \otimes 1^1)V e$. Then straightforward computations show that $T_1^* T_1 = T_2^* T_2 = e$, $T_1 T_1^* + T_2 T_2^* = e$, $\tilde{\alpha}_t(T_1) = \gamma_1^t T_1$ and $\tilde{\alpha}_t(T_2) = \gamma_2^t T_2$. Thus by the universal property of O_2 there is an isomorphism of O_2 onto the sub-C^*-algebra of $(M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z}$ generated by T_1 and T_2 intertwining the actions. It remains to show that T_1 and T_2 generate all of $e((M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z})e$. Notice that as $\beta^{-k}(e) \geq e$ in $(M_{2^\infty} \otimes K) \rtimes_\beta \mathbb{Z}$ for $k \geq 0$, we have $eA V^k e = (eA e)(eV e)^k$ for all $A \in M_{2^\infty} \otimes K$. As $eV e = T_1$ we have only to see that $e(M_{2^\infty} \otimes K)e \subseteq C^*(T_1, T_2)$. This follows from the observations that $e(M_{2^\infty} \otimes K)e$ is generated by those tensors with e_{11} in all positions to the left of zero, that if $eA e \in C^*(T_1, T_2)$ for some $A \in M_{2^\infty} \otimes K$ then $\beta^k(eA e) = (Ve)^k A (eV^*)^k = T_1^k A T_1^* e \subseteq C^*(T_1, T_2)$ for all $k \geq 0$, and the calculations $T_1 T_2^* = e_{21}^0$, $T_1 T_1^* = e_{11}^0$ and $T_2 T_2^* = e_{22}^0$, which show that the matrix units for the 0th copy of M_2 are included.

The next step in our analysis is to interchange the order of the two crossed
products. On the dense subalgebra $C_c(Z, M_{2\infty} \otimes K)$ of $(M_{2\infty} \otimes K) \rtimes_\beta Z$ we have $(\tilde{\alpha}_t g)(k) = (t, k)^q \alpha_t (g(k))$ for all $g \in C_c(Z, M_{2\infty} \otimes K)$, $t \in \mathbb{R}/\mathbb{Z}$, and $k \in Z$, where (t, k) denotes the pairing of an element of T with an element of $Z \cong \hat{T}$. Consider the action, denoted $\tilde{\beta}$, on $(M_{2\infty} \otimes K) \rtimes_\tilde{\alpha} T$ defined by $(\tilde{\beta}_k f)(t) = (t, k)^q \beta_k(f(t))$ for all $f \in C_c(T, M_{2\infty} \otimes K)$, $t \in \mathbb{R}/\mathbb{Z}$, and $k \in Z$.

We then have the following lemma, which is easy to check.

Lemma 2.2 The map $(\Phi) : C(T, C_c(Z, M_{2\infty} \otimes K)) \to C_c(Z, C(T, M_{2\infty} \otimes K))$ given by $(\Phi f)(k, t) = (t, k)^q f(t, k)$ for all $t \in \mathbb{R}/\mathbb{Z}$ and $k \in Z$ extends to an isomorphism of $((M_{2\infty} \otimes K) \rtimes_\beta Z) \rtimes_\tilde{\alpha} T$ with $((M_{2\infty} \otimes K) \rtimes_\tilde{\alpha} T) \rtimes_\tilde{\beta} Z$.

Now we dissect the crossed product $(M_{2\infty} \otimes K) \rtimes_\tilde{\alpha} T$ while keeping track of β. If we view $M_{2\infty} \otimes K$ as the limit of the inductive system $M_2 \to M_2 \otimes M_2 \otimes M_2 \to \otimes^5 M_2 \to \ldots$, where the maps are the inclusions given by $x \mapsto e_{11} \otimes x \otimes 1$, we see that the action $\tilde{\alpha}$ is of inductive limit type; that is, it leaves invariant each of the sub-C^*-algebras in this increasing sequence. The crossed product of the limit, $M_{2\infty} \otimes K$, is then the inductive limit of the crossed products $(M_{2n+1}) \rtimes_\tilde{\alpha} T$ with the obvious inclusions. It is easy to check that the map ψ_n given by $(\psi_n x)(t) = x(t)(\otimes^{2n+1} u_t)$ for all $x \in C(T, M_{2n+1})$ gives an isomorphism $\psi_n : (M_{2n+1}) \rtimes_\tilde{\alpha} T \to (M_{2n+1}) \rtimes_{id} T$. The Fourier transform defines an isomorphism $F : (M_{2n+1}) \rtimes_{id} T \to (M_{2n+1}) \otimes C_0(Z)$ by $(F f)(k) = \int_{\mathbb{R}/\mathbb{Z}} f(t, k) dt$ for all $k \in Z$, so we have that $(M_{2\infty} \otimes K) \rtimes_\tilde{\alpha} T$ is AF. To determine its structure completely we have only to check how the inclusions of the $(M_{2n+1}) \rtimes_\tilde{\alpha} T$'s one into the next are transformed by the map ψ_n and the Fourier transform. We get a diagram:
For the first square we see that $(\Gamma_n y)(t) = \gamma_t^1 (e_{11} \otimes y(t) \otimes u_t)$ for all $t \in T$, $y \in C(T, M_{2n+1})$, and for the second $(\Gamma_n x)(k) = e_{11} \otimes (z(2q + k) \otimes e_{11} + z(q + p + k) \otimes e_{22})$, for all $k \in \mathbb{Z}$, $z \in C_c(\mathbb{Z}, M_{2n+1})$. We thus arrive at the following description:

Lemma 2.3 \((M_{2n} \otimes K) \times Z T\) is isomorphic to the limit of the inductive system \(\{M_{2n+1} \otimes C_0(\mathbb{Z}), T_n^2\}_{n=0}^\infty\).

Next we see what becomes of the automorphism $\tilde{\beta}$. We have a similar diagram:

\[
\begin{array}{ccc}
(M_{2n+1}) \times Z T & \xrightarrow{\psi_n^*} & (M_{2n+1}) \times id T \\
\xrightarrow{\phi_n} & (M_{2n+1}) \otimes C_0(\mathbb{Z})
\end{array}
\]

For the first square we get $(\tilde{\beta} y)(t) = \gamma_t e_{11} \otimes y(t)$, for all $t \in T$ and $y \in C(T, M_{2n+1})$, and for the second $(\tilde{\beta} (z))(k) = e_{11} \otimes z(k + q)$ for all $z \in C_c(\mathbb{Z}, M_{2n+1})$.

The dual action $\hat{\alpha}$ of \mathbb{Z} on $e((M_{2n} \otimes K) \times Z)$ is just the restriction of the dual action of \mathbb{Z}, also denoted $\hat{\alpha}$, on $((M_{2n} \otimes K) \times Z) \times Z T \cong ((M_{2n} \otimes K) \times Z T) \times Z$. Since $\hat{\alpha}$ commutes with $\tilde{\beta}$ to describe it we need only see what it does on $(M_{2n} \otimes K) \times Z T$. We again get a diagram:

\[
\begin{array}{ccc}
(M_{2n+1}) \times Z T & \xrightarrow{\psi_n^*} & (M_{2n+1}) \times id T \\
\xrightarrow{\phi_n} & (M_{2n+1}) \otimes C_0(\mathbb{Z})
\end{array}
\]

and it is easy to check that $(\hat{\alpha} f)(t) = (t, 1) f(t)$ for all $t \in T$ and $f \in C(T, M_{2n+1})$, $(\hat{\alpha} f)(k) = f(k + 1)$ for all $k \in \mathbb{Z}$ and $f \in C(T, M_{2n+1})$.

Finally, we cut down by the projection \(e \). Cutting down the inductive system by \(e \) at each stage gives us \(M_2 \rightarrow M_2^2 \rightarrow M_2^3 \rightarrow \ldots \), where the inclusions are \(x \mapsto x \otimes 1 \) at each stage. Using the same symbols for the cutdown versions of the maps found above we get:

\[
\tilde{\beta}''(z)(k) = e_{11} \otimes z(k + q)
\]

\[
(\tilde{\alpha}'' f)(k) = f(k + 1)
\]

\[
(\Gamma^2_{\alpha} z)(k) = z(2q + k) \otimes e_{11} + z(p + q + k) \otimes e_{22},
\]

and \(e((M_2 \otimes K) \rtimes_{\alpha} T)e \cong \lim \{ M_{2n} \otimes C_0(\mathbb{Z}), \Gamma^2_{\alpha} \} \).

We may summarise this situation in the following two diagrams:

Infinite case (\(\lambda = p/q < 0 \))

```
\[
\begin{array}{ccccccc}
\cdots & \circ & \circ & \circ & \circ & \arrow{\alpha^{-1}} & \circ & \cdots \\
\cdots & \circ & \circ & \circ & \circ & \arrow{\alpha^{-1}} & \circ & \cdots \\
\end{array}
\]
```

Diagram 1

Finite case (\(\lambda = p/q > 0 \))

```
\[
\begin{array}{ccccccc}
\cdots & \circ & \circ & \circ & \circ & \arrow{\alpha^{-1}} & \circ & \cdots \\
\cdots & \circ & \circ & \circ & \circ & \arrow{\alpha^{-1}} & \circ & \cdots \\
\end{array}
\]
```

Diagram 2

In these diagrams the dots and downward thin arrows represent the Bratteli diagram of the inductive system we have found for \(e((M_2 \otimes K) \rtimes_{\alpha} T)e \). (The arrows shown are repeated at every dot in the diagram, which extends infinitely to either side and downward.) The thick downward arrow represents an adjoined partial isometry implementing \(\tilde{\beta}'' \) on that summand, i.e. setting a minimal projection in the upper dot equivalent to a minimal projection in the lower dot, and the arrow labelled \(\alpha^{-1} \) is supposed to indicate that the automorphism \(\tilde{\alpha}'' \) moves everything one step over. It is also to be understood that there is a compatibility between the fat arrows and the Bratteli
diagram, the partial isometries with the same range and base spaces being identified. (All this will be precisely stated in the next section.) From this point on we shall only consider the finite case, leaving the infinite case to the closing remarks in section §5. In the next section we shall analyse universal C^*-algebras given by generators and relations corresponding to diagrams such as diagram 2 above, and we shall see that these diagrams actually give complete descriptions of the $O_2
times_{\alpha(p,q)} \mathbb{R}$'s.
§3. The Case of Rational λ, Part II

In this section we shall introduce universal C^*-algebras, called $A(p, q)$, which we describe in terms of generators and relations. These are designed to be universal algebras for the diagrams introduced in the previous section. We shall deduce rules for reading the structure of the $A(p, q)$s off from these diagrams, in particular, showing that they are AF. We shall then be able to complete the analysis of the $O_2 \rtimes_{\alpha(p/q)} \mathbb{R}$ begun in the previous section.

Definition 3.1 Let W^n denote the set of words of length n in the letters a, b. Let p and q be two distinct positive integers with $(p, q) = 1$. Define $A(p, q)$ to be the universal C^*-algebra given by the following presentation:

Generators:

\[
E_{w,v}^{k,n} \quad \text{for } k \in \mathbb{Z}, n \in \mathbb{N}, w, v \in W^n \\
V_{k,n}^{k,n} \quad \text{for } k \in \mathbb{Z}, n \in \mathbb{N}
\]

Relations:

\[
E_{w,v}^{k,n} E_{w,v}^{l,n} = 0 \quad \text{if } l \neq k \tag{1} \\
E_{w,v}^{k,n} p_{w,v}^{k,n} = \delta_{w,v} E_{w,v}^{k,n} \tag{2} \\
E_{w,v}^{k,n} s_{w,v}^{k,n} = E_{w,v}^{k,n} \tag{3} \\
E_{w,v}^{k,n} = E_{w,v}^{k,n+1} + E_{w,v}^{k,q,n+1} \tag{4} \\
V_{k,n}^{k,n} V_{w,v}^{k,n} = \sum_{w,v \in W^n} E_{w,v}^{k,n} \tag{5} \\
V_{k,n}^{k,n} E_{w,v}^{k,n} V_{w,v}^{k,n} = E_{w,v}^{k,n+1} \tag{6} \\
V_{k,n}^{k,n} E_{w,v}^{k,n} = V_{w,v}^{k-p,n+1} E_{w,v}^{k-p,n+1} + V_{w,v}^{k-q,n+1} E_{w,v}^{k-q,n+1} \tag{7}.
\]

(In this presentation the E's correspond to the matrix units of the dots in the diagrams of the last section, and the V's are the adjoined partial isometries.)

The main result of this section is the following.

Theorem 3.2 $A(p, q)$ is a simple AF algebra. Furthermore, the map α given below on the generators defines an automorphism, to be denoted $\hat{\alpha}$, of
$A(p,q)$, and for $\lambda = p/q$ we have $O_2 \rtimes \omega^\lambda \cong M_\alpha(A(p,q))$, the mapping torus of $A(p,q)$ by $\hat{\alpha}$.

Automorphism:

$$\alpha(E_{w,v}^{k,n}) = E_{w,v}^{k-1,n} \quad \alpha(V^{k,n}) = V^{k-1,n}.$$

We shall undertake some preliminary analysis before proving this theorem. For the sake of simplicity we shall in the following assume $q > p$, though obviously analogous statements hold with similar proofs if $p > q$. The K-theory of $A(p,q)$ will be discussed in §5.

Let $S(n,L,K)$ denote the set of generators $\{E_{w,v}^{k,n} | w, v \in W^n, L - K - q \leq k \leq L + K\} \cup \{V^{k,n} | |L-K| \leq K\}$, where L is any integer and K is any positive integer. Let $A(S(n,L,K))$ denote the sub-C^*-algebra of $A(p,q)$ generated by $S(n,L,K)$. From relations 2, 3 and 5 it follows that each $V^{n,k}$ is a sum of terms $(V^{n,k}E_{w,v}^{k,n})$. Now repeated applications of relations 4 and 7 show that for any finite set of generators F, the sub-C^*-algebra of $A(p,q)$ generated by the elements of F is contained in some $A(S(n,L,K))$. This shows that to see that $A(p,q)$ is AF we need only look at pieces of the diagram that look like diagram 3

![Diagram](image)

i.e. two row diagrams whose lower rows contain the ends of the arrows emanating from the dots in their upper rows. (In this diagram we have assumed $p/q < 1/2$.)
Let $C^*(S(n, L, K))$ denote the universal C^*-algebra given by the following presentation. The generators of $C^*(S(n, L, K))$ are identified with the elements of $S(n, L, K)$ and the relations are those in the presentation in definition 3.1 that only involve elements of $S(n, L, K)$. Clearly the identification of the generators gives a surjective map from $C^*(S(n, L, K))$ to $A(S(n, L, K))$.

In the following we shall refer to a diagram of the form

```
  k-q  k-p  k  \\
```

as a mer. The C^*-algebra generated by the elements shown in this diagram is $M_{2n+2} \oplus M_{2n+3}$, where dot $k - q$ includes into the first summand with multiplicity one, dot $k - p$ goes into the second summand with multiplicity one, and dot k includes into each summand with multiplicity one. We shall use these mers to define a relation between the dots in the lower row of a two row diagram such as diagram 3 above. We shall say that dot A is related by a mer to dot B if there is a sub-diagram of the form of diagram 4 with A as the target of the fat arrow and B as the target of a thin arrow. We shall also say that A is related to B by mers if there is a sequence of dots starting with A and ending with B with each dot related to the next (what could also be called being related by a polymer). Finally, we say that any dot is related (by mers) to itself.

Lemma 3.3 Consider the two row diagram corresponding to some set of generators $S(n, L, K)$, and consider a dot, $\#(l, n+1)$ in the lower row that is not related by mers in this diagram to any dot lying to the left of it. Then the elements of the set S described below form the first row of matrix units for a full matrix algebra contained in $C^*(S(n, L, K))$. Furthermore, this matrix
algebra is a direct summand of $C^*(S(n, L, K))$.

Let $w \in W^{n+1}$ be distinguished as the first word in W^{n+1}, and fix an element $s \in W^n$. Then S is the union of those A_v's described below, where v is a word in the letters p and q, for which the elements of A_v are words in the elements of $S(n, L, K)$; explicitly, moving the sum of the letters of v to the right of dot $(l, n+1)$ brings one to a dot still in the diagram for $S(n, L, K)$, and if v begins with a p, then A_v is included only if $V^{l+p,n*r} \in S(n, L, K)$.

\[
A_0 = \{E_{w,v}^{l,n+1} | v \in W^{n+1}\}
\]
\[
A_p = \{E_{w,eb}^{l,n+1}V^{l+p,n*r}E_{as,v}^{l+p,n+1} | v \in W^{n+1}\}
\]
\[
A_q = \{E_{w,sa}^{l,n+1}V^{l+q,n*r}E_{as,v}^{l+q,n+1} | v \in W^{n+1}\}
\]
\[
A_{pq} = \{E_{w,eb}^{l,n+1}V^{l+p,n*r}E_{as,sa}^{l+p,n+1}V^{l+p+q,n*r}E_{as,v}^{l+p+q,n+1} | v \in W^{n+1}\}
\]
\[
A_{qp} = \{E_{w,sa}^{l,n+1}V^{l+q,n*r}E_{as,sa}^{l+q,n+1}V^{l+p+q,n*r}E_{as,v}^{l+p+q,n+1} | v \in W^{n+1}\}
\]

and in general, if m is a word in p's and q's, the sum of whose letters is $|m|$, then an element in A_{mq} consists of the word in A_m ending in $E_{as,sa}^{l+|m|,n+1}$ followed by $V^{l+|m|+q,n*r}E_{as,v}^{l+|m|+q,n+1}$ for some $v \in W^{n+1}$, and an element of A_{mp} consists of the word in A_m ending in $E_{as,sa}^{l+|m|,n+1}$ followed by $V^{l+|m|+p,n*r}E_{as,v}^{l+|m|+p,n+1}$ for some $v \in W^{n+1}$.

Proof: It is straightforward to check that for $v, u \in S$, v^*u is a projection, $vv^* = uu^*$, and $uv^* = 0$ if $u \neq v$, so the elements of S do form the first row for a system of matrix units for a full matrix algebra. Call this matrix algebra F_l and let 1_{F_l} denote its unit. (Strictly speaking we still have to show that F_l is not zero, but this will be obvious from the sequel.)

To show that F_l is a direct summand of $C^*(S(n, L, K))$ it will suffice to show that 1_{F_l} is in the centre of $C^*(S(n, L, K))$ and that $1_{F_l}C^*(S(n, L, K))1_{F_l} = F_l$.
To see that 1_{F_1} is in the centre of $C^*(S(n, L, K))$ it suffices to check that it commutes with the elements of $S(n, L, K)$. We check this first for the Es.

$1_{F_1} = \sum_{m \mid A_m \subseteq S} (\sum_{v \in A_m} v^*v)$. Consider an element $E_{f,g}^{k,n+1}$. As any $v \in A_m$ ends in a matrix unit of dot $\#(l + |m|, n + 1)$, we have that $E_{f,g}^{k,n+1} \perp v^*v$ if $v \in A_m$ and $l + |m| \neq k$. Suppose $l + |m| = k$ and consider $\sum_{v \in A_m} v^*v$. If $|m| = 0$ then this is the unit of the $(k, n + 1)$-th dot and it commutes with $E_{f,g}^{k,n+1}$. If $|m| \neq 0$ then $\sum_{v \in A_m} v^*v = \sum_{v \in A_m} (\sum_{t \in W^{n+1}} E_{t,as}^{k,n+1} v^*v E_{as,t}^{k,n+1})$, and we get $E_{f,g}^{k,n+1} (\sum_{v \in A_m} v^*v) = \sum_{v \in A_m} (E_{f,as}^{k,n+1} v^*v E_{as,t}^{k,n+1}) = (\sum_{v \in A_m} v^*v) E_{f,g}^{k,n+1}$. Thus, we have that 1_{F_1} commutes with $E_{f,g}^{k,n+1}$.

Checking that 1_{F_1} commutes with the Vs in $S(n, L, K)$ is a bit more tedious.

We first introduce some notation. Fix a $V^{n,k}$ in $S(n, L, K)$. Define

$$\Lambda = \{m \mid A_m \subseteq S \text{ and } |m| = k - l\}$$

$$\Lambda_p = \{m \mid A_m \subseteq S \text{ and } |m| = k - l - p\}$$

$$\Lambda_q = \{m \mid A_m \subseteq S \text{ and } |m| = k - l - q\}.$$

Then we have that

$$1_{F_1} V_{k,n} = \sum_{m \in \Lambda} (\sum_{v \in A_m} v^*v) V_{k,n}$$

and

$$V_{k,n} 1_{F_1} = \sum_{d \in \Lambda_p} V_{k,n} (\sum_{v \in A_d} v^*v) + \sum_{t \in \Lambda_q} V_{k,n} (\sum_{v \in A_t} v^*v),$$

where we use the convention that a sum over an empty index set gives 0.

Notice that $\Lambda = \{fp \mid f \in \Lambda_p\} \cup \{gq \mid g \in \Lambda_q\}$. (This uses that $k \neq l$. That $k = l$ is not a possibility follows from our definition of $S(n, L, K)$ and the assumption that dot $(l, n + 1)$ is not related by mers to any dots further left in the diagram for $S(n, L, K)$.) We then have
\[\sum_{m \in \Lambda} \left(\sum_{v \in A_m} v^* v \right) V^{k,n}_m = \sum_{d \in \Lambda_p} \left(\sum_{v \in A_{dp}} v^* v \right) V^{k,n}_d + \sum_{t \in \Lambda_q} \left(\sum_{v \in A_{tq}} v^* v \right) V^{k,n}_t. \]

We shall show that blob 1 is equal to blob 3 (a similar argument shows that blob 2 is equal to blob 4). Look first at blob 3.

\[\sum_{d \in \Lambda_p} \left(\sum_{v \in A_{dp}} v^* v \right) V^{k,n}_d = \sum_{d \in \Lambda_p} \left\{ \sum_{t \in W^{n+1}} E^{k,n+1}_t w^*_d w_d V^{k,n}_d E^{k,n+1}_t V^{k,n}_d \right\}, \]

where \(w_d \) is the word in \(A_d \) that ends in \(E^{k-n,n+1}_{as,eb} \). In the above \(E^{k,n+1}_t V^{k,n}_d w^*_d w_d V^{k,n}_d E^{k,n+1}_t V^{k,n}_d \) is equal to 0 if \(t \) starts with a \(b \), and if \(t = ar \) for some \(r \) in \(W^n \) it is equal to \(E^{k,n+1}_{ar,as} V^{k,n}_d w^*_d w_d E^{k-n,n+1}_{sb,rb} \) by relations 4, 5 and 6.

Thus we get:

\[\sum_{d \in \Lambda_p} \left(\sum_{v \in A_{dp}} v^* v \right) V^{k,n}_d = \sum_{d \in \Lambda_p} \left\{ \sum_{r \in W^n} E^{k,n+1}_{ar,as} V^{k,n}_d w^*_d w_d E^{k-n,n+1}_{rb,rb} \right\} \]

(j)

\[= \sum_{d \in \Lambda_p} \left\{ \sum_{r \in W^n} V^{k,n} E^{k-n,n+1}_{rb,rb} w_d E^{k-n,n+1}_{rb,rb} \right\} \]

where we have used for the second equality that \(E^{k,n+1}_{ar,as} V^{k,n}_d w^*_d w_d E^{k-n,n+1}_{rb,rb} = V^{k,n} (E^{k-n,n+1}_{rb,rb} + E^{k-n,n+1}_{ra,ra}) \) and that \(E^{k-n,n+1}_{ra,ra} w_d = 0 \). Now we look at blob 1.

\[\sum_{d \in \Lambda_p} V^{k,n}_d \left(\sum_{v \in A_d} v^* v \right) = \sum_{d \in \Lambda_p} V^{k,n}_d \left(\sum_{v \in A_d} E^{k-n,n+1}_{ub,ub} + E^{k-n,n+1}_{ua,ua} \right) \left(\sum_{v \in A_d} v^* v \right) \]

\[= \sum_{d \in \Lambda_p} V^{k,n}_d \left(\sum_{v \in A_d} E^{k-n,n+1}_{ub,ub} \right) \left(\sum_{v \in A_d} v^* v \right) \]

\[= \sum_{d \in \Lambda_p} V^{k,n}_d \left\{ \sum_{v \in A_d} E^{k-n,n+1}_{ub,ub} w_d E^{k-n,n+1}_{sb,ub} \right\} \]
where the first equality follows from relations 2, 3, 5 and 6, and the second comes from the fact that elements of A_d for $d \in \Lambda_p$ end in a matrix unit for dot $(k-p, n+1)$. The last expression in the above is clearly equal to the expression for blob 3 given in equation (†) above. Thus we have that 1_{F_i} is in the centre of $C^*(S(n, L, K))$.

To show that $1_{F_i}C^*(S(n, L, K))1_{F_i} = F_i$ it will suffice to show that $1_{F_i}x1_{F_i} \in F_i$ for each element $x \in S(n, L, K)$. For any $E_{f,g}^{k,n+1}$ and $Y \in S$ either $YE_{f,g}^{k,n+1}$ is zero or it is also in S. Thus $1_{F_i}E_{f,g}^{k,n+1}1_{F_i} = (\sum_{Y \in S} Y^*Y)E_{f,g}^{k,n+1}$ $(\sum_{Y \in S} Y^*Y) \in C^*(S) = F_i$. Suppose $Y \in A_m$, so Y ends in a matrix unit of dot $(l+|m|, n+1)$, and suppose $V^{k,n} \in S(n, L, K)$. If $l+|m| \neq k$ then $YV^{k,n} = 0$. If $l+|m| = k$, then $|m| \neq 0$ as we have assumed that dot $(l,n+1)$ is not related by mers to any dots further left in the diagram for $S(n, L, K)$. We have $Y = ZV^{k,n}E_{as,v}^{k,n+1}$ for some $v \in W^{n+1}$ and some element Z of S ending in either a matrix unit for dot $(k-p,n+1)$ or one for dot $(k-q,n+1)$. $YV^{k,n} = Z(V^{k,n}E_{as,v}^{k,n+1}V^{k,n})$. If v begins with a b, then $V^{k,n}E_{as,v}^{k,n+1}V^{k,n} = 0$, and if $v = ar$ for some $r \in W^n$ then $V^{k,n}E_{as,ar}^{k,n+1}V^{k,n} = E_{as,ar}^{k,n+1} = E_{sb,rb}^{k-p,n+1} + E_{sa,ra}^{k-q,n+1}$. Now one of $ZE_{sb,rb}^{k-p,n+1}$, $ZE_{sa,ra}^{k-q,n+1}$ is zero and the other is an element of S. Thus $1_{F_i}V^{k,n}1_{F_i} \in C^*(S) = F_i$.

Lemma 3.4 Consider the diagram describing a set of generators $S(n, L, K)$ and the C^*-algebra $C^*(S(n, L, K))$. Suppose l_1, \ldots, l_m are the numbers of those dots in the lower row of the diagram that are not related by mers to dots further left. Then by lemma 3.3 there is a full matrix algebra F_{l_i}, a direct summand of $C^*(S(n, L, K))$ containing the matrix units of the l_i-th dot. We have in fact $C^*(S(n, L, K)) \cong F_{l_1} \oplus \ldots \oplus F_{l_m}$. Furthermore, the multiplicity with which a dot is contained in F_{l_i} is given by the number of
ways in which it is related by polymers to dot l_i. Finally, the inclusion of the sub-C^*-algebra generated by just the dots into $C^*(S(n, L, K))$ is unital.

Thus if we look back at diagram 3 (even though this is not of the form $C^*(S(n, L, K))$) we see that the algebra generated by the elements shown has three direct summands, of size $3 \cdot 2^{(n+1)}$, $5 \cdot 2^{(n+1)}$ and $3 \cdot 2^{(n+1)}$. Dots $k - 2q$, $k - p - q$ and $k - 2p$ include into these, one dot into each summand in the order shown, each with multiplicity one. Also dot $k - q$ includes with multiplicities one, one and zero respectively into these summands, dot $k - p$ with multiplicities zero, one and one, and dot k with multiplicities one, two and one.

Proof: It is convenient at this point to generalise our notation from lemma 3.3. We add a superscript to the symbols S and A_m defined there to indicate the dot in question, so the sets in lemma 3.3 will now be denoted S^l and A^l_m.

The final comment about the inclusion being unital is obvious.

We show first that the various F_{l_i} are orthogonal. Suppose dots l_1 and l_2 are not related by polymers to dots further left and $l_1 < l_2$. From our assumption if $v \in S^{l_1}$ and $u \in S^{l_2}$ we have that $vu = uv = 0$, since any element of S^l begins with a matrix unit of dot $(l_1, n+1)$ and ends with a matrix unit of a dot related by polymers to dot $(l_1, n+1)$, and similarly for dot $(l_2, n+1)$.

We also have that $v^*u = u^*v = 0$ for any $v \in S^{l_1}, u \in S^{l_2}$, so it remains only to show that $uv^* = vu^* = 0$. We need only consider a $u \in S^{l_2}$ and a $v \in S^{l_1}$ that end in matrix units for the same dot, in fact the same matrix unit, so suppose $u \in A^l_{l_2}$ and $v \in A^l_{l_1}$, where $l_2 + |\mu| = l_1 + |\nu|$. Then since l_1 and l_2 are assumed to be unrelated μ is not a tail of ν, so reading from right to left we must come to a point where μ and ν have different letters, $\mu = rqt$, $\nu = xpt$ say, for some words r, t, x. Looking at the partial isometries u and
v as words in the generators we see that there are partial isometries U_r, U_z and Y such that $U_r \in A_r^{12}, U_z$ ends in a matrix unit $E^{12+|n|, n+1}_{as, sa}, U_z \in A_z^{12}, U_z$ ends the matrix unit $E^{12+|z|, n+1}_{as, sb}, u = U_r Y$ and $v = U_z Y$. That $uv^* = 0$ now follows from observing that U_r and U_z have orthogonal supports.

To show that $C^*(S(n, L, K)) \cong F_l \oplus \ldots \oplus F_m$, it will suffice to show that the unit of $C^*(S(n, L, K))$ is in $F_l + \ldots + F_m$. We shall show that if dot #$(k, n + 1)$ is the fat foot of a mer, then $C^*(S^k) \subseteq C^*(S^{k-p}) + C^*(S^{k-q})$.

Since the unit of dot #$(k, n + 1)$ is in $C^*(S^k)$, this will allow us to conclude, by moving right to left through the diagram, that the unit of $C^*(S(n, L, K))$ is contained in the sum of the $C^*(S^l)$ for dots $#(l, n + 1)$ that are not at the fat feet of mers. These however are exactly the F_ls. So consider a dot #$(k, n + 1)$ that is the fat foot of a mer, and let $v \in S^k$. Then $v = E^{k,n+1}_{w,s} Z$ or $v = E^{k,n+1}_{w,s} X$ for some Z or X in $C^*(S(n, L, K))$ (assume the former, a similar argument works for the other case). Observe that

$$E^{k,n+1}_{w,w} = (E^{k,n+1}_{w,s} V^{k,n} E^{k,q,n+1}_{s,a}) (E^{k,q,n+1}_{w,s} V^{k,n} E^{k,n+1}_{as,w})$$

$$+ (E^{k,n+1}_{w,s} V^{k,n} E^{k,p,n+1}_{s,b}) (E^{k,p,n+1}_{w,s} V^{k,n} E^{k,n+1}_{as,w}),$$

so we have

$$v = (E^{k,n+1}_{w,s} V^{k,n} E^{k,q,n+1}_{s,a}) (E^{k,q,n+1}_{w,s} V^{k,n} E^{k,n+1}_{as,s} Z)$$

$$+ (E^{k,n+1}_{w,s} V^{k,n} E^{k,p,n+1}_{s,b}) (E^{k,p,n+1}_{w,s} V^{k,n} E^{k,n+1}_{as,s} Z).$$

The first expression on the right above is in $C^*(S^{k-p})$ and the second is in $C^*(S^{k-q})$.

Now finally we determine the multiplicities of the inclusions. Suppose as above we have a set of generators $S(n, L, K)$ and that the corresponding diagram contains dots $#(l, n + 1)$ and $#(k, n + 1)$ where the former is not related by polymers to any dots further left. Consider a minimal projection
$E_{w,w}^{k,n+1}$ in dot $\#(k, n+1)$. The multiplicity of the inclusion of this dot into F_l is the rank of the projection $1_{F_l}(E_{w,w}^{k,n+1})1_{F_l}$ in F_l. If $l = k$, then A_0^l is a set of generators for dot $\#(k, n+1)$, while v^*v is orthogonal to dot $\#(k, n+1)$ for any $v \in S^l \setminus A_0^l$, so the statement is clear in this case. If $l + |\mu| \neq k$, then $A_\mu^l \perp E_{w,w}^{k,n+1}$. Thus if there are no words μ for which $l + |\mu| = k$, in particular if $k < l$, then the multiplicity is zero. Notice that $C^*(A_\mu^l)$ is a full matrix algebra whose unit, $1_{A_\mu^l}$, commutes with the matrix units of any dot on the $n+1$st row, so $1_{F_l}(E_{w,w}^{k,n+1})1_{F_l}$ is the sum of the projections $1_{A_\mu^l}(E_{w,w}^{k,n+1})1_{A_\mu^l}$ where μ runs over those words such that $l + |\mu| = k$ (we use here the definition of $S(n, L, K)$). Given such a μ, looking at the formula for the elements of A_μ^l we see that there is exactly one v in A_μ^l for which $v^*v(E_{w,w}^{k,n+1})v^*v = v^*v$, while for all other $u \in A_\mu^l$ we have $u^*uE_{w,w}^{k,n+1} = 0$. Thus the rank of $1_{F_l}(E_{w,w}^{k,n+1})1_{F_l}$ in F_l is the number of words μ for which $l + |\mu| = k$. This is exactly the number of ways by which dot $\#(k, n+1)$ is related by polymers to dot $\#(l, n+1)$.

Proof of theorem 3.2: It follows easily from lemmas 3.3, 3.4 and the discussion preceding lemma 3.3 that $A(p, q)$ is AF. To show that $A(p, q)$ is simple we use the following simple observation: If p and q are coprime natural numbers, then for some natural number $N(p, q)$ all numbers greater than $N(p, q)$ may be written as sums of positive multiples of p and q. Notice that in the diagram for $S(n, L, K)$ the direct summands of $C^*(S(n, L, K))$ are labeled by the last q dots to the left on the lower row, as these dots are unrelated by mers, and every other dot is related to at least one of these by a polymer. Consider the following increasing sequence of sub-C^*-algebras of $A(p, q)$.

$$A_n = A(S(n, -K_n, K_n))$$
where \(K_1 = 1 \) and \(K_{n+1} = K_n + N(p,q) + 1 + q \). Repeated applications of relations (4) and (7) show that \(A(p,q) \) is the inductive limit of the sequence \(A_1 \subseteq A_2 \subseteq \ldots \). Relations (4) and (7) define a map from \(C^*(S(n, -K_n, K_n)) \) to \(C^*(S(n+1, -K_{n+1}, K_{n+1})) \) by sending the terms on the left, read in the first \(C^* \)-algebra to the terms on the right, read in the second \(C^* \)-algebra. Call the limit of this sequence \(C \), and write \(C_n \) for \(C^*(S(n, -K_n, K_n)) \).

The analysis carried out above implies that the map \(C_n \to C_{n+1} \) sends each minimal direct summand of \(C_n \) with non-zero multiplicities into every minimal direct summand of \(C_{n+1} \). It follows from this that all of these maps are injective and that \(C \) is a simple \(C^* \)-algebra. We get a commutative diagram:

\[
\begin{array}{cccccc}
C_1 & \subseteq & C_2 & \subseteq & \cdots & \subseteq & C \\
A_1 & \subseteq & A_2 & \subseteq & \cdots & \subseteq & A(p,q).
\end{array}
\]

Since \(C \) is simple the last downward map is an isomorphism, (with inverse given by the universal property of \(A(p,q) \)), and hence so are all the downward maps at the finite stages. In fact it is now easy to see that \(A(S(n, L, K)) \cong C^*(S(n, L, K)) \) by the obvious map for any \(S(n, L, K) \), and we henceforth identify them in this way.

It is easy to see that the map \(\alpha \) is a bijection of the set of generators with itself that preserves the relations and so extends to an automorphism \(\hat{\alpha} \) of \(A(p,q) \).

The proof is concluded by showing that there exists a covariant homomorphism of \((A(p,q), \hat{\alpha}) \) onto \((O_2 \rtimes_{\alpha^\wedge} T, \hat{\alpha}^\wedge) \) and referring to [Bl] or [OP] (that such a map must be an isomorphism follows from simplicity of \(A(p,q) \)). We have already observed that the \(E \)'s along with relations 1–4 give a presenta-
tion of $e((M_2 \otimes K) \rtimes \alpha \ T)e$. The explicit correspondence is given as follows. If we identify the letter a with 1 and b with 2, then the matrix units $E_{w,w}$ for $w,v \in W^n$ are in a natural correspondence with the matrix units of M_{2n} coming from its expression as an n-fold tensor product of copies of M_2. With this identification $E_{v,w}^{k,n}$ gets mapped to the corresponding matrix unit in the k-th direct summand of $M_{2n} \otimes C_0(Z)$ in our direct limit decomposition of $e((M_2 \otimes K) \rtimes \alpha \ T)e$. Let V denote the adjoined unitary in the multiplier algebra of $(M_2 \otimes K) \rtimes \alpha \ T \rtimes \beta Z$ implementing the action $\tilde{\beta}''$. Then if we assume the identification of the matrix units with the E’s already made, we may send $V_{k,n}$ to $\sum_{w \in W^n}(E_{w,w}^{k,n}Ve)$ and check that relations 1–7 are satisfied. Straightforward computations then show that the *-homomorphism into $O_2 \rtimes \alpha \ T$ given by the universal property of $A(p,q)$ has a dense image and carries α onto α''.

Definition 3.5 In [ELP] the following definitions are given. A **zero dimensional NCCW-complex** is just a finite dimensional C^*-algebra. A **one dimensional NCCW-complex** is a pullback of the following form. Let F_1 and F_2 be two finite dimensional C^*-algebras with unital maps $\alpha_1, \alpha_2 : F_1 \to F_2$. Let $ev(0), ev(1)$ denote the maps from $F_2 \otimes C[0,1]$ to F_2 given by evaluation at zero and one respectively. We then form the pullback of the following diagram:

$$
\begin{array}{c}
F_1 \\
\alpha_1 \circ \alpha_2
\end{array} \downarrow \\
\begin{array}{c}
F_2 \otimes C[0,1] \\
ev(0) \circ ev(1)
\end{array} \quad \longrightarrow \quad F_2 \oplus F_2.
$$

We shall weaken these requirements slightly. Define a **non-unital one dimensional NCCW-complex** as a pull-back as above, but without the requirement that the maps α_1 and α_2 be unital. Given a description of a non-unital one di-
mensional NCCW-complex as above we call F_1 the zero skeleton, $F_2 \otimes C[0,1]$ the one-cell and the map $\alpha_1 \oplus \alpha_2$ the attaching map.

We then have the following corollary.

Corollary 3.6 For any rational number $\lambda \in \mathbb{Q} \cap (0, \infty) \setminus \{1\}$, $O_2 \rtimes_{\alpha_1} \mathbb{R}$ is an inductive limit of non-unital one dimensional NCCW-complexes with the property that every direct summand of the zero skeleton is included with non-zero multiplicity into each direct summand of the fibre of the one-cell at both endpoints by the attaching map.

Proof: Observe that both A_n and $\bar{\alpha}(A_n)$ are included in A_{n+1} in the fashion described. If we let B_n denote the non-unital NCCW-complex consisting of continuous functions from $[0,1]$ into A_{n+1} that are in A_n at zero and whose value at one is $\bar{\alpha}$ of their value at zero, we get an increasing sequence $B_1 \subseteq B_2 \subseteq \ldots$ of sub-C^*-algebras of $M_{\bar{\alpha}}(A(p,q))$ whose union is dense.
§4. Stable Relations and the Main Result for O_2

In this section we shall require some results about stable relations. We refer the reader to [L] and [ELP] for details.

We use the notation $C^*\langle G|R \rangle$ to denote the universal C^*-algebra with generators G subject to the relations R, if it exists. $C^*\langle \{x_1, \ldots, x_n\} | \| x_i \| \leq 2 \rangle$ does exist and we shall denote it by $F_n^{(2)}$. In the following we shall regard relations among n variables to be just elements of this C^*-algebra. We say that a C^*-algebra $C^*\langle G|R \rangle$ is finitely presented if R and G are both finite sets. As observed in [ELP 2.2.5] this is no real constraint on R.

Definition 4.1 (cf. [L 13.2.2]) The n-tuple (a_1, \ldots, a_n) of elements in a C^*-algebra A is called a representation of a set of relations $R \subseteq F_n^{(2)}$ if $\| a_j \| \leq 2$ and $\Phi_a(p) = 0$ for all $p \in R$, where $\Phi_a : F_n^{(2)} \rightarrow A$ is induced by $x_i \mapsto a_i$. If for some $\delta < 1$ only $\| \Phi_a(p) \| \leq \delta$ is required to hold for all $p \in R$, then (a_1, \ldots, a_n) is called a δ-representation.

Definition 4.2 (cf. [L 13.2.1]) By a finite, bounded set of relations in n variables we mean a finite subset R of $F_n^{(2)}$ such that $\| x_j + I_R \| \leq 1$, where I_R is the ideal generated by R.

Definition 4.3 A finite, bounded set of relations R in $F_n^{(2)}$ is said to be weakly stable if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if (a_1, \ldots, a_n) is a δ-representation of R in a C^*-algebra A there exists a representation (b_1, \ldots, b_n) of R in A such that $\| a_i - b_i \| < \varepsilon$ for $i = 1, \ldots, n$.

It follows from the results of [ELP] and [L] that any non-unital one dimensional NCCW-complex can be finitely presented with a weakly stable set of relations (in fact we may assume just one relation).

Lemma 4.4 A projectionless quotient of a non-unital one dimensional
NCCW-complex having the property that every direct summand of the zero skeleton is mapped with non-zero multiplicity into every direct summand of the fibre of the one-cell at both endpoints by the attaching map is a non-unital one dimensional NCCW-complex.

Proof: Suppose we are given a non-unital one dimensional NCCW-complex satisfying our hypotheses: A is isomorphic to the pullback of F_1 and $F_2 \otimes C[0,1]$ with $\alpha_1 \otimes \alpha_2 : F_1 \to F_2 \otimes F_2$ and $ev(0) \otimes ev(1) : F_2 \otimes C[0,1] \to F_2 \otimes F_2$ where F_1 and F_2 are finite dimensional algebras and both α_1 and α_2 map every direct summand of F_1 into every direct summand of F_2 with non-zero multiplicity. Then the primitive spectrum of A, denoted $\sigma(A)$, is the union of a finite set, identified with the spectrum of F_1, and a finite number of copies of \mathbb{R}, identified with $\sigma(F_2 \otimes C_0(0,1))$, with the topology specified as follows (cf. [E3]). The relative topology on $\sigma(F_1)$ is the discrete topology, each line in $\sigma(F_2 \otimes C_0(0,1))$ is open in $\sigma(A)$ and homeomorphic to a line in the relative topology, taking the union of any line in $\sigma(F_2 \otimes C_0(0,1))$ with any point of $\sigma(F_1)$ with the relative topology gives the one point compactification of the line, and every point in $\sigma(A)$ is closed.

Let I be a proper ideal in A. The spectrum of I is then identified in a natural way with an open subset of $\sigma(A)$, and the spectrum of A/I is homeomorphic to the compliment $\sigma(A) \setminus \sigma(I)$. We shall first see what the set $\sigma(I)$ can be.

Consider $\sigma(I) \cap \sigma(F_1)$. Suppose this set is not empty and is not all of $\sigma(F_1)$. Since it is not empty, there is some neighbourhood of a point in $\sigma(F_1)$ contained in it, and this neighbourhood must contain the ends of all of the lines. Thus any point in $\sigma(F_1) \setminus \sigma(I)$ is an isolated point of $\sigma(A/I)$, which therefore has an elementary C^*-algebra as a direct summand, and in particular has projections.
Suppose that \(\sigma(I) \supseteq \sigma(F_1) \). Then we have that \(\sigma(A/I) \) is contained in the union of finitely many closed intervals, and \(A/I \) is a quotient of a finite direct sum of matrix algebras over \(C[0,1] \). As these are unital, so is \(A/I \), in particular, it has a projection.

We have reduced the proof of our lemma to the case in which \(\sigma(I) \) is contained in \(\sigma(F_2 \otimes C(0,1)) \). If we write \(\sigma(F_2 \otimes C(0,1)) \cong L_1 \bigcup \ldots \bigcup L_k \) where each \(L \) is homeomorphic to \(\mathbb{R} \), it is easy to see that, if \(A/I \) is projectionless, then for each \(i \) \(L_i \cap \sigma(I) \) must be connected (otherwise \(A/I \) would contain a quotient of a matrix algebra over \(C[0,1] \)). Furthermore, \(\sigma(I) \) can not intersect all of the \(L_i \)'s non-trivially or we would again have projections in the quotient. Thus we have only to consider the case in which \(\sigma(I) \) is a disjoint union of open intervals, at most one in each \(L_i \), and not in every \(L_i \). We show that in this case the quotient is a non-unital one dimensional NCCW-complex. Suppose \(F_2 = A_1 \oplus \ldots \oplus A_k \), where each \(A \) is a full matrix algebra, and let \(\varphi_j^{(1)}, \varphi_j^{(2)} \) denote the maps from \(F_1 \) to the \(j \)-th minimal direct summand of \(F_2 \) at the left and right endpoints respectively. Suppose further that the ideal \(I \) cuts the lines \(L_1 \) to \(L_k \). Define \(F_1' \) and \(F_2' \) as follows. \(F_1' = F_1 \oplus (A_1^1 \oplus \ldots \oplus A_k^1) \oplus (A_1^2 \oplus \ldots \oplus A_k^2) \) and \(F_2' = (A_1 \oplus \ldots \oplus A_{l-1}) \oplus (A_1^1 \oplus \ldots \oplus A_k^1) \oplus (A_1^2 \oplus \ldots \oplus A_k^2) \), where the superscripts are just to distinguish the two copies. Define maps \(\alpha_1', \alpha_2' \) from \(F_1' \) to \(F_2' \) as follows. \(\alpha_1' \) maps \(F_1 \) into the 1-st \(l-1 \) summands of \(F_2' \) by \(\varphi_1^{(1)}, \ldots, \varphi_{l-1}^{(1)} \) respectively. It maps \(F_1 \) into \(A_1^1, \ldots, A_k^1 \) by \(\varphi_1^{(1)}, \ldots, \varphi_k^{(1)} \) respectively. \(\alpha_1' \) maps \(A_1^1, \ldots, A_k^1 \) to \(A_2^1, \ldots, A_k^2 \) respectively each with the identity map. All the other partial maps for \(\alpha_1' \) are zero. \(\alpha_2' \) maps \(F_1 \) into the first \(l-1 \) summands of \(F_2' \) by \(\varphi_1^{(2)}, \ldots, \varphi_{l-1}^{(2)} \) respectively. It maps \(F_1 \) into \(A_2^1, \ldots, A_k^2 \) by \(\varphi_1^{(2)}, \ldots, \varphi_k^{(2)} \) respectively, it maps \(A_1^2, \ldots, A_k^2 \) to \(A_1^1, \ldots, A_k^1 \) respectively, each with the identity map, and all of the other partial maps for \(\alpha_2' \) are zero. It is then easy to see that \(A/I \) is isomorphic to the non-unital
one dimensional NCCW-complex with zero-skeleton F'_1, one-cell $F'_2 \otimes C[0,1]$ and attaching map $\alpha'_1 \oplus \alpha'_2$.

We shall refer to the additional condition on a non-unital one dimensional NCCW-complex mentioned in lemma 4.4 as the endpoint property.

Definition 4.5 We shall say that a separable C^*-algebra A has the local approximation property with respect to a class of C^*-algebras \mathcal{C} if for every finite set F of elements of A and every $\varepsilon > 0$ there is a $C \in \mathcal{C}$ and a $*$-homomorphism $\varphi : C \to A$ such that each element of F lies within ε of the image of φ.

Lemma 4.6 If a separable projectionless C^*-algebra has the local approximation property with respect to the class of non-unital one dimensional NCCW-complexes having the endpoint property, then it is an inductive limit of a sequence of non-unital one dimensional NCCW-complexes.

Proof: From lemma 4.4 we may assume that the algebra has the local approximation property with injective maps for the class of non-unital one dimensional NCCW-complexes. The statement now follows from [L 15.2.2].

We shall now need some results about continuous fields of C^*-algebras. We refer the reader to [Dix] for a more thorough discussion.

Definition 4.7 A continuous field of C^*-algebras consists of three things: a topological space X, for each point $x \in X$ a C^*-algebra A_x, and a set of sections $\Gamma \subseteq \prod_{x \in X} A_x$ that satisfies the following axioms:

1. Endowed with the pointwise operations, Γ forms a $*$-algebra;
2. For every point $x \in X$, the set $\{f(x) \mid f \in \Gamma\}$ is dense in A_x;
3. The functions $x \mapsto ||f(x)||$ for $f \in \Gamma$ are continuous on X;
4. If $g \in \prod_{x \in X} A_x$ and for every point $t \in X$ and $\varepsilon > 0$ there is a
neighbourhood V of t and an $f \in \Gamma$ such that $\|g - f\| < \varepsilon$ on V, then $g \in \Gamma$.

A set of sections Γ that only satisfies axioms 1-3 is called a continuity structure on $\prod_{x \in X} A_x$. If one has a continuity structure Γ, then one may enlarge Γ to a set of sections satisfying all four axioms.

Example 4.8 The simplest example of a continuous field of C^*-algebras is given by a tensor product, $A \otimes C_0(X)$, where X is a locally compact Hausdorff space. In this case $A_x \cong A$ for all $x \in X$ and Γ is the set of continuous A valued functions on X vanishing at infinity.

Lemma 4.9 Let δ and ε such that $1 > \delta > 0$ and $1 - \delta > \varepsilon > 0$ be given. Let $\{A(t) \mid t \in X\}$ be a continuous field of C^*-algebras over a topological space X with continuous sections Γ, $t_0 \in X$, and suppose that $y_1, \ldots, y_n \in \Gamma$ are such that $\|y_i(t_0)\| < 2$ and $(y_1(t_0), \ldots, y_n(t_0))$ is a δ-representation of a relation $r \in F_n^{(2)}$. Then there is a neighbourhood V of t_0 such that for all $s \in V$, $(y_1(s), \ldots, y_n(s))$ is a $(\delta + \varepsilon)$-representation of r.

Proof: Let P be a $*$-polynomial in the generators x_1, \ldots, x_n of $F_n^{(2)}$ such that $\|P - r\| < \varepsilon/3$ in $F_n^{(2)}$. Since $s \mapsto \|P(y_1(s), \ldots, y_n(s))\|$ is continuous on X there is some neighbourhood V of t_0 on which it varies by less than $\varepsilon/3$ and on which $\|y_i(\cdot)\| < 2$. If $\psi_s : F_n^{(2)} \to A(s)$ denotes the map induced by $x_i \mapsto y_i(s)$, which is well defined for $s \in V$, then $\|\psi_s(r)\| < \delta + \varepsilon$ for all s in V.

Lemma 4.10 Let $\{A(t) \mid t \in X\}$ be a continuous field of C^*-algebras over a topological space X, and suppose that $B \cong C^*(x_1, \ldots, x_n \mid r)$ is a finitely generated C^*-algebra described by a weakly stable relation r. Let $\varepsilon > 0$, $t_0 \in X$ and continuous sections y_1, \ldots, y_m be given. Suppose that there is a $*$-homomorphism $\psi_{t_0} : B \to A(t_0)$ such that $\{y_1(t_0), \ldots, y_m(t_0)\} \subseteq_{\varepsilon/2} \psi_{t_0}(B)$.
Then there is a neighbourhood V of t_0 such that for every $s \in V$ there is an \ast-homomorphism $\psi_s : B \to A(s)$ with $\{y_1(s), \ldots, y_m(s)\} \subseteq \psi_s(B)$.

Proof: Find \ast-polynomials p_1, \ldots, p_m in n variables such that
\[\| p_j(\psi_{t_0}(x_1), \ldots, \psi_{t_0}(x_n)) - y_j(t_0) \| < \frac{3\varepsilon}{4} \text{ for } j = 1, \ldots, m.\]
Find continuous sections z_1, \ldots, z_n such that $z_i(t_0) = \psi_{t_0}(x_i)$ for $i = 1, \ldots, n$. There exists a neighbourhood U of t_0 such that for all $s \in U$ and for each j,
\[\| p_j(z_1(s), \ldots, z_n(s)) - y_j(s) \| < \frac{3\varepsilon}{4}.\]
Choose ε' such that if a_1, \ldots, a_n, a'_1, \ldots, a'_n are elements in a C^*-algebra and $\| a_i - a'_i \| < \varepsilon'$ for $i = 1, \ldots, n$, then for each j, $\| p_j(a_1, \ldots, a_n) - p_j(a'_1, \ldots, a'_n) \| < \varepsilon/4$. There exists a δ such that if (w_1, \ldots, w_n) is a δ-representation of r in a C^*-algebra, then there exists a representation (w'_1, \ldots, w'_n) of r with $\| w_i - w'_i \| < \varepsilon'$ for each i. By lemma 4.9 above there exists a neighbourhood W of t_0 such that if $s \in W$ then $(z_1(s), \ldots, z_n(s))$ is a δ-representation of r. Thus for $s \in W$ there exists a representation (z_1^s, \ldots, z_n^s) of r in $A(s)$ with $\| z_i^s - z_i(s) \| < \varepsilon'$ for each i. Define $\psi_s : B \to A(s)$ for each $s \in U \cap W$ by $x_i \mapsto z_i^s$ for $i = 1, \ldots, n$. Now it is easy to see that for $s \in U \cap W$ we have $\{y_1(s), \ldots, y_m(s)\} \subseteq \psi_s(B)$.

It follows from 3.6 of [Rie] that the $O_2 \rtimes_{\alpha, \lambda, \mathbb{R}} \mathbb{R}$s fit into a continuous field over \mathbb{R} with the image of any fixed element of $C_c(\mathbb{R}, O_2)$ in each crossed product giving a continuous section. (cf. also [ENN].)

Corollary 4.11 Suppose $t \in \mathbb{Q} \cap (0, \infty) \setminus \{1\}$, $\varepsilon > 0$, and $f_1, \ldots, f_n \in C_c(\mathbb{R}, O_2)$ are given. Then there exists a neighbourhood U of t, a non-unital one dimensional NCCW-complex A with the endpoint property, and, for every $s \in U$, an \ast-homomorphism $\psi_s : A \to O_2 \rtimes_{\alpha, \mathbb{R}} \mathbb{R}$ such that
\[\{\varphi_s(f_1), \ldots, \varphi_s(f_n)\} \subseteq \psi_s(A),\]
where φ_s denotes the canonical inclusion of $C_c(\mathbb{R}, O_2)$ into $O_2 \rtimes_{\alpha, \mathbb{R}} \mathbb{R}$.

Proof: The corollary is immediate from lemma 4.10 above and corollary
Theorem 4.12 (The main result for O_2) The set of irrational numbers λ for which $O_2 \times_{\alpha, \lambda} \mathbb{R}$ is an inductive limit of non-unital one dimensional NCCW-complexes is a dense set of Baire category 2 in $(0, \infty)$.

Proof: From lemma 4.6 we only have to show that the local approximation property with respect to the class of non-unital one dimensional NCCW-complexes with the endpoint property holds for such a set. Pick a countable dense subset of $C_c(\mathbb{R}, O_2)$ and call it \mathcal{S}. To conclude that a given $O_2 \times_{\alpha, \lambda} \mathbb{R}$ has the local approximation property it will suffice to show that the elements in $\varphi_s(\mathcal{S})$ may be approximated. From corollary 4.11 above, for each finite subset $F \subseteq \mathcal{S}$, $\varepsilon > 0$, and each $t \in \mathbb{Q} \cap (0, \infty) \setminus \{1\}$ there is a neighbourhood $V(t, F, \varepsilon)$ of t, a non-unital one dimensional NCCW-complex $B(t, F, \varepsilon)$ with the endpoint property and for every $s \in V(t, F, \varepsilon)$ a $*$-homomorphism $\psi(t, s, F, \varepsilon) : B(t, F, \varepsilon) \to O_2 \times_{\alpha, \lambda} \mathbb{R}$ such that $\varphi_s(F) \subseteq \varepsilon \psi(t, s, F, \varepsilon)B(t, F, \varepsilon)$. Let $G(\varepsilon, F) = \bigcup_{t \in \mathbb{Q} \cap (0, \infty) \setminus \{1\}} V(t, F, \varepsilon)$. Then for every $s \in G(\varepsilon, F)$, $\varphi_s(F)$ is approximately contained to within ε by the image of a non-unital one dimensional NCCW-complex with the endpoint property. Observe that $G(\varepsilon, F)$ contains a dense open set. Let ε_n be a sequence of positive numbers converging to zero and let $\mathcal{F}(\mathcal{S})$ denote the set of finite subsets of \mathcal{S}. Then the set $G = \cap_{F \in \mathcal{F}(\mathcal{S})} \cap_{\varepsilon_n} G(\varepsilon_n, F)$ is contained in the set of points s in $(0, \infty)$ for which $O_2 \times_{\alpha, \lambda} \mathbb{R}$ has the local approximation property, and G clearly contains a dense G_δ set. It follows that $G \setminus \mathbb{Q}$ is a dense set of Baire category 2.
§5. O_n and Closing Remarks

In this section we shall describe how the results of sections 2–4 generalise to O_n for $n > 2$. As the statements and their proofs closely resemble those for O_2, we shall be brief.

The actions of \mathbb{R} on O_n that we are considering depend on n real parameters $\lambda_1, \ldots, \lambda_n$. Omitting the trivial case and rescaling we may assume that $\lambda_1 = 1$. By [Rie], we obtain a continuous field of C^*-algebras over \mathbb{R}^{n-1} with fibres $O_n \rtimes_{\alpha^\lambda} \mathbb{R}$, where $\lambda = (1, \lambda_2, \ldots, \lambda_n)$ is a multi-index. As in the case of O_2 we shall analyse the fibres for which α^λ is periodic, that is, when $\lambda_1, \ldots, \lambda_n$ are all rational numbers. If $\lambda = (1, \lambda_2, \ldots, \lambda_n)$ with $\lambda_2, \ldots, \lambda_n \in \mathbb{Q}$, we may, by rescaling the real parameter, get a new action, also to be called α^λ, with parameters $p_1, \ldots, p_n \in \mathbb{Z}$ such that $\gcd(p_1, \ldots, p_n) = 1$. We may restrict attention to the case in which the p_is are all distinct. Now [Bl2 prop. 10.3.2] may be applied to conclude that $O_n \rtimes_{\alpha^\lambda} \mathbb{R} \cong M_{\alpha^\lambda}(O_n \rtimes_{\alpha^\lambda} T)$. We proceed to analyse $O_n \rtimes_{\alpha^\lambda} T$ in the same way as for the special case of O_2, writing O_n as $e(M_{\infty} \otimes K \rtimes_{\beta} \mathbb{Z})e$ etc. We may again display the results of this analysis in diagrams.

![Diagram 5](image1)

![Diagram 6](image2)

In these diagrams, a dot in the jth row represents a copy of M_{nj} and the dots and thin arrows yield a Bratteli diagram for an inductive limit of algebras.
The number of thin downward arrows emanating from each dot is n, the fat arrows, as before denote partial isometries setting minimal projections in the upper dots equivalent to minimal projections in the lower dots. The finite case is distinguished here by having all of the thin arrows on the same side of the fat arrow (in other words, all the parameters of the same sign). By an analysis similar to that carried out in section 3 for the special case of O_2, one can show that the universal C^*-algebra described by a diagram such as diagram 6 above is an AF algebra. Using the observation that if p_1, \ldots, p_n are natural numbers with greatest common divisor 1, then there some natural number N such that any $k \geq N$ may be written as a sum of positive multiples of p_1, \ldots, p_n, we again obtain an inductive system for this algebra in which each minimal direct summand of the n-th algebra is mapped with non-zero multiplicity into each minimal direct summand of the $n+1$-st algebra. From this analogues of theorem 3.2 and corollary 3.6 follow. The arguments of section 4 apply unchanged to prove the following.

Theorem 5.1 (The main result for O_n) The set of points $(\lambda_2, \ldots, \lambda_n)$ in $(0, \infty)^{n-1}$ for which $O_n \times_{\alpha^\lambda} \mathbb{R}$ is an inductive limit of non-unital one dimensional NCCW-complexes contains a dense G_δ set.

Remark 5.2 The diagrammatic representation of the $A(p, q)$'s allows one to read off fairly simple expressions for their K-theory. In section 3 we found that the minimal direct summands of $C^*(S(n, L, K))$ are labelled by the q leftmost dots in the lower row of the diagram for $S(n, L, K)$, $(q > p)$, and that the minimal projections for these dots are minimal in there respective summands of $C^*(S(n, L, K))$. Thus the ordered K_0 group of $A(p, q)$ is a direct limit of copies of the simplicial group \mathbb{Z}^q.

It is easy to see that for any projection in one of the $C^*(S(n, L, K))$'s, $A(p, q)$
contains an equivalent orthogonal projection. Since $A(p, q)$ is a simple AF algebra its K_0 group is a simple ordered group, so every element is an order unit. We thus conclude that the scale of $K_0(A(p, q))$ is the whole positive cone, and that $A(p, q)$ is stable.

It remains only to determine the multiplicity matrices for the maps $\mathbb{Z}^q \to \mathbb{Z}^q$ for some suitably chosen nest of finite dimensional sub-C^*-algebras. We shall describe recursively a sequence of sub-diagrams of the diagram for $A(p, q)$, and the sub-C^*-algebras will be those given by the generators represented in these sub-diagrams. The first sub-diagram, D_0, is just $S(0, 0, 0)$. D_n is a sub-diagram of the diagram for $A(p, q)$ that is contained between the n-th and $n + 1$-st rows of dots. D_{n+1} will be the sub-diagram contained between the $n + 1$-st and $n + 2$-nd rows given as follows. In the $n + 1$-st row D_{n+1} includes all of the dots included in the bottom row of D_n, and one more on the left. D_{n+1} contains all of the arrows emanating from these dots. In row $n + 2$, D_{n+1} contains the dots at the feet of any of the arrows, fat or thin, in D_{n+1}, and any dot between two such. (Note that in this context it would only make sense to talk of omitting fat arrows from such a sub-diagram, as the thin ones represent relations among the generators, not additional generators.) In diagram 7 the leftmost portion of two successive sub-diagrams for $A(1, 2)$ is shown.

If we denote by A_n the sub-C^*-algebra of $A(p, q)$ described by D_n, appli-
cations of the relations described in section 3 imply that $A_n \subseteq A_{n+1}$ and $\bigcup A_n = A(p,q)$.

To determine the multiplicity with which a minimal direct summand of A_n is included into a minimal direct summand of A_{n+1}, we need only check the rank of a minimal projection of the summand of A_n when cut down by the unit of the summand of A_{n+1} in question. Even though the A_n's are not strictly speaking of the form $C^*(S(n,L,K))$, (they differ only in that they may not have an odd number of dots in the top row of their corresponding diagram), the analysis of section 3 may still be applied. A minimal projection in a given minimal direct summand of A_n is given by taking a minimal projection in one of the q leftmost dots in the lower row of D_n, as we saw in section 3. For a particular minimal direct summand of A_{n+1} we find the desired multiplicity by writing one of these projections as a sum of two projections in dots on the $n+2$-nd row and using the rules given in lemma 3.4 for determining the multiplicities with which these dots are included in the minimal direct summands of A_{n+1}. Notice that this implies that the matrix describing the multiplicities depends on only the leftmost portion of D_n and D_{n+1}, as illustrated in diagram 7, and therefore does not depend on n.

We illustrate this procedure for $A(1,2)$. The minimal direct summands for an algebra A_n are labelled by the dots marked A, B in the diagram, and those for A_{n+1} by the dots marked A', B'. To get from A to A' by going down a thin arrow and along a polymer there is only one choice: One goes down to dot R, up to dot Q and down to A'. To get from dot B to dot A' one may go down to R, up to Q and down to A', or down to S, up to A, down to R, up to Q and down to A'. Thus the summand of A_n labelled A includes into
the summand of \(A_{n+1} \) labelled \(A' \) with multiplicity one, the summand of \(A_n \) labelled \(B \) includes into the same summand with multiplicity two. Doing the other two combinations we conclude that

\[
K_0(A(1, 2)) \cong \lim \{ \mathbb{Z}^2, \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \}.
\]

As this matrix has determinant \(-1\), \(K_0(A(1, 2)) \cong \mathbb{Z}^2 \) as a group. Its positive cone is the half space lying above the line through the origin with slope \((1 - \sqrt{5})/2\).

Remark 5.3 Finally, a remark about the diagrams for the infinite case. These are really not important for the object of this paper, but they do perhaps provide some additional insight about the conditions on the projection-less/purely infinite dichotomy found by Kishimoto and Kumjian. Consider diagram 5. Starting at a given dot in this diagram, one may, by going first down to the right several times and then down to the left several times, return by thin arrows to the same column. Thus the fat arrows going straight down set projections in the dot we started with equivalent to sub-projections of themselves, when they are written in terms of elements of a lower row. So in these algebras one can "see" some of the infinite projections.
§6. References

40

