Protective effects of N-acetyl-L-cysteine in endotoxia

HAIBO ZHANG, HERBERT SPAKEN, DUC NAM NGUYEN, MALIK BLENABED, WIM A. BUURMAN, AND JEAN-LOUIS VINCENT
Department of Intensive Care, Erasme University Hospital, Free University of Brussels, B-1070 Brussels, Belgium; and Department of Surgery (Immunology Laboratory), Rijksuniversiteit Limburg, 6200 MD Maastricht, The Netherlands

Zhang, Haibo, Herbert Spaken, Duc Nam Nguyen, Malik BLENABED, Wim A. Buurman, and Jean-Louis Vincent. Protective effects of N-acetyl-L-cysteine in endotoxia. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H1746–H1754, 1994.—Because oxygen free radicals have been implicated in the endothelial cell damage and in the myocardial depression occurring during severe sepsis, we investigated whether N-acetyl-L-cysteine (NAC) could influence the oxygen extraction capabilities during an acute reduction in blood flow induced by cardiac tamponade after endotoxin challenge. Sixteen anesthetized, saline-infused, and ventilated dogs received Escherichia coli endotoxin (2 mg/kg) 30 min before tamponade was induced by repeated bolus injections of warm saline into the pericardial space. Thirty minutes before endotoxin administration, nine dogs received NAC (150 mg/kg, followed by a 20 mg·kg⁻¹·h⁻¹ infusion); the other seven dogs served as a control group. The NAC group maintained higher cardiac index, oxygen delivery (DO₂), and left ventricular stroke work index, but lower systemic and pulmonary vascular resistance, than the control group. The oxygen uptake (VO₂) levels at critical DO₂ (DO₂cri) were identical in the two groups. However, DO₂cri was significantly lower in the NAC than in the control group (8.1 ± 1.7 vs. 10.8 ± 1.8 ml·kg⁻¹·min⁻¹, P < 0.01). Critical oxygen extraction ratio and the slope of the VO₂-to-DO₂-dependent line were higher in the NAC than in the control group (72 ± 14 vs. 55 ± 15% and 0.80 vs. 0.56, respectively; both P < 0.05). The peak lactate and the maximal tumor necrosis factor (TNF) levels were lower in the NAC than in the control group (5.2 ± 0.4 vs. 7.6 ± 0.4 mM, and 0.14 ± 0.03 vs. 1.21 ± 0.58 ng/ml, respectively; both P < 0.01). NAC significantly increased glutathione peroxidase activity. In this model of endotoxic shock, prior administration of NAC improved oxygen extraction capabilities as well as myocardial function. Enhancement of glutathione peroxidase activity and inhibition of TNF release by NAC can be implicated.

oxygen delivery; oxygen extraction; oxygen free radicals; glutathione peroxidase; superoxide dismutase; vitamin E; tumor necrosis factor; tamponade; hypoxia

In septic conditions, tissue oxygen consumption (VO₂) may become dependent on oxygen delivery (DO₂), even when DO₂ is preserved or above normal. The usual occurrence of lactic acidosis in these conditions suggests that the cellular oxygen requirements are not met (24, 32). An increased oxygen demand, a defective oxygen extraction capability, and a depressed myocardial contractility may contribute to the pathological VO₂-DO₂ dependency in these conditions (24, 32). The pathogenesis of impaired tissue oxygen extraction capabilities in septic states could be related to various factors such as the microvascular obstruction by activated cells, the release of vasoactive and toxic substances, and the subsequent endothelial cell damage. Among other substances, oxygen free radicals can have strong damaging effects on the endothelium. They have also been implicated in the pathogenesis of the sepsis-induced myocardial depression (27).

N-acetyl-L-cysteine (NAC) can exert important antioxidant and cytoprotective effects. Its pharmacokinetics are well documented, and its toxicity is low (3, 4, 13, 23). NAC can replenish intracellular glutathione, one of the pivots of cellular defense against oxidative stress (3, 6, 19). NAC has been reported to block the acute toxicity of tumor necrosis factor (TNF) (25). According to recent studies, NAC may also stimulate endothelial-derived relaxing factor (EDRF), which exerts potent vasodilating and platelet-inhibiting effects (29). These effects of NAC may be protective during endotoxia. In endotoxic animals, NAC decreased neutrophil-aggregating activity, markedly reduced pulmonary hypertension, and attenuated vascular permeability (3). In a porcine model of endotoxin-induced pulmonary edema, NAC significantly increased cardiac output and DO₂, lowered pulmonary hypertension and intrapulmonary shunt, and decreased platelet aggregation (23). Although NAC has been shown to increase DO₂, VO₂, and oxygen extraction in patients with fulminant hepatic failure (13), its effects on oxygen extraction capabilities in septic shock have not been well defined. We hypothesized that by its antioxidant, cytoprotective, and microcirculatory effects, NAC could increase oxygen extraction capabilities after endotoxia. The present study was therefore performed to explore the effects of NAC on hemodynamics and oxygen utilization in an endotoxic shock model in which blood flow was progressively reduced by cardiac tamponade.

MATERIALS AND METHODS

Experimental preparation. Sixteen mongrel dogs of either sex ranging in weight from 20 to 28 kg were anesthetized with pentobarbital sodium, administered as a slow intravenous bolus of 30 mg/kg, followed by a constant infusion of 4 mg·kg⁻¹·h⁻¹ with an infusion pump (Infusomat II, B. Braun, Melsungen, Germany). After endotracheal intubation, each dog was ventilated with room air (Servo ventilator 900B, Siemens-Elema, Solna, Sweden). Controlled ventilation was facilitated with pancuronium bromide, 0.15 mg/kg initially, with supplementation at 0.075 mg·kg⁻¹·h⁻¹. Respiratory rate was 12 breaths/min, and tidal volume was adapted to keep end-tidal carbon dioxide tension (47210A Capnometer; Hewlett-Packard, Waltham, MA) between 28 and 38 mmHg. The left femoral artery was catheterized for monitoring of arterial blood pressure and withdrawal of arterial blood samples. The left forepaw vein was used for intravenous administration of pentobarbital. The right forepaw vein was catheterized for intravenous fluid infusion. Through the right external jugular vein, a balloon-tipped pulmonary arterial catheter (model 93A-
N-ACETYLCysteine in Endotoxemia

181-7-F, Baxter Healthcare, Irvine, CA was placed under guidance of pressure waves (monitor Sirecust 302A, Siemens, Erlangen, Germany). A left thoracotomy between the fourth and the fifth intercostal space was performed to introduce a 18-gauge polyethylene catheter (Intracath, Deseret Medical, Sandy, UT) with multiple side holes in the pericardial space via a 2- to 3-mm incision in the anterior pericardium. The catheter was secured with silk purse-string sutures and sealed with medical glue. The pericardial cavity was drained with replacement of 30 ml of warm sterile saline before sealing, the thoracic cavity was then carefully closed in three layers, and a chest tube (Trocar catheter A75, 28Ch-40 cm, Argivie Tullamore, Ireland) was placed through the seventh intercostal space to allow gentle evacuation of the chest. The pericardial catheter was used to inject saline into the pericardial space and to measure intrapericardial pressure.

Experimental protocol. After surgical preparation, the dog was turned to the supine position and allowed to stabilize for 30 min. The pericardial cavity was emptied using a 5-ml syringe to ensure a slightly negative intrapericardial pressure before control measurements (baseline 1). The animals were randomized into two groups, receiving a generous saline infusion at 20 ml·kg⁻¹·h⁻¹ either alone (control) group, n = 7 or in combination with NAC (NAC group, n = 9). In the latter group, NAC (Lysomucil, Inpharzam Zambon Group, Milan, Italy) was administered separately at a loading dose of 150 mg/kg iv (100 mg/ml solution) followed by a continuous infusion of 20 mg·kg⁻¹·h⁻¹ iv (40 mg/ml) until the end of the experiment. Thirty minutes later, a second set of measurements (baseline 2) was obtained. Thereafter, each dog received Estherichia coli endotoxin (lipopolysaccharide E. coli 055:B5, no. 3120-10-7, Difco, Detroit, MI) as a slow intravenous bolus of 2 mg/kg over 2 min. A third set of measurements (baseline 3) was performed 30 min later. Tamponade was then induced by repeated bolus injection of normal saline heated to 37°C into the pericardium. The amount of saline injected was 30 ml for the first two injections, then 20 ml for the next two injections, then 10 ml until Vo₂ started to fall from baseline, and finally 5 ml until mean arterial pressure fell by 80% from baseline. The experiment was then ended. After each injection, the time interval of 15 min was permitted to reach a steady state, characterized by a stable expired oxygen fraction (FVo₂exp), end-tidal carbon dioxide tension, arterial pressure, and heart rate, before the next measurements were obtained. Throughout the study, the core temperature of the animal was kept constant by a heating blanket and operating lamps.

Measures of pressures and cardiac output. Pressures from femoral arterial, pulmonary arterial, and intrapericardial lines were monitored continuously by using pressure transducers (series 966020-01, Baxter Healthcare) with amplifiers (Hellige Servomed, Freiburg, Germany) and a pen recorder (model 2600S Gould Instruments, Cleveland, OH). All pressures were determined at end-expiration. Cardiac output was measured by the thermodilution technique (COM-2, Baxter), using three to five 5-ml bolus injections of cold 5% dextrose in ice water at end-inspiration.

Measurements of expired gases, blood gases, and hemato-
crit. Exhaled gases were directed through a mixing chamber for sampling of FVo₂exp (P. K. Morgan, Chatham, Kent, UK). Expired minute volume (V̇E) was measured with a spirometer (Hansdale Wright Respirimeter, Edmonton, UK) over a 2-min period. Arterial and mixed venous blood samples were simultaneously withdrawn for immediate determination of blood gases (analyser Stat Profile 7, NOVA Biomedical, Waltham, MA). Arterial and mixed venous oxygen saturation and total hemoglobin were measured (OSM 3 Hemoximeter, calibrated for dog blood, Radiometer, Copenhagen, Denmark). Hemato-
crit was determined by capillary method (Hettich Haematokrit, Tuttingen, Germany). Vo₂ was determined from the following equation:

\[Vo₂ (ml·kg⁻¹·min⁻¹) = V̇E (ml/kg) \times \left[\frac{(1 - FCO₂exp - FCO₂imp)}{(1 - FCO₂imp)} \right] \times FCO₂imp - FCO₂exp \]

where FCO₂exp and FCO₂imp represent expired carbon dioxide fraction and inspired oxygen fraction, respectively. Do₂ was derived from the product of cardiac index and arterial oxygen content. The oxygen extraction ratio (O₂ER) was calculated as the ratio of Vo₂ to Do₂. There was a strong correlation between the O₂ER values derived from Vo₂-Do₂ and from the ratio of arteriovenous oxygen difference to arterial oxygen content (r = 0.94 in the control and 0.91 in the NAC group, respectively; both P < 0.01).

Measurements of lactate, plasma proteins, and TNF. Blood lactate concentration was determined by a glucose-lactate analyzer (2300 Stat Plus, Yellow Springs Instruments, Yellow Springs, OH). The normal value is < 2 mM. Plasma proteins were determined by spectrophotometry (Lambda 15 UV/VIS spectrophotometer, Perkin-Elmer, Ueberlingen, Germany) following the Biuret method. TNF levels were measured using ligand immunoassays (W. Burman); the limit of detection of the enzyme-linked immunosorbent assay (ELISA) was 10 pg/ml.

Measurements of glutathione peroxidase activity, superox-
dismutase activity, and plasma vitamin E. Glutathione peroxidase and superoxide dismutase activities were measured spectrophotometrically from arterial blood samples (Lambda 15 UV/VIS spectrophotometer, Perkin-Elmer). Glutathione peroxidase activity of the samples was measured by recording the fall in absorbance at 340 nm of NADPH in the presence of Cumol peroxide as substrate and reduced glutathione as cofactor. Superoxide dismutase activity was measured by inhibition of the superoxide anion-mediated reduction of cytochrome c and was reported in units per gram of proteins. Vitamin E was measured by high-performance liquid chromatography with α-tocopherol acetate as internal standard (Jones Chromatography, Hengoed, Wales, UK).

Statistics. A dual-line regression method was used to determine the critical Do₂ (Do₂crit) from a plot of Vo₂ vs. Do₂ in each individual animal. For each plot, linear regression by best fit was used to calculate straight lines for the supply dependency and independence (24). The point of intersection of their regression lines defined the Do₂crit and the corresponding critical Vo₂. The critical O₂ER (O₂ERcrit) was derived by Vo₂-Do₂ at Do₂crit. An analysis of variance followed by Dunnett’s test was used for statistical analysis. The slopes of Vo₂-Do₂ were tested by covariance analysis. A P value < 0.05 was considered statistically significant. All values are expressed as means ± SD unless otherwise indicated.

RESULTS

The results are shown in Tables 1 and 2 and in Figures 1–8.

Effects of NAC alone. NAC administration was fol-
lowed by no significant change in any monitored parameters, except for a reduction in hematocrit from 42.9 ± 4.8 to 40.7 ± 4.2% (P < 0.05), which was not observed in the control group (from 43.3 ± 7.9 to 42.6 ± 7.1%, P = NS).

Effects of NAC after endotoxin. In the control group, endotoxin administration was followed by a fall in mean arterial pressure from 104 ± 15 to 79 ± 24 mmHg (P <
Table 1. Selected hemodynamic parameters

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Baseline 1</th>
<th>Baseline 2</th>
<th>Baseline 3</th>
<th>IPP, mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>165 ± 16</td>
<td>161 ± 15</td>
<td>168 ± 39</td>
<td>166 ± 28</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>176 ± 15</td>
<td>167 ± 15</td>
<td>180 ± 20</td>
<td>188 ± 42</td>
</tr>
<tr>
<td>Stroke volume, ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>272 ± 12.0</td>
<td>272 ± 7.6</td>
<td>265 ± 16.9</td>
<td>240 ± 11.3</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>265 ± 6.8</td>
<td>287 ± 6.6</td>
<td>280 ± 7.2</td>
<td>272 ± 7.6</td>
</tr>
<tr>
<td>LVSWI, g·m·kg⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>1.51 ± 0.75</td>
<td>1.50 ± 0.56</td>
<td>1.18 ± 0.90</td>
<td>1.10 ± 0.71</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>1.51 ± 0.45</td>
<td>1.65 ± 0.42</td>
<td>1.41 ± 0.50*</td>
<td>1.40 ± 0.50*</td>
</tr>
<tr>
<td>RVSWI, g·m·kg⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>0.14 ± 0.08</td>
<td>0.16 ± 0.07</td>
<td>0.15 ± 0.10</td>
<td>0.15 ± 0.08</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>0.13 ± 0.06</td>
<td>0.17 ± 0.09</td>
<td>0.15 ± 0.08</td>
<td>0.14 ± 0.07</td>
</tr>
<tr>
<td>PAOP, mmHg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>2.9 ± 0.6</td>
<td>3.1 ± 0.9</td>
<td>3.0 ± 0.9</td>
<td>3.0 ± 1.0</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>2.9 ± 0.7</td>
<td>3.1 ± 1.2</td>
<td>3.1 ± 1.0</td>
<td>3.4 ± 1.0</td>
</tr>
<tr>
<td>RAP, mmHg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>2.3 ± 0.2</td>
<td>2.4 ± 0.2</td>
<td>2.3 ± 0.2</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>NAC</td>
<td>9</td>
<td>2.4 ± 0.3</td>
<td>2.6 ± 0.3</td>
<td>2.4 ± 0.2</td>
<td>2.7 ± 0.4</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, no. of dogs; IPP, intrapulmonary pressure; LVSWI, left ventricular stroke work index; RVSWI, right ventricular stroke work index; PAOP, pulmonary artery occlusion pressure; RAP, right atrial pressure. *P < 0.05 vs. control.

A slight decrease in cardiac index and left ventricular stroke work index (NS). Systemic vascular resistance decreased from 2,059 ± 155 to 2,455 ± 269 dyn·s·cm⁻⁵ (P < 0.05), while pulmonary vascular resistance increased from 181 ± 22 to 299 ± 46 dyn·s·cm⁻⁵ (P < 0.05). Do₂ decreased slightly, but VO₂ was preserved by an increase in O₂ER.

In the NAC group, the fall in arterial pressure was significantly less severe than in the control group (from 110 ± 22 to 93 ± 21 mmHg, P < 0.01). There was no decrease in cardiac index or left ventricular stroke work index. Systemic vascular resistance decreased from 2,014 ± 193 to 1,549 ± 151 dyn·s·cm⁻⁵ (P < 0.05). The increase in pulmonary vascular resistance was totally prevented. Do₂ remained stable, but VO₂ and O₂ER increased.

In the control group, like in the NAC group, endotoxin challenge was followed by significant increases in hematocrit and blood lactate levels. TNF increased from 0.21 ± 0.13 to 0.79 ± 0.22 ng/ml (P < 0.01) in the control group, but from 0.10 ± 0.02 to 0.14 ± 0.03 ng/ml (P < 0.05) in the NAC group.

Effects of NAC during tamponade. In the control group, the stepwise increase in intrapulmonary pressure resulted in progressive reductions in arterial pressure, cardiac index, stroke volume, and left ventricular stroke work index. Systemic and pulmonary vascular resistances initially remained relatively stable but increased later during the experiment.

In the NAC group, mean arterial pressure remained at similar levels, but cardiac index, stroke volume, and left ventricular stroke work index were maintained at higher levels than in the control group. The late increase in systemic and pulmonary vascular resistance was largely attenuated. For all data, the pressure-flow relationships indicated that, for any pressure in the systemic or the pulmonary circulation, the cardiac index was higher in the NAC than in the control dogs.

In the control group, despite a progressive reduction in Do₂, VO₂ was initially maintained by an increase in O₂ER. VO₂ declined dramatically at higher intrapulmonary pressure levels when O₂ER appeared to reach a plateau. The Do₂crit was found at 10.8 ± 1.8 ml·kg⁻¹·min⁻¹.

In the NAC group, Do₂ remained higher, and VO₂ was longer maintained. When intrapulmonary pressure reached 11 mmHg, VO₂ had fallen by only 55% from baseline in the treated animals but by 90% in the control group (P < 0.01). Do₂crit was found at 8.1 ± 1.7 ml·kg⁻¹·min⁻¹ (P < 0.01 vs. control). O₂ER increased later than in the control group and did not appear to reach a plateau. O₂ER crit was significantly higher in the NAC than in the control group (72 ± 14 vs. 53 ± 15%; P < 0.05). The slope of VO₂·Do₂ dependency was also steeper in the NAC than in the control group (0.80 ± 0.22 vs. 0.56 ± 0.20, P < 0.05). The maximal O₂ER was 83% in the NAC vs. 70% in the control group (P < 0.05).

In the control group, hematocrit remained stable, and lactate progressively increased. In the NAC group, hematocrit initially tended to be lower and significantly decreased.

Table 2. Values at critical Do₂ and slopes of VO₂·Do₂ relationship

<table>
<thead>
<tr>
<th></th>
<th>Do₂crit, ml·kg⁻¹·min⁻¹</th>
<th>VO₂b, ml·kg⁻¹·min⁻¹</th>
<th>O₂ER, %</th>
<th>VO₂·Do₂, Dependency</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.5 ± 1.8</td>
<td>6.0 ± 1.3</td>
<td>52.9 ± 15.0</td>
<td>0.56 ± 0.20</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>8.1 ± 1.7</td>
<td>5.8 ± 0.5</td>
<td>72.4 ± 13.9</td>
<td>0.80 ± 0.22</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.008</td>
<td>0.555</td>
<td>0.038</td>
<td>0.038</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD. Do₂, oxygen delivery; VO₂, oxygen uptake; Do₂crit, critical Do₂; O₂ER, oxygen extraction ratio; NAC, N-acetyl-L-cysteine.
min E concentration decreased similarly in the two groups.

DISCUSSION

A main finding of our study is that the alterations in oxygen extraction capabilities induced by endotoxin were markedly attenuated by prior administration of NAC. Normal anesthetized dogs generally extract between 60 and 75% of the delivered oxygen before VO₂ becomes supply dependent at a DO₂crit of 7–9 ml·kg⁻¹·min⁻¹ (24, 32). In septic states, this supply-dependency phenomenon can occur at a higher DO₂ value (24, 32). In a recent study using the present tamponade model (32), we observed that DO₂crit was 9 ml·kg⁻¹·min⁻¹ in control animals but 12 ml·kg⁻¹·min⁻¹ in endotoxic animals; O₂ERcrit was 60% in control but 47% in endotoxic animals. In the present study, endotoxic animals had a DO₂crit of 10.8 ml·kg⁻¹·min⁻¹ and an O₂ERcrit of 53%. NAC reduced DO₂crit from 10.8 to 8.1 ml·kg⁻¹·min⁻¹ and increased O₂ERcrit from 53 to 72%. The slope of the dependent portion of the VO₂-DO₂ relationship was also greater in the NAC-treated dogs than in the other animals. Of note is the fact that we maintained a sufficient blood volume by a generous saline infusion throughout these endotoxic experiments (32). Indeed, differences in fluid status between animals have been shown to influence markedly the extraction capabilities in endotoxic shock (7).

In the 30 min preceding the endotoxin challenge, NAC had minimal hemodynamic effects because it has a

![Graphs showing MAP, MPAP, CI, and SVR changes over IPP](image)

Fig. 1. Relationships among mean arterial pressure (MAP), mean pulmonary arterial pressure (MPAP), and cardiac index (CI) and intrapericardial pressure (IPP) in control (circles) and N-acetyl-L-cysteine (NAC)-treated (triangles) groups B1–B3. **Baselines 1–3.** Data are means ± SE. *Statistical significance (P < 0.05) between NAC-treated and control groups.

![Graphs showing SVR and PVR changes over IPP](image)

Fig. 2. Relationship between systemic (SVR) and pulmonary (PVR) vascular resistance and IPP in the 2 groups. See Fig. 1 legend for details.
vasodilation (3, 13, 23). The vasodilating effects of NAC are due to both a direct relaxing action on vascular smooth muscle and an enhanced extracellular NAC-nitrosothiol formation with subsequent indirect stimulation of guanylate cyclase and enhanced guanosine 3',5'-cyclic monophosphate production (14, 30). The pulmonary vascular effects of NAC in endotoxic animals have also been related to an inhibition of the rise in thromboxane B₂ (3). The lower hematocrit level in the treated animals was also consistent with a vasodilating effect of NAC, resulting in a hemodiluting effect. Although a lower systemic vasomotor response to a reduction in blood flow may have detrimental effects, this was not the case in the present study, probably because the relatively slow onset of action (4). Nevertheless, a slight decrease in hematocrit and a slight increase in cardiac index were probably related to some vasodilating effect of NAC. After endotoxin administration and during tamponade, NAC better maintained cardiac index and DO₂ by altering both the peripheral vasculature and the myocardial function.

The NAC-treated dogs maintained a lower systemic vascular resistance than the control animals. In addition, the typical increase in pulmonary vascular resistance observed after endotoxin challenge in animals was blunted in these animals. Because pulmonary artery pressures were somewhat lower and cardiac index was significantly higher in the NAC-treated than in the control animals, we are confident that NAC decreased the pulmonary vascular tone. In addition, the multipoint plots of pressure-flow relationship for the systemic and the pulmonary vasculature showed that NAC-treated animals had lower intravascular pressure at any blood flow. These observations are in keeping with previous experimental and clinical studies reporting that NAC induces a significant systemic and pulmonary

Fig. 3. Pressure-flow relationship for systemic and pulmonary vasculature in the 2 groups of animals. MAP-RAP: mean arterial pressure-right atrial pressure; MPAP-PAOP: mean pulmonary arterial pressure-pulmonary artery occlusion pressure.

Fig. 4. Relationships among oxygen delivery (DO₂), oxygen uptake (VO₂), and oxygen extraction ratio (O₂ER) and IPP in the 2 groups. See Fig. 1 legend for details.
mean arterial pressure followed a similar course in the two groups.

Indeed, a major observation was a higher cardiac index and a higher stroke volume in the NAC-treated group compared to the control group. On this model in which cardiac index was reduced by an obstruction to venous return, right atrial pressure, like intrapericardial pressure, was elevated to identical levels in the two groups of animals so that differences in preload or in ventricular compliance could hardly account for the difference in stroke volume. A lower ventricular afterload may contribute to the higher stroke volume in the NAC-treated dogs but cannot be entirely responsible, since arterial pressure was identical in the two groups. Thus differences in myocardial contractility must be incriminated, as evidenced by the greater left ventricular stroke work index in the NAC group than in the control group. In animal models of myocardial ischemia, NAC has been reported to improve markedly myocardial contractility (8, 9) not only by increasing coronary blood flow but also presumably by increasing the cellular thiol pool of the myocardi-um (22). As a consequence, the calcium gradient from sarcoplasmic reticulum to cytosol may be increased (8). Furthermore, the release of oxygen free radicals has been implicated in the myocardial depression associated with sepsis (27) so that the oxygen free radical scavenging effects of NAC may inhibit the endotoxin-induced myocardial depression.

Before intrapericardial pressure reached critical levels around 8 mmHg, NAC-treated dogs had higher VO2 than the control dogs. We attribute this greater VO2 to the higher blood flow in these animals, whose left ventricular stroke work index nearly doubled. A direct stimulating effect of NAC on cellular metabolism is unlikely and would be expected to be associated with a higher O2ER. It was only when intrapericardial pressure reached high levels that VO2 was maintained by a higher oxygen extraction in the NAC group. In other words, the NAC-treated animals kept their oxygen extraction reserve by a greater oxygen supply to the tissues and used this reserve when tissue blood flow became critically reduced.

NAC may exert these protective effects after endotoxemia by several intertwined mechanisms. An important one is the scavenging effect of NAC on oxygen free radicals, since glutathione is one of the main intracellular defense mechanisms against oxidative stress, and cellular glutathione levels have been shown to be reduced during severe sepsis (18). NAC is a low-molecular-weight precursor to glutathione, which can cross the cell membrane and thereby replenish intracellular glutathione stores (3, 12, 19). We did not measure intracellular glutathione levels, but we determined the plasma activity of glutathione peroxidase, the important enzyme reducing hydrogen peroxide (H2O2) as well as organic hydroperoxides, through the oxidation of reduced gluta-
The blood activity of this enzyme is considered to reflect the tissue antioxidant activity (20). As the glutathione peroxidase activity is tightly coupled to the cellular concentrations of glutathione, its higher activity reflected the replenishment of intracellular glutathione levels under NAC administration (2, 12). We thought that the antioxidant efficacy of NAC in endotoxemic shock might be indirectly monitored through its sparing effects on plasma vitamin E, another important oxygen free radical scavenger, but this was not observed. A possible explanation is that vitamin E predominantly scavenges lipid peroxyl radicals (21), whereas NAC primarily reacts with hydroxyl radical and hydrogen peroxide (2). Although NAC may increase superoxide dismutase activity, it had no such effect in the present study.

NAC can also exert important anti-inflammatory effects on neutrophils and monocytes (19). In our study, this decreased inflammatory response was reflected by a complete inhibition of TNF release by NAC. In a mouse endotoxin model, Peristeris et al. (25) recently demonstrated that pretreatment with NAC significantly inhibited TNF production both in the serum and in the spleen. This attenuating effect of NAC on the TNF production is most likely due to a decreased release of oxygen free radicals. Spin trap techniques can decrease TNF levels and protect mice from endotoxic shock (26). Like glutathione, NAC has no direct effect on TNF production in murine peritoneal cells, but glutathione depletion potentiates TNF production (6, 15). As a consequence, NAC may break a vicious circle in that TNF can increase the production of oxygen free radicals, which in turn may activate inflammatory cells and induce further release of TNF (16).

The increased oxygen extraction in the NAC-treated dogs could also be related to the associated vasodilating effects that may reduce the distance for oxygen diffusion from the capillary to the cells. We did not evaluate the effects of NAC on the distribution of blood flow, which may also have improved with this agent. These effects of NAC are at least in part related to the action of EDRF, an endogenous vasodilator that relaxes vascular smooth muscle and inhibits the aggregation and adhesion of platelets (29). NAC can contribute to EDRF enhancement by several mechanisms. Sulphydryl compounds, including NAC, promote the generation of nitrites and nitric oxide (NO) in the vascular smooth muscle (5). In this regard, thiol specificity may be important. Sulphydryl compounds can also react with NO to form S-nitrosothiols, and both compounds stimulate guanylate cyclase to increase intracellular guanosine 3',5'-cyclic monophosphate levels (29). The production of nitroso compounds may also occur outside the cell when exogenous thiol is provided (1). The attenuation of TNF and oxygen free radical production by NAC may potentiate the EDRF action as TNF and oxygen free radicals either prevent the synthesis or destroy the biological activity of EDRF (10, 11). A recent study by Sunman et al. (30) on isolated rat and human resistance arteries demonstrated that the removal of the vascular endothelium did not alter the vasodilating response to NAC, suggesting a direct endothelium-independent, relaxing action of NAC on vascular smooth muscle. It is intriguing to observe that NAC may inhibit the NO production by blocking the TNF release and at the same time promote an EDRF activity. Because inhibition of NO has not always been found beneficial in endotoxic shock (31), TNF blockade, while maintaining some EDRF activity, may be a rational therapeutic approach provided by NAC.

Some clinical studies have examined the effects of NAC in patients with sepsis and adult respiratory distress syndrome (ARDS). In a preliminary trial in 30 patients with sepsis-induced ARDS, Bernard (2) reported that intravenous administration of NAC markedly increased plasma cysteine as well as plasma and red
cell glutathione levels, which were initially decreased in these patients. They found some beneficial effects of NAC on chest radiograph edema scores, pulmonary vascular resistance, static compliance, DO_2, and VO_2. In 66 ARDS patients, Jepsen et al. (17) demonstrated that NAC acts as an antioxidant with probably beneficial effects on pulmonary microcirculation. In 61 patients with severe respiratory failure, Schaller et al. (28) recently showed that NAC improved blood oxygenation and decreased mortality rate from 35 to 22%. In 20 patients with fulminant hepatic failure, Harrison et al. (13) reported that NAC at an initial dose of 150 mg/kg followed by 50 mg/kg over 4 h enhanced VO_2 by 46% through increasing both DO_2 and O_2ER. These clinical results, although still preliminary, are consistent with the present observations. As our study only investigated the effects of pretreatment with NAC, an important question remains whether NAC could exert these protective effects once the septic response has already developed.

The authors gratefully acknowledge Dr. G. Deby-Dupont and M. Deter at the Laboratory of Biochemistry and Radiobiology-Center for the Biochemistry of Oxygen, Institute of Chemistry, University of Liège, for technical assistance in the determination of the enzymes, and Dr. E. Gerl at the Department of Clinical Chemistry, Vrije Universiteit Brussel, for the measurement of vitamin E. The authors also thank A. Mokbel for assistance with experimental preparation. N-acetyl-L-cysteine was kindly supplied by the Zambon Group.

Address for reprint requests: J.-L. Vincent, Dept. of Intensive Care, Erasme Univ. Hospital, Route de Lennik 808, B-1070, Brussels, Belgium.

Received 15 May 1993; accepted in final form 1 November 1993.

REFERENCES

