Problems in Supply Chain Location and Inventory under Uncertainty

by

Iman Hajizadeh Saffar

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy
Graduate Department of Rotman School of Management
University of Toronto

Copyright © 2010 by Iman Hajizadeh Saffar
Abstract

Problems in Supply Chain Location and Inventory under Uncertainty

Iman Hajizadeh Saffar
Doctor of Philosophy
Graduate Department of Rotman School of Management
University of Toronto
2010

We study three problems on supply chain location and inventory under uncertainty. In Chapter 2, we study the inventory purchasing and allocation problem in a movie rental chain under demand uncertainty. We formulate this problem as a newsvendor-like problem with multiple rental opportunities. We study several demand and return forecasting models based on comparable films using iterative maximum likelihood estimation and Bayesian estimation via Markov chain Monte Carlo simulation. Test results on data from a large movie rental firm reveal systematic under-buying of movies purchased through revenue sharing contracts and over-buying of movies purchased through standard ones. For the movies considered, the model estimates an increase in the average profit per title for new movies by 15.5% and 2.5% for revenue sharing and standard titles, respectively. We discuss the implications of revenue sharing on the profitability of both the rental firm and the studio.

In Chapter 3, we focus on the effect of travel time uncertainty on the location of facilities that provide service within a given coverage radius on the transportation network. Three models - expected covering, robust covering and expected p-robust covering - are studied; each appropriate for different types of facilities. Exact and approximate algorithms are developed. The models are used to analyze the location of fire stations in the city of Toronto. Using real traffic data we show that the current system design is quite far from optimality and provide recommendations for improving the performance.
In Chapter 4, we continue our analysis in Chapter 3 to study the trade-off between adding new facilities versus relocating some existing facilities. We consider a multi-objective problem that aims at minimizing the number of facility relocations while maximizing expected and worst case network coverage. Exact and approximate algorithms are developed to solve three variations of the problem and find expected–worst case trade-off curves for any given number of relocations. The models are used to analyze the addition of four new fire stations to the city of Toronto. Our results suggest that the benefit of adding four new stations is achievable, at a lower cost, by relocating 4-5 stations.
Dedication

To Golnaz,

who optimally covers my heart with absolutely no uncertainty
Acknowledgements

It is my great pleasure to thank those who made this thesis possible. I am extremely grateful to my supervisors, Professors Dmitry Krass, Oded Berman, Joseph Milner, and Opher Baron, for their invaluable help and support throughout my PhD studies. Your insightful comments improved this thesis significantly and your dedication to research excellence set an example I aspire to follow. I am thankful to my external examiner, Professor Yuri Levin, for his encouraging comments and for travelling to Toronto to attend my defense. I would also like to extend my gratitude to Professor Philipp Afeche for serving on my final examination committee.

I would like to thank all my friends and colleagues in the Operations Management area at Rotman. I will always cherish our pleasant and informative discussions. My special thanks goes to the staff at the PhD Program Services office, and in particular Grace Raposo, for making the PhD experience an enjoyable one.

I am deeply grateful to my friends Afra Alishahi, Afsaneh Fazly, Reza Azimi, Ali Zuashkiani, Sara Banki, Somayeh Sadat, Hossein Abouee, Solmaz Kolahi, and Vahid Hashemian for their emotional support and for all the wonderful memories we share. Your company was and is an invaluable asset. Nargol Azimi, I miss you the most.

I owe my deepest gratitude to my family, my parents and parents-in-law for all their love and moral support (You too Choli). Staying apart from you was heartbreakingly difficult. I missed you very much. Finishing the PhD program would not have been possible without your patience and encouragement.

I am eternally indebted to my wife, Golnaz Tajeddin, for her unconditional love and endless patience (especially during those days that I spent more time with my computer than with you). May your light always shine on me.
Contents

1 Introduction 1

2 DVD Allocation for A Multiple-Location Rental Firm 6
   2.1 Introduction ............................................................. 7
   2.2 Literature Review ...................................................... 10
   2.3 A Model for Purchase and Allocation Decisions .................. 13
      2.3.1 Deterministic Problem ........................................... 14
      2.3.2 Stochastic Problem ................................................ 21
   2.4 Estimating Demand and Return from Rental Data ............... 25
      2.4.1 Forecasting in Practice ......................................... 25
      2.4.2 Estimating Return for a New Release ....................... 27
      2.4.3 Comparison of Return Models ................................ 29
      2.4.4 Estimating Demand for a New Release ...................... 30
      2.4.5 Comparison of Demand Models ................................ 36
   2.5 Numerical Results ................................................... 40
   2.6 Discussion and Future Work ....................................... 46

3 The Maximum Covering Problem with Travel Time Uncertainty 51
   3.1 Introduction ............................................................ 52
   3.2 Literature Review ..................................................... 57
   3.3 Model Formulation and Critical Points ............................ 60
# List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Notation</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the return models using the RMSE and BIAS measures.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of demand models using the five proposed measures.</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Results: Comparison of the Firm’s actual purchase quantity and resulting rentals and profits to those given by the optimization fixing the total number of copies purchased, and the optimization allowing the number of copies purchased to be optimized.</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of alternate demand and returns process estimation procedures to our policy given by demand Model 1-MLE and returns Model 4. For each we present the change in rentals and profit versus those of the firm for the fixed copies and optimized copies cases.</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Optimized quantity results while varying $\pi$. (The Fixed Copies case is not sensitive to $\pi$ by definition.)</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>The mean change in supply chain benefits over the standard contract.</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Optimal solutions of the three location problems</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Notation</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>ECP- first facility</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>ECP- second facility</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>RCP- second facility</td>
<td>78</td>
</tr>
<tr>
<td>3.6</td>
<td>Results- ECP</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.7</td>
<td>Results- RCP</td>
<td>84</td>
</tr>
<tr>
<td>3.8</td>
<td>Results- EpRCP</td>
<td>85</td>
</tr>
<tr>
<td>3.9</td>
<td>Current performance of 82 fire stations in Toronto</td>
<td>90</td>
</tr>
<tr>
<td>3.10</td>
<td>Performance of the best-found solution for the 82 fire stations in Toronto</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Notation</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Results- ECRP</td>
<td>116</td>
</tr>
<tr>
<td>4.3</td>
<td>Results- RCRP</td>
<td>117</td>
</tr>
<tr>
<td>4.4</td>
<td>Results- EpRCRP</td>
<td>118</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Rental frontier .......................................................... 17
2.2 Typical observed demand pattern for a movie ................. 26

3.1 Comparing three location problems .............................. 55
3.2 Non-uniform travel speed ......................................... 63
3.3 Link travel times and expected link travel times for \( n = 5 \) .............. 64
3.4 Tightness of the greedy bound, \( k = 2 \) ......................... 72
3.5 Tightness of the greedy bound, \( k \geq 2, \text{scenario} 1 \) ...................... 73
3.6 Example network ...................................................... 74
3.7 Counter example ...................................................... 80
3.8 Network representation of Toronto .............................. 88
3.9 Travel time variation in Toronto ................................. 88
3.10 Fire station locations to provide the current 2-min coverage .......................... 90
3.11 Fire station locations to provide the optimal 2-min coverage ...................... 91
3.12 Trade-off curves for the EpRCP objective (2-min coverage) ................. 93
3.13 Recommended fire station locations in Toronto .................... 94

4.1 A typical trade-off curve for the ECRP ......................... 107
4.2 Trade-off curves for relocating \( k \) fire stations (\( k \) is shown next to each curve) 120
Chapter 1

Introduction

In this thesis, we study three problems on facility location and inventory under uncertainty. In Chapter 2, titled “DVD Allocation for A Multiple-Location Rental Firm”, we focus on the inventory purchasing and allocation problem in a movie rental chain under demand uncertainty. The rental process is what distinguishes and complicates the inventory allocation in a rental chain compared with that of a standard sales-oriented firm. We formulate this problem for new movies as a newsvendor-like stochastic optimization problem with multiple rental opportunities for each copy. We prove that, when the return process is monotone, the profit function of the rental firm is concave and non-decreasing in the initial per store allocations. Hence, a greedy algorithm finds the optimal purchase and allocation decisions for the new release.

We develop an objective method to estimate the demand and return for the new release following the industry practice of using rental data from previously released comparable titles. The observed demand, i.e., rentals, for these comparables is often censored (when there are no movies left on shelf). Our estimate of the demand process from the observed data differs from previous estimates because the demand is dependent and non-identically distributed over multiple periods and locations. We propose and empirically test several demand and return estimation models for a movie rental chain. These
demand and return models extend the aggregate models used in the OM literature to include store–day level variations.

Movies may either be purchased outright (a standard contract) or obtained at a significant discount in exchange for a share of rental and salvage revenue (a revenue sharing contract). We implement the approach on a data set consisting of 20 new releases, 10 purchased under a revenue sharing contract and 10 purchased under a standard one. For each title, one or two comparable titles were given. The data set for all titles consists of the number of copies purchased, their allocation to the stores, and all of the transactions for each film at 450 stores over the first 27 days of rental. In total there are over 9.5 million transactions in the data set. Using the data from the comparables, we estimate the demand and return processes for each newly-released title and make purchase and allocation recommendations for each. Test results reveal systematic under-buying of movies purchased through revenue sharing contracts and over-buying of movies purchased through standard ones. For the movies considered, our model estimates an increase in the average profit per title for new movies by 15.5% and 2.5% for revenue sharing and standard titles, respectively.

Finally, we study how revenue sharing contracts are used in practice in the movie rental supply chain. We observe that in practice suppliers restrict the purchase quantity under revenue sharing contracts. These restrictions limit the potential gain of revenue sharing contracts for rental firms. From the supplier’s point of view, these limits might be justified because if the rental firm were to sell its copies (obtained at a discount) after the first month, this could cannibalize sales by the studio through other channels. We measure the cost to the supply chain due to the distortion created by the purchase quantity restrictions. Surprisingly, we find that had the studio offered the movies for sale under a standard contract, they would have made a greater revenue than they did under the quantity restricted revenue sharing contract.

In Chapter 3, titled “The Maximum Covering Problem with Travel Time Uncer-
Chapter 1. Introduction

tainty”, we study the effect of travel time uncertainty on the location of facilities that provide service within a given coverage radius on the transportation network. Examples of such facilities include fire stations, hospitals, bank branches, supermarkets, etc. For these facilities, customers within a given travel time on the network are covered and demand is lost outside the coverage area. Therefore, uncertainties that affect travel times on the network may limit the accessibility or service level provided by such facilities. In practice, travel times are affected by many factors ranging from predictable daily traffic to even larger variations introduced by more rare, but still predictable, disruptive events such as snow storms or traffic accidents, to less predictable and even more rare extreme events such as hurricanes, earthquakes and terrorist attacks. The objective is to provide an acceptable service level under different travel time conditions. It is important, however, to acknowledge that the concept of an acceptable service level depends on the facility type. For example, while providing good service in most cases and low service in extreme cases may be acceptable for a supermarket, a fire station must be able to provide good service under the most extreme cases.

We model different travel time conditions as different “scenarios” of the transportation network (i.e., a scenario is a snapshot of the network with regard to link lengths), and study three problems based on the definition of acceptable service and whether scenario probabilities are available or not. (i) The expected covering problem locates facilities to maximize the expected weighted cover over all scenarios. This problem is appropriate for locating facilities that are required to provide good coverage on average but not necessarily in extreme cases. (ii) The robust covering problem locates facilities to maximize the minimum weighted cover over all scenarios. This problem is appropriate for locating facilities that are required to provide good coverage in the most extreme cases. (iii) The expected $p$-robust covering problem locates facilities to maximize the expected weighted cover subject to a lower bound on the minimum weighted cover over all scenarios. This problem provides a middle-ground between the previous problems and is appropriate.
for locating facilities that are required to provide good coverage on average but also an acceptable coverage in the most extreme cases.

We first prove that an optimal set of locations for the three problems above exists in a finite set of points on the network. Then, for each problem, we present an integer programming formulation. Solving the integer programming formulation directly is difficult, especially for large problems. So, we develop Lagrangian relaxation and greedy heuristics for the problem. We prove that the worst case relative error of the greedy heuristic is \( \frac{1}{e} \approx 37\% \), and construct an example to show that this bound is tight. Numerical experiments reveal that both Lagrangian and greedy heuristics find good solutions, i.e., with average optimality gaps of 1% and 2%, respectively, in a short time, but neither is dominant for all problem instances. So, a useful strategy would be to solve both heuristics and select the best solution.

Finally, we use real data for the city of Toronto to analyze the current location of fire stations. We find that the current system design is quite far from optimality and propose recommendations for improving the expected and worst case coverage. Based on Toronto Fire Service’s plan of adding 4 more stations in the near future, we determine the best locations for the new stations.

In Chapter 4, titled “The Covering Relocation Problem with Travel Time Uncertainty”, we extend our analysis in Chapter 3 to study the benefit of relocating some existing facilities instead of adding new facilities. The importance of this extension is due to the fact that many operational networks already have some facilities installed. So, management has two options to improve service quality: adding extra facilities or relocating some existing facilities. In general, adding extra facilities requires large investments for obtaining the required physical and human resources to run those facilities while relocating facilities is a less costly alternative.

We consider a location problem with three objectives: (1) minimizing the number of facility relocations, (2) maximizing the expected weighted cover over all scenarios, and
(3) maximizing the minimum weighted cover over all scenarios. We study three single-objective relocation problems based on different combinations of the three objectives above. In practice, it is difficult for decision makers to accurately specify preference weights for the objectives to allow the transformation to a single objective problem. Therefore, we aim at finding trade-off curves/efficient solutions for each problem under study.

We first prove that an optimal set of locations for the three problems above exists in a finite set of points on the network. Then, we present an integer programming formulation and develop Lagrangian relaxation and greedy heuristics for each problem. The models are used to analyze the addition of four new fire stations to the city of Toronto. Our results suggest that the benefit of adding four new stations is achievable, at a lower cost, by relocating 4-5 stations. Additionally, relocating about 30 out of the 82 fire stations would allow Toronto to cover a large part of the coverage gap between the current and optimal locations.
Chapter 2

DVD Allocation for A Multiple-Location Rental Firm

Abstract: This chapter studies the problem of purchasing and allocating copies of films to multiple stores of a movie rental chain. A unique characteristic of this problem is the return process of rented movies. We formulate this problem for new movies as a newsvendor-like problem with multiple rental opportunities for each copy. We provide demand and return forecasts at the store–day level based on comparable films. We estimate the parameters of various demand and return models using an iterative maximum likelihood estimation and Bayesian estimation via Markov chain Monte Carlo simulation. Test results on data from a large movie rental firm reveal systematic under-buying of movies purchased through revenue sharing contracts and over-buying of movies purchased through standard (non-revenue sharing) ones. For the movies considered, our model estimates an increase in the average profit per title for new movies by 15.5% and 2.5% for revenue sharing and standard titles, respectively. We discuss the implications of revenue sharing on the profitability of both the rental firm and the studio.
Chapter 2. DVD Allocation for A Multiple-Location Rental Firm

2.1. Introduction

The $24 billion home entertainment industry in 2007 consisted of two major parts, movie sales ($16 billion) and movie rentals ($8 billion). Consumers spent, on average, about three times as much money buying and renting movies than in purchasing tickets at theater box offices (EMA 2008). Although movie sales have increased steadily at an average annual rate of 11% since 1990, the movie rental industry has remained almost the same size. However, its constant size does not imply that the industry is in steady state. In fact, the movie sales and rental industry has undergone dramatic technological changes affecting all aspects of the industry during the last 15 years.

Introduced in 1997, DVDs have, by far, surpassed traditional video cassettes in both sales and rentals. In 2007, DVDs accounted for 99% of rentals and movies sold (EMA 2008). This technology may soon be supplanted by high definition DVDs. Also, emerging technologies such as Internet movie downloading, video on demand, and self-destructing discs, as well as innovative business models such as rental through the mail (e.g., Netflix) threaten traditional business models. As a result, movie rental firms are under increasing pressure to reduce costs and increase efficiency.

We use data from a multi-store movie rental firm to determine the number of copies of a newly-released film to place in each of its stores. This decision is determined by a number of factors including estimates of the uncertain demand, the process by which copies are returned to the firm, revenues received and costs incurred to purchase copies, and restrictions on the number of copies the firm can purchase. The latter two points are directly related to the contract by which the firm purchases its films. Depending on the film and studio (the supplier) films may either be purchased outright (a standard contract) or obtained at a significant discount in exchange for a share of rental revenue (a revenue sharing contract). Previous research indicates that revenue sharing agreements benefit supply chains (Dana and Spier 2001).

The firm purchased films under standard and revenue sharing contracts. Further, the
studi0s fluctuated between both types of agreements several times over the last few years. Because of the difference in the terms, the minimum number of times a copy has to be rented in order to cover its purchase cost, referred to as the break-even rentals per copy, differs between these purchase agreements. This break-even point drives all purchasing decisions. Managers at the rental firm said that the firm’s break-even rentals per copy are 3 and 1 for standard and revenue sharing contracts, respectively. Further, the firm is restricted in the number of copies it purchases under a revenue sharing contract. Managers at the rental firm confirmed that these constraints were binding for their purchases. Through our study we comment on the effectiveness of these constraints for the supply chain in question.

This chapter has three main contributions. First, we formulate and solve the stochastic optimization problem faced by the firm to purchase inventory for its multiple stores that rent units over multiple periods. We note that the problem can be easily solved using a Lagrangian approach and, except for a constraint on the total number purchased, is separable by store. However, we show that under a reasonable assumption on the pattern of rental returns the problem may be solved through a greedy approach.

Second, we propose and empirically test several demand and return estimation models on data provided by the movie rental chain. Our data set consists of the number of copies allocated and the rental transactions (rentals and returns) for 52 films at 450 stores for the first 27 rental days. The 52 films in the data set are 20 new releases (10 revenue sharing titles and 10 standard titles) and for each title, one or two comparable titles which are used to estimate demand and returns for the new films. These movies were chosen by the rental firm from among numerous titles. In total there are over 9.5 million rental transactions in our database. As detailed below, for each film we estimate the

---

1Given a customer rental price of $5 and a typical 40% revenue sharing with the studio, this would imply a $15 purchase price net of any salvage value under standard contracts and a $3 purchase price under revenue sharing. These values are in line with publicly available contract terms (e.g., Rentrak (2008)). We test robustness of these terms. See details in Section 2.5.
demand and return process for each store and day. As such our data is aggregated by day, so that each film consists of 24,300 data points. The data provided was relatively clean, especially for the higher demand films. However, data cleaning was necessary to adjust for rare cases of missing data, negative rentals, and sales of copies within the first 27 days. 2

The main challenge in estimation is that the observed demand, i.e., sales, for these comparables is often censored (when there are no movies left on shelf). Further, the data only records the number of copies returned, not the duration of the each rental period. Our estimators extend similar models used in the OM literature to include store–day level variations. In particular, demand is autocorrelated and non-identically distributed over the days in the month, and correlated across stores. The return process is estimated by accounting for inventory flows into and out of each store. Using these estimates and expert forecasting opinions, we use data from all of the stores simultaneously to forecast the inventory availability and the demand at each store on each day of the planning horizon. We emphasize that we do not forecast individual movie demand based on the director or associated movie stars. Rather we transform forecasts made by experts using inventory data from comparable films to improve the purchase and allocation of films to the various stores.

Our third contribution is an examination of how standard and revenue sharing contracts are used in practice in the movie rental supply chain. For the standard contract titles, we show that the firm generally purchases too many copies of each film. By purchasing the optimal number of copies for each store, the firm can increase its profits modestly, by approximately 2.5%. However, by reallocating the number of copies they purchase, they can achieve a similar profit (1.1%). This indicates that the profit function is very flat near the optimal solution, and that by combining expert opinion with previous rental data, we can improve results across the chain. In contrast, we show that for

---

2Some data has been disguised for reasons of confidentiality.
the revenue sharing titles, the firm would want to purchase additional copies increasing average profit per title by 15.5%. However, the constraints on the purchase quantity for revenue sharing contracts limit the chain’s ability to benefit. This observation is in contrast to the common approach in the literature that considers revenue sharing as a supply chain coordination mechanism. We discuss this point in our conclusions.

The remainder of the chapter is organized as follows. A brief review of the related literature is presented in Section 2.2. We model the purchase and allocation decisions for the rental firm in Section 2.3. We propose and test several demand and return models in Section 2.4. In Section 2.5 we compare our model’s results to the current practice of the movie rental firm and comment on the effects of revenue sharing and sales cannibalization on the profitability of both the rental firm and the studio. Finally, in Section 2.6 we make some observations on the implications for the movie distribution supply chain.

2.2. Literature Review

Analysis of the movie rental industry has recently become a subject of interest in the Operations Management literature. The most related papers to our study within this stream are Lehmann and Weinberg (2000) who study this industry from the studio’s point of view. They focus on the optimal release times through sequential distribution channels with sales cannibalization (e.g., theaters and rental companies). Pasternack and Drezner (1999) focus on the purchasing problem from the rental firm’s point of view. Based on the demand pattern, they divide the lifetime of a movie into three phases (the first 30 days, the next t periods, and the remainder of time). Tang and Deo (2008) investigate the impact of rental duration on the stocking level, rental price, and retailer’s profit. Our work differs from these papers in that they assume some aggregate demand pattern for a rental store, whereas we investigate several demand patterns empirically for a rental chain at a store-day level. Then, given a forecast based on data, we consider
the allocation to stores alongside the purchase decision. Moreover, we test our purchase
and allocation decisions on real data for a rental chain.

Much of the research in the movie rental industry focuses on designing optimal con-
tracts, see e.g., Cachon and Lariviere (2005). For example, using evidence from this
industry, Dana and Spier (2001) prove that revenue sharing successfully integrates a sup-
ply chain with intrabrand competition among downstream firms. Gerchak et al. (2006)
provide evidence that, in addition to quantity, any contract between studios and rental
chains should focus on the shelf-retention time of movies. They propose the addition
of a license fee or subsidy to the contract to coordinate the chain when considering
shelf-retention. Mortimer (2008) provides an extensive empirical analysis of the movie
rental industry in the U.S.. Her regression analysis shows that revenue sharing contracts
have a small positive effect on retailer’s profit for popular titles, and a small negative
effect for less popular titles. In our numerical analysis we consider both standard and
revenue sharing contracts, taking the contract type as exogenous, and comment on the
effectiveness of revenue sharing contracts.

Other papers study a movie rental firm focusing mainly on asymptotic analysis of
subscription-based rentals, e.g., the Netflix model. Bassamboo and Randhawa (2007)
study the dynamic allocation of new releases to customers that are divided into two
segments based on their rental time distribution (slow, fast). Bassamboo et al. (2007)
extend the analysis to multiple customer segments focusing on the asymptotic behavior
of the usage process. Randhawa and Kumar (2008) show that, under some demand
functions, subscription based rental services provide superior profit for the rental firm
compared to pay-per-use ones, whereas no option is dominant in service quality, consumer
surplus, and social welfare. The context of these papers differs greatly from ours.

A related research stream considers the allocation of inventory from a central ware-
house to multiple locations. Graves et al. (1993) provide a comprehensive review. Some
papers, e.g., McGavin et al. (1993), provide solution procedures assuming the central
warehouse can retain some inventory and allocate it later in the fixed planning horizon. Others, e.g., Federgruen and Zipkin (1984), study how inventory can be periodically balanced among multiple locations. Based on current practice in the movie rental industry we assume that inventory is allocated fully at the beginning of the planning horizon and balancing is not allowed. Moreover, there are two main difference between our work and much of this work: (1) The firm faces a single purchase opportunity and (2) inventory units, i.e., movies, are returned and used as inventory for subsequent time periods.

Previous related work considers statistical estimation of demand from sales data in the presence of stockouts. The importance of sales as censored demand data for the newsvendor problem was highlighted by Conrad (1976). Wecker (1978) shows that using sales data instead of demand causes a negative forecasting bias that increases with stockout frequency. Bell (1978, 1981) presents a newsvendor type analysis to optimize the purchasing and distribution decisions for a magazine and newspaper wholesaler or distributor. Hill (1992) assumes demand to depend on the number of customers as well as customer order sizes, and estimates demand by inflating sales using historical data to adjust for stockouts. Lau and Lau (1996) extend the work of Conrad (1976) to allow for general demand distributions and random censoring levels. The estimation methods in these papers assume that demand among different stores and over different periods is independent and identically distributed (iid). In our study, demand is autocorrelated and non-identically distributed; thus, we can not use either of the methods presented in the above papers. We use two methods to estimate the demand based on sales data. The first is a Bayesian analysis via Markov chain Monte Carlo simulation (see, e.g., Best et al. 1996). Specifically, we use the BUGS software discussed in detail by Lunn et al. (2000). The second method is an iterative maximum likelihood estimation algorithm, similar in nature to the EM algorithm in Dempster et al. (1977).

In our approach to determining the appropriate quantity to purchase for each store, we first estimate the demand and subsequently optimize. There has been some recent
related work on joint estimation and optimization of models. Examples include Liyanage and Shanthikumar (2005), Besbes et al. (2009), and Cooper et al. (2006). Broadly speaking, these papers emphasize using operational objectives when estimating or fitting a model as opposed to more traditional measures such as least squares or maximum likelihoods. These papers apply this concept in relatively simple cases, e.g., Liyanage and Shanthikumar (2005) apply their approach to a newsvendor with a single unknown demand parameter to estimate based on \textit{i.i.d.} demand data. Besbes et al. (2009) considers a statistical test that incorporates decision performance into a measure of statistical validity in the context of fitting a demand curve. Even in these cases the machinery of deriving a best test or optimum decision is significant. While there may be benefits from considering operational performance in our problem, the size of the estimation problem we investigate limits the applicability of these approaches at this time.

2.3. A Model for Purchase and Allocation Decisions

In this section we present the model for determining the purchase quantity for films and their allocation to stores. We consider first a deterministic formulation which allows us to introduce the problem and its solution algorithm. We then generalize the model to the stochastic case. Essential inputs for our model are estimates of demand and return processes. In Section 2.4, we present an estimation approach for demand and return that follows the current practice in the movie rental industry. We note, however, than any alternative estimates for demand and return on a store-day level, e.g., using discrete consumer choice models or neural network models, can be used in our model to find the optimal purchase quantity and allocation to stores.
Chapter 2. DVD Allocation for A Multiple-Location Rental Firm

2.3.1 Deterministic Problem

We first present a mathematical programming formulation of the deterministic problem. Let $S$ be the set of stores and $T = 27$ be the number of days within the release month. Because about 90% of a movie’s rentals occur in the first month after its release, we consider how many copies of a film should be purchased for rent during the first month (27 days) of its release (Pasternack and Drezner 1999). Let $c$ be the maximum number of copies of a film that the rental firm can purchase and let $c_i$ be the number of copies allocated to store $i$, $i \in S$. These are the decision variables in our model. Let $d_{ij}$ be the demand at store $i$ on day $j$, $j = 1, \ldots, T$ and let $s_i = \sum_j d_{ij}$ be the total demand at store $i$. For each store $i$, let $r_{ij}$ be the number of rentals on day $j$ and $l_{ij}$ be the number of copies left on the shelf at the end of day $j$. Let $r_i^j = \{r_{i1}, r_{i2}, \ldots, r_{ij-1}\}$ be the history of rentals through day $j - 1$. Observe $r_{ij} = d_{ij}$ if copies of the movie are left on the shelf at the end of the day, i.e., $l_{ij} > 0$. Otherwise, $r_{ij} \leq d_{ij}$, i.e., demand is censored and the observed rentals is a lower bound on demand.

Let $u_{ij}(r_i^j)$ be the number of copies returned to store $i$ on day $j$ expressly written to depend on the rental history. We assume that these copies are returned at the beginning of day $j$ and placed on the shelf immediately (alternate treatments can be easily accommodated). In the simplistic deterministic problem, $d_{ij}$ is known and $u_{ij}(r_i^j)$ is a deterministic function of $r_i^j$. Let $\pi$ be the number of rentals per copy of a film required for the firm to break-even. This is an exogenous factor determined by the rental firm. Note that $\pi$ is typically larger for copies purchased under standard contracts compared to those purchased under revenue sharing ones. Table 2.1 provides a summary of our notation.

We use the following integer programming formulation to define the firm’s problem
Chapter 2. DVD Allocation for a Multiple-Location Rental Firm

$S$: set of stores

$T$: number of days within the release month

$\pi$: break-even rentals per copy

$c$: maximum number of copies that the rental firm can purchase

$c_i$: number of copies assigned to store $i$

$s_i$: store demand, total demand at store $i$ within the release month

$d_{ij}$: demand at store $i$ on day $j$

$r_{ij}$: number of rentals at store $i$ on day $j$

$l_{ij}$: number of copies left on shelf at store $i$ at the end of day $j$ ($l_{i0} = c_i$)

$h_{ij}$: number of copies off shelf at store $i$ during day $j$

$p_i(c_i)$: total number of rentals in store $i$ in the release month if $c_i$ copies are allocated

$r_i^j$: the history of rentals up to day $j - 1$ at store $i$, i.e., \{r_{i1}, r_{i2}, \ldots, r_{i,j-1}\}

$u_{ij}(r_i^j)$: number of copies returned to store $i$ on day $j$

$p_j$: daily multiplier, percentage of total demand that occurs in day $j$

$\alpha_{ijt}$: fraction of rentals made at store $i$ on day $j$ returned in exactly $t$ days

$A_{ij}$: a unit-mean random variable distributed as demand normalized by its mean

<table>
<thead>
<tr>
<th>Table 2.1: Notation</th>
</tr>
</thead>
</table>

of allocating copies of a film to the stores ($c_i, l_{ij}, r_{ij}$ are decision variables).

\[
\text{max } \sum_{i \in S} \sum_{j=1}^{T} (r_{ij} - \pi c_i) \quad (2.1a)
\]

\[
\text{s.t. } \sum_{i \in S} c_i \leq c \quad (2.1b)
\]

\[
r_{ij} = \min\{d_{ij}, l_{ij-1}\} \quad \text{for all } i \in S, \ j = 1, \ldots, T \quad (2.1c)
\]

\[
l_{ij} = l_{ij-1} - r_{ij} + u_{ij}(r_i^j) \quad \text{for all } i \in S, \ j = 1, \ldots, T \quad (2.1d)
\]

\[
l_{i0} = c_i \in \text{integer} \quad \text{for all } i \in S \quad (2.1e)
\]

\[
c_i, l_{ij}, r_{ij} \geq 0 \quad \text{for all } i \in S, \ j = 1, \ldots, T \quad (2.1f)
\]

Assuming, without loss of generality, that the rental price is $1 and cost per unit is
\( \pi \), the objective (2.1a) maximizes the profit within the release month. Constraint (2.1b) enforces the purchase quantity restriction. Without this restriction, e.g., for titles purchased under standard contracts, the problem is separable by store and is not difficult to solve. Constraint (2.1c) ensures that the rentals for each store-day are less than the demand. Constraint (2.1d) presents the inventory balance equations that define the interaction between the rental process and the return process. The initial allocation of copies to stores, \( c_i \), is the only decision we make and all other variables are calculated based on estimated demand and return and the dynamics of the problem. Therefore, we only impose integrality on the initial allocations in (2.1e). Integrality, itself, is not important in our context and so Problem 1 could be solved as an LP with rounding to achieve a near optimal integral solution. However, the greedy approach we outline next solves the integral problem and will be applied to the stochastic problem as well.

We solve Problem (2.1a)–(2.1f) directly by making several observations. First, because the rental price is constant over the time period, there is no reason not to rent an available copy given demand. Second, under reasonable assumptions, we can show that each copy allocated to a store will have a non-increasing number of rentals compared to the previous copy allocated. Therefore, one can iteratively allocate copies to the stores based on which store will provide the greatest number of rentals until \( c \) copies are distributed or until the marginal cost of purchasing an additional copy at any store exceeds the marginal revenue. That is, a greedy approach can be used. We detail this approach below using what we refer to as the rental frontier. Let \( \rho_i(c_i) = \sum_{j=1}^{T} r_{ij} \) be the total number of rentals in store \( i \) as a function of the number of copies allocated to it, i.e., the rental frontier (see Figure 2.1).

**Example 1.** Suppose the vector \( (2, 1, 1, 1, 1) \) represents the true demand at a store during a five day period and that all copies rented return in exactly two days. The first copy allocated to the store would rent on day 1, return and rent again on day 3, and return and rent again on day 5, renting three times over five days. The remaining
demand during the 5 days is (1, 1, 0, 1, 0). A second copy allocated would rent on day 1, return on day 3, remain on the shelf on day 3 due to lack of demand, and rent on day 4. The remaining demand is (0, 1, 0, 0, 0). Similarly, a third copy allocated rents once on day 2, and additional copies would not rent during the five days. Therefore, for this example the rental frontier is,

\[ \rho_i(c_i) = \begin{cases} 
3 & \text{if } c_i = 1, \\
5 & \text{if } c_i = 2, \\
6 & \text{if } c_i \geq 3.
\end{cases} \]

Given demand, \( d_{ij} \), and return, \( u_{ij}(r^j_i) \), we can perform a similar analysis as follows for each store in the rental chain over the release month in order to determine \( \rho_i(c_i) \), the number of rentals for a given allocation to store \( i \). By definition, \( \rho_i(c_i) \) is bounded above by the total demand, \( s_i \) and for a sufficient number of copies, equals it.

Let \( h_{ij} \) be the number of copies off shelf for store \( i \) during day \( j \) (i.e., rented before day \( j \) and not returned on or before it), i.e.,

\[ h_{ij} = \sum_{t=1}^{j-1} r_{it} - \sum_{t=2}^{j} u_{it}(r^t_i) \]

or alternatively

\[ h_{ij} = c_i - l_{ij} - r_{ij} \]

The number of rentals on each day is the minimum of demand and availability, that is

\[ r_{ij} = \min \{d_{ij}, c_i - h_{ij}\} \quad \text{for all } i \in S \text{ and } j = 1, \ldots, T. \] (2.2)

![Figure 2.1: Rental frontier](image-url)
Let $\rho_{ij}(c_i)$ be the total number of rentals at store $i$ through day $j$ given $c_i$ copies. Then, the rental frontier of store $i$, $\rho_i(c_i) = \sum_{j=1}^{T} r_{ij}$, is given by the recursion,

$$\rho_{ij}(c_i) = \rho_{i,j-1}(c_i) + \min\{d_{ij}, c_i - h_{ij}\} \quad \text{for all } i \in S, \ j = 1, \ldots, T, \tag{2.3}$$

with $\rho_{i,0}(c_i) = 0$. Thus, $\rho_i(c_i) = \rho_{i,T}(c_i)$.

The rental frontier depends greatly on the return process. Let $u_{ijk}$ be the number of copies returned to store $i$ on day $k$ from rentals made on day $j$, $k > j$. Then $u_{ik}(r^k_i) = \sum_{j=1}^{k-1} u_{ijk}$. Let $\alpha_{ijt}$ be the fraction of rentals made on day $j$ returned in exactly $t$ days. Then $u_{ijk} = \alpha_{ij,k-j}r_{ij}$. We define the return process $u_{ik}(r^k_i)$ to be monotone if the fraction of rentals made on day $j$ returned by day $k$ is at least as large as the fraction returned from any subsequent day $j + 1, j + 2, \ldots$. Mathematically, the return process is monotone if

$$\sum_{t=1}^{k-j} \alpha_{ijt} \geq \sum_{t=1}^{k-j-1} \alpha_{i,j+1,t} \quad \text{for all } j = 1, \ldots, T, \ k = 2, \ldots, T, \ i \in S. \tag{2.4}$$

**Proposition 2.1.** If the return process in a store is monotone, the rental frontier of that store, $\rho_i(c_i)$, is a concave non-decreasing function of the number of copies allocated $c_i$.

**Proof.** $\rho_{i1} = \min\{d_{i1}, c_i\}$ is concave and non-decreasing in $c_i$. Assume $\rho_{il}(c_i)$ is concave and non-decreasing in $c_i$ for $l = 1, \ldots, j - 1$. Observe,

$$\rho_{ij}(c_i) = \rho_{i,j-1}(c_i) + \min\{d_{ij}, c_i - h_{ij}\}$$

$$= \rho_{i,j-1}(c_i) + \min\left[d_{ij}, c_i - \sum_{t=1}^{j-1} r_{it} + \sum_{t=2}^{j} u_{it}(r^t_i)\right]$$

$$= \min\left[d_{ij} + \rho_{i,j-1}(c_i), c_i + \sum_{t=2}^{j} u_{it}(r^t_i)\right]$$

Therefore, by induction, if $\sum_{t=2}^{j} u_{it}(r^t_i)$ is concave and non-decreasing in $c_i$, we are
done. Suppressing the first subscript $i \in S$, we have

$$
\sum_{t=2}^{j} u_t(t') = \sum_{t=2}^{j} \sum_{k=1}^{t-1} u_{kt} = \sum_{t=2}^{j} \sum_{k=1}^{t-1} \alpha_{k, t-k} r_k
$$

$$
= \alpha_{11} r_1 + (\alpha_{12} r_1 + \alpha_{21} r_2) + \cdots + (\alpha_{1,j-1} r_1 + \alpha_{2,j-2} r_2 + \cdots + \alpha_{j-1, 1} r_{j-1})
$$

$$
= \alpha_{j-1, 1} r_{j-1} + (\alpha_{j-2, 1} + \alpha_{j-2, 2}) r_{j-2} + \cdots + \left( \sum_{t=1}^{j-1} \alpha_{1t} \right) r_1
$$

$$
= \alpha_{j-1, 1} \sum_{k=1}^{j-1} r_k + (\alpha_{j-2, 1} + \alpha_{j-2, 2} - \alpha_{j-1, 1}) \sum_{k=1}^{j-2} r_k + \cdots + \left( \sum_{t=1}^{j-1} \alpha_{1t} - \sum_{t=1}^{j-2} \alpha_{2t} \right) r_1
$$

$$
= \sum_{t=1}^{j-1} \left( \sum_{t=1}^{j-1} \alpha_{lt} - \sum_{t=1}^{j-1} \alpha_{l+1, t} \right) \rho_t
$$

The coefficients of the $\rho_t$ terms are non-negative by (2.4). From the induction assumption, $\sum_{t=2}^{j} u_{it}(r'_t)$ is the sum of concave non-decreasing functions and is, therefore, concave and non-decreasing.

Using $\rho_i(c_i)$, the problem (2.1a)–(2.1f) is reformulated as

$$
\max_{\sum_{i \in S} c_i \leq c} \sum_{i \in S} (\rho_i(c_i) - \pi c_i)
$$

(2.5)

with $c_i$ integer where $\rho_i(c_i)$ is defined by (2.3). The slope of the rental frontier, $d\rho_i(c_i)/dc_i$ defines the marginal number of rentals obtained for an additional copy allocated to store $i$. Because of the linking constraint, $\sum_{i \in S} c_i \leq c$, we propose the following greedy algorithm to iteratively allocate copies to the stores stopping when $c$ copies are allocated or the slope of all stores is less than $\pi$.

**Algorithm 2.1. Greedy approach - Deterministic Demand**

1. Initialization: Let $\rho_i(0) = 0, c_i = 0$, find $\rho_i(1)$ using (2.3), and let $\text{Slope}_i = \rho_i(1)$ for all $i \in S$.

2. Find maximum slope: Find $i^* = \min \{\arg \max_i \{\text{Slope}_i\}\}$.

3. Check stopping rule: If $\text{Slope}_{i^*} < \pi$ or $\sum_{i \in S} c_i = c$, STOP.
4. Allocate copy: Let $c_i^* = c_i^* + 1$.

5. Update slope: Find $\rho_i^*(c_i^* + 1)$ using (2.3). Let $\text{Slope}_i^* = \rho_i^*(c_i^* + 1) - \rho_i^*(c_i^*)$. Go to Step 2.

Algorithm 2.1 finds the store $i^*$ with the maximum slope of rental frontier in step 2 and allocates a copy to that store in step 4 if this slope is higher than the break-even point and the purchase quantity restriction is not violated. The slope is then updated in step 5 and the procedure repeats. Finding $\rho_i(c_i)$ using (2.3) for each store $i \in S$ has a complexity $O(T)$. So, the initialization step of Algorithm 2.1 has a complexity $O(T|S|)$. Each iteration of the algorithm involves finding $\rho_i(c_i)$ for one store and finding the store with maximum slope that has a complexity $O(T+|S|)$. If $D$ represents the total demand in all store-days, Algorithm 2.1 goes through $O(D)$ iterations, one for each copy allocated to a store. Since, typically, $D$ is much larger than $|S|$, the overall complexity of Algorithm 2.1 is $O((T + |S|)D)$. We show,

**Proposition 2.2.** If the return process is monotone, the greedy allocation in Algorithm 2.1 obtains an optimal solution to problem (2.1a)–(2.1f).

**Proof.** Let $A^* = \{c_i^*)\}_{i \in S}$ denote the vector of optimal allocations provided by the optimization problem given in (2.1a)–(2.1f) and $A^G = \{c_i^G\}_{i \in S}$ denote the vector of greedy allocations obtained from Algorithm 2.1. Under no purchase quantity restrictions, we have for each $i \in S$, by Proposition 2.1

a. If $c_i^* > c_i^G$, the slope of the rental frontier at $c_i^* - 1$ is no more than $\pi$. So, decreasing $c_i^*$ by 1 will not decrease the objective function (2.1a).

b. If $c_i^* < c_i^G$, the slope of the rental frontier at $c_i^*$ is no less than $\pi$. So, increasing $c_i^*$ by 1 will not decrease the objective function (2.1a).
By repeating this analysis we can transform $A^*$ into $A^G$ without worsening the optimal solution. Therefore, $A^G$ is an optimal solution of problem (2.1a)–(2.1f). The proof for the case with purchase quantity restrictions is similar and is omitted.

2.3.2 Stochastic Problem

We now present the more general problem where demand is viewed as uncertain. For store $i$ and day $j$, let random variables $D_{ij}$ be the demand and $R_{ij}$ be the number of rentals. We can write the stochastic problem as

$$\max \sum_{i \in S} \sum_{j=1}^{T} (E[R_{ij}] - \pi c_i) \quad (2.6a)$$

s.t. \hspace{1cm} \sum_{i \in S} c_i \leq c \quad (2.6b)

$$R_{i1} = \min\{D_{i1}, c_i\} \quad \text{for all } i \in S \quad (2.6c)$$

$$R_{ij} = \min \left\{ D_{ij}, c_i - \sum_{t=1}^{j-1} \left(1 - \sum_{k=1}^{j-t} \alpha_{tk}\right) R_{it} \right\} \quad \text{for all } i \in S, j = 2, \ldots, T \quad (2.6d)$$

$c_i \in \text{integer}, c_i \geq 0 \quad \text{for all } i \in S \quad (2.6e)$

In this formulation we use the $\alpha_{tk}$ notation to express the fraction of day $t$ rentals returned after $k$ days as opposed to the equivalent $u_{ik}(r^k_i)$ notation. Based on our estimation procedures discussed in Section 2.4, we find this to be a convenient notation. Further, we show there that we can best estimate the demand process, $D_{ij}$, as the product of two independent random variables, $S_i$, the total demand for store $i$ and $P_j$, a multiplier representing the fraction of demand realized on day $j$. Let $S_i$ have mean $s_i$ and variance $\sigma_{s_i}^2$; and $P_j$ have mean $p_j$ and variance $\sigma_{p_j}^2$. Then,

$$Pr(D_{ij} \leq d_{ij}) = Pr(S_i P_j \leq d_{ij}).$$

Observe that problem (2.6a)–(2.6e) is a generalization of the newsvendor problem. There is one purchase that is used to satisfy demand over a finite horizon. If the release
Chapter 2. DVD Allocation for A Multiple-Location Rental Firm

month consisted of only one day, then it would be a newsvendor problem where for each store \( i \) the problem is reduced to maximizing \( E[\min\{D_{i1}, c_i\}] - \pi c_i \). However, given the return process and multiple days, the problem is more involved.

We approach the problem by first letting \( A_{ij} \) be a unit-mean random variable distributed as \( D_{ij} \) normalized by its mean, i.e.,

\[
Pr(D_{ij} \leq d_{ij}) = Pr\left(A_{ij} \leq \frac{d_{ij}}{s_ip_j}\right).
\]

The rental frontier is now given by the random variable \( R_i(c_i) = \sum_{j=1}^{T} R_{ij} \), where we define \( R_{ij} \) in (2.6c)–(2.6d). We can then substitute \( D_{ij} = s_ip_j \times A_{ij} \). For any realization \( \bar{a}_i = \{a_{ij}\}_{j \in [1,T]} \) of \( \{A_{ij}\}_{j \in [1,T]} \), the rental frontier, \( r_i(c_i, \bar{a}_i) \) can be calculated as:

\[
\begin{align*}
    r_{i1} &= \min\{s_ip_1a_{i1}, c_i\} \\
    r_{ij} &= \min\left\{s_ip_ja_{ij}, c_i - \sum_{t=1}^{j-1} \left(1 - \sum_{k=1}^{j-t} \alpha_{tk}\right)r_{it}\right\} \quad \text{for all } j = 2, \ldots, T \\
    r_i(c_i, \bar{a}_i) &= \sum_{j=1}^{T} r_{ij}.
\end{align*}
\]

Given a distribution of all \( A_{ij} \)'s, the expected rental frontier for each store can be found. We have,

**Proposition 2.3.** If the return process is monotone, the expected slope of the rental frontier for store \( i \) is non-increasing in the number of copies allocated to it, \( c_i \).

**Proof.** For a given vector of demand realizations, the rental frontier for store \( i \) is concave by Proposition 2.1. So, the slope of the rental frontier is non-increasing. The expected slope of the rental frontier is a convex combination of the slope per each demand realization. So, it is non-increasing in \( c_i \). \( \square \)

In our approach to the stochastic optimization problem, we estimate the slope of the rental frontier in Algorithm 2.2 using a sample paths. To do so we require a distribution for the \( A_{ij} \)'s and estimates of the mean and variance of \( S_i \) and \( P_j \). In Section 2.4.4 we
study how to estimate these means and variances. To simplify the optimization we make several assumptions regarding the $A_{ij}$’s. First, we propose to aggregate $A_{ij}, j = 1, \ldots , T$ into $A_i$, doing so in order to reduce the number of samples required. That is, we assume that the $A_{ij}$ are identically distributed across days, i.e. $A_{ij} \equiv A_i$ for all $j$ for some unit mean $A_i$. The variance of $A_{ij}$ is given by

$$
\sigma^2_{A_{ij}} = \frac{\sigma^2_{D_{ij}}}{(s_i p_j)^2} = \frac{\sigma^2_{p_j} s_i^2 + \sigma^2_{s_i} (p_j^2 + \sigma^2_{p_j})}{(s_i p_j)^2}
$$

$$
= \frac{\sigma^2_{s_i}}{s_i^2} \left[ 1 + \frac{\sigma^2_{p_j}}{p_j^2} \left( 1 + \frac{s_i^2}{\sigma^2_{p_j}} \right) \right]
$$

We propose to let the variance of $A_i$ be given by

$$
\sigma^2_{A_i} = \frac{\sigma^2_{s_i}}{s_i^2} \left[ 1 + v \left( 1 + \frac{s_i^2}{\sigma^2_{p_j}} \right) \right]
$$

where $v = 1/T \sum_{j=1}^{T} \sigma^2_{p_j}/p_j^2$ is the mean squared coefficient of variation of the $P_j$’s. We performed paired t-tests per store per movie to find whether the transformation preserves the average standard deviation of $A_{ij}$, i.e. $h_0 : \sigma_{A_{ij}} = \frac{1}{T} \sum_{j=1}^{T} \sigma_{A_{ij}}$. The average p-value of all tests was 0.15. So, with a significance level of 5%, we do not reject this null hypothesis.

To avoid the inherent assumption of normality in the paired t-test, we also performed Wilcoxon signed-rank tests and obtained the same conclusion.

Second, we assume $A_i$ has a Gamma distribution. Overall demand at each store may be viewed as an observation of a non-negative random variable. The relatively high coefficient of variation observed in the data, suggest a Gamma distribution. We note that in Section 2.5, where we test the solutions given for the stochastic optimization, the tests are made on the observed demand and do not require the distributional assumption. We also note that alternate demand distributions (truncated normal, log normal) give similar results.

Based on Proposition 2.3 and the above discussion, we propose the following algorithm to find the solution to problem (2.6a)–(2.6e). This provides the optimal number of movies for each store $i \in S$. 
Algorithm 2.2. Greedy approach - Stochastic Demand

1. Initialization: Let $n$ be the number of intervals used to discretize $A_i$, $\text{prob} = \frac{1}{n}$, $U = \{S\}$, $c_i = 0$, $r_i(0, a_i) = 0$ for any $a_i$, and $E[slope_i] = 0$ for all $i \in S$.

2. Discretize $A_i$: For each $i \in U$, let $a_i = F_{A_i}^{-1}(\text{prob})$.

3. Find the slope: For each $i \in U$, find $r_i(c_i + 1, a_i)$ using recursion (2.7a)-(2.7c). Let $r'_i(c_i, a_i) = r_i(c_i + 1, a_i) - r_i(c_i, a_i)$.

4. Find expected slope: For each $i \in U$, let $E[slope_i] = E[slope_i] + \frac{r'_i(c_i, a_i)}{n-1}$.

5. $\text{prob} = \text{prob} + \frac{1}{n}$. If $\text{prob} < 1$, then go to step 2.

6. Find the maximum slope: Find $i^* = \min \{ \arg \max_i \{E[slope_i]\} \}$. Let $U = \{i^*\}$.

7. Check stopping rule: If $E[slope_{i^*}] < \pi$ or $\sum_{i \in S} c_i = c$, then STOP; otherwise $c_{i^*} = c_{i^*} + 1$, $E[slope_{i^*}] = 0$, $\text{prob} = \frac{1}{n}$, and go to step 2.

Algorithm 2.2 discretizes $A_i$ into $n$ equiprobable intervals and includes two loops: an expectation loop, steps 2 to 5, that finds the expected slope of the rental frontier for a given store and allocation, and an allocation loop, steps 2 to 7, that, while the purchase quantity restriction is not violated, adds a copy to the store with maximum expected slope if the latter exceeds $\pi$ and updates that store’s expected slope. In the first iteration, Algorithm 2.2 finds the expected slope for all stores, whereas in later iterations the expected slope is updated only for the store with maximum expected slope. So, the complexity of steps 2 and 3 are $O(T|S|)$ in the first iteration and $O(T)$ in later iterations. Each iteration consists of $n$ repetitions of steps 2 and 3. If $D$ represents the total demand in all store-days, Algorithm 2.2 goes through $O(D)$ iterations, one for each copy allocated to a store. Thus, the overall complexity of Algorithm 2.2 is $O(nTD)$. 
2.4. Estimating Demand and Return from Rental Data

The main operations of a rental store consist of two processes: the rental (demand) process and the return process. We require models of these two processes in order to optimize the rental store’s performance. In this section we propose four models for the returns process and four models for the demand process. Using the complete data set for each of the comparables, we estimate the parameters of these models using a Markov Chain Monte Carlo Simulation. For Demand Model 1, we also use a Maximum Likelihood approach. For each new film, we then average the estimates for its comparables to provide a method of forecasting its demand and returns. Then using the data for each of the new films, we forecast the number of returns for each of the four returns models. We compare the forecasted returns to the observed returns using a root mean-squared error and bias of the forecast. We proceed similarly for the demand models, forecasting the demand for each store and day for the four proposed models. We compare the forecasted demand to the observed rentals, both for the uncensored days (where actual demand is observed) and censored days (where demand is censored by lack of inventory). For the censored days, using simulation, we measure the error in the number of censored days, the likelihood of observing the number of censored days, and the likelihood of observing each day as being censored. In doing so we find the best demand and return model. Prior to doing so, we describe some common practices in demand forecasting in the movie rental industry and explain how we build on these practices in our models.

2.4.1 Forecasting in Practice

The problem faced by the rental firm is to forecast the demand at each store and day for a new release. The demand for a movie at each store-day depends on many factors including demand in previous days, the day of the week, the store’s location, and the
number of active users. Thus, demands at different stores or on different days are non-
identically distributed. Operational data from rental stores demonstrate that observed
demand, i.e., sales, follows a combined decay and cyclical pattern over time (see Figure
2.2). Demand is high when the movie is released and decreases over time until it reaches
a low level after one month. In addition, rental stores observe a weekly pattern of higher
demand during the weekends. In the example, the movie is released on a Tuesday (as is
typical in the U.S.) and achieves its highest demand on the following Saturday.

It is common in practice to forecast demand and return of new releases based on the
demand and return processes of comparable movies. This forecasting process includes
three steps performed by an expert movie forecaster. However, in some cases, the output
of this process is not an explicit demand and return forecast, but rather the advised
allocation of movies to stores based on an implicit forecast. In the first step, comparable
movies, i.e., ones with demand and return patterns that are believed to be similar to
that of the new release, are chosen. Typically, one to three such comparable movies are
selected for a new release. For example, when forecasting the demand and return for
Shrek 3, Shrek and Shrek 2 are reasonable comparables. Second, the expert inflates or
deflates the store allocations for each comparable subjectively to account for how the
title faired during its initial month in the stores. Third, the expert chooses weights to
apply in averaging the comparables when forecasting demand for the new release. The weights are chosen subjectively to account for perceived differences in size between the new release and its comparables. For example, US box office sales for *Shrek*, *Shrek 2*, and *Shrek 3* were $268M, $436M, and $320M, respectively. So, a possible set of weights would be $320/268=1.09$ for *Shrek* and $320/436=0.73$ for *Shrek 2*. In practice, the weights may be based on any number of factors, such as box office sales or marketing initiatives undertaken by the firm or the studio.

In the next subsection we describe several statistical methods that can be used to estimate the return processes for the comparable movies based on observed rents and returns. We explain how these can be combined to develop an estimate of the return process for the new release. We subsequently do the same for the demand process.

### 2.4.2 Estimating Return for a New Release

The return process is what distinguishes a rental store from a sales-oriented store. Although customers can return products in sales-oriented stores, returns are, normally, a small fraction of the sales and are neglected in most operational analyses. In contrast, returns account for about half of the daily activity at a rental store and are thus a vital part of this business. For each comparable movie we estimate the return process based on its $r_{ij}, h_{ij}$, and $u_{ij}$. For a given film, let $\hat{U}_{ij}$ be the forecasted returns for store $i$ and day $j$. We then combine the estimates for the comparables to forecast the return process for the new release. We consider four possible models of the return process:

**Return model 1:** $\hat{U}_{ij} = \alpha_{ij} \times h_{ij}$ (A multiplicative model with store specific parameters)

This model assumes a fixed fraction $\alpha_{ij}$ of copies off shelf are returned to store $i$ on day $j$. In this model, the $\alpha_{ij}$’s are exactly determined given the observations of $u_{ij}$ and $h_{ij}$. Thus, while it requires the estimation of $|S|(T-1)$ parameters, this estimation is straightforward.
Return model 2: \( \hat{U}_{ij} = \alpha_j \times h_{ij} \) (A multiplicative model with parameters common across stores)

This model is similar to model 1, but assumes that the return pattern is identical for all stores. Model 2 is a parsimonious variation of model 1 that requires estimating \( T - 1 \) parameters.

Return model 3: \( \hat{U}_{ij} = \sum_{l=1}^{j-1} \alpha_{j-l} \times r_{il} \) (A time dependent return rate)

Here \( \alpha_k \) represents the fraction of rentals that are returned in exactly \( k \) days. This model assumes that all rentals follow the same time dependent return process. Model 3 requires the estimation of \( T - 1 \) parameters.

Return model 4: \( \hat{U}_{ij} = \sum_{k=\max\{j-14,1\}}^{j-1} \alpha_{j-k} \times r_{ik} \) (A time and day dependent return rate)

Here \( \alpha_{jk} \) represents the fraction of rentals on day \( j \) that are returned in exactly \( k \) days. This model is similar to model 3, but allows the return pattern to changes over time. Although the rental duration is flexible, we observed that almost all rentals are returned within 14 days. Therefore, to reduce the number of parameters estimated, we limit the return pattern to 14 days. Model 4 requires the estimation of fewer than \( 14(T - 1) \) parameters.

We use the observed values of \( u_{ij}, h_{ij}, \) and \( r_{ij} \) to estimate the parameters of the return models. The parameters for Model 1 are calculated directly. Parameter estimates for Models 2, 3, and 4 are made through a Bayesian procedure using Markov Chain Monte Carlo simulation (MCMCS). We use an MCMCS to simulate the full joint distribution of the parameters using Gibbs sampling. The approach starts from the specified initial distribution for the parameters and successively samples from the conditional distribution of each parameter given all the others in the model. We use Normal initial distributions for unbounded parameters, Gamma for non-negative parameters, and Beta for parameters defined between 0 and 1. The initial distribution used for \( \alpha \)'s in BUGS was \( Beta(2, 2) \).
BUGS is a statistical software that integrates the Gibbs sampling and the updating of parameter distributions via MCMCS. We note that BUGS does not require explicit specification of error terms in its model (see, e.g., Best et al. 1996, models in page 329). We use the WinBUGS software implementation of the approach for Microsoft Windows (Lunn et al. 2000). The MCMCS results are not sensitive to the initial distributions, converge in less than 10,000 iterations, and take, on average, 0.5, 16, and 10 minutes for Models 2–4, respectively.

We forecast the return parameters for the new releases by averaging the estimated parameters for each comparable movie, \( m \). That is,

Model 1: \[ \alpha_{ij}^{\text{New}} = \frac{1}{|M|} \sum_{m \in M} \alpha_{ij}^m, \]

Model 2: \[ \alpha_{j}^{\text{New}} = \frac{1}{|M|} \sum_{m \in M} \alpha_{j}^m, \]

Model 3: \[ \alpha_{k}^{\text{New}} = \frac{1}{|M|} \sum_{m \in M} \alpha_{k}^m, \]

Model 4: \[ \alpha_{jk}^{\text{New}} = \frac{1}{|M|} \sum_{m \in M} \alpha_{jk}^m. \]

### 2.4.3 Comparison of Return Models

To compare the performances of our return models, we estimate the return parameters for all comparables using each return model and combine the estimates as discussed in Section 2.4.2 to obtain a forecast of the return process. We use the observed rental data for the new release to calculate two measures of fit. The measures are:

1. The root mean squared error of the forecasted returns versus the observed returns.

\[
\text{RMSE} = \sqrt{\frac{\sum_{i \in S} \sum_{j \in D} (\hat{u}_{ij} - u_{ij})^2}{N}}
\]

2. The mean bias of forecasted returns.

\[
\text{BIAS} = \frac{\sum_{i \in S} \sum_{j \in D} \hat{u}_{ij} - u_{ij}}{N}
\]

Table 2.2 presents the weighted average of the RMSE and BIAS of the proposed return models for the 20 films weighted by their size. (We note that the ranking of these
measures for the different models does not depend on the contract type used to purchase the movies). Using a pairwise t-test across all 20 films, we find that for both measures Model 4 performs better than the other models at a 95% confidence level. This model predicts the fraction returned is dependent on the day the film is borrowed and the length of time it is held.

2.4.4 Estimating Demand for a New Release

In order to estimate the demand for a new release we proceed in much the same way as the movie rental firm, albeit more objectively. For each comparable we estimate the true demand based on the censored demand provided by sales. Using weights based on the firm’s estimates of the overall demand for the new release (the expert opinion), we then forecast the demand for the new title on each day at each store. We note in our analysis that we assumed any day with three or fewer copies left on shelf was assumed to be a censored day (i.e., zero left on shelf). This adjustment expresses the reality that some units returned to the store may not be available for rent on the same day. The validity of this assumption was affirmed by the rental firm.

We propose several estimators for the demand for the comparables. These include a multiplicative model, and three models that express the weekly and daily patterns observed in Figure 2.2. We note that standard demand estimation models with censored
data typically assume that the demand process is independent and identically distributed across different periods. However, in our setting demand is dependent and non-identically distributed over time, due to weekly cycles, and over stores, due to difference in size between stores. We propose the following four models:

**Demand model 1:** \( \hat{D}_{ij} = s_i \times p_j \) (A multiplicative model)

As in Section 2.3.2, \( s_i \)'s denote store sizes and \( p_j \)'s are multipliers that represents the daily pattern of demand. This model assumes that demand at all stores follows the same daily pattern scaled up by the store size. To estimate the demand for all store–days, we estimate \( s_i \) for all stores and \( p_j \) for all days within the release month for a total of \(|S| + 26\) parameter estimates - we consider the first 27 days of demand and let \( p_1 = 1 \) to normalize the values. The initial distributions we used in BUGS are \( s_i \sim Gamma(5, 10), p_j \sim Gamma(1, 1) \).

**Demand model 2:** \( \hat{D}_{ij} = \sum_{k=1}^{7} \beta_k y_{kj} + \sum_{k'=1}^{4} \beta_{k'}' y_{k'j} + \rho d_{ij} \) (A cyclic, autoregressive model)

Let \( y_{kj}, k = 1, \ldots, 7, \) be binary dummy variables representing days of the week, i.e., \( y_{kj} = 1 \) if day \( j \) is the \( k^{th} \) day of the week, and \( y_{k'j}' = 1, \ldots, 4, \) be binary dummy variables representing weeks of the month, i.e., \( y_{k'j}' = 1 \) if day \( j \) is in week \( k' \). This model assumes that demand follows a combined weekly cyclic and time diminishing process. To estimate the demand for all store–days, we estimate six \( \beta \)'s, three \( \beta' \)'s, \( \rho \), and \( d_{i0} \) for each store (we let \( \beta_7 = \beta_4' = 0 \) to normalize the values) for a total of \(|S| + 10\) parameter estimates. The initial distributions we used in BUGS are \( d_{i0} \sim Gamma(5, 10), \beta_k \) and \( \beta_{k'}' \sim Normal(0, 10000), \rho \sim Beta(9, 1) \). Tang and Deo (2008) used a similar autoregressive demand model but without the cyclic term.

**Demand model 3:** \( \hat{D}_{ij} = \sum_{k=1}^{7} \beta_k y_{kj} + \sum_{k'=1}^{4} \beta_{k'}' y_{k'j} + \rho^j d_{i0} \) (A cyclic, decreasing model)
This model is similar to demand Model 2. But, here the two effects of a weekly cyclic pattern and a time diminishing demand are separated. As above, we estimate six $\beta$s, three $\beta'$s, $\rho$, and $d_{i0}$ for each store ($|S|+10$ parameters) using the same initial parameter distributions in BUGS as in Model 2. Several studies cited in Section 2.2 use decreasing, though not necessarily exponentially, demand models without the cyclic term (see e.g., Pasternack and Drezner 1999, Lehmann and Weinberg 2000, Gerchak et al. 2006).

**Demand model 4:**

$$\hat{D}_{ij} = s_i (\sum_{k=1}^{7} \beta_k y_{kj} + \sum_{k'=1}^{4} \beta'_{k'} y'_{k'j})$$ (A multiplicative, cyclic model)

This model is a combination of the previous models in that it captures the multiplicative nature of model 1 but enforces the weekly cyclic pattern of models 2 and 3. Again we estimate $|S| + 9$ parameters. The initial distributions used in BUGS are $s_i \sim \text{Gamma}(5, 10), \beta_k$ and $\beta'_{k'} \sim \text{Normal}(0, 1)$.

We use the observed values of $r_{ij}$ and $l_{ij}$ (for identifying censored days) to estimate the parameters of the demand models. Mean values of the initial distributions are based on subjective knowledge of the data. We use initial distributions with large variances to allow proper Bayesian updating. Note that, after convergence, the variances of posterior distributions are small. We examined several alternative initial distributions (with large variances) and obtained the same results, but with more iterations required for convergence. In implementation, the Bayesian estimates generated by the Markov chain Monte Carlo simulations converge in less than 10,000 iterations and take, on average, 6 minutes, 16 hours, 22 hours, and 5 minutes for demand Models 1, 2, 3, and 4, respectively.

In addition, we use a joint Maximum Likelihood Estimator (MLE)/Method of Moments procedure to estimate the values for Model 1. In this procedure we iteratively find an MLE estimate for the $p_j$’s and a method of moments estimate for the $s_i$’s until convergence is achieved. Let $f_j(\cdot; \bar{x})$ and $F_j(\cdot; \bar{x})$ be the parametric probability density and cumulative distribution functions, respectively, for $p_j$, the daily multiplier of day $j$, where $\bar{x}$ is the parameter vector for the distribution, e.g., $\bar{x}$ includes the mean and
standard deviation if the distribution is normal. Let \( \mu_j(\bar{x}) \) be the mean of \( f_j(\cdot; \bar{x}) \). Let \( \mathcal{C} \) be the subset of stores with at least one day of censored demand. We estimate \( d_{ij} \) for all \( i \in \mathcal{S} \) and \( j = 1, \ldots, T \) using the following algorithm. The algorithm terminates when demand estimates converge as measured by a two-criterion test: the relative change in total demand at each store must be less than \( \epsilon_1 > 0 \), and the average relative change in total demand among all stores must be less than \( \epsilon_2 > 0 \). Upon completion (in step 4), Algorithm 2.3 provides estimates for store sizes and daily multipliers.

**Algorithm 2.3. Maximum Likelihood demand estimation**

1. Initialization: Choose \( \epsilon_1 \) and \( \epsilon_2 > 0 \). Let \( n = 0 \) and

\[
\hat{p}_j^{(0)} = \frac{1}{|\mathcal{S} - \mathcal{C}|} \sum_{i \in \mathcal{S} - \mathcal{C}} \frac{r_{ij}}{\sum_{j=1}^T r_{ij}} \quad \text{for all } j = 1, \ldots, T.
\]

2. Estimate store demand: For all \( i \in \mathcal{S} \), let

\[
\hat{s}_i^{(n)} = \frac{\sum_{j \in \mathcal{D}_i} r_{ij}}{\sum_{j \in \mathcal{D}_i} \hat{p}_j^{(n)}} \quad \text{where } \mathcal{D}_i = \{ j \mid l_{ij} > 0, 1 \leq j \leq T \}.
\]

3. Estimate daily demand: For all \( i \in \mathcal{S} \) and \( j = 1, \ldots, T \), let

\[
\hat{d}_{ij}^{(n)} = \begin{cases} r_{ij} & \text{if } l_{ij} > 0, \\ \max \left\{ r_{ij}, \hat{s}_i^{(n)} \times \hat{p}_j^{(n)} \right\} & \text{if } l_{ij} = 0. \end{cases}
\]

4. Check convergence: for \( n \geq 1 \), if

\[
\left| \sum_{j=1}^T \frac{\hat{d}_{ij}^{(n)} - \hat{d}_{ij}^{(n-1)}}{\hat{d}_{ij}^{(n-1)}} \right| \leq \epsilon_1 \quad \text{for all } i \in \mathcal{S} \text{ and } \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \left| \sum_{j=1}^T \frac{\hat{d}_{ij}^{(n)} - \hat{d}_{ij}^{(n-1)}}{\hat{d}_{ij}^{(n-1)}} \right| \leq \epsilon_2,
\]

set \( \hat{d}_{ij} = \hat{d}_{ij}^{(n)}, \hat{s}_i = \hat{s}_i^{(n)}, \hat{p}_j = \hat{p}_j^{(n)} \) and STOP.

5. Maximum likelihood estimation of daily multipliers: For all \( j = 1, \ldots, T \), let

\[
L_j(\bar{x}) = \prod_{i \in \mathcal{S}} g_j \left( \frac{r_{ij} \hat{s}_i^{(n)}}{\hat{d}_{ij}^{(n)}}, \bar{x} \right) \quad \text{where } g_j(y; \bar{x}) = \begin{cases} f_j(y; \bar{x}) & \text{if } l_{ij} > 0, \\ 1 - F_j(y; \bar{x}) & \text{if } l_{ij} = 0. \end{cases}
\]

and \( \bar{x}^* = \arg \max_{\bar{x}} \{ L_j(\bar{x}) \} \).

Then, \( \hat{p}_j^{(n+1)} = \mu_j(\bar{x}^*) \).
In step 1, we estimate the daily multiplier for each day as the average daily multiplier among stores with no censored days. In step 2 we use the latest daily multipliers to estimate the store demand for each store based only on days in which actual demand was observed. In step 3, we estimate the daily demand for censored days as the maximum of the observed rentals and \( \hat{s}_i^{(n)} \times \hat{p}_j^{(n)} \). The estimated demand for uncensored days is equal to the observed rentals. Step 4 tests for convergence of the algorithm. In step 5, we use maximum likelihood estimation to re-estimate \( \hat{p}_j \) (see Dempster et al. 1977, for MLE). Because the rentals among different stores are not identically distributed, we perform the maximum likelihood estimation on the observed rentals normalized by the store demand. Finally, we return to step 2 to estimate new store demands. The MLE estimator for Model 1 requires on average 3 minutes.

In implementation of Algorithm 2.3, we assume that the daily multipliers are normally distributed, let \( \epsilon_1 = 5\% \) and \( \epsilon_2 = 1\% \), and use Excel Premium Solver to find the maximum of the likelihood function. In our computational experiments, demand converges in 4 iterations on average. Our initial estimates of daily multipliers in Algorithm 2.3 are based on only the stores with no censored days. To assess the robustness of the algorithm, we test different initial estimates of daily multipliers: (i) equating them for all days; (ii) choosing them randomly from a uniform distribution; and (iii) by inverting the original multipliers (normalized to sum to one). The algorithm converges in at most one additional iteration to within 0.3% of the demand estimated using the original multipliers. Therefore, we conclude that Algorithm 2.3 is robust to initial estimates of daily multipliers.

As was done for the returns model, we propose a method to combine the parameter estimates for the comparable titles, \( m \), into a forecast for the new release. In this case, the process is more involved. In particular, in order to combine the estimates of \( s_i \) for Models 1 and 4, or alternatively \( d_{i0} \) for Models 2 and 3, we propose weights that are
intended to inflate or deflate the demand for each comparable such that it becomes equal
in size, i.e., demand, to the new release. As the demand of the new release is not known,
we rely on the best estimate we have, namely the true purchase quantity of the new
release made by the firm. Let $c^{\text{New}}$ be this quantity.

For each of the comparables we also know the number of copies purchased. But, ex-
post demand, we can use the deterministic demand model (1a)–(1f) given in Section 2.3.1
to find the optimal purchase quantity, say $c^{m}$ for each comparable $m$. That is, for each
comparable, having observed its sales, we estimate the true demand process, $d_{ij}$, for the
comparables to use in (1c). We then use the best fit return model to provide $u_{ij}(r^{j}_{i})$
in (1d). We let $c$ in (1b) be a decision variable. Finally, we let $c^{m} = c^{*}$, the optimal
number of copies to purchase (n.b., in solving program (1a)–(1f), we use the value of
$\pi$ corresponding to the new release to ensure that the quantity determined is scaled
appropriately). The weight for comparable $m$ is then $w^{m} = c^{\text{New}} / c^{m}$. We note that these
weights are not perfect, especially for revenue sharing titles due to purchase restrictions
enforced by studios. The weights for each new release express the relative demand for the
new movie versus its comparables. They do not convey any information on the demand
pattern (i.e., the cyclic or declining nature of the demand), nor the relative importance
of one comparable versus another in determining the correct demand pattern. Therefore,
these weights relate only to the $s_{i}$’s and $d_{i0}$’s. For the other parameters in the models,
we take a simple average. That is, our demand process estimate for the new release is
given by:

$$
\begin{align*}
    s^{\text{New}}_{i} &= \frac{1}{|M|} \sum_{m \in M} w^{m} s^{m}_{i}, \\
    d^{\text{New}}_{i0} &= \frac{1}{|M|} \sum_{m \in M} w^{m} d^{m}_{i0}, \\
    p^{\text{New}}_{j} &= \frac{1}{|M|} \sum_{m \in M} p^{m}_{j}, \\
    \beta^{\text{New}}_{k} &= \frac{1}{|M|} \sum_{m \in M} \beta^{m}_{k}, \\
    \beta^{\text{New}}_{k'} &= \frac{1}{|M|} \sum_{m \in M} \beta^{m}_{k'}.
\end{align*}
$$

(2.8)
2.4.5 Comparison of Demand Models

We consider several methods to measure the accuracy of different demand models for the new releases. Note that our demand forecasts for the new releases, \( d^\text{New}_{ij} \), must be compared to observed sales for the new release that may be censored due to stock-outs. For days without stock-out, the observed sales may be directly compared. However, for days with stock-out, it is not valid to compare the sales to the forecast. Rather, one might compare the predicted likelihood of a stock-out for these days. Let \( G(\cdot) \) and \( g(\cdot) \) be the predicted cumulative distribution function and probability density function. Assuming \( N \) independent observations, \( y_1, \ldots, y_N \), such that the first \( N_c \leq N \) of them are censored, i.e., \( d_i \geq y_i \) for \( i = 1, \ldots, N_c \), the likelihood measure

\[
p(y|\text{Model}) = \prod_{i=1}^{N_c} (1 - G(y_i)) \prod_{i=N_c+1}^{N} g(y_i),
\]

multiplies the likelihood of observing stock-out on the days with stock-outs by the likelihood of the observed demand on the days without stock-outs. Lockwood and Schervish (2005) present a version of (2.9) that allows for dependency among observations. Recall that for each movie we have about 12,150 demand observations (450 stores times 27 days) that are mutually dependent. As Lockwood and Schervish (2005) discuss, evaluating the version of (2.9) that allows correlation between these observations is impractical.

For our purposes, let \( D \) be the set of days in the release month, \( D_i^c \subset D \) be the set of censored days for store \( i \), \( N = |S| \times T \) be the total number of store–days, \( N_c = \sum_{i \in S} |D_i^c| \) be the total number of censored store–days. Dropping the superscript, ‘New’, for store \( i \) and day \( j \), let \( \hat{D}_{ij} \) be the forecasted demand for the new release with PDF and CDF of \( f_{ij} \) and \( F_{ij} \) (assumed Gamma distributed), respectively, and \( r_{ij} \) be the observed rentals for the new release. Our Bayesian estimation of the demand parameters provides a mean and variance for each parameter. We follow (2.8) to calculate the mean and variance of the demand parameters for the new release given those of the comparables. We then calculate the mean and variance of \( \hat{D}_{ij} \) using the appropriate demand model. For example, Model
1 defines the demand as store size, $S_i$, multiplied by daily parameter, $P_j$. If $S_i$ has a mean $s_i$ and variance $\sigma_{s_i}^2$ and $P_j$ has a mean $p_j$ and variance $\sigma_{p_j}^2$, then, assuming $S_i$ and $P_j$ are independent, $\hat{D}_{ij}$ has a mean $\hat{d}_{ij} = s_i p_j$ and variance $\sigma_{p_j}^2 s_i^2 + \sigma_{s_i}^2 (p_j^2 + \sigma_{p_j}^2)$. Our MLE algorithm for demand model 1 provides a mean and variance for $P_j$ but only a mean for $S_i$. In this case, we find the average coefficient of variation for store $i$, $cv_i$, over all comparable movies in our data set and estimate $\sigma_{s_i}^2 = (cv_i \times s_i)^2$.

The first two measures we use for the accuracy of different demand models are:

1. The root mean squared error of the forecasted demand versus observed rentals over the non-censored store-days.

$$\text{RMSE-UNCENSORED} = \sqrt{\frac{\sum_{i \in S} \sum_{j \in D - D_i^c} (\hat{d}_{ij} - r_{ij})^2}{N - N_c}}$$

This is a standard measure in the absence of censoring. It captures fidelity to the uncensored results and should be argued as trying to fit known data well.

2. The average loglikelihood of the observed rentals using the forecasted demand, as in (2.9).

$$\text{LL-RENTALS} = -\frac{\sum_{i \in S} \left( \sum_{j \in D - D_i^c} \ln (f_{ij}(r_{ij})) + \sum_{j \in D_i^c} \ln (1 - F_{ij}(r_{ij})) \right)}{N}$$

This measure captures the overall likelihood of the observed data assuming that demand among different store-days is independent. As discussed following (2.9), this measure is not perfect in our setting. Still, we believe it provides some indication for the goodness of fit of different models.

In addition to the theoretical measures above, we performed a simulation analysis of the demand models. Using a sample path approach, we generate a random realization of demand for all store-days using the joint parameter distributions. This considers the correlation among demands over different store-days. We then identify whether each
store–day is censored by comparing the simulated demand to observed availability. That is, let $\hat{d}_{ij}$ be the simulated demand, $r_{ij}$ be the observed number of rentals and $l_{ij}$ be the observed number of copies left on shelf at store $i$ on day $j$. Then a day is considered censored if $\hat{d}_{ij} \geq l_{ij} + r_{ij}$. Let $\hat{e}_i$ be the forecasted number of censored days for store $i$ for a sample path and let $\bar{e}_i$ be its average over all iterations. Let $frq(x)$ be the relative frequency of observing event $x$, i.e., frequency of event $x$ in the simulation divided by the total number of sample paths. We propose the following measures of accuracy:

3. Root mean squared error of the forecasted versus observed number of censored days over all stores.

$$\text{RMSE-CENSORED} = \sqrt{\frac{\sum_{i \in S} (\hat{e}_i - |D^c_i|)^2}{|S|}}$$

This measure captures the fidelity to the censored results, i.e., what is the difference between the number of observed censored days and the one forecasted by the model.

4. The average loglikelihood of the observed number of censored days using the forecasted demand.

$$\text{LL-CENSORED} = -\frac{\sum_{i \in S} \ln (frq(\hat{e}_i = |D^c_i|))}{N}$$

This measure also captures the fidelity to the censored results, i.e., how well the model forecasts the number of censored days.

5. The average loglikelihood of the observed censorship pattern using the forecasted demand.

$$\text{LL-PATTERN} = -\frac{\sum_{i \in S} \left( \sum_{j \in D - D^c_i} \ln (frq(\hat{d}_{ij} < l_{ij} + r_{ij})) + \sum_{j \in D^c_i} \ln (frq(\hat{d}_{ij} \geq l_{ij} + r_{ij})) \right)}{N}$$

This measures the likelihood that in the simulation a stock-out occurs on the observed censored days plus the likelihood that no stock-out occurs on the observed uncensored days. As such, this is an overall measure of the pattern of censoring in the data.
Chapter 2. DVD Allocation for A Multiple-Location Rental Firm

### Table 2.3: Comparison of demand models using the five proposed measures.

<table>
<thead>
<tr>
<th>Contract</th>
<th>Measure</th>
<th>Model 1 MLE</th>
<th>Model 1 Bayesian</th>
<th>Model 2 Bayesian</th>
<th>Model 3 Bayesian</th>
<th>Model 4 Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>RMSE-UNCENSORED</td>
<td>9.3</td>
<td>15.7</td>
<td>27.2</td>
<td>22.0</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>LL-RENTALS</td>
<td>2.5</td>
<td>2.7</td>
<td>5.2</td>
<td>4.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Revenue</td>
<td>RMSE-CENSORED</td>
<td>5.2</td>
<td>4.8</td>
<td>8.5</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>LL-CENSORED</td>
<td>2.8</td>
<td>5.0</td>
<td>6.5</td>
<td>8.0</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>LL-PATTERN</td>
<td>0.4</td>
<td>0.6</td>
<td>1.5</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Average</td>
<td>RMSE-UNCENSORED</td>
<td>13.8</td>
<td>16.8</td>
<td>21.0</td>
<td>21.0</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>LL-RENTALS</td>
<td>4.2</td>
<td>4.8</td>
<td>4.6</td>
<td>5.2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>RMSE-CENSORED</td>
<td>8.3</td>
<td>9.2</td>
<td>5.7</td>
<td>6.2</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>LL-CENSORED</td>
<td>4.1</td>
<td>8.0</td>
<td>6.6</td>
<td>9.2</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>LL-PATTERN</td>
<td>0.7</td>
<td>1.5</td>
<td>1.2</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>RMSE-UNCENSORED</td>
<td>11.5</td>
<td>16.3</td>
<td>24.1</td>
<td>21.5</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>LL-RENTALS</td>
<td>3.3</td>
<td>3.8</td>
<td>4.9</td>
<td>4.9</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>RMSE-CENSORED</td>
<td>6.8</td>
<td>7.0</td>
<td>7.1</td>
<td>6.8</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>LL-CENSORED</td>
<td>3.5</td>
<td>6.5</td>
<td>6.5</td>
<td>8.6</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>LL-PATTERN</td>
<td>0.5</td>
<td>1.0</td>
<td>1.3</td>
<td>2.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

We present the results of measures 1 to 5 for the four proposed demand models in Table 2.3 (Again, we note that the ranking of these measures for the different models does not depend on the contract type used to purchase the movies). We observe that Model 1-MLE dominates the others. Using a pairwise t-test across the 20 films, we find that measures 1, 2, 4, and 5 are statistically significant at a 95% confidence level. The other two are inconclusive.

An intuitive explanation for the better fit of the multiplicative demand model is that the daily variations in demand observed in the data seem to depend on the store size, i.e., larger stores have larger daily variations and vice versa. Model 1 captures this effect.
by multiplying the daily multipliers by the store size. But, models 2 and 3 assume that daily variations are equal among all stores regardless of their sizes. While Model 4, (the multiplicative, cyclical pattern model) is more parsimonious, in actuality we need to estimate 459 parameters for it in contrast to 477 parameters for Model 1 (for 450 stores). From the measures it appears the cost of parsimony is not supportable.

2.5. Numerical Results

In this section we compare results of our purchase and allocation decisions to that of the firm and to those given by several other heuristics. We do so with respect to the expected number of rentals and the expected profit. We proceed as follows. For each new release we forecast the demand and return processes using the data from its comparable films and the best models as chosen in Section 5. These models provide inputs to Algorithm 2 which is used to determine the number of copies to purchase for each store. In solving Algorithm 2, we consider two cases. In the Fixed Copies case, the total quantity purchased is set equal to $c$, i.e., we require $\sum_{i \in S} c_i = c$. Thus the algorithm allocates the copies to the stores. In the Optimized Copies case, we relax the constraint on $c$. As noted, the problem disaggregates by store. Also note that Proposition 2.1 indicates that a monotone return process, as defined by (2.4), is a sufficient condition for the concavity of the rental frontier. Based on our data set, 94% of all estimated return parameters for Model 4 satisfy monotonicity. We plotted the rental frontier for the remaining 6% and they are concave as well. Then using the observed sales and returns for the new release, we estimate (again using demand Model 1-MLE and return Model 4) the actual, uncensored demand for the new release for each store and day, and the return process. Then for each initial inventory, $c_i$, we can estimate the number of rentals that would occur on each day, and using the returns model, we can estimate the number of returns and available inventory for subsequent days. Thus we compute the total expected number of rentals
and, for a given value of $\pi$, the expected profit for any initial inventory vector.

We initially compare the expected results for the Fixed Copies and Optimized Copies cases to those for the actual purchase quantity by the firm. Table 2.4 summarizes the

<table>
<thead>
<tr>
<th>Contract</th>
<th>Movie</th>
<th>Firm’s decision</th>
<th>Fixed Copies</th>
<th>Optimized Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Copies Rentals Profit</td>
<td>Rentals Profit</td>
<td>Copies Rentals Profit</td>
</tr>
<tr>
<td>Standard</td>
<td>S1</td>
<td>67254 351948 150186</td>
<td>2.04%  4.79%</td>
<td>-9.80%  -5.14%  1.12%</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>35349 213798 107751</td>
<td>-0.96% -1.91%</td>
<td>-2.11% -2.13% -2.14%</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>49999 204081 54084</td>
<td>-0.36% -1.35%</td>
<td>-6.14% -3.62%  3.34%</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>24730107677 33487</td>
<td>1.86%  5.97%</td>
<td>-2.57% -0.29%  4.75%</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>28491122458 36985</td>
<td>-1.81% -6.00%</td>
<td>-14.56% -12.44% -7.56%</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>39446137753 19415</td>
<td>0.52%  3.70%</td>
<td>-22.17% -12.59% 45.80%</td>
</tr>
<tr>
<td></td>
<td>S7</td>
<td>28545110215 24580</td>
<td>0.97%  4.34%</td>
<td>-13.74% -7.38% 14.77%</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>5550 23167 6517</td>
<td>1.06%  3.76%</td>
<td>-16.29% -11.12% 2.09%</td>
</tr>
<tr>
<td></td>
<td>S9</td>
<td>12082 57097 20851</td>
<td>-2.63% -7.21%</td>
<td>-5.64% -6.74% -8.67%</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>6495 22339 2854</td>
<td>2.14%  16.78%</td>
<td>-4.59% -1.28% 21.32%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>29794135053 45671</td>
<td>0.38%  1.14%</td>
<td>-9.98% -5.76%  2.51%</td>
</tr>
<tr>
<td>Revenue sharing</td>
<td>RS1</td>
<td>59923 511256 251333</td>
<td>0.98%  1.21%</td>
<td>37.50%  22.30% 18.68%</td>
</tr>
<tr>
<td></td>
<td>RS2</td>
<td>58949 262718 203769</td>
<td>2.94%  3.79%</td>
<td>23.59%  19.35% 18.12%</td>
</tr>
<tr>
<td></td>
<td>RS3</td>
<td>45782 256087 210305</td>
<td>-0.38% -0.47%</td>
<td>36.56%  19.75% 16.09%</td>
</tr>
<tr>
<td></td>
<td>RS4</td>
<td>68863 248552 179689</td>
<td>2.71%  3.75%</td>
<td>33.08%  16.15%  9.67%</td>
</tr>
<tr>
<td></td>
<td>RS5</td>
<td>29955 137532 107577</td>
<td>2.63%  3.36%</td>
<td>34.86%  27.97% 26.05%</td>
</tr>
<tr>
<td></td>
<td>RS6</td>
<td>43664 202629 158965</td>
<td>1.72%  2.19%</td>
<td>27.66%  15.18% 11.75%</td>
</tr>
<tr>
<td></td>
<td>RS7</td>
<td>40111 190298 150187</td>
<td>-0.01% -0.01%</td>
<td>28.42%  14.89% 11.28%</td>
</tr>
<tr>
<td></td>
<td>RS8</td>
<td>41922 151590 109668</td>
<td>2.68%  3.71%</td>
<td>44.59%  22.11% 13.51%</td>
</tr>
<tr>
<td></td>
<td>RS9</td>
<td>24681 101399 76718</td>
<td>2.35%  3.11%</td>
<td>24.16%  18.79% 17.06%</td>
</tr>
<tr>
<td></td>
<td>RS10</td>
<td>22905 94261 71536</td>
<td>2.05%  2.71%</td>
<td>30.17%  17.14% 12.96%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>43676 195632 151957</td>
<td>1.63%  2.10%</td>
<td>32.37%  19.28% 15.52%</td>
</tr>
</tbody>
</table>

Table 2.4: Results: Comparison of the Firm’s actual purchase quantity and resulting rentals and profits to those given by the optimization fixing the total number of copies purchased, and the optimization allowing the number of copies purchased to be optimized.
results of our analysis for the two sets of films, standard and revenue sharing, with 10 titles each. For each title we give the firm’s actual purchase quantity, the expected number of rentals and the implied expected profit. The Fixed Copies column presents the percentage change in rentals and profit. The Optimized Copies column presents the percentage change in the number of copies purchased, rentals, and profit. We also report the average changes for each contract type. Note negative changes in profit are possible as the ex ante decisions are compared using ex post estimates of demand and returns.

For the standard contract we observe that under the Optimized Copies case the firm could achieve a 2.5% higher profit by reducing the number of copies by approximately 10.0% and the number of rentals by 5.8%. However, much of this profit gain (1.1%) is achieved by the Fixed Copies case. That is, by optimizing the allocation of copies to stores, without changing their quantity, we are able to obtain 45% of the expected profit. For the revenue sharing contracts, we observe that the under the Fixed Copies we can achieve a modest 2.1% improvement through better allocation. However, without the constraint, a 32.4% increase in copies results in 19.3% more rentals and an 15.5% increase in profits. We observe that the firm over-buys standard titles and under buys revenue sharing titles compared with the optimized copies decision. The 15.5% value provides a measure for the loss resulting from the purchase restrictions imposed by the studios. We discuss the impact of these restrictions on the benefits of revenue sharing in the discussion section to follow. (All of the profit increases are significant at a 95% confidence level.)

Next we compare our results to those given by more naive or simpler estimation approaches. In this regard we test several alternatives, comparing the average results of our estimation approach (from Table 2.4) to those for the alternative approaches in Table 2.5.

Test 1 - Weighted Demand: A naive approach for estimating demand might be given by a simple weighted average of observed demand of each comparable movie for each
store and day using the weights $w^{\text{m}}$ as above. In Test 1, we use this demand model instead of Model 1-MLE to estimate the ex ante demand. We continue to use return Model 4.

**Test 2 - Common $p_j$'s:** In Demand Model 1, we estimate the demand process for each film separately. It may be argued that the daily demand pattern is common across movies. To this end, we test a model where a common set of $p_j$'s, given by their average, is used rather than the specific one for each film. All else remains the same.

<table>
<thead>
<tr>
<th>Contract</th>
<th>Test</th>
<th>Fixed Copies</th>
<th></th>
<th>Optimized Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rentals</td>
<td>Profit</td>
<td>Copies</td>
</tr>
<tr>
<td>Our Policy</td>
<td>0.38%</td>
<td>1.14%</td>
<td></td>
<td>-9.98%</td>
</tr>
<tr>
<td>Test 1 - Weighted Demand</td>
<td>-0.02%</td>
<td>-0.04%</td>
<td></td>
<td>-21.80%</td>
</tr>
<tr>
<td>Standard</td>
<td>Test 2 - Common $p_j$'s</td>
<td>0.39%</td>
<td>1.16%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 3 - Returns Model 1</td>
<td>0.34%</td>
<td>1.01%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 4 - Common Returns</td>
<td>0.35%</td>
<td>1.04%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 5 - Apportionment</td>
<td>-0.07%</td>
<td>-0.22%</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>Test 1 - Weighted Demand</td>
<td>1.55%</td>
<td>2.00%</td>
<td></td>
</tr>
<tr>
<td>Sharing</td>
<td>Test 2 - Common $p_j$'s</td>
<td>1.66%</td>
<td>2.13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 3 - Returns Model 1</td>
<td>1.60%</td>
<td>2.06%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 4 - Common Returns</td>
<td>1.64%</td>
<td>2.12%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 5 - Apportionment</td>
<td>1.30%</td>
<td>1.67%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.5: Comparison of alternate demand and returns process estimation procedures to our policy given by demand Model 1-MLE and returns Model 4. For each we present the change in rentals and profit versus those of the firm for the fixed copies and optimized copies cases.
**Test 3 - Returns Model 1:** We use the simpler returns Model 1 instead of Model 4 to forecast the returns process of the new release. We continue to use demand Model 1-MLE. This studies the value of capturing the more detailed return process.

**Test 4 - Common Returns Model:** We have estimated the returns process for each of the movies separately. It may be argued that the returns process is not movie specific and can be estimated using a single model across all of the comparable films at the same time. We do so in Test 4.

We observe that the results for the Fixed Copies case (with the exception of Test 1 - Weighted Demand) for both the Standard and Revenue Sharing contracts are very similarly to those of our policy. As the Fixed Copies case amounts to reallocating supply among the stores, it is not surprising that given a reasonable estimate of the demand and returns, there is only so much improvement that can be made. Thus, the relative improvement in profits of approximately 1.1% and 2.1% for the Standard and Revenue Sharing cases, respectively, result primarily from the optimization made through Algorithm 2. In contrast, for the Optimized Copies cases, we observe that the naive demand and returns models fail to achieve the same level of profit improvement as our policy. We observe that the Test 2-Common $p_j$’s and Test 4-Common Returns models do achieve, on average approximately 2/3 of the profit of our policy. This suggests, that while there are similarities between the demand and return patterns, a 50% improvement in profit is achieved by estimating these separately for each movie. Further, the simple demand estimation procedure (averaging the observed demands for the comparables) and the simple returns Model 1, do not perform particularly well.

It appears the optimization approach provides most of the benefit for the Fixed Copies case. To confirm this, consider the following heuristic. Using the Optimized Copies solution, scale the number of copies apportioned to each store so that the $c_i$’s sum to $c$, the quantity constraint. In Test 5-Apportionment in Table 2.5 we show that for the
Standard Contract case, doing so results in a loss compared with what the firm was doing. For the Revenue Sharing case, the heuristic results in a solution that may be improved on by 25% by our policy and those of the other heuristics. We conclude the optimization approach significantly improves on a simpler apportionment approach.

We next test the robustness of these results with respect to $\pi$. The previous analysis uses the values of $\pi = 1$ and 3 as given by the firm’s manager. Note $\pi$ is dependent on the salvage value obtained by the marginal unit which is not known until after demand occurs, and on the purchase price which can vary based on supplier and quantity purchased (see Cachon and Kok (2007) for a discussion on salvage value estimation). That is, $\pi = (P - S')/(\phi F)$ where $P$ is the unit purchase price, $S'$ is the firm’s salvage value on the marginal unit purchased, $F$ is the rental fee. Let subscript ‘std.’ signify standard contracts; ‘r.s.’, revenue sharing. The publicly available rental fee is $5. For reasons of confidentiality the actual purchase price and marginal salvage value were not revealed to us. However, publicly available data indicate $P_{\text{std.}} = $20 and $P_{\text{r.s.}} = $3 may be valid numbers. Then $\phi = 0.6$, $S'_{\text{std.}} = $5 and $S'_{\text{r.s.}} = $0 would imply $\pi_{\text{std.}} = 3$ and $\pi_{\text{r.s.}} = 1$. Note these values may be appropriate as the greater purchase quantity resulting from $\pi_{\text{r.s.}} = 1$ would lead to additional units to salvage, lowering their salvage value to the point where some units are returned to the studio (at 0 salvage value) rather than sold, generally after about six months. Because the purchase price and marginal salvage value may vary, we present in Table 2.6 representative summary results for the optimize copies case in the neighborhood of the given values of $\pi$. These correspond to varying $S'_{\text{std.}}$ from $0$ to $7.50$ holding $P_{\text{std.}} = $20, and varying $P_{\text{r.s.}}$ from $1.50$ to $4.50$ holding $S'_{\text{r.s.}} = $0. These represent reasonable limits on these values given publicly available data and salvage prices observed at retail locations of the firm. As would be expected from a newsvendor analysis, the optimal purchase quantity is very sensitive to the value of $\pi$ while the profit, as shown by its percentage change, is less so. Our conclusion that the firm overbuys standard titles is valid unless $\pi$ lies below approximately 2.7. The firm
Table 2.6: Optimized quantity results while varying \( \pi \). (The Fixed Copies case is not sensitive to \( \pi \) by definition.)

underbuys revenue sharing titles at all reasonable values of \( \pi \), greatly if the price per unit is low.

### 2.6. Discussion and Future Work

Studios generate revenue using three main channels: theatrical release, movie rentals, and movie sales. Other revenue channels include related products and games, video-on-demand, and cable and broadcast presentation. According to EMA (2008), the proportion of consumer spending on the three main channels is 29%, 24%, and 47% for theatrical release, movie rentals and movie sales, respectively. As this is the typical order in which a movie is released, a large share of the revenue is received after the first month rental period for the film. So, the studios may be using the theatrical release and rentals partly for their revenue generation, but also for their ability to market films.

However, the movie rental firms are in trouble. Major movie rental firms have been subject to intense competition from alternative business models, e.g., online rentals, movie-on-demand, and download-to-rent. For example, Blockbuster, a leading global video rental firm, reported negative net income in four out of the last five years (2004–
2008) and its share price has decreased by about 96% since its peak in 2002. Similarly, Movie Gallery, the second largest video rental firm in the U.S. that owns Movie Gallery and Hollywood Video stores, filed for bankruptcy in October 2007. Our study considers how rental firms may better predict their demand and supply in order to improve their performance.

We model the demand and return processes for DVD rental to better forecast the supply requirements of the firm. We use the firm’s entire data set, i.e., past demand and returns to all its stores, to forecast demand at the store and day level, rather than relying on the data for each store individually. Our procedure is limited in several ways. First, in order to prove concavity and optimality of our greedy algorithm, we require monotonicity in the return rate of films. Although we find concavity holds throughout in our data set, we do not incorporate this sufficient constraint in our estimation procedure. Second, we assume that demand is Gamma distributed. We also reduce the numerical computations by assuming demand is only dependent on store size (reducing $A_{ij}$ to $A_{i}$).

We find that by purchasing the correct quantity we are able to modestly improve (2.5% on average) the profitability of a rental firm for movies purchased under a standard contract. In particular, this is achieved by reducing the number of copies purchased. In contrast, it seems appropriate to consider the Fixed Copies case for the revenue sharing titles. There we observe that a 2.1% increase in the rental firm’s gross profit is possible, in this case by better allocation to the stores. We find that by increasing the purchase quantity, the firm could significantly increase its profits (15.5%). However, the firm cannot take advantage of this potential gain due to purchase quantity restrictions imposed by studios.

We have several comments with respect to these results. First, to place this in perspective, a 2.1% increase in gross profits attributable to rentals (as opposed to DVD or other sales) at Blockbuster, Inc., based on their 2008 annual report, results in an average increase in net income by $37.5 million over the last three years. Blockbuster reported an
average annual operating loss of $60.2 million over this period. So a 2.1% improvement would reduce the average operating loss by 62%. We emphasize that we present these numbers to provide a context to understanding what 2.1% may mean in this industry and not to declare such improvements would result. Second, our results represent only a small sample of the films purchased and rented by the firm, and generalization to firm-wide measures ignores various aspects of actual operations. In particular our analysis is based on treating each film individually and ignores firm policies that might link them such as budgetary constraints, requirements on assortments and availability of substitutes, and requirements on merchandising such as shelf-space presentation. With respect to the standard titles, it is possible that because of marketing or budgetary reasons, the over-purchase we observe is a response to the restrictions placed on the revenue sharing titles.

Finally, we have observed the deleterious effect on profits of the purchase restrictions for the revenue sharing contracts. That such restrictions could have such an effect is not surprising since the theory behind revenue sharing contracts is that without purchase restrictions they can align supply chains to the benefit of all parties. Thus the question is raised why do such restrictions exist? Further, one might question what determines the contract type for different titles? Addressing these questions calls for future work. We hypothesize that the quantity restrictions imposed may be related to studio concerns regarding the sale of copies of DVD’s by the rental firms after the first month. That is, the studio may be concerned with cannibalization of sales and thus acts to restrict the number of copies.

As a demonstration of this potential reasoning we present in Table 2.7 estimates of the average improvement over the standard contract case for the mean profit of the firm and mean revenue of the studio, for the revenue sharing contract and the quantity-restricted revenue sharing contract. To obtain these results, using the actual (not forecasted) sales and returns data from the revenue sharing titles, we estimate the actual demand and
return pattern for each revenue sharing title. Then using Algorithm 2.2 we determine the optimal purchase quantity, $c_{\text{std.}}$, assuming a standard contract ($\pi = 3$). We determine the expected resulting number of rentals, $r_{\text{std.}}$, and the rental firm’s expected profit given by $Fr_{\text{std.}} - P_{\text{std.}}c_{\text{std.}} + \bar{S}_{\text{std.}}c_{\text{std.}}$ where $\bar{S}$ is the average salvage value per unit; this is generally higher than the marginal value $S'_{\text{std.}}$. We compare these metrics (copies purchased, rentals, and profit) assuming a standard contract, i.e., $\pi = 3$, to the cases where the optimal purchase quantity assumes a revenue sharing contract ($\pi = 1$) and to a quantity restricted revenue sharing contract ($\pi = 1$) where the total number of copies purchased is the firm’s actual purchase quantity. For these cases the firm’s profit is given by $\phi Fr - P_{\text{r.s.}}c + \phi S_{\text{r.s.}}c$. In accordance with our previous analysis, we let $P_{\text{std.}} = $20, $P_{\text{r.s.}} = $3, $F = $5, $\phi = 0.6$, $\bar{S}_{\text{std.}} = $10 (here $\bar{S}_{\text{std.}}$ expresses a reasonable average salvage value for a previously viewed copy), and obtain the results for values of $S_{\text{r.s.}}$ between $2.5$ and $10$. Revenue for the studio is given by $P_{\text{std.}}c$ for standard contracts and $(1-\phi) Fr + P_{\text{r.s.}}c + (1-\phi)S_{\text{r.s.}}c$ for revenue sharing and quantity restricted contracts. For the studio we present the cases where copies sold to the rental firm either have no effect on or fully cannibalize studio sales (on a one-to-one basis). We assume the studio loses $15 per cannibalized sale.

The results present the average improvement for the ten revenue sharing titles in our

<table>
<thead>
<tr>
<th>Contract</th>
<th>Supplier/Buyer</th>
<th>$P_{\text{std.}} = 20, \bar{S}_{\text{std.}} = 10$</th>
<th>$P_{\text{std.}} = 15, \bar{S}_{\text{std.}} = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{S}_{\text{r.s.}}$</td>
<td>$\bar{S}_{\text{r.s.}}$</td>
<td>$\bar{S}_{\text{r.s.}}$</td>
</tr>
<tr>
<td></td>
<td>2.5 5 7.5 10</td>
<td>2.5 5 7.5 10</td>
<td>2.5 5 7.5 10</td>
</tr>
<tr>
<td>Rental Firm</td>
<td>55% 77% 99% 122%</td>
<td>18% 35% 52% 69%</td>
<td></td>
</tr>
<tr>
<td>Revenue Sharing</td>
<td>Studio (no cannibalization)</td>
<td>44% 56% 68% 80%</td>
<td>91% 107% 124% 140%</td>
</tr>
<tr>
<td></td>
<td>Studio (full cannibalization)</td>
<td>-61% -49% -37% -25%</td>
<td>-49% -32% -17% -1%</td>
</tr>
<tr>
<td>Quantity-</td>
<td>Rental Firm</td>
<td>31% 47% 63% 79%</td>
<td>0% 12% 25% 37%</td>
</tr>
<tr>
<td>Restricted</td>
<td>Studio (no cannibalization)</td>
<td>14% 23% 32% 40%</td>
<td>52% 64% 75% 87%</td>
</tr>
<tr>
<td>Revenue Sharing</td>
<td>Studio (full cannibalization)</td>
<td>-42% -33% -24% -15%</td>
<td>-22% -10% 1% 13%</td>
</tr>
</tbody>
</table>

Table 2.7: The mean change in supply chain benefits over the standard contract.
data set. They are sensitive to a number of parameters, particularly the standard contract price and average salvage value. The implication of the Table is that both the studio and the rental firm may benefit from a revenue sharing contract or a quantity-restricted revenue sharing when there is no cannibalization. Further, in concert with supply chain alignment theory, the quantity restriction reduces the benefit for both parties. However, we observe that if units purchased by the firm are sold and fully cannibalize sales (on a one-to-one basis) with those of the studio, revenue sharing can lead to worse performance for the studio than a standard contract, though quantity restrictions can mitigate these losses.

These observations lead to several questions: What is the effect of cannibalization on contract choice? If studios actually do lose money under revenue sharing contracts compared with standard contracts, why are they used? Why were quantity restrictions put in place as opposed to other contract types such as buy-back agreements. We emphasize that it is only a hypothesis that concerns on cannibalization have lead to the quantity restrictions. Future work, which is beyond the scope of the current chapter, should address these questions.
Chapter 3

The Maximum Covering Problem with Travel Time Uncertainty

Abstract: Both public and private facilities often have to provide adequate service under a variety of conditions. In particular travel times, that determine customer access, change due to changing traffic patterns throughout the day, as well as a result of special events ranging from traffic accidents to natural disasters. We study the maximum covering location problem on a network with travel time uncertainty represented by different travel time scenarios. Three model types - expected covering, robust covering and expected p-robust covering - are studied; each one is appropriate for different types of facilities operating under different conditions. Exact and approximate algorithms are developed. The models are applied to the analysis of the location of fire stations in the city of Toronto. Using real traffic data we show that the current system design is quite far from optimality. We determine the best locations for the 4 new fire stations that the city of Toronto is planning to add to the system and discuss alternative improvement plans.
3.1. Introduction

In today’s world of global competitiveness, facility location is one of the most important long-term strategic decisions made by any organization - public or private. As such, finding optimal locations has received considerable attention in the literature. Facility location models (in particular covering models) try to ensure that customer’s travel times to facilities are reasonable. This is generally achieved either by minimizing average or worst case travel times or by defining time-dependent coverage areas for facilities. However, travel times are not constant in practice; they are affected by many factors ranging from predictable variations due to changes in traffic patterns during the day (that may be quite large - an order of magnitude or more) to even larger variations introduced by more rare disruptive events such as snow storms or traffic accidents (still for which reliable probability estimates can be found from historical data), to less predictable and even more rare and extreme events such as hurricanes, earthquakes and terrorist attacks.

Since facilities cannot be easily relocated, the facility network has to be able to provide adequate service under different travel time conditions. It is also important to note that different facility types may require different performance standards under different conditions. For example, for a retail store it is important that the average performance under the predictable daily variations in travel time be adequate, while the performance under very rare disruptive events may be of less importance. On the other hand, a public service facility such as a fire station or a hospital must be able to provide good service under typical travel time conditions, but still maintain adequate service under the more disruptive events. Finally, facilities that are specifically designed for response to rare emergencies, e.g., hazardous materials response teams, must be able to provide adequate level of service under any travel conditions, including the most extreme ones.

In this chapter we study the location of facilities that provide service to or obtain benefit from clients within a given coverage time on a transportation network. Examples of such facilities include fire stations, hospitals, bank branches, supermarkets, etc. Most
related studies in the literature, as we discuss in Section 3.2, either ignore possible disruptions altogether, or consider the effect on service when the facility itself is disrupted or attacked. While this may be a concern in some cases, many coverage-providing facilities are well built to endure catastrophic events or are not high-value targets for an attack. For example, even during the most disruptive events, such as 9/11 attacks in New York city or hurricane Katrina in New Orleans few of the emergency service facilities were disrupted. However, the access to and from the facilities was seriously impacted. Therefore, we focus on networks with travel time uncertainty, i.e., non-deterministic link travel times.

We note that our approach to modeling the travel time uncertainty is not restricted to catastrophic events or an attack on the network. As illustrated in our case study of Toronto fire stations in Section 3.8, events as mundane as rush hour traffic can significantly change travel times and limit access to coverage-providing facilities.

We model different travel time conditions as different “scenarios” of the transportation network (where a scenario is a snapshot of the network, i.e., link travel times are deterministic conditional on scenario), and study both the cases in which the scenario probabilities are available, or not. We further assume that the nodes of the network have weights that represent their size/population or relative importance. This leads us to study three types of weighted coverage location problems on a network when travel times on links are uncertain:

1. Expected Covering Problem (ECP): Locate facilities to maximize the expected weighted cover over all potential scenarios.

2. Robust Covering Problem (RCP): Locate facilities to maximize the minimum weighted cover over all potential scenarios.

3. Expected $p$-Robust Covering Problem (EpRCP): Locate facilities to maximize the expected weighted cover subject to a lower bound on the minimum weighted cover
over all potential scenarios.

The ECP model places rather heavy data requirements on the decision-maker, as the scenario probabilities must be estimated for all scenarios. Moreover, since the model optimizes average-case performance, it is not sensitive to rare or extreme events whose probabilities are either not available, or are too small to make an appreciable impact on the objective function. Thus, the ECP model is most suitable for locating public service facilities such as supermarkets, restaurants or bank branches - where the main concern is to ensure good service at different times of the day, and the probabilities of various scenarios (representing different daily traffic flows) are easily available from the past data.

The RCP model optimizes the worst-case performance. On the positive side, it is not necessary to estimate event probabilities and the model is very responsive (in fact, driven by) the extreme events. On the negative side, focusing on worst case performance may degrade performance during typical conditions. Thus, this model is most suitable for locating specialized emergency response centers or supply depots designed to provide service under extreme conditions.

The EpRCP model strikes the middle ground, optimizing the average-case performance, while requiring adequate performance in all scenarios. Note that it is not necessary to estimate probabilities of rare events here - they can be set to 0 since these events will likely not significantly impact the objective function, and the probabilities are not necessary for the constraints. This model is most suitable for the location of most emergency response facilities (hospitals, fire stations, etc.) that are expected to provide good service under typical travel time fluctuations, but are still expected to function adequately in extreme scenarios.

As an example of the difference between the three problems, consider locating a single facility with a coverage time of $T = 1$ on the network presented in Figure 3.1. Node weights and link travel times are provided next to nodes and links, respectively.
We consider two scenarios with probabilities $P_1 = 0.98$ for scenario 1 and $P_2 = 0.02$ for scenario 2. Table 3.1 summarizes the solutions to the three location problems discussed above. The optimal solution to the ECP is the central node 5. As expected, this location provides the best long term average coverage at the expense of a low worst case coverage. The opposite can be observed in nodes 1 and 3 that are the optimal robust locations. A middle ground is reached at the optimal expected $p$-robust location (node 2) enforcing a worst case coverage of 0.25.

A simplifying technique frequently used in solving stochastic location problems is to replace the stochastic variable with its mean. In our case, this implies treating the travel time on each link as deterministic and equal to the mean over all possible scenarios. In fact, the classical deterministic MCLP model can be viewed as using this approximation. Although this approach succeeds in simplifying the search for the optimal solution, the quality of the resulting solutions can be arbitrarily poor (as proved in Proposition 3.2

<table>
<thead>
<tr>
<th>Problem</th>
<th>Optimal location</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scenario 1</td>
</tr>
<tr>
<td>ECP</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>EpRCP</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>RCP</td>
<td>1 or 3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 3.1: Optimal solutions of the three location problems
below). Note that for the example above, since the expected travel time on each link is greater than 1, the optimal facility location is at any node other than 5. In particular, node 4 is an optimal location, even though it performs poorly in all three models considered above.

As noted earlier, in this study we ignore delays or interruptions that may occur at the facilities. In fact, queuing delays caused by congestion may certainly occur. We note that, while on one hand the literature on location models with service congestion is fairly rich (see e.g., Berman and Krass 2002) for a review) the resulting models tend to be analytically very challenging or intractable; building an integrated model combining queuing delays and travel time uncertainty would certainly be a worthy subject for future research. Moreover, there is some evidence that queuing delays occur infrequently in practice for the type of facilities we consider here (Ingolfsson et al. 2008), thus focusing on travel time uncertainty may be valid. Moreover, avoiding queuing delays is a matter of allocating sufficient capacity to the facilities, and while facilities cannot be easily relocated, equipment and staff can be (see e.g., Kolesar and Walker 1974). Thus the issues arising from travel time uncertainty are, fundamentally, more strategic.

The plan for the remainder of the chapter is as follows. After providing an overview of the relevant literature in Section 3.2, the problem is formally defined in Section 3.3. In this section we also prove an important localization result showing that an optimal location can be found within the discrete set of “critical points” that can be computed a priori. The algorithmic solution techniques for the three models are developed in Sections 3.4, 3.5 and 3.6. Results of the computational experiments are reported in Section 3.7. Section 3.8 contains the case study of locating fire stations in Toronto, Canada. Concluding remarks are presented in Section 3.9.
3.2. Literature Review

Since the seminal work of Hakimi (1964) on the median and center problems, the area of location analysis has attracted numerous researchers mostly studying deterministic location problems. The literature on stochastic location problems is mainly focused on node uncertainties including demand uncertainty (see Frank 1966, Mirchandani 1980, Berman and Wang 2004, 2007) and server congestion (see Daskin 1983, ReVelle and Hogan 1989, Berman and Krass 2002). The reader is referred to ReVelle and Eiselt (2005) for a recent review of the literature on facility location problems and to Snyder (2006) and Owen and Daskin (2005a) for a review of the literature on facility location problems under uncertainty.

The maximal covering location problem (MCLP) addresses the optimal location of facilities that provide service to customers within a coverage radius/time. Church and ReVelle (1974) first introduced the MCLP and developed greedy heuristics to search for the optimal facility locations on the nodes of a network. Church and Meadows (1979) prove that an optimal set of locations for the MCLP exists in a finite set of dominant points on the network and use linear programming and branch and bound to solve the problem. Galvao and ReVelle (1996) present a Lagrangian based heuristic for the MCLP. The reader is referred to Kolen and Tamir (1990) and Current et al. (2002) for a discussion of the MCLP. Extensions of the MCLP are discussed in Berman et al. (2009b).

For networks with probabilistic links, the scenario approach to uncertainty was first introduced by Mirchandani and Odoni (1979) and followed by Mirchandani and Oudjit (1980) in their study of stochastic medians on a network. Weaver and Church (1983) present solution procedures and computational results for location problems on networks with probabilistic links. Berman and Odoni (1982) and Berman and LeBlanc (1984) also use a scenario approach with Markovian transitions in modeling probabilistic links to study the optimal location-relocation of a single and multiple mobile servers, respectively. Serra and Marianov (1998) use a scenario approach to find optimal locations for
fire stations in Barcelona using Minmax type objectives. A related problem proposed by Nel and Colbourn (1990) is finding the most reliable source (MRS) on a network with unreliable links, i.e., locating facilities to maximize the expected number of nodes connected to the facility when links have some independent probability of being operational. The reader is referred to Snyder (2006) and Owen and Daskin (2005a) for a review of the literature on facility location problems under uncertainty.

The area of robust optimization has grown rapidly in recent years. When probabilities are not available or the system is expected to perform well in worst cases, robust measures such as minimax cost and minimax regret are employed to enhance system performance. The reader is referred to Kouvelis and Yu (1997) for a textbook treatment of the subject. Similar to the literature on stochastic location problems, most robust location problems study uncertainties related to the nodes of a network (e.g., demand uncertainty, server congestion, etc.), with exceptions including the following. For a tree with interval uncertain edge lengths and node weights, polynomial algorithms are presented by Chen and Lin (1998) and Burkard and Dollani (2001) for the minimax regret 1-median and by Averbakh and Berman (2000) and Burkard and Dollani (2002) for the minimax regret 1-center problem. Finally, Averbakh (2003) shows that both 1-median and weighted 1-center problems on a general network are NP-hard when edge lengths are interval uncertain; unlike the corresponding problems with node uncertainties that are polynomially solvable.

The concept of $p$-robustness was first introduced by Kouvelis et al. (1992) in a layout planning problem for manufacturing systems. They used constraints to ensure that the relative regret in each scenario is not greater than $p$. Snyder and Daskin (2006) combine $p$-robustness constraints with a minimum expected cost objective to solve median and uncapacitated fixed-charge location problems. Both problems are solved using variable splitting.

Link disruptions are special cases of travel time uncertainty in which travel times can
be assumed to increase to infinity (or at least larger than the facility’s coverage time).
So, a related research stream is locating facilities that are resilient to disruptions. Snyder et al. (2006) present an excellent review of the topic. Berman et al. (2007) study the effect of service disruptions at facilities on the optimal facility locations in a $p$-median context. They show that the optimal location patterns are more centralized as the disruption probability grows. Scaparra and Church (2008) present bilevel optimization models for the r-interdiction median problem with fortification assuming service at unprotected facilities can be disrupted. O’Hanley and Church (2008) extend the previous work to a coverage type objective. As discussed earlier, most studies, including the ones above, consider node disruptions whereas we study link disruptions. Related exceptions include maximum flow interdiction problems (see e.g., Cormican et al. 1998) and shortest path interdiction problems (see e.g., Israeli and Wood 2002) that study the impact of link removals, but use objective functions different from ours. Berman et al. (2009a) study the MCLP when one link of the network is disconnected by a terrorist attack or a natural disaster. This problem is a special case of the RCP studied here in which each scenario is the original network missing one link.

The empirical analysis of travel time uncertainty has also received considerable attention in the literature. Kolesar et al. (1975) propose and empirically verify a model for fire engine travel times in New York City that relates mean travel time to a square root function of distance for short distances and to a linear function of distance for long ones. This non-linear model has been revalidated using data in other cities and is still widely used in practice (Green and Kolesar 2004). Budge et al. (2009) use data from ambulance travel times in the city of Calgary to verify a similar non-linear model and propose a distance dependent distribution for travel times. The distribution is shown to have fatter tails than the Normal distribution and a coefficient of variation that decreases with distance.
3.3. Model Formulation and Critical Points

Consider \( m \) facilities with coverage time \( T \) that need to be located on a network \( G(\mathcal{N}, \mathcal{L}) \) with set of nodes \( \mathcal{N} (|\mathcal{N}| = n) \), each node \( i \in \mathcal{N} \) having a weight \(^1W_i\), and set of links \( \mathcal{L} (|\mathcal{L}| = l) \). The network uncertainty is represented by \( S \) scenarios and \( l^k_{ij} \) is the travel time of link \((i, j)\) in scenario \( k \). Facilities can be located at nodes or anywhere on links. Let \( X \subset G \) be a location vector of \( m \) open facilities. Define \( \mathcal{N}^k_X \) as the set of nodes covered in scenario \( k \) by facilities in \( X \). Notation used in the chapter are summarized in Table 3.2.

Three location problems are considered defined by (3.1)-(3.3) below. The robust covering problem (RCP), defined by (3.1), locates facilities to maximize the minimum coverage over all scenarios.

\[
\max_{X \subset G} \min_{k=1,2,\ldots,S} \sum_{i \in \mathcal{N}^k_X} W_i \quad (3.1)
\]

In the expected covering problem (ECP), defined by (3.2), we assume each scenario \( k \) occurs with probability \( P_k \) and locate facilities to maximize the expected cover over all scenarios.

\[
\max_{X \subset G} \sum_{k=1}^{S} \sum_{i \in \mathcal{N}^k_X} P_k W_i \quad (3.2)
\]

The expected \( p \)-robust coverage problem (EpRCP) has the same objective as ECP (3.2) but is subject to constraint (3.3) that ensures a minimum coverage of \( p \) over all scenarios.

\[
\min_{k=1,2,\ldots,S} \sum_{i \in \mathcal{N}^k_X} W_i \geq p \quad (3.3)
\]

The search for optimal locations can be narrowed to a finite set of points in \( G \). Define the set of critical points as the set composed of the nodes and all points in \( G \) that are at a travel time \( T \) from any node in any network scenario. Note that for a single-scenario problem \((S = 1)\) the set of critical points reduces to the set of network intersection points defined by Church and Meadows (1979). Since the travel time of a link might not be the

\(^1\)The focus of this chapter is on travel time uncertainty. However, our analysis can be adapted to capture scenario dependent demand uncertainty by using \( W_{ik} \) instead of \( W_i \).
Table 3.2: Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(N, \mathcal{L})$</td>
<td>the network with set of nodes $N$ ($</td>
</tr>
<tr>
<td>$S$</td>
<td>number of network scenarios</td>
</tr>
<tr>
<td>$m$</td>
<td>number of facilities to be located</td>
</tr>
<tr>
<td>$T$</td>
<td>coverage time of each facility</td>
</tr>
<tr>
<td>$W_i$</td>
<td>weight of node $i$</td>
</tr>
<tr>
<td>$l^k_{ij}$</td>
<td>travel time of link $(i, j)$ in scenario $k$</td>
</tr>
<tr>
<td>$P_k$</td>
<td>probability of scenario $k$ occurring</td>
</tr>
<tr>
<td>$\mathcal{N}^k_X$</td>
<td>set of nodes covered in scenario $k$ if the facilities are located at $X \subset G$</td>
</tr>
<tr>
<td>$n'$</td>
<td>number of critical points in the network</td>
</tr>
<tr>
<td>$\langle i, \alpha, j \rangle$</td>
<td>a critical point on link $(i, j)$ at a travel time $\alpha l^k_{ij}$ from $i$ in scenario $k$</td>
</tr>
<tr>
<td>$I_{kij}$</td>
<td>1 if a facility located at critical point $j$ covers node $i$ in scenario $k$; 0 otherwise</td>
</tr>
<tr>
<td>$x_j$</td>
<td>1 if a facility is located at critical point $j$; 0 otherwise</td>
</tr>
<tr>
<td>$y_i$</td>
<td>probability that node $i$ is covered</td>
</tr>
<tr>
<td>$y_{ik}$</td>
<td>1 if node $i$ is covered in scenario $k$; 0 otherwise</td>
</tr>
<tr>
<td>$c$</td>
<td>minimum weighted cover over all scenarios</td>
</tr>
<tr>
<td>$C^k$</td>
<td>coverage matrix with elements $c^k_{ij} = W_i I_{kij}$</td>
</tr>
<tr>
<td>$Z$</td>
<td>Weighted cover. $Z^*$: optimal -, $Z^G$: greedy -. If locating at $j$, $EZ_j$: expected -, $MZ_j$: minimum -, $Z^k_j$: - in scenario $k$</td>
</tr>
</tbody>
</table>

same in different scenarios, we cannot define critical points on a link at a fixed travel time from a node. Hence, for some $0 \leq \alpha \leq 1$, we define a critical point $\langle i, \alpha, j \rangle$ on link $(i, j)$ at a travel time $\alpha l^k_{ij}$ from $i$ in scenario $k$. Note that although the travel time from the critical point to any node changes in each scenario, the relative position of the critical point on the link is fixed. For example, suppose the travel time of link $(i, j)$ is 2 in scenario 1 and 4 in scenario 2. Then, $\langle i, 0.5, j \rangle$ is at a travel time of 1 and 2 form node $i$ (i.e. center of the link) in scenarios 1 and 2.

**Theorem 3.1.** An optimal set of locations for ECP, RCP, and EpRCP exists in the set of critical points.

**Proof.** Let $X \subset G$ be a location vector of $m$ open facilities. If there exists a facility...
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

$x \in X$ that is not already on a critical point, it is always between two consecutive critical points. Let $a$ and $b$ be consecutive critical points such that $x \in [a, b]$. The set of nodes covered ($\mathcal{N}_X^k$) may gain or lose one or more nodes in some scenario $k$ when we move the facility from $x$ across a critical point. However, we are certain, by definition, that $\mathcal{N}_X^k$ remains unchanged on $(a, b)$ for all $k = 1, \ldots, S$. Based on the objective functions defined in (3.1) and (3.2), we conclude that moving the facility from $x$ to $a$ or $b$ has no effect on the problems’ objective. In addition, by (3.3), such a move maintains the feasibility of the solution for the EpRCP, thereby proving the theorem. \hfill \Box

**Proposition 3.1.** The number of critical points, $n'$, is $O(nlS)$ on a general network and $O(n^2S)$ on a tree.

*Proof.* The shortest path from each point on a link to any node on a general network is through one of the two endpoints of the link. So, each node can generate at most two critical points on any link in each scenario. Since nodes are included in the set of critical points, $n \leq n' \leq n + 2nlS$ and, therefore, $n'$ is $O(nlS)$. A tree has $n - 1$ links. So, $n'$ is $O(n^2S)$ on a tree. \hfill \Box

To show that $O(n^2S)$ is a tight representation of the number of critical points on a tree, consider a star network with $n$ nodes numbered $0, 1, \ldots, n - 1$ and $S$ scenarios. For an arbitrary small $\epsilon > 0$, assume that each node $i$, except for $i = 0$, is connected to node 0 in scenario $k$ via a link with travel time $T - (i + (k - 1)S)\epsilon$ for all $i = 1, \ldots, n - 1$ and $k = 1, \ldots, S$. Each node $i$ generates a unique critical point on each link not adjacent to $i$ in each scenario. So, the number of critical points is $n + (n - 2)(n - 1)S$ which is $O(n^2S)$.

We note that finding all critical points requires the availability of travel time data in each network scenario. In the case study presented in Section 3.8 we have access to such a data set for the city of Toronto. However, we acknowledge that access to such data might not be always available in other settings. If, instead, only the distance data is available, one has to decide whether to model the travel speeds as uniform or not.
Here, the model proposed by Kolesar et al. (1975) can be used to estimate the average travel times. Additionally, the distance dependent probability distributions proposed by Budge et al. (2009) can be used (with some expert knowledge regarding the dependence of travel times) to acquire travel times in multiple network scenarios.

The common interpretation of the non-linear model in Kolesar et al. (1975) is that vehicles have an acceleration and deceleration phase (with constant acceleration rate \( a \)) at the beginning and end of each trip, respectively (see Figure 3.2). Carson and Batta (1990) and Ingolfsson et al. (2003) demonstrate that accounting for such a non-uniform travel speed is important for an accurate assessment of EMS system performance. However, most data sets used in practice assume a constant cruising speed, \( V_c \). To capture the effect of non-uniform travel speed, one only needs to adjust the coverage time and use \( T' < T \) to ensure that the distance traveled in time \( T \) using a vehicle with non-uniform travel speed is equal to the distance traveled in time \( T' \) using a vehicle with constant speed \( V_c \), i.e., \( V_c T' \). The adjusted coverage time is obtained as follows using Physics laws of motion and Figure 3.2.

\[
T' = \begin{cases} 
T - \frac{V_c}{a} & T \geq \frac{2V_c}{a} , \\
\frac{T^2 a}{2V_c} & T < \frac{2V_c}{a} .
\end{cases}
\]

Figure 3.2: Non-uniform travel speed
3.4. The Expected Covering Problem

In this section we study the expected covering problem (ECP), i.e., locating facilities to maximize expected coverage over all network scenarios. We present an integer programming formulation for the ECP in Section 3.4.1 and propose Lagrangian and greedy heuristics for the ECP in Sections 3.4.2 and 3.4.3, respectively. But, first we show that simplifying the location problem by averaging the travel time on links can result in arbitrarily suboptimal solutions.

**Proposition 3.2.** In the expected covering problem, the relative error of optimizing based on average link travel times can be made arbitrarily large.

**Proof.** Consider a single facility location problem on a star network of \( n \) nodes with weights of 0 and \( \frac{1}{n-1} \) for the central and leaf nodes, respectively (see Figure 3.3 for \( n = 5 \)). Assume that the network has two scenarios: (1) all links have travel times equal to the coverage time \( T \), (2) all links have travel times equal to \( 2T \). Further, assume that scenarios 1 and 2 occur with probabilities \( 1 - \epsilon \) and \( \epsilon \) (\( \epsilon > 0 \)), respectively. For a small \( \epsilon \), the optimal facility location is the central node with an expected coverage of \( 1 - \epsilon \). However, since average link travel times are more than the coverage time, the optimal location using average travel times is any leaf node and the expected coverage is \( \frac{1}{n-1} \). The relative error can be made arbitrarily close to 100% by decreasing \( \epsilon \) and increasing \( n \).

![Figure 3.3: Link travel times and expected link travel times for \( n = 5 \)](image)
We note that the example provided is a mathematical oddity caused by defining coverage as a step function. In reality, if $\epsilon$ is small, the demands remain covered at a travel time of $T + \epsilon$.

3.4.1 Mathematical Programming Formulation

Define coverage parameters (not decision variables) $I_{kij} = 1$ if a facility located at critical point $j$ covers node $i$ in scenario $k$, i.e., the shortest travel time from node $i$ to critical point $j$ in scenario $k$ is not greater than $T$, and 0 otherwise. Let $x_j = 1$ if a facility is located at critical point $j$ and 0 otherwise. Let $y_i$ be the probability that node $i$ is covered. The ECP, defined in (3.2), can be formulated as follows:

$$\text{max } Z = \sum_{i=1}^{n} W_i y_i$$  \hspace{1cm} (3.4a)

$$\text{s.t. } \sum_{k=1}^{s} P_k \max_{j=1,...,n'} x_j I_{kij} \geq y_i \quad \text{for all } i = 1, \ldots, n$$ \hspace{1cm} (3.4b)

$$\sum_{j=1}^{n'} x_j = m$$ \hspace{1cm} (3.4c)

$$x_j = 0, 1 \text{ and } y_i \geq 0 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n'$$ \hspace{1cm} (3.4d)

The problem’s objective (3.4a) is to maximize the expected coverage. Coverage probabilities are calculated in (3.4b) while (3.4c) ensures that $m$ facilities are located on the network. The formulation is non-linear due to constraint (3.4b). To avoid non-linearity, we introduce new decision variables $y_{ik} = 1$ if node $i$ is covered in scenario $k$ and 0 otherwise. Now, we can present an integer programming formulation for the ECP as below:
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

\[ \text{ECP} \]

\[
\begin{align*}
\max Z &= \sum_{i=1}^{n} \sum_{k=1}^{S} W_i P_{k_i} y_{ik} \\
\text{s.t. } y_{ik} &\leq \sum_{j=1}^{n'} x_{j} I_{kij} \quad \text{for all } i = 1, \ldots, n, \ k = 1, \ldots, S \\
\sum_{j=1}^{n'} x_{j} &= m \\
x_{j}, y_{ik} &= 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', \ k = 1, \ldots, S
\end{align*}
\] (3.5a–3.5d)

Daskin (1987) presents an alternative formulation for the maximum covering problem with travel time uncertainty assuming travel times on non-overlapping links are independent and calculating the coverage probabilities exogenously. Whereas our formulation requires explicit enumeration of travel times on all links in all network scenarios, Daskin’s formulation only requires a probability distribution for the travel time on each link. The resulting data burden is obviously much lower with Daskin’s formulation (Erkut et al. (2008) and Goldberg and Paz (1991) use similar independence assumptions to calculate the coverage probabilities). However, the price one pays for the improved computational tractability is the independence assumption, which is clearly violated for a city with time-dependent traffic pattern. For example, in the case study presented in Section 3.8, average travel time correlation on all links during different hours of the day is 0.45 for Toronto. In this regard, our scenario-based treatment of travel times allows for interdependent travel times, and thus is more appropriate for the Toronto data.

Note that the classical maximum covering location problem which is a special case of ECP is proved to be NP-hard. Our numerical studies in Section 3.7 show that the integer friendliness of the maximum covering location problem (see e.g., ReVelle 1993) is lost when extending the problem to multiple scenarios and that the integer programming formulation (3.5a)–(3.5d) is difficult to solve, especially for large networks. Therefore, we present Lagrangian and greedy heuristics for the ECP in the following sections.
3.4.2 Lagrangian Relaxation

The general idea in Lagrangian relaxation is to eliminate one or more constraints and replace them in the objective in hope of finding an optimization problem that is easier to solve. Interested readers are referred to Fisher (1981) for an introduction to Lagrangian relaxation. By relaxing constraint (3.5b), the Lagrangian dual of the ECP, L-ECP, is defined as:

$$L = \min_{\lambda} \max_{x,y} \sum_{i=1}^{n} \sum_{k=1}^{S} (W_i P_k - \lambda_{ik}) y_{ik} + \sum_{j=1}^{n'} \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} I_{kij} x_j$$

s.t. $\sum_{j=1}^{n'} x_j = m$

$$x_j, y_{ik} = 0, 1 \quad \text{for all } j = 1, \ldots, n', \ i = 1, \ldots, n, \ k = 1, \ldots, S$$

The Lagrangian relaxation for the ECP is similar to that for the standard maximum covering location problem in Galvao and ReVelle (1996). For a fixed non-negative vector of Lagrangian multipliers $\lambda = [\lambda_{ik}]_{i=1,\ldots,n,k=1,\ldots,S}$, L-ECP($\lambda$) is a maximization problem. The optimal solution of L-ECP($\lambda$), denoted by $UB(\lambda)$, provides an upper-bound for ECP. Ordering the critical points in decreasing order of $\sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} I_{kij}$, ties broken arbitrarily, it is easy to show that the optimal solution to L-ECP($\lambda$) is:

$$x_{j}^{UB} = \begin{cases} 1 & \text{for the first } m \text{ critical points on the ordered list} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ik}^{UB} = \begin{cases} 1 & \text{if } W_i P_k - \lambda_{ik} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Assuming we locate facilities at those critical points for which $x_{j}^{UB} = 1$, we can generate a feasible solution for ECP by setting $y_{ik}$ as:

$$y_{ik}^{LB} = \begin{cases} 1 & \text{if } \sum_{j=1}^{n'} x_j I_{kij} \geq 1 \\ 0 & \text{otherwise} \end{cases}$$
Substituting the feasible solution in (3.5a), we obtain a lower-bound for ECP denoted by $LB(\lambda)$.

Given initial multipliers $\lambda^0$, we use the subgradient optimization method to generate a sequence of multipliers as follows:

$$
\lambda_{ik}^{t+1} = \max \left\{ 0, \lambda_{ik}^t - \Delta^t \left( \sum_{j=1}^{n'} x_{ij}^{UB} I_{kij} - y_{ik}^{UB} \right) \right\}
$$

where $\Delta^t$ is a positive step size defined as:

$$
\Delta^t = \frac{\alpha^t \left[ UB(\lambda^t) - LB(\lambda^t) \right]}{\sum_{i=1}^{n} \sum_{k=1}^{S} \left( \sum_{j=1}^{n'} x_{ij}^{UB} I_{kij} - y_{ik}^{UB} \right)^2}
$$

and $\alpha^t$ is a scalar satisfying $0 < \alpha^t \leq 2$. Our algorithm starts with $\alpha^0 = 2$ and $\lambda_{ik} = 0$ and cuts $\alpha$ by half every time $UB(\lambda)$ fails to decrease after a fixed number of iterations. The algorithm terminates when the upper and lower bounds are sufficiently close to each other or when the iteration limit is reached. The Lagrangian relaxation algorithm for the ECP can be formally stated as follows:

**Algorithm 3.1. Lagrangian Relaxation**

1. Initiation: Let $\lambda_{ik}^0 = 0$, $\alpha^0 = 2$, $t = 0$. Set appropriate values for $\epsilon$ (convergence error), $t_{max}$ (iterations limit), and $t_\alpha$ (iterations to decrease $\alpha$).

2. Lagrangian relaxation: Find $ UB(\lambda^t)$ and $ LB(\lambda^t)$ using (3.6) and (3.6).

3. Check convergence: If $ UB(\lambda^t) - LB(\lambda^t) \leq \epsilon$ or $ t = t_{max}$, STOP.

4. Update step size: For $ t > t_\alpha$, if $UB(\lambda^t) \geq UB(\lambda^{t-t_\alpha})$, $\alpha^t = \frac{\alpha^{t-1}}{2}$. Otherwise, $\alpha^t = \alpha^{t-1}$.

5. Update multipliers: Find $\lambda^{t+1}$ using (3.6) and (3.6). Increase $t$ by one. Goto step 2.
Lagrangian relaxation can be embedded in a branch and bound procedure to find an exact solution for the ECP. However, as will be discussed later, since the optimality gap was relatively small in all our numerical experiments, further improvement of the solution was not necessary.

3.4.3 Greedy Heuristic

In this section we first provide an exact solution procedure for the single facility ECP. Since the extension of this procedure to multiple facilities becomes numerically intensive, we also present a greedy heuristic for the multiple facility ECP. For each scenario \( k = 1, \ldots, S \), define the coverage matrix \( C^k \) with elements \( c^k_{ij} = W_i \) if node \( i \) is covered by a facility located at critical point \( j \) in scenario \( k \); and \( c^k_{ij} = 0 \) otherwise, i.e., \( c^k_{ij} = W_i I_{kij} \).

Rows in the coverage matrix correspond to nodes and columns correspond to critical points. The following algorithm finds the optimal location for the single facility ECP.

**Algorithm 3.2. Single-facility ECP**

1. Find weighted cover \( Z^k_j = \sum_{i=1}^{n} c^k_{ij} \) for all \( k = 1, \ldots, S \) and \( j = 1, \ldots, n' \).
2. Find expected weighted cover \( EZ_j = \sum_{k=1}^{S} P_k Z^k_j \) for all and \( j = 1, \ldots, n' \).
3. Locate the facility at critical point \( j = \arg \max_{j=1, \ldots, n'} \{ EZ_j \} \)

The complexity of Algorithm 3.2 is mainly due to step 1. Based on Proposition 3.1, the number of columns (critical points) in each coverage matrix is \( O(nlS) \) for a general network and \( O(n^2S) \) for a tree. So, the complexity of step 1 and the whole algorithm is \( O(n^2lS^2) \) for a general network and \( O(n^3S^2) \) for a tree.

Algorithm 3.2 can be extended for locating \( m > 1 \) facilities by defining columns as any combination of \( m \) critical points. The complexity of this algorithm is due to the need for enumerating all subsets of critical points with size \( m \). Using Sterling’s approximation for factorials, the number of columns in each coverage matrix would be \( O \left( \left( \frac{n!}{m!} \right)^m \right) \) for
a general network and $O\left(\left(\frac{n^2}{m}\right)^m\right)$ for a tree. So, the complexity of Algorithm 3.2 is $O\left(\left(\frac{n!}{m}\right)^m nS\right)$ for locating $m > 1$ facilities on a general network and $O\left(\left(\frac{n^2}{m}\right)^m nS\right)$ on a tree. Instead, The following greedy heuristic solves the problem of locating $m > 1$ facilities and has a complexity of $O(mn^2lS^2)$ for a general network and $O(mn^3S^2)$ for a tree.

**Algorithm 3.3. Greedy heuristic for ECP**

1. Locate one facility at the critical point $j$ with maximum $EZ_j$ determined by Algorithm 3.2. Let $m = m - 1$.

2. In each coverage matrix $C^k$, for all $i = 1, \ldots, n$, if $c_{ij}^k > 0$, change $c_{il}^k$ to $W_i$ for all $l = 1, \ldots, n'$. 

3. If $m > 0$, go to step 1; otherwise STOP.

Algorithm 3.3 locates the facilities one by one based on a greedy coverage criterion. For each node $i$ and scenario $k$, if the located facility covers node $i$ in scenario $k$, step 2 changes all elements in row $i$ of $C^k$ to $W_i$. This ensures that nodes already covered are assumed covered and not considered again when locating the next facilities. Let $Z^*$ be the optimal weighted cover from (3.5a)-(3.5d) and $Z^G$ be the weighted cover obtained by Algorithm 3.3. Then, the relative error of Algorithm 3.3 is defined as $\frac{Z^* - Z^G}{Z^*}$.

**Theorem 3.2.** The worst case relative error of Algorithm 3.3 is $\frac{1}{e} \approx 37\%$.

**Proof.** Nemhauser et al. (1978) discuss various properties of submodular functions and prove that the worst case relative error of maximizing a non-decreasing submodular function via a greedy heuristic is $\frac{1}{e}$. We prove that the weighted cover $Z$ is a non-decreasing submodular function. Let $\mathcal{F}$ be a set of facility locations (subset of the set of critical points). By (3.5b) and (3.5d) and the objective (3.5a) that maximizes $y_{ik}$, $y_{ik} = 1$ if node $i$ is covered by some facility $j \in \mathcal{F}$ in scenario $k$, i.e., if $i \in \mathcal{N}_F^k$, and $y_{ik} = 0$ if
otherwise. So, (3.5a) can be rewritten as $Z(F) = \sum_{k=1}^{S} \sum_{i \in N_{j}^{k}} W_{i} P_{k}$. Let $F_1$ and $F_2$ be sets of facility locations such that $F_1 \subset F_2$ and $j$ be a critical point such that $j \notin F_2$.

Then,

$$Z(F_2 \cup \{j\}) - Z(F_2) = \sum_{k=1}^{S} \sum_{i \in N_{j}^{k}} P_{k} W_{i} - \sum_{k=1}^{S} \sum_{i \in N_{j}^{k} - N_{F_1}^{k}} P_{k} W_{i} \geq 0$$

Similarly, $Z(F_1 \cup \{j\}) - Z(F_1) = \sum_{k=1}^{S} \sum_{i \in N_{j}^{k} - N_{F_2}^{k}} P_{k} W_{i}$.

But, $F_1 \subset F_2$ implies that $N_{F_1}^{k} \subset N_{F_2}^{k}$ and, hence, $N_{j}^{k} - N_{F_2}^{k} \subset N_{j}^{k} - N_{F_1}^{k}$. So, $0 \leq Z(F_2 \cup \{j\}) - Z(F_2) \leq Z(F_1 \cup \{j\}) - Z(F_1)$ that proves $Z$ is non-decreasing and submodular.

**Proposition 3.3.** The worst case bound obtained in Theorem 3.2 is tight.

**Proof.** To prove that the $\frac{1}{\epsilon}$ worst case bound is tight, we provide the following infinite directed graph as an example. Consider locating two facilities on the network presented in Figure 3.4, $P_1 = P_2 = 0.5$. Assume travel time on all links is $T$ (coverage time). So, the set of critical points includes nodes only. Based on the coverage matrices in Figure 3.4 for the first facility, the expected weighted covers are $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{1}{2}$ for the six columns.

With a small $\epsilon$ adjustment, Algorithm 3.3 locates the first facility on node 1. For the second facility, based on coverage matrices in Figure 3.4, the expected weighted covers are $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{3}{4}$, $\frac{3}{4}$, and $\frac{3}{4}$ for the six columns. With a small $\epsilon$ adjustment, Algorithm 3.3 locates the second facility on node 3. The $\epsilon$ adjustments required to ensure the choices above is to change the weight of node 1 to $\frac{1}{4} + \epsilon$ and node 3 to $\frac{1}{8} + \frac{\epsilon}{2}$ for an arbitrary small $\epsilon > 0$.

The total expected weighted cover using Algorithm 3.3 is $Z^G = \frac{3}{4}$. However, the optimal solution is $Z^* = 1$ that is achieved by locating the facilities on nodes 5 and 6. So, the relative error of Algorithm 3.3 for the network in Figure 3.4 is $\frac{Z^* - Z^G}{Z^*} = \frac{1}{4}$. By extending our example as follows we construct a network for which the relative error of Algorithm 3.3 approaches $\frac{1}{\epsilon}$ as the network size increases to infinity.

For any $k > 1$, let $\alpha = \frac{k-1}{k} < 1$ and construct a network that consists of $k$ complete graphs, $G^1, \ldots, G^k$, and an empty graph $G^{k+1}$. Each complete graphs $G^i$ has $k$ nodes
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

Figure 3.4: Tightness of the greedy bound, $k = 2$

$g_1^i, \ldots, g_k^i$ with weights $\frac{a_i^{i-1}}{k^2}$. The empty graph $G^{k+1}$ has $k$ nodes $g_1^{k+1}, \ldots, g_k^{k+1}$ with weights $\frac{a_k^k}{k}$. Assume the network has $k$ scenarios, each with probability $\frac{1}{k}$. In scenario $s$, $g_j^{k+1}$ is connected to all nodes $g_{(j+s-2\mod k)+1}^l$ for $l = 1, \ldots, k$ with a directed link originating from $g_j^{k+1}$. That is, in scenario 1, node $g_1^{k+1}$ is connected to $g_1^1, \ldots, g_1^k$, $g_2^{k+1}$ is connected to $g_2^1, \ldots, g_2^k$, etc. In scenario 2, node $g_k^{k+1}$ is connected to $g_1^1, \ldots, g_1^k$, $g_1^{k+1}$ is connected to $g_2^1, \ldots, g_2^k$, $g_2^{k+1}$ is connected to $g_3^1, \ldots, g_3^k$, etc. Assume travel time on all links is $T$ (coverage time). So, the set of critical points includes nodes only.

Figure 3.4 is the realization of this network for $k = 2$ in which nodes 1 and 2 are $G^1$, nodes 3 and 4 are $G^2$, and nodes 5 and 6 are $G^3$. The coverage matrices for the first facility in Figure 3.4 include $2 \times 2$ blocks of node weights. Following a similar structure, the coverage matrix for scenario 1 of the extended network ($k \geq 2$), presented in Figure 3.5, includes $k \times k$ blocks of node weights. The coverage matrix for other scenarios can be found by reordering the top part of the last $k$ columns keeping the last
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

The expected weighted cover of the first $k$ sets of $k$ columns (i.e., columns 1, 2 and columns 3, 4 when $k = 2$) is $\frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}$, respectively. For the last $k$ columns (i.e., columns 5, 6 when $k = 2$), the expected weighted cover is:

$$\frac{1}{k^2} \left(1 + \ldots + \alpha^{k-1}\right) + \frac{\alpha^k}{k} = \frac{1}{k^2} \left(1 - \alpha^k\right) + \frac{\alpha^k}{k} = \frac{1}{k} \left(1 - \alpha^k\right) + \frac{\alpha^k}{k} = \frac{1}{k}$$

So, with small $\epsilon$ adjustments, Algorithm 3.3 locates the first facility on a node in $G^1$. Similar analysis reveals that Algorithm 3.3 locates the $i^{th}$ facility on a node in $G^i$. Hence, the total expected weighted cover using Algorithm 3.3 is $Z^G = \frac{1}{k} \left(1 + \ldots + \alpha^{k-1}\right) = 1 - \alpha^k$. However, all nodes are covered in all scenarios if facilities are located on the nodes of $G^{k+1}$. So, the optimal solution is $Z^* = \frac{1}{k} \left(1 + \ldots + \alpha^{k-1}\right) + \alpha^k = 1$ and the relative error of Algorithm 3.3 is $\frac{Z^* - Z^G}{Z^*} = \alpha^k = \left(\frac{k-1}{k}\right)^k$. When $k$ increases to infinity, the relative error of Algorithm 3.3 becomes $\lim_{k \to \infty} \left(\frac{k-1}{k}\right)^k = \frac{1}{e}$.

Next we present an example to highlight the discussion here and in the next sections. Suppose a facility with coverage time $T = 4$ is to be located on the two-scenario network illustrated in Figure 3.6 where $P_1 = 70\%$ and $P_2 = 30\%$. The critical points, coverage
matrices, and all calculations necessary to find the optimal single facility location are presented in Table 3.3. The optimal facility location, based on Table 3.3, is node 4 with an expected cover of 0.53 ([3, 3, 4] is an alternative optimum). Suppose two facilities are to be located on the network. The greedy heuristic locates the first facility at node 4. The adjusted coverage matrices and all calculations required in the greedy heuristic are presented in Table 3.4. The greedy heuristic locates the second facility at node 1 with an expected cover of 0.93 (with six alternative optima). It can be verified that the greedy

![Figure 3.6: Example network](image)

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(1, 3/5, 2)</th>
<th>(1, 3/5, 2)</th>
<th>(2, 2/3, 3)</th>
<th>(2, 2/3, 3)</th>
<th>(1, 3/5, 2)</th>
<th>(1, 3/5, 2)</th>
<th>(3, 3/4, 4)</th>
<th>(3, 3/4, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(1, 3/5, 2)</th>
<th>(1, 3/5, 2)</th>
<th>(2, 2/3, 3)</th>
<th>(2, 2/3, 3)</th>
<th>(1, 3/5, 2)</th>
<th>(1, 3/5, 2)</th>
<th>(3, 3/4, 4)</th>
<th>(3, 3/4, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z_j^1</th>
<th>0.4</th>
<th>0.4</th>
<th>0.6</th>
<th>0.6</th>
<th>0.4</th>
<th>0.4</th>
<th>0.4</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.4</th>
<th>0.4</th>
<th>0.6</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_j^2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.25</td>
<td>0.35</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>EZ_j</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.53</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 3.3: ECP- first facility
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

### Table 3.4: ECP- second facility

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(1, \frac{1}{3}, 2)</th>
<th>(1, \frac{1}{3}, 2)</th>
<th>(2, \frac{2}{3}, 3)</th>
<th>(2, \frac{2}{3}, 3)</th>
<th>(1, \frac{1}{3}, 2)</th>
<th>(1, \frac{1}{3}, 2)</th>
<th>(3, \frac{3}{3}, 4)</th>
<th>(3, \frac{3}{3}, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Scenario 2 | 1 | 1 | 0.6 | 0.6 | 1 | 1 | 1 | 0.75 | 0.85 | 0.6 | 1 | 1 | 0.6 | 0.6 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.15 | 0.15 | 0 | 0 | 0.15 | 0.15 | 0 | 0 | 0.15 | 0.15 | 0 | 0 | 0 |
| 2 | 0.15 | 0.15 | 0 | 0 | 0.15 | 0.15 | 0 | 0 | 0.15 | 0.15 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0.25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
| 5 | 0.1 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0 | 0 | 0 |

<table>
<thead>
<tr>
<th>Z^j</th>
<th>1</th>
<th>1</th>
<th>0.6</th>
<th>0.6</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0.75</th>
<th>0.85</th>
<th>0.6</th>
<th>1</th>
<th>1</th>
<th>0.6</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>0.75</td>
<td>0.6</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.85</td>
<td>0.6</td>
<td>0.75</td>
<td>0.75</td>
<td>0.6</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>0.93</td>
<td>0.93</td>
<td>0.6</td>
<td>0.53</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.75</td>
<td>0.85</td>
<td>0.6</td>
<td>0.93</td>
<td>0.93</td>
<td>0.6</td>
<td>0.53</td>
</tr>
</tbody>
</table>

3.5. The Robust Covering Problem

The robust covering problem (RCP) locates facilities to maximize the minimum weighted cover over all network scenarios. Let \( c \) be the minimum weighted cover. The RCP can be formulated as follows:

\[
\text{max } Z = c \\
\text{s.t. } c \leq \sum_{i=1}^{n} W_i y_{ik} \quad \text{for all } k = 1, \ldots, S \tag{3.6a}
\]

\[
y_{ik} \leq \sum_{j=1}^{n'} x_{ij} I_{kij} \quad \text{for all } i = 1, \ldots, n, \ k = 1, \ldots, S \tag{3.6b}
\]

\[
\sum_{j=1}^{n'} x_{ij} = m \tag{3.6c}
\]

\[
x_{ij}, y_{ik} = 0, 1, \ c \geq 0 \quad \text{for all } i = 1, \ldots, n, \ j = 1, \ldots, n', \ k = 1, \ldots, S \tag{3.6d}
\]
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

Constraint (3.6b) calculates the minimum weighted cover over all scenario. Constraint (3.6c) identifies the covered nodes in each scenario and (3.6d) ensures that \( m \) facilities are located. Solving this integer programming problem, similar to that of the ECP, is difficult, especially for large networks. We develop Lagrangian and greedy heuristics to solve it. The Lagrangian dual of the RCP, L-RCP, is defined by relaxing (3.6c) with Lagrangian multipliers \( \lambda_{ik} \).

\[ \text{[L-RCP]} \]

\[
L = \min_{\lambda} \max_{x,y,c} c - \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} y_{ik} + \sum_{j=1}^{n'} \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} I_{kij} x_{j} \\
\text{s.t. } c \leq \sum_{i=1}^{n} W_{i} y_{ik} \text{ for all } k = 1, \ldots, S \\
\sum_{j=1}^{n'} x_{j} = m \\
x_{j}, y_{ik} = 0, 1, c \geq 0 \text{ for all } j = 1, \ldots, n', i = 1, \ldots, n, k = 1, \ldots, S
\]

The L-RCP is separable with respect to the decision variables into an \( x \)-problem (involving only \( x_{j} \) variables) and a \( y \)-problem (involving only \( y_{ik} \) variables and \( c \)). Whereas the \( x \)-problem is easy to solve, the \( y \)-problem is a multi-dimensional knapsack problem that is not readily solvable. Note, however, that the Lagrangian solution provides an upper-bound for the RCP. Therefore, we replace the set of equations (3.6b) with their average and find an upper-bound for L-RCP, and hence an upper-bound for RCP, by solving L’-RCP as follows:

\[ \text{[L’-RCP]} \]

\[
L' = \min_{\lambda} \max_{y,c} c - \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} y_{ik} + \sum_{j=1}^{n'} \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik} I_{kij} x_{j} \\
\text{s.t. } c \leq \frac{1}{S} \sum_{i=1}^{n} \sum_{k=1}^{S} W_{i} y_{ik} \\
\sum_{j=1}^{n'} x_{j} = m \\
y_{ik} = 0, 1, c \geq 0 \\
x_{j} = 0, 1
\]
For a fixed non-negative vector of Lagrangian multipliers $\lambda$, $L'-\text{RCP}(\lambda)$ is a maximization problem. Each non-zero $y_{ik}$ in the optimal solution increases $c$ by $\frac{W_i}{S}y_{ik}$ and the objective function by $c - \lambda_{ik}y_{ik}$. So, a non-zero $y_{ik}$ has a non-negative contribution to the objective function of the $y$-problem if $\lambda_{ik} \leq \frac{W_i}{S}$. Therefore, ordering the critical points in decreasing order of $\sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik}I_{kij}$, the optimal solution to $L'-\text{RCP}(\lambda)$ is:

$$
x^{UB}_j = \begin{cases} 
1 & \text{for the first m critical points on the ordered list}, \\
0 & \text{otherwise}.
\end{cases}
$$

$$
y^{UB}_{ik} = \begin{cases} 
1 & \text{if } \lambda_{ik} \leq \frac{W_i}{S}, \\
0 & \text{otherwise}.
\end{cases}
$$

$$
c^{UB} = \frac{1}{S} \sum_{i=1}^{n} \sum_{k=1}^{S} W_i y_{ik}
$$

Lagrangian and greedy heuristics, similar to Algorithms 3.1 and 3.3 can be developed to solve the RCP. The single facility RCP is solved optimally with a modified version of Algorithm 3.2 noting that here we find the minimum cover $MZ_j = \min_{k=1,\ldots,S}\{Z^k_j\}$ in step 2 and locate the facility at the critical point with maximum $MZ_j$ in step 3.

**Example.** Continuing the example in Section 3.4.3, the maximum of $MZ_j = \min\{Z^1_j, Z^2_j\}$ based on Table 3.3 is 0.5. So, the optimal solution to the one facility RCP is to locate at $\langle 2, \frac{1}{3}, 3 \rangle$. For the two facility problem, the adjusted coverage matrices and all calculations required in the greedy heuristic are presented in table 3.5. Based on table 3.5, the greedy heuristic locates the second facility at node 4 ($\langle 3, \frac{3}{4}, 4 \rangle$ is an alternative optimum) with an optimal objective value of 0.85. The greedy heuristic finds the optimal solution to the RCP in this example.

### 3.5.1 Special Cases

As discussed in Section 3.1, the RCP is particularly interesting in contexts for which the worst case effect of a disruptive event is under study such as a terrorist attack, a
natural disaster, or a network failure. A realistic effect of such an event is the complete disconnection of one or more links rather than a finite increase in their length(s). Note that an increase in the length of a link beyond $2T$ is equivalent to the disconnection of that link. We denote by “risky link” a link that might be disconnected. When all links in the network are risky, the network has $2^l$ states. In such a case, the complexity of the exact and heuristic algorithms presented for the RCP increases exponentially with the size of the network.

On a general network, if all risky links can be disconnected simultaneously, the network has minimum coverage when all risky links are disconnected (proof by contradiction). Therefore, the RCP is reduced to solving a single state, i.e., all risky links disconnected, maximum covering location problem. If a certain number of risky links, but not all, can be disconnected at once, the problem becomes more complicated due to the need for identifying links whose disconnection will cause minimum coverage.

In the single facility RCP on a tree, if all links are risky and only one link can be disconnected, first, the coverage of a facility located at an interior point on a link is zero.
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

if that link is disconnected. So, locating on an interior point of any link is suboptimal, and hence, the set of critical points includes nodes only. Second, let \( D_i^l \) be the set of nodes within the coverage radius of a facility located at node \( i \) if link \( l \) is disconnected and \( \mathcal{L}_i \) be the set of links adjacent to node \( i \). Then, the following proposition holds.

**Proposition 3.4.** If only one link can be disconnected on a tree, the minimum coverage for a facility located at a node occurs when one of its adjacent links is disconnected.

**Proof.** Assume that a facility is located at node \( i \). For any link \( (k, l) \notin \mathcal{L}_i \), assume, without loss of generality, that \( (k, l) \) and \( (i, j) \) are on the path from \( i \) to \( l \). Since all links on a tree connect to \( i \) through only one of the adjacent links, \( D_{(k,l)}^i = D_{(i,j)}^i + \{ \text{nodes between } i \text{ and } l \text{ on the path from } i \text{ to } l \} \). So, \( \sum_{t \in D_{(k,l)}^i} W_t \geq \sum_{t \in D_{(i,j)}^i} W_t \). \( \square \)

The coverage matrix \( C \) identifies the set of nodes that are covered by a facility located at any node \( i \). For each node \( i \in \mathcal{N} \) and \( l \in \mathcal{L}_i \) label as \( l \) all nodes that connect to \( i \) through \( l \). Then, \( D_i^l \) is found by removing nodes labeled \( l \) from the set of nodes that are covered by a facility located at node \( i \). Based on Proposition 3.4, the following algorithm finds the optimal robust location on a tree if all links are risky and only one link can be disconnected. The algorithm has a complexity of \( O(n^2) \).

**Algorithm 3.4.** Single-facility RCP on a tree

1. Find \( D_i^l \) for all \( i \in \mathcal{N} \) and \( l \in \mathcal{L}_i \).

2. Let \( c_i = \min_{l \in \mathcal{L}_i} \left\{ \sum_{t \in D_i^l} W_t \right\} \).

3. Locate the facility at node \( j = \arg \max_i \{c_i\} \).

Proposition 3.4, however, does not hold for a general network or for locating \( m > 1 \) facilities on a tree. As counter examples, consider the networks in Figure 3.7 with a large facility coverage radius. Facilities are shown with black nodes. Minimum coverage in both networks occurs when link \((1, 2)\), not adjacent to any facility, is disconnected.
3.6. The Expected $p$-Robust Covering Problem

The expected $p$-robust covering problem (EpRCP) locates facilities to maximize the expected weighted cover subject to a lower bound on the minimum weighted cover over all scenario. The EpRCP can be formulated as follows:

\[ \text{[EpRCP]} \]

\[
\begin{align*}
\text{max } Z &= \sum_{i=1}^{n} \sum_{k=1}^{S} W_i P_k y_{ik} \\
\text{s.t. } \sum_{i=1}^{n} W_i y_{ik} &\geq p \quad \text{for all } k = 1, \ldots, S \\
y_{ik} &\leq \sum_{j=1}^{n'} x_j I_{kij} \quad \text{for all } i = 1, \ldots, n, k = 1, \ldots, S \\
\sum_{j=1}^{n'} x_j &= m \\
x_j, y_{ik} &= 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', k = 1, \ldots, S
\end{align*}
\]

Note that the EpRCP might become infeasible for large values of $p$. In fact, the maximum value for $p$ to maintain feasibility is the optimal coverage provided by the RCP. The Lagrangian dual of the EpRCP, L-EpRCP, is defined by relaxing constraint (3.7c) with Lagrangian multipliers $\lambda_{ik}$.
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

**[L-EpRCP]**

\[
L = \min_{\lambda} \max_{x,y} \sum_{i=1}^{n} \sum_{k=1}^{S} (W_i P_k - \lambda_{ik})y_{ik} + \sum_{j=1}^{n'} \sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik}I_{kij}x_j
\]

subject to
\[
\sum_{i=1}^{n} W_i y_{ik} \geq p \quad \text{for all } k = 1, \ldots, S
\]
\[
\sum_{j=1}^{n'} x_j = m
\]
\[
x_j, y_{ik} = 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', k = 1, \ldots, S
\]

For a fixed non-negative vector of Lagrangian multipliers \(\lambda\), L-EpRCP(\(\lambda\)) is a maximization problem that is separable by variables \(x\) and \(y\). In addition, the \(y\)-problem is separable by scenario \(k\). So, the optimal solution to L-EpRCP(\(\lambda\)) is as follows: (i) Ordering the critical points in a decreasing order of \(\sum_{i=1}^{n} \sum_{k=1}^{S} \lambda_{ik}I_{kij}\), set \(x_{jUB} = 1\) for the first \(m\) critical points on the ordered list and \(x_{jUB} = 0\) for others. (ii) For each scenario \(k = 1, \ldots, S\), arranging the nodes in a decreasing order of \(W_i P_k - \lambda_{ik}\), set \(y_{ikUB} = 1\) in order until both \(\sum_{i=1}^{n} W_i y_{ik} \geq p\) and \(W_i P_k - \lambda_{ik} < 0\) \((y_{ikUB} = 0\) for others).

A Lagrangian relaxation solution procedure, similar to Algorithm 3.1 can be developed for the EpRCP. The greedy Algorithm 3.3, however, needs to be modified to account for the minimum coverage bound in the EpRCP. Since the EpRCP and ECP share the same objective, we use Algorithm 3.3 to find an initial set of greedy locations for the EpRCP. If the initial set of locations satisfies (3.7b), the solution is feasible and we stop. Otherwise, we use an exchange routine, starting from the last facility located, to relocate the facility to a critical point that maximizes the minimum coverage. We continue the exchange routine until the minimum coverage bound (3.7b) is satisfied (or the algorithm fails to find a feasible solution). In the last iteration of the exchange routine, if more than one location satisfies (3.7b), we choose the location that provides the maximum expected cover. A formal statement of the greedy exchange routine is presented below.

**Algorithm 3.5. Greedy exchange heuristic for EpRCP**
1. Locate \( m \) facilities using Algorithm 3.3. For \( t = 1, \ldots, m \), let \( C_t \) be the coverage matrix used in Algorithm 3.3 to locate facility \( t \) (\( C^k_t \) is the corresponding matrix for scenario \( k \)).

2. Let \( f \) be the \( m \)th facility located. If, using \( C_m \), \( \min_{k=1, \ldots, S} \{Z^k_f\} \geq p \), STOP.

3. Find \( MZ_j = \min_{k=1, \ldots, S} \{Z^k_j\} \) for all critical points \( j \) using \( C_m \) and \( A = \{j | MZ_j \geq p\} \).

4. If \( A = \emptyset \), let \( f' = \arg \max_{j=1, \ldots, n'} MZ_j \). Otherwise, find \( EZ_j = \sum_{k=1}^{S} p_k Z^k_j \) for all critical points \( j \in A \) using \( C_m \) and let \( f' = \arg \max_{j \in A} EZ_j \).

5. Relocate facility \( m \) from \( f \) to \( f' \).

6. If \( m = 1 \) and \( MZ_{f'} < p \), the greedy exchange algorithm can not find a feasible solution; STOP. Otherwise, let \( m = m - 1 \).

7. In each coverage matrix \( C^k_m \), for all \( i = 1, \ldots, n \), if \( c^k_{ij} > 0 \), change \( c^k_{il} \) to \( W_i \) for all \( l = 1, \ldots, n' \). Go to step 2.

### 3.7. Numerical Results

In this section, we compare the performances of the MIP formulation, the Lagrangian relaxation based heuristic, and the greedy heuristic for the three problems under study. We developed a software using Microsoft Visual Basic for Applications with Microsoft Excel as the user interface for the Lagrangian and greedy heuristics. We used CPLEX 8.1 for solving the MIP formulations. All experiments are run on a desktop PC 2.4GHz/2Gb RAM.

We use the Beasley test data set for the uncapacitated p-median problem (Beasley 1990) assuming an equal weight for all nodes and locating 10 facilities. Similar to Berman et al. (2009c), the coverage time was determined as the 0.1 percentile of the travel time...
between all pairs of nodes. For each problem size, we generate 4 test problems by randomly removing 1%, 5%, 10%, and 30% of the links from the original network. A test problem with \( a \) nodes and \( b\% \) link loss consists of 10 scenarios, each with probability 0.1, one of which is the original Beasley network with \( a \) nodes and the other nine are generated by randomly removing \( b\% \) of the links from the Beasley network with \( a \) nodes.

Tables 3.6, 3.7, and 3.8 present a summary of the results for the ECP, RCP, and

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Best solution gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>33</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>1</td>
<td>457</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>139</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>5639</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>15</td>
<td>518</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>1428</td>
<td>1123</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>1139</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>642</td>
<td>812</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>16</td>
<td>1085</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>8624</td>
<td>1562</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>2696</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>1562</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>9</td>
<td>1786</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>697</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3.6: Results- ECP
EpRCP, respectively. For each test problem, we report the solution time in seconds, enforcing a time limit of 4 hours for CPLEX, and the gap with respect to the best solution found, i.e., CPLEX solution if optimal solution was reached in 4 hours or the best solution found by CPLEX, Lagrangian heuristic, or greedy heuristic otherwise. If CPLEX finds some feasible solutions in 4 hours, they are usually quite good. But, for a large enough problem it may not be able to find any feasible solutions (N/A best

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Best solution gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0.7</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.9</td>
<td>47</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>11.7</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>325.8</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2579.2</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>130.0</td>
<td>517</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>1322</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>754</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>4122.5</td>
<td>853</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>1524</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>1605</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>1469</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>9337.9</td>
<td>1336</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>2428</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>2428</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>2649</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>&gt;4hr</td>
<td>1985</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>1047</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3.7: Results- RCP
solution gap). For the EpRCP, we set $p$ equal to the average worst case coverage of the solutions to ECP and RCP. In other words, we seek a solution that maximizes the expected coverage and provides a worst case coverage that is better than that of the ECP by 50% of the maximum possible improvement. Based on Tables 3.6, 3.7, and 3.8, we make the following observations.

1. Solution time increases with the number of nodes for all procedures, however the

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Best solution gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>290</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>34</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>3</td>
<td>249</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>207</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>15</td>
<td>486</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2608</td>
<td>978</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>93</td>
<td>1046</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>1602</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>11247</td>
<td>1794</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>1573</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>22</td>
<td>1349</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>634</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 3.8: Results- EpRCP
rate of increase is quite different. To analyze these differences, we conducted regression analysis using the solution time as the dependent variable and the number of nodes as the independent variable. The regression model showed that the solution time increases exponentially in the number of nodes for CPLEX. For the Lagrangian relaxation and the greedy heuristic, quadratic model provided the best fit. However, while the quadratic term was dominant (i.e. had the larger coefficient) for the former, it had a very low coefficient for the latter. Thus we conclude that the solution time increased quadratically for the Lagrangian relaxation heuristic, and almost linearly (quadratic with low coefficient) for the greedy heuristic. CPLEX is unable to find any feasible solutions for large RCP instances.

2. Similar to many other network problems, the solution time is usually lower for low density and high density networks and higher for medium density networks.

3. Both heuristics find good solutions, i.e., small optimality gaps, but none is dominant for all problems. A useful strategy is to use both heuristics and select the best solution.

3.8. Case Study: Toronto Fire Stations

The City of Toronto is one of North America’s largest metropolitan centers with an area of 641 square kilometers and over 2.7 million residents. Toronto Fire Services (TFS) is the largest fire service in Canada, and the 5th largest fire service in North America. The scope of work is defined by the Toronto Fire Chief as “very broad, including but not limited to fire response, hazardous materials, vehicle accidents, medical emergencies, ice and water rescue, carbon monoxide, and false alarms.” TFS responded to more than 140,000 calls in 2007 of which 53% were for medical services and 27% for fire related emergencies. TFS operated with a budget of $330 million in 2007, 82% of which was directly related to emergency response operations. 82 fire stations are currently operational in Toronto.
Chapter 3. The Maximum Covering Problem with Travel Time Uncertainty

and the TFS is planning the addition of 4 more stations (TFS 2008).

The Toronto Master Fire plan and the National Fire Protection Association (NFPA) 1710 standard recognize a target response time of 4 minutes for emergency services (TFS 2007). The response time is defined as the time since units start traveling to the emergency incident until they arrive on scene not including pre-trip delays. Pre-trip delay is the sum of the time spent on call taking and dispatching (dispatch time) and the time from when a crew is dispatched until the vehicle starts moving (turnout time). While NFPA 1710 sets a 1 minute standard for the pre-trip delay, Ingolfsson et al. (2008), using data from approximately 6,997 calls serviced in over 4 years in St. Albert, Alberta, estimate an average pre-trip delay of 3 minutes for EMS calls. Based on their results it might be more appropriate to use a 2 minute response time to ensure a 5 minute total delay proposed in NFPA 1710.

We address two questions in the current section: (1) How effective is the current locations of the 82 stations with respect to the ECP, RCP and EpRCP objectives? (2) What are the “optimal” locations of the 4 new stations and, perhaps more importantly, with is the relative impact of adding 4 stations compared to other alternatives for service improvement.

The data on travel times in Toronto was provided by the Data Management Group of the Civil Engineering Department at The University of Toronto who run a sophisticated data collection system based on embedded traffic sensors at a large number of locations in metropolitan Toronto (DMG 2004). The network consists of 3220 nodes, i.e., road intersections, and 9630 directed links, i.e. major roads and streets in the city of Toronto (see Figure 3.8). Link directions are important since travel times, especially during rush hours, are not equal for both directions of a street (e.g., towards vs. away from downtown). The city is divided into 481 zones represented by centroids (artificial nodes) on the network that are connected to their closest intersections.

Travel times and traffic volumes in Toronto are highly dependent on the time of the
day. Our data set includes travel times per hour on each link of the network. Figure 3.9.a shows the average hourly variation in travel time on all links. Average travel time increases by 18% during the morning rush hour (equivalent to a 15% decrease in average velocity). Considering the lower population density of Toronto, this is in line with Kolesar et al. (1975)'s estimate of a maximum 20% reduction in fire engine velocity due to hourly traffic in New York city. While the pattern of rush hours during 7-9 AM and 4-6 PM is common among more than 90% of the links, travel times can increase up to four times the average on some links during the rush hour. We note, however, that the frequency of such large deviations is small. Figure 3.9.b presents a frequency plot for Max/Average travel time per link.

Therefore, we define 24 scenarios, one per each hour, for the network. Our data set
includes travel times on each link for each hour (scenario) and the weight (population) of each centroid. To study system performance under adverse conditions, we include one additional scenario - the “snow storm”, in which travel time on each link is triple the average over the other 24 scenarios (the Federal Highway Administration at the U.S. Department of Transportation estimates heavy snow to decrease free-flow speed by up to 64%)\(^2\). Such events occur several times per year in Toronto and thus the fire service certainly should take them into account. On the other hand, these events are quite rare (on an annual basis), thus we set the probability of the associated scenario to 0.

Not all nodes of the network are realistic candidates for locating a fire station. We, therefore, limit the fire station locations to the set of centroids defined earlier. Due to the large size of the resulting networks, all problem instances described in the following sections were solved using the greedy heuristic. While the resulting solutions may not be optimal, our results in Section 3.7 indicate that the optimality gap should be small. We also note that our data set only captures hourly variation in travel times. In reality, other factors such as weather, route choice, or the driver taking a wrong turn could contribute greatly to travel time variability. Further, it seems likely that the time-of-day variation will depend on the day of the week as well, with rush hour effects less pronounced on weekends than weekdays.

Finally, we note that travel time on a given link–hour in our data set is in fact the average travel time within that link–hour. In reality, traffic sensor data provides a distribution for travel time on each link–hour. While we do not have access to such detailed data, we acknowledge that a more realistic set of scenarios can be obtained by sampling from the joint distribution of travel times in each hour. This is especially important in finding true worst case scenarios.

\(^2\)http://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
3.8.1 Quality of the Current Locations

The locations of the current fire stations can be found on Figure 3.10(a). The percentage of population covered with respect to ECP and RCP models for the current 82-station system are presented on Table 3.9 for different coverage radii (time standards). As explained earlier, we are particularly interested in the 2-minute standard, which we consider the most relevant. The performance of the best heuristic solution with respect to each objective for each time standard is presented on Table 3.10. In addition to the value of the objective function for the best 82-station solution found, we also present the % improvement over the current solution (in the “% Improvement” row) and the heuristic upper bound on the minimum number of stations required to achieve the current level of performance. E.g., with respect to the 1-minute time standard the current locations achieve 22% coverage with respect to the ECP objective; the same coverage can be achieved with at most 30 optimally located stations. We make the following observations based on Tables 3.9 and 3.10:

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td>Expected (ECP)</td>
<td>22%</td>
</tr>
<tr>
<td>Worst case (RCP)</td>
<td>17%</td>
</tr>
</tbody>
</table>

Table 3.9: Current performance of 82 fire stations in Toronto
1. Currently, the fire stations are well located to provide a high expected coverage of the population in 4 minutes. For example, 98% of the population is covered on average in 4 minutes (can be improved to 100%).

2. Currently, the fire stations are not well located to accommodate shorter response times. For example, the expected coverage of the population in 2 minutes is only 52%, while this can be improved to 74% (see Figure 3.11(a) for optimal locations). Comparing Figures 3.10(a) and 3.11(a), the optimal locations seem to spread over the city similar to the current locations. The improvement in service, however, is a result of locating the fire stations closer to larger population centers.

3. Currently, the fire stations are not well located to respond to worst case scenarios.

<table>
<thead>
<tr>
<th>Response time</th>
<th>1 min</th>
<th>2 min</th>
<th>3 min</th>
<th>4 min</th>
<th>5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best coverage</td>
<td>43%</td>
<td>74%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>ECP</td>
<td>91%</td>
<td>42%</td>
<td>18%</td>
<td>2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Min stations</td>
<td>30</td>
<td>45</td>
<td>47</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>Best coverage</td>
<td>34%</td>
<td>36%</td>
<td>44%</td>
<td>52%</td>
<td>64%</td>
</tr>
<tr>
<td>RCP</td>
<td>97%</td>
<td>105%</td>
<td>91%</td>
<td>59%</td>
<td>45%</td>
</tr>
<tr>
<td>Min stations</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>38</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 3.10: Performance of the best-found solution for the 82 fire stations in Toronto
For example, in the worst case, only 18% of the population is covered in 2 minutes, while this can be improved to 36% (see Figure 3.11(b) for optimal locations). Comparing optimal and current locations in Figures 3.10(a) and 3.11(b), we observe a higher concentration of stations in downtown (middle-bottom part) to improve the worst case coverage.

4. The current level of coverage can be provided with drastically fewer fire stations. For example, we can provide the current 2 minute expected coverage of 52% with 45 fire stations instead of the current 82. (see Figure 3.10(b) for optimal locations). Since we do not consider the service capacity of fire stations in our analysis, our results do not imply over capacity but rather propose consolidation of fire stations. The optimal consolidation can provide the current service level, if acceptable, with moderate savings in personnel cost and large savings in facility and equipment cost.

It was argued in the introduction that the most relevant objective for the location of fire stations is EpRCP, since it optimizes the average (expected) performance, while insuring an adequate level of performance under the worst-case scenario (i.e., the snow storm scenario in our study). To compute the optimal solution for this objective, the parameter $p$ (required worst-case performance) must be specified. On Figure 3.12 (solid line) we provide the trade-off curve (heuristically estimated) between expected and worst case coverage with respect to the 2-minute time standard, as well as the performance of the current locations. It can be seen that the current locations perform far below the efficient frontier. For example, the lowest non-inferior $p$ value is 23%. Thus, there exists a solution that achieves the highest possible ECP coverage of 74% (a 42% improvement over the current system) while still providing the worst-case (RCP) coverage of 23% (a 30% improvement over the current level of 18%). Similarly, the highest $p$ value is 36.5%, which has a corresponding ECP value of 55% (above the current level of 52%). Thus, substantial improvements could be expected from the system redesign with respect to
any level of \( p \).

If the city of Toronto were to consider re-locating some or all of their fire stations, which \( p \) should they use? This question does not have a “correct” answer - the decision-makers could, in principle, use any \( p \) value on Figure 3.12, depending on the expected vs. worst-case coverage trade-off that is considered acceptable. However, a reasonable value may be \( p = 31\% \) - it lies close to the inflection point of the trade-off curve and achieves approximately 60% of the maximal possible value with respect to both ECP and RCP objectives (the % is expressed with respect to the range of values on the trade-off curve). We used this value of \( p \) to derive the new locations of the 82 fire stations that are displayed on Figure 3.13. The ECP and RCP values achieved by this solution with respect to the 2-minute time standard are 66% and 31%, respectively - both large improvements over the current system. With respect to the actual locations, it can be seen that the optimized system concentrates far more facilities in the densely-populated center of the city, while having fewer facilities in the peripheral regions (due to both, lower population density and faster travel times in these areas).

![Figure 3.12: Trade-off curves for the EpRCP objective (2-min coverage)](image-url)
3.8.2 Locating Four New Fire Stations

The Toronto Fire Services is planning the addition of four more stations to its current 82 (TFS 2007). We used the EpRCP framework to analyze the best locations for the four new fire stations (in addition to the current 82 stations) with respect to the 2-minute coverage standard. The trade-off curve is presented on Figure 3.12 (dashed line). While the addition of the new locations obviously leads to an improvement over the current solution (up to 8% over the current ECP value and up to 23% over the current RCP value), these improvements are quite modest and are far below the values that can be achieved with optimal locations for the current facilities.

Instead of investing in new facilities, it seems that Toronto Fire Services should consider other improvement alternatives such as relocating some facilities or improving response times. For example, our current analysis is based on an estimate of 3 minutes for average pre-trip delays. If Toronto Fire Services can decrease pre-trip delays to 2 minutes, Table 3.9 suggest that expected and worst case coverages of the current facilities would increase to 83% and 23%, respectively (an improvement of 60% and 28% over the current ECP and RCP values, respectively). The improvements would increase to 88% and 83% over the current ECP and RCP values, respectively, if Toronto Fire Services
adheres to the 1-minute standard for pre-trip delays proposed in NFPA 1710.

### 3.9. Conclusion

We study three variations of the maximum covering location problem on a network with travel time uncertainty. The expected covering problem locates facilities to maximize the expected weighted cover over all network scenarios. The robust covering problem locates facilities to maximize the minimum weighted cover over all scenarios. The expected $p$-robust covering problem locates facilities to maximize the expected weighted cover subject to a lower bound on the minimum weighted cover over all scenarios. We present integer programming formulations and develop Lagrangian and greedy heuristics for the three problems. Our numerical results show that solution time increases exponentially with size for the integer programming formulations. The Lagrangian and greedy heuristics, instead, provide near optimal results in reasonable time.

We use real data for the city of Toronto to analyze the current location of fire stations with respect to the 24 scenarios representing travel times during different hours of the day and one additional scenario representing the traffic disruption due to a snow storm. We find that the current locations of the 82 stations are not particularly well suited to achieve the desired 5-minute total response time, either with respect to the expected coverage or the worst-case coverage during the snow storm. We identified best locations for the 4 new fire stations that the city of Toronto is planning to add to the system under different expected case-worst case trade-offs and commented on alternative options for improving system performance.
Chapter 4

The Covering Relocation Problem with Travel Time Uncertainty

Abstract: Decision makers in many operational networks face the question of whether to add extra facilities or relocate some existing facilities to improve service quality. The choice becomes especially difficult when travel times on the network change due to various causes ranging from changing traffic to natural disasters. We study a multi-objective maximum covering problem on a network with travel time uncertainty that aims at relocating the fewest number of facilities while maximizing expected and worst case coverage over all scenarios of the network. We present greedy and Lagrangian relaxation heuristics and compare their performances with MIP formulation. We use real data for the city of Toronto to analyze the current location of fire stations. We find that most of the optimality gap can be captured by relocating only a third of the fire stations. We also find that, considering lower cost implications, the city should consider relocating fire stations instead of building new ones.
4.1. Introduction

In the previous chapter, we studied three variations of the maximum covering location problem on a network with travel time uncertainty: the expected covering problem, the robust covering problem, and the expected $p$-robust covering problem. In all three problems we assumed that no facilities are currently located on the network. In reality, many operational networks already have some facilities installed. So, management has two options to improve service quality: adding extra facilities or relocating some existing facilities. In general, adding extra facilities requires large investments for obtaining the required physical and human resources to run those facilities while relocating facilities is a less costly alternative. Since relocating facilities still incurs a large cost, management is interested in improving the service quality with minimum number of facility relocations.

We model travel time uncertainty as different “scenarios” of the transportation network (where a scenario is a snapshot of the network with regard to link travel times). Assuming a set of facilities already exists on the network, in this chapter we study the location of coverage providing facilities using three objectives:

1. Minimizing the number of facility relocations.
2. Maximizing the excepted weighted cover over all scenarios.
3. Maximizing the minimum weighted cover over all scenarios.

The maximal covering location problem (MCLP) studies the location of facilities that provide coverage to customers within a given radius/time. Church and ReVelle (1974) first introduced the MCLP and developed a greedy search algorithm limited to the nodes of a network. Church and Meadows (1979) prove that the search for optimal locations should be extended from the nodes to a finite set of dominant points on the network and use LP/branch and bound to solve the problem. Interested readers are referred to Kolen and Tamir (1990) and Current et al. (2002) for a discussion of the MCLP and to Snyder
(2006) and Owen and Daskin (2005b) for a review of the literature on facility location problems under uncertainty.

Multi-objective analysis of facility locations has received some attention in the OM literature. Current et al. (1990) present a review of the literature on Multi-objective facility location. A common method for solving multi-objective problems is to transform them into single-objective problems using a utility function that captures the relative preference of decision makers with respect to each objective. In practice, however, it is difficult for decision makers to accurately specify these preferences a priori (see e.g., ReVelle et al. 1981). Alternatively, it is easier for decision makers to express their preferences once the optimal solutions and trade-offs are revealed.

We define an efficient location vector as a feasible solution to the multi-objective location problem defined earlier such that no other feasible solution exists that can improve its performance on one objective without degrading the performance on another objective. The set of efficient solutions, i.e. efficient set, accurately captures the trade-offs between objectives. Therefore, we aim at finding the efficient set for the facility location problem above. Malczewski and Ogryczak (1995) discuss three methods for finding the efficient set for multi-objective location problems, i.e., the weighting method, the noninferior set estimation method, and the constraint method, and their advantages and disadvantages. Here, we use the constraint method for its ease of application and its additional flexibility for controlling the value of each objective. For a review of the literature on multi-objective decision making, we refer the reader to Evans (1984) and Ehrgott and Gandibleux (2000).

We first study two variations of the relocation problem, one with objectives 1 and 2 and the other with objectives 1 and 3. For these problems, we develop exact and heuristic methods to obtain the efficient set. Then, we study the relocation problem with all three objectives and present a heuristic algorithm for finding the efficient set. The three problems we study are formally defined below:
1. Expected Covering Relocation Problem (ECRP): Relocate the fewest number of facilities such that the excepted weighted cover over all scenarios is more than a given bound $\rho_E$.

2. Robust Covering Relocation Problem (RCRP): Relocate the fewest number of facilities such that the minimum weighted cover over all scenarios is more than a given bound $\rho_R$.

3. Expected p-Robust Covering Relocation Problem (EpRCRP): Relocate the fewest number of facilities such that the excepted and minimum weighted covers over all scenarios are more than given bounds $\rho_E$ and $\rho_R$, respectively.

The remaining sections of the paper are organized as follows. In Section 4.2 we prove an important localization result showing that an optimal set of locations can be found for the problems above within the discrete set of “critical points” that can be computed \textit{a priori}. In Sections 4.3, 4.4 and 4.5 we develop algorithmic solution techniques for the three problems and discuss how to obtain the efficient set. Results of the computational experiments are reported in Section 4.6. Section 4.7 contains the case study of locating fire stations in Toronto, Canada. Concluding remarks are presented in Section 4.8. We note that although some parts of the analysis and notation are similar to those used in the previous chapter, we repeat the exposition here when necessary to ensure a self-contained chapter.

4.2. Critical Points

Consider $m$ facilities with coverage time $T$ that are located on a network $G(\mathcal{N}, \mathcal{L})$ with set of nodes $\mathcal{N}$ ($|\mathcal{N}| = n$) and set of links $\mathcal{L}$ ($|\mathcal{L}| = l$). Assume each node $i \in \mathcal{N}$ has a weight $W_i$. The network uncertainty is represented by $s$ scenarios. Let $l_{ij}^k$ be the travel time on link $(i,j)$ in scenario $k$ and, if required, $P_k$ be the occurrence probability.
Chapter 4. The Covering Relocation Problem with Travel Time Uncertainty

\[ G(\mathcal{N}, \mathcal{L}) \] the network with set of nodes \( \mathcal{N} \) (\( |\mathcal{N}| = n \)) and set of links \( \mathcal{L} \) (\( |\mathcal{L}| = l \))

\( \mathcal{F} \) the set of current facility locations

\( \mathcal{E} \) the set of efficient solutions

\( s \) number of network scenarios

\( m \) number of facilities to be located

\( T \) coverage time of each facility

\( W_i \) weight of node \( i \)

\( t_{ij}^k \) travel time on link \((i, j)\) in scenario \( k \)

\( P_k \) probability of scenario \( k \) occurring

\( n' \) number of critical points in the network

\( \langle i, \alpha, j \rangle \) a critical point on link \((i, j)\) at a travel time \( \alpha l_{ij}^k \) from \( i \) in scenario \( k \)

\( I_{kij} \) 1 if a facility located at critical point \( j \) covers node \( i \) in scenario \( k \); 0 otherwise

\( F_j \) 1 if a facility already exists at critical point \( j \); 0 otherwise

\( \rho_E \) lower bound on the expected weighted cover

\( \rho_R \) lower bound on the minimum weighted cover

\( x_j \) 1 if a facility is located at critical point \( j \); 0 otherwise

\( y_{ik} \) 1 if node \( i \) is covered in scenario \( k \); 0 otherwise

\( C^k \) coverage matrix with elements \( c_{ij}^k = W_i I_{kij} \)

Table 4.1: Notation

of scenario \( k \). Notations used in the paper are summarized in Table 4.1 for reader’s convenience. Although facilities can be located anywhere on the network, the search for optimal locations can be limited to a finite set of critical points in \( G \) that include the nodes, the current facility locations, and all points in \( G \) that are at a travel time \( T \) from any node in any scenario of the network. Critical points can not be defined at a fixed travel time from a node because travel times change in each scenario. Therefore, we define a critical point \( \langle i, \alpha, j \rangle \) on link \((i, j)\) at a travel time \( \alpha l_{ij}^k \) from \( i \) in scenario \( k \). With this definition the relative position of a critical point on a link is fixed although the travel time from the critical point to any node might change per scenarios.

**Theorem 4.1.** An optimal set of locations for ECRP, RCRP, and EpRCRP exists in
Chapter 4. The Covering Relocation Problem with Travel Time Uncertainty

the set of critical points.

Proof. Let \( X \subset G \) be an optimal location set for \( m \) facilities. If \( x \in X \) is a facility that is not already on a critical point, first, \( x \) is a relocated facility (current facility locations are included in the set of critical points). So, moving \( x \) will not increase the number of relocated facilities. Second, \( x \) is always between two consecutive critical points. Let \( a \) and \( b \) be consecutive critical points on the network such that \( x \in (a, b) \). Moving the facility from \( x \) across a critical point might change the coverage of some node in some scenario. However, we are certain, by definition, that set of nodes covered remains unchanged for all \( k = 1, \ldots, s \) while moving the facility within \([a, b]\). So, moving the facility from \( x \) to \( a \) or \( b \) does not violate the bounds on the average or minimum weighted cover over all scenarios of the network, thereby proving the theorem.

The following proposition can be proved easily.

**Proposition 4.1.** The number of critical points, \( n' \), is \( O(m + \text{nls}) \) on a general network and \( O(m + n^2s) \) on a tree.

### 4.3. Expected Covering Relocation Problem

In this section we study the expected covering relocation problem (ECRP), i.e., relocating the fewest number of facilities such that the excepted weighted cover is more than a given bound \( \rho_E \). By varying the parameter \( \rho_E \), we find the efficient set of solutions to the relocation problem with objectives (1) minimizing the number of facility relocations and (2) maximizing the excepted weighted cover over all scenarios as outlined in Section 4.1.

We present an integer programming formulation and propose Lagrangian and greedy heuristics for the ECRP.

Let \( F_j \) be location parameters such that \( F_j = 1 \) if a facility already exists at critical point \( j \), and 0 otherwise. Further define coverage parameters \( I_{kij} = 1 \) if node \( i \) is covered
by a facility located at critical point \( j \) in scenario \( k \), i.e., the shortest distance from node \( i \) to critical point \( j \) in scenario \( k \) is less than or equal to \( T \), and 0 otherwise. We define the following two decision variables: \( x_j = 1 \) if a facility is located at critical point \( j \), and 0 otherwise; and \( y_{ik} = 1 \) if node \( i \) is covered in scenario \( k \), and 0 otherwise. The ECRP can be formulated as follows:

\[
\begin{align*}
\text{max } Z &= \sum_{j=1}^{n'} F_j x_j \quad \text{(4.1a)} \\
\text{s.t. } y_{ik} &\leq \sum_{j=1}^{n'} x_j I_{kij} \quad \text{for all } i = 1, \ldots, n, \ k = 1, \ldots, s \quad \text{(4.1b)} \\
\sum_{j=1}^{n'} x_j &= m \quad \text{(4.1c)} \\
\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_k y_{ik} &\geq \rho_E \quad \text{(4.1d)} \\
x_j, y_{ik} &= 0, 1 \quad \text{for all } i = 1, \ldots, n, \ j = 1, \ldots, n', \ k = 1, \ldots, s \quad \text{(4.1e)}
\end{align*}
\]

The objective function (4.1a) maximizes the number of facilities that are not relocated. Constraint (4.1d) enforces a lower bound of \( \rho_E \) on the expected coverage. Note that by letting \( \rho_E = 1 \), \( s = 1 \), and \( F_j = 1 \) for all \( j = 1, \ldots, n' \), the ECRP reduces to the set covering decision problem that is proved NP-Complete. Therefore, in the following sections we develop Lagrangian relaxation and greedy heuristics for the ECRP.

### 4.3.1 Lagrangian Relaxation

The Lagrangian dual of the ECRP, L-ECRP, is defined by relaxing constraint (4.1b) as follows:
Chapter 4. The Covering Relocation Problem with Travel Time Uncertainty

[L-E CRP]

\[
L = \min_{\lambda} \max_{x,y} \sum_{j=1}^{n'} \left( F_j + \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} I_{kij} \right) x_j - \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} y_{ik}
\]

\[\text{s.t. } \sum_{j=1}^{n'} x_j = m\]

\[\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_k y_{ik} \geq \rho_E\]

\[x_j, y_{ik} = 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', k = 1, \ldots, s\]

The optimal solution of L-E CRP(\(\lambda\)), denoted by \(UB(\lambda)\), provides an upper-bound for ECRP. For a fixed non-negative vector of Lagrangian multipliers \(\lambda = [\lambda_{ik}]_{i=1,\ldots,n,k=1,\ldots,s}\), L-E CRP(\(\lambda\)) is a maximization problem that is separable with respect to the decision variables into an \(x\)-problem (involving only \(x_j\) variables) and a \(y\)-problem (involving only \(y_{ik}\) variables). The optimal solution to the \(x\)-problem is obtained by ordering the critical points in a decreasing order of \(F_j + \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} I_{kij}\) and setting \(x_{UB}^j = 1\) for the first \(m\) critical points on the ordered list and \(x_{UB}^j = 0\) for others. The \(y\)-problem is a knapsack problem that is not easy to solve. But since the Lagrangian solution provides an upper-bound for the ECRP, we can relax the integrality of \(y_{ik}\) and obtain an upper-bound for L-E CRP (and hence an upper-bound for ECRP). Doing so, the optimal solution to the \(y\)-problem is obtained by ordering the \(y_{ik}\)'s in a decreasing order of \(\frac{W_i P_k}{\lambda_{ik}}\) and setting \(y_{ik}^UB = 1\) in order until \(\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_k y_{ik} = \rho_E\) (the last \(y_{ik}\) may be fractional).

Assuming we locate facilities at those critical points for which \(x_{UB}^j = 1\), we can generate a solution for ECRP by setting \(y_{ik}\) as:

\[
y_{ik}^{LB} = \begin{cases} 
1 &\text{if } \sum_{j=1}^{n'} x_j I_{kij} \geq 1, \\
0 &\text{otherwise}.
\end{cases}
\]

If this solution is feasible, i.e., it satisfies the coverage bound (4.1d), we obtain a lower-bound for ECRP denoted by \(LB(\lambda)\). We use the subgradient optimization method to generate a sequence of Lagrangian multipliers. Interested readers are referred to Fisher
(1981) for an introduction to Lagrangian relaxation and a formal statement of the solution algorithm.

### 4.3.2 Greedy Heuristic

In this section we provide a greedy exchange heuristic for the ECRP. Define the initial coverage matrix \( C^1 \) with elements \( c_{ijk} = W_i \) if node \( i \) is covered by a facility located at critical point \( j \) in scenario \( k \); and \( c_{ijk} = 0 \) otherwise, i.e., \( c_{ijk} = W_i I_{kij} \). The coverage matrix includes \( s \) sub-matrices in which rows correspond to nodes and columns correspond to critical points. Let \( EC_j = \sum_{i=1}^{n} \sum_{k=1}^{s} P_k c_{ij}^k \) be the expected weighted cover for locating a facility at critical point \( j \). Further, let \( \mathcal{F} \) be the set of current facility locations. Recall that by definition \( \mathcal{F} \) is a subset of critical points. The following greedy heuristic solves the ECRP.

**Algorithm 4.1. Greedy exchange heuristic - ECRP**

1. Let \( L = 1, R = 0, A = \emptyset \).

2. Using \( C^L \), locate one facility at the critical point \( j^* \in \mathcal{F} \) with maximum \( EC_j \).

3. Let \( C^{L+1} = C^L \). In \( C^{L+1} \), for all \( i = 1, \ldots, n \) and \( k = 1, \ldots, s \), if \( c_{ij^*k} > 0 \), let \( c_{ijk} = W_i \) for all \( j = 1, \ldots, n' \).

4. \( L = L + 1 \). If \( L \leq m \), go to step 2; otherwise \( L = m \) and \( C^{UL} = C^L \).

5. Let \( j \) be the \( L \)th facility located. If, using \( C^{UL} \), \( EC_j \geq \rho_E \), STOP.

6. Relocate facility \( L \) to critical point \( j^* \) with maximum \( EC_j \) using \( C^{UL} \). Let \( A = A \cup \{j^*\} \)

7. If \( j^* \notin \mathcal{F} \), let \( R = R + 1 \).

8. If \( L = 1 \) and \( EC_{j^*} < \rho_E \), the algorithm can not find a feasible solution; STOP.
9. Let $C'_{L-1} = C_{L-1}$. In $C'_{L-1}$, for all $i = 1, \ldots, n$ and $k = 1, \ldots, s$, if $c_{ijk} > 0$ for some $j \in A$, let $c_{ijk} = W_i$ for all $j = 1, \ldots, n'$.


In steps 1 to 4, the algorithm locates the facilities in a greedy manner within the current set of facility locations. By doing so, the algorithm orders the current facility locations in a decreasing order of contribution to the expected cover. Whenever a facility is located, step 3 defines the new coverage matrix such that, in each scenario, all nodes that are covered by the new facility are assumed covered hereafter and do not affect the location of future facilities. In steps 5 to 9, the algorithm relocates the facility locations to increase the expected cover in a greedy manner. Step 9, similar to step 3, ensures that nodes are not counted more than once in calculating the expected cover. Algorithm 4.1 terminates either in step 5 with a feasible set of facility locations that requires $R$ relocations or in step 8 if $\rho_E$ is set too high and no feasible solution is found.

### 4.3.3 Set of Efficient Solutions

Our main motivation for studying the ECRP, as outlined in Section 4.1, was to find the efficient set of solutions/trade-off curve for the multi-objective relocation problem that minimizes the number of relocations and maximizes the expected cover over all scenarios. Assuming, without loss of generality, that the node weights add up to 1, the efficient set can be obtained via a parametric analysis of the ECRP that varies $\rho_E$ over the interval $[0, 1]$. Parametric analysis of mixed integer programming problems has received considerable attention in the literature. We refer the interested reader to Geoffrion and Nauss (1977) and Greenberg (1998) for a review of the subject. Mitsos and Barton (2009) discuss recent algorithmic advances for the case with binary variables.

Let $EC^*$ be the maximum expected weighted cover achievable with $m$ facilities. The ECRP becomes infeasible for any $\rho_E \geq EC^*$. Note that $EC^*$ can be found using the
methods discussed for solving the expected covering problem in the previous chapter of the thesis. Further, let $EC^c$ be the expected weighted cover of the current facility locations. The current facility locations are optimal for any $\rho_E \leq EC^c$. Therefore, we need only to perform the parametric analysis of ECRP for $EC^c < \rho_E \leq EC^*$. Since all variables in the ECRP’s objective are binary, the objective value is a non-increasing step function of $\rho_E$. Similar to Jenkins (1990), we perform a parametric analysis of the ECRP as follows:

**Algorithm 4.2. Parametric Analysis- ECRP**

1. Let $\alpha = EC^c$, $\epsilon$ be a small positive number, and $\mathcal{E} = \emptyset$

2. Solve the ECRP (4.1a)-(4.1e) for $\rho_E = \alpha$. Let $Z^*$ be the optimal objective value and $EC$ be left hand side value of (4.1d), i.e., the expected weighted cover.

3. $\mathcal{E} = \mathcal{E} \cup \{(EC, m - Z^*)\}$.

4. $\alpha = EC + \epsilon$. If $\alpha \leq EC^*$, go to step 2.

At termination of Algorithm 4.2, the efficient set $\mathcal{E}$ includes all the break points of the stepwise non-decreasing trade-off curve between expected coverage and the number of relocations (see Figure 4.1). The complexity of Algorithm 4.2 is due to the need for solving the ECRP in each iteration. The following proposition presents an upper bound for the number of iterations in Algorithm 4.2.

**Proposition 4.2.** Algorithm 4.2 terminates in at most $\min \left\{ \frac{EC^* - EC^c}{\epsilon}, \left( \frac{n'}{m} \right) \right\}$ iterations.

**Proof.** The expected weighted cover increases by at least $\epsilon$ per iteration from $EC^c$ to $EC^*$. So, the number of iterations is no more than $\frac{EC^* - EC^c}{\epsilon}$. In addition, each iteration involves a selection of $m$ facility locations from at most $m + nls$ critical points. Since the
expected weighted cover increases per iteration, no location vector can be selected more than once. Hence, the number of iterations is limited by the number of such selections, i.e., \( \binom{n'}{m} \). In fact, with proper weighting of nodes, one can generate a worst case example proving that the bound above is tight.

The choice of \( \epsilon \) in Algorithm 4.2 is a managerial decision that determines how accurately the trade-off curve is in demand. Based on Proposition 4.2, \( \epsilon \) can also be used for controlling the number of iterations required to find the efficient set. Even though, solving the ECRP exactly is computationally expensive. Therefore, finding the efficient set via Algorithm 4.2 is practically infeasible for most medium and large problem instances. Instead, one can use the Lagrangian or greedy heuristics in Algorithm 4.2 to obtain the trade-off curve. The following algorithm uses the greedy heuristic to find the efficient set and terminates in \( m \) iterations.

**Algorithm 4.3. Greedy Parametric Analysis- ECRP**

1. Let \( \rho_E = EC^* \) and \( \mathcal{E} = \{(EC^c, 0)\} \). Follow steps 1 to 4 in Algorithm 4.1.

2. Follow steps 5 to 9 in Algorithm 4.1.
3. $\mathcal{E} = \mathcal{E} \cup \{(EC_j, R)\}$. $L = L - 1$. Go to step 2.

4.4. Robust Covering Relocation Problem

In this section we study the robust covering relocation problem (RCRP), i.e., relocating the fewest number of facilities such that the minimum weighted cover is more than a given bound $\rho_R$. By varying the parameter $\rho_R$, we find the efficient set of solutions to the relocation problem with objectives (1) minimizing the number of facility relocations and (3) maximizing the minimum weighted cover over all scenarios as outlined in Section 4.1. We present an integer programming formulation and propose Lagrangian and greedy heuristics for the RCRP.

Following the notations defined in Table 4.1, the RCRP can be formulated as follows:

**[RCRP]**

\[
\begin{align*}
\max Z &= \sum_{j=1}^{n'} F_j x_j \\
\text{s.t.} \quad y_{ik} &\leq \sum_{j=1}^{n'} x_j I_{kij} \quad \text{for all } i = 1, \ldots, n, \; k = 1, \ldots, s \\
\sum_{j=1}^{n'} x_j &= m \\
\sum_{i=1}^{n} W_i y_{ik} &\geq \rho_R \quad \text{for all } k = 1, \ldots, s \\
x_j, y_{ik} &= 0, 1 \quad \text{for all } i = 1, \ldots, n, \; j = 1, \ldots, n', \; k = 1, \ldots, s
\end{align*}
\]

The objective function (4.2a) maximizes the number of facilities that are not relocated. Constraint (4.2d) enforces a lower bound of $\rho_R$ on the minimum coverage. Similar to the ECRP, by letting $\rho_R = 1$, $s = 1$, and $F_j = 1$ for all $j = 1, \ldots, n'$, the RCRP reduces to the set covering decision problem that is proved NP-Complete. Therefore, we develop Lagrangian relaxation and greedy heuristics for the RCRP.

The Lagrangian dual of the RCRP, L-RCRP, is defined by relaxing (4.2b) as follows:
Chapter 4. The Covering Relocation Problem with Travel Time Uncertainty

\[ L = \min_{\lambda} \max_{x,y} \sum_{j=1}^{n'} \left( F_j + \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} I_{kij} \right) x_j - \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} y_{ik} \]

s.t. \[ \sum_{j=1}^{n'} x_j = m \]

\[ \sum_{i=1}^{n} W_i y_{ik} \geq \rho_R \quad \text{for all } k = 1, \ldots, s \]

\[ x_j, y_{ik} = 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', k = 1, \ldots, s \]

For a fixed non-negative vector of Lagrangian multipliers \( \lambda \), L-RCRP(\( \lambda \)) is a maximization problem that is separable with respect to the decision variables into an \( x \)-problem and a \( y \)-problem. The \( y \)-problem is further separable by scenario. Relaxing the integrality of \( y_{ik} \), an upper bound for the \( y \)-problem is obtained as follows. In each scenario, order the \( y_{ik} \)'s in a decreasing order of \( \frac{W_i}{\lambda_{ik}} \) and set \( y_{ik}^{UB} = 1 \) in order until \( \sum_{i=1}^{n} W_i y_{ik} = \rho_R \) (the last \( y_{ik} \) may be fractional). The optimal solution to the \( x \)-problem and the remainder of the Lagrangian relaxation approach is similar to that discussed for the ECRP.

Let \( MC_j = \min_{k=1, \ldots, s} \sum_{i=1}^{n} c_{ij}^k \) be the minimum weighted cover for locating a facility at critical point \( j \). A greedy solution for the RCRP can be obtained by Algorithm 4.1 if we change the location objectives in steps 2 and 6 to \( MC_j \) and the stopping rules in steps 5 and 8 to \( MC_j \geq \rho_R \) and \( MC_j^* < \rho_R \), respectively.

Let \( MC^* \) be the maximum minimum weighted cover achievable with \( m \) facilities. The RCRP becomes infeasible for any \( \rho_R \geq MC^* \). Note that \( MC^* \) can be found using the methods discussed for solving the robust covering problem in the previous chapter of the thesis. Further, let \( MC^c \) be the minimum weighted cover of the current facility locations. The current facility locations are optimal for any \( \rho_R \leq MC^c \). Therefore, we need only to perform the parametric analysis of ECRP for \( MC^c < \rho_R \leq MC^* \). Algorithms 4.2 and 4.3 can be easily adapted to find the set of efficient solutions for the RCRP.
4.5. Expected p-Robust Covering Relocation Problem

In this section we study the expected p-robust covering relocation problem (EpRCRP), i.e., relocating the fewest number of facilities such that the expected and minimum weighted covers over all scenarios are more than given bounds $\rho_E$ and $\rho_R$, respectively. By varying the parameters $\rho_E$ and $\rho_R$, we find the efficient set of solutions to the relocation problem with objectives (1) minimizing the number of facility relocations, (2) maximizing the expected weighted cover over all scenarios and (3) maximizing the minimum weighted cover over all scenarios as outlined in Section 4.1. We present an integer programming formulation and propose Lagrangian and greedy heuristics for the EpRCRP.

Following the notations defined in Table 4.1, the EpRCRP can be formulated as follows:

$$\text{[EpRCRP]}$$

$$\max Z = \sum_{j=1}^{n'} F_j x_j \quad (4.3a)$$

subject to:

$$y_{ik} \leq \sum_{j=1}^{n'} x_j I_{kij} \quad \text{for all } i = 1, \ldots, n, \ k = 1, \ldots, s \quad (4.3b)$$

$$\sum_{j=1}^{n'} x_j = m \quad (4.3c)$$

$$\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_{ik} y_{ik} \geq \rho_E \quad (4.3d)$$

$$\sum_{i=1}^{n} W_i y_{ik} \geq \rho_R \quad \text{for all } k = 1, \ldots, s \quad (4.3e)$$

$$x_j, y_{ik} = 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', \ k = 1, \ldots, s \quad (4.3f)$$

The objective function (4.3a) maximizes the number of facilities that are not relocated. Constraints (4.3d) and (4.3e) enforce lower bounds of $\rho_E$ and $\rho_R$ on the expected and minimum coverages, respectively. Similar to the ECRP, by letting $\rho_E = 1$, $\rho_R = 1$, $s = 1$, 

---
and $F_j = 1$ for all $j = 1, \ldots, n'$, the EpRCRP reduces to the set covering decision problem that is proved NP-Complete. Therefore, we develop Lagrangian relaxation and greedy heuristics for the EpRCRP. Observe that (4.3d) is redundant if $\rho_R \geq \rho_E$. In such a case, the Lagrangian and greedy heuristics developed for the RCLP can be used to solve the EpRCRP.

The Lagrangian dual of the EpRCRP, L-EpRCRP, is defined by relaxing (4.3b) as follows:

\[
L = \min_{\lambda} \max_{x, y} \sum_{j=1}^{n'} \left( F_j + \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} I_{kij} \right) x_j - \sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} y_{ik} \\
\text{s.t.} \sum_{j=1}^{n'} x_j = m \\
\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_{k} y_{ik} \geq \rho_E \\
\sum_{i=1}^{n} W_i y_{ik} \geq \rho_R \quad \text{for all } k = 1, \ldots, s \\
x_j, y_{ik} = 0, 1 \quad \text{for all } i = 1, \ldots, n, j = 1, \ldots, n', k = 1, \ldots, s
\]

For a fixed non-negative vector of Lagrangian multipliers $\lambda$, L-EpRCRP($\lambda$) is a maximization problem that is separable with respect to the decision variables into an $x$-problem and a $y$-problem. Relaxing the integrality of $y_{ik}$, an upper bound for the $y$-problem is obtained using a two-stage greedy ordering algorithm as follows. First, in each scenario, order the $y_{ik}$’s in a decreasing order of $\frac{W_i}{\lambda_{ik}}$ (ties broken arbitrarily) and set $y_{ik}^{UB} = 1$ in order until $\sum_{i=1}^{n} W_i y_{ik} = \rho_R$ (the last $y_{ik}$ may be fractional). Then, if $\rho_R < \rho_E$, order all $y_{ik}$’s that are not already set to 1 in a decreasing order of $\frac{W_i P_k}{\lambda_{ik}}$ (ties broken arbitrarily) and set $y_{ik}^{UB} = 1$ in order until $\sum_{i=1}^{n} \sum_{k=1}^{s} W_i P_k y_{ik} = \rho_E$ (the last $y_{ik}$ may be fractional). Theorem 4.2 proves that the greedy ordering algorithm above finds an optimal solution to the relaxed $y$-problem. The optimal solution to the $x$-problem and the remainder of the Lagrangian relaxation approach is similar to that discussed for
Theorem 4.2. The greedy ordering algorithm above finds an optimal solution for the relaxed $y$-problem.

Proof. The greedy ordering algorithm works in two stages: stage 1 to satisfy (4.3e), and stage 2 to satisfy (4.3d). Let $y_{ik}^{\text{UB}} = a_{ik}^1 + a_{ik}^2$ such that $a_{ik}^1, a_{ik}^2 \geq 0$ are the contributions of stages 1 and 2 of the greedy ordering algorithm, respectively. Further, let $y_{ik}^*$'s represent the optimal solution for the relaxed $y$-problem. To prove the theorem, we follow the following three steps in order.

1. Without loss of generality, assume the nodes are ordered in each scenario $k$ in decreasing order of $\frac{W_i}{\lambda_{ik}}$ (ties broken arbitrarily). If $y_{ik}^* < a_{ik}^1$ for some $(i, k)$, since $y_{ik}^*$'s must satisfy (4.3e), there exists an $i'$ such that $y_{i'k}^* > a_{i'k}^1$. Due to the greedy nature of stage 1, $a_{jk}^1 = 1$ for all $j = 1, \ldots, i - 1$. So, $y_{ik}^*$ cannot be larger than $a_{jk}^1$ for any $j = 1, \ldots, i - 1$ and, thus, $i' > i$. For a small $\epsilon > 0$, increasing $y_{ik}^*$ by $\frac{\epsilon W_i}{P_k}$ and decreasing $y_{i'k}^*$ by $\frac{\epsilon W_i}{P_{i'}}$ does not violate (4.3d) and (4.3e), but increases the objective by $\epsilon \left( \frac{\lambda_{i'k}}{W_{i'}} - \frac{\lambda_{ik}}{W_i} \right) \geq 0$. Therefore, an optimal solution exists for the relaxed $y$-problem such that $y_{ik}^* \geq a_{ik}^1$ for all $(i, k)$. If the greedy ordering algorithm stops at the end of stage 1, $a_{ik}^2 = 0$ for all $(i, k)$. So, the argument above is identical to $y_{ik}^* \geq y_{ik}^{\text{UB}}$ for all $(i, k)$. In such a case we skip part 2 of the proof below.

2. Without loss of generality, assume all $(i, k)$'s are ordered such that $(i, k) \prec (j, l)$ if $\frac{W_i P_k}{\lambda_{ik}} > \frac{W_j P_l}{\lambda_{jl}}$ (ties broken arbitrarily). If $y_{ik}^* < y_{ik}^{\text{UB}}$ for some $(i, k)$, since $y_{ik}^*$'s must satisfy (4.3d), there exists an $(i', k')$ such that $y_{i'k'}^* > y_{i'k'}^{\text{UB}}$. Due to the greedy nature of stage 2, $y_{jl}^{\text{UB}} = 1$ for all $(j, l) \prec (i, k)$. So, $y_{jl}^*$ cannot be larger than $y_{jl}^{\text{UB}}$ for any $(j, l) \prec (i, k)$ and, thus, $(i, k) \prec (i', k')$. Observe that $y_{i'k'}^* > y_{i'k'}^{\text{UB}} \geq a_{i'k'}^1$ and, by part 1 of the proof, $y_{jk'}^* \geq a_{jk'}^1$ for all nodes $j$. So, for a small $\epsilon > 0$, increasing $y_{ik}^*$ by $\frac{\epsilon W_i}{P_k}$ and decreasing $y_{i'k'}^*$ by $\frac{\epsilon W_i}{P_{i'}}$ does not violate (4.3e) (as long as $\epsilon$ is small enough to ensure that $y_{i'k'}^*$ does not fall below $a_{i'k'}^1$ and (4.3d), but increases the
objective by $\epsilon \left( \frac{\lambda_{ik}}{W_{ik}P_k} - \frac{\lambda_{ik'}}{W_{ik'}P_{k'}} \right) \geq 0$. Therefore, an optimal solution exists for the relaxed $y$-problem such that $y^*_{ik} \geq y_{ik}^{ UB}$ for all $(i, k)$.

3. Since the objective of the relaxed $y$-problem is to minimize $\sum_{i=1}^{n} \sum_{k=1}^{s} \lambda_{ik} y_{ik}$ and $\lambda_{ik} \geq 0$ for all $(i, k)$, if $y^*_{ik} > y_{ik}^{ UB}$ for some $(i, k)$, there exists an $(i', k')$ such that $y^*_{i'k'} < y_{i'k'}^{ UB}$. This contradicts the argument proved in part 2 of the proof. Therefore, an optimal solution exists for the relaxed $y$-problem such that $y^*_{ik} = y_{ik}^{ UB}$ for all $(i, k)$.

Algorithm 4.1 can be adapted to provide a greedy solution for the EpRCRP. When $\rho_E \geq \rho_R$, constraint (4.3d) is binding in the optimal solution while (4.3e) may or may not be so. Therefore, in the greedy heuristic, we prioritize expected coverage over minimum coverage by ordering the current facility locations in decreasing order of their contribution to the expected cover, i.e., we follow steps 1 to 4 as is. In step 5, we change the stopping rule to $EC_j \geq \rho_E$ and $MC_j \geq \rho_R$. In step 6, we locate the facility to improve the most violated objective, i.e., using $EC_j$ or $MC_j$. If the most violated objective is satisfied with more than one potential location, we select the location that improves the other objective the most. Finally, in step 8, we terminate the algorithm with no feasible solution if $L = 1$ and $EC_j^* < \rho_E$ or $MC_j^* < \rho_R$.

To find the set of efficient solutions, we need to perform a parametric analysis of the EpRCRP for all values of $0 \leq \rho_E \leq EC^*$ and $0 \leq \rho_R \leq MC^*$. To avoid a three dimensional representation of the efficient set, we define the trade-off set as a set of $m$ trade-off curves over $\rho_E$ and $\rho_R$, one per each level of the objective function. Each trade-off curve includes a set of efficient $(\rho_R, \rho_E)$ points that are feasible with a given number of facility relocations.

Crema (1997) presents an algorithm for the right hand side multiparametric integer linear programming problem that requires solving the nonparametric problem in each step. While the algorithm is proved to obtain a complete parametric analysis in a finite
number of steps, the actual number of steps can grow as large as the number of possible selections of \( m \) facility locations from among \( n' \) critical points, i.e., \( \binom{n'}{m} \). Therefore, considering the difficulty in solving the EpRCRP, obtaining the exact trade-off set is computationally infeasible. Instead, we propose the following greedy algorithm to find the trade-off set. We note that the greedy trade-off curves are lower bounds of the corresponding exact trade-off curves.

**Algorithm 4.4. Greedy Trade-Off Set- EpRCRP**

1. Let \( z=1 \), \( \mathcal{E}_i = \emptyset \) for all \( i = 1, \ldots, m \).

2. Follow steps 1 to 4 in Algorithm 4.1.

3. Follow steps 6, 7, and 9 in Algorithm 4.1.

4. If \( R < z \), let \( L = L - 1 \) and go to step 3.

5. Let \( EC \) and \( MC \) be the expected and minimum coverage of the most recent facility locations, respectively. \( \mathcal{E}_z = \mathcal{E}_z \cup \{(MC, EC)\} \).

6. Remove the location of facility \( L \) from \( A \). Let \( C'^L = C^{m-z+1} \). In \( C'^L \), for all \( i = 1, \ldots, n \) and \( k = 1, \ldots, s \), if \( c_{ijk} > 0 \) for some \( j \in A \), let \( c_{ijk} = W_i \) for all \( j = 1, \ldots, n' \).

7. Relocate facility \( L \) to critical point \( j^* \) with maximum \( MC_j \) using \( C'^L \). Let \( A = A \cup \{j^*\} \).

8. \( L = L + 1 \). If \( L \leq m \), go to step 5.

9. Repeat steps 2 to 8 using \( MC_j \) anywhere instead of \( EC_j \) and vice versa.

10. Order the \((x, y)\) items in \( \mathcal{E}_z \) in increasing order of \( x \) (i.e., \( MC \)). Remove each item in \( \mathcal{E}_z \) if its \( y \) (i.e., \( EC \)) is not less than the \( y \) of the previous item (if one exists).
11. $z = z + 1$. If $z \leq m$, go to step 2.

Algorithm 4.4 finds the efficient set $E_z$ for each potential objective value of the EpRCRP, i.e., $z = 1, \ldots, m$. Each iteration of the algorithm starts with finding, in steps 2 to 4, the location set with $z$ relocations and maximum expected coverage. Then, steps 5 to 8 exchange the relocated facilities in a greedy manner in favor of increasing the minimum coverage. Step 9 repeats the analysis above by starting at the location set with $z$ relocations and maximum minimum coverage and exchanging the relocated facilities in favor of increasing the expected coverage. Finally, step 10 removes non-efficient solutions from $E_z$.

### 4.6. Numerical Results

In this section, we compare the performances of the MIP formulation, the Lagrangian relaxation based heuristic, and the greedy heuristic for the ECRP, RCRP, and EpRCRP. We coded the Lagrangian and greedy heuristics using Microsoft Visual Basic and used CPLEX 8.1 for solving the MIP formulations enforcing a time limit of 4 hours for each problem instance. All computational experiments are run on a desktop PC 2.4GHz/2Gb RAM.

Test networks are generated using the Beasley test data set (Beasley 1990) assuming an equal weight for all nodes and relocating 10 facilities that are initially located randomly on the nodes. The coverage time was determined, similar to Berman et al. (2009c), as the 0.1 percentile of the distance between all pairs of nodes. Each test problem consists of 10 scenarios with probability 0.1, one of which is the original Beasley network and the other nine are generated by randomly removing 1%, 5%, 10%, or 30% of the links. The values of $\rho_E$ and $\rho_R$ are set to 95% of the optimal expected and robust coverages as found by algorithms proposed in the previous chapter (in few cases these values are adjusted to ensure the existence of a feasible solution).
Tables 4.2, 4.3, and 4.4 present a summary of the results for the ECRP, RCRP, and EpRCRP, respectively. For each test problem, we report the solution time in seconds and the number of relocations recommended by CPLEX, the Lagrangian relaxation based heuristic, and the greedy heuristic. We use N/A as the number of relocations if any of the solution procedures fail to find a feasible solution. We note that if CPLEX can find some feasible solutions in 4 hours, they are usually quite good. But, for a large enough

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Number of relocations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0.1</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.1</td>
<td>56</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>10</td>
<td>716</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>18</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td>876</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>1</td>
<td>829</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>530</td>
<td>1747</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>2247</td>
<td>1570</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>236</td>
<td>2036</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>2</td>
<td>3048</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>3957</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>3519</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>2969</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>4</td>
<td>3890</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>4984</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>4959</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>4959</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>2</td>
<td>12117</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2701</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 4.2: Results- ECRP
problem it may not be able to find any feasible solutions. Based on Tables 4.2, 4.3, and 4.4, we make the following observations.

1. Solution time increases exponentially in size for CPLEX, quadratically for the Lagrangian relaxation heuristic, and almost linearly for the greedy heuristic. CPLEX is preferred in terms of solution time and quality for small problem instances. However, for some large instances of the RCRP and EpRCRP, CPLEX is unable to find

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Number of relocations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.1</td>
<td>29</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>3</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>29</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>4</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>11</td>
<td>285</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>121</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>595</td>
<td>794</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>18</td>
<td>1038</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>617</td>
<td>1549</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>4858</td>
<td>1384</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>37</td>
<td>2239</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>370</td>
<td>2593</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>265</td>
<td>4244</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>1099</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 4.3: Results- RCRP
CHAPTER 4. THE COVERING RELOCATION PROBLEM WITH TRAVEL TIME UNCERTAINTY

even a feasible solutions in a reasonable time.

2. Similar to many other network problems, the solution time is usually lower for low
density and high density networks and higher for medium density networks.

3. Among the heuristics, the greedy heuristic is always better on solution time and
usually better on solution quality, but none of the heuristics is dominant for all

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Edge loss</th>
<th>Solution Time (Sec.)</th>
<th>Number of relocations</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPLEX</td>
<td>Lagrangian</td>
<td>Greedy</td>
<td>CPLEX</td>
<td>Lagrangian</td>
</tr>
<tr>
<td>100</td>
<td>1%</td>
<td>0.1</td>
<td>99</td>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.1</td>
<td>109</td>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0</td>
<td>148</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>0.1</td>
<td>69</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>1%</td>
<td>8</td>
<td>841</td>
<td>11</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>17</td>
<td>845</td>
<td>11</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>6</td>
<td>936</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>7</td>
<td>853</td>
<td>10</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>1%</td>
<td>3176</td>
<td>1616</td>
<td>31</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>3692</td>
<td>1913</td>
<td>32</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>453</td>
<td>2150</td>
<td>29</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>5</td>
<td>2695</td>
<td>25</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>700</td>
<td>1%</td>
<td>&gt;4hr</td>
<td>3579</td>
<td>68</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>3706</td>
<td>62</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>&gt;4hr</td>
<td>4186</td>
<td>58</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>32</td>
<td>4520</td>
<td>44</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>900</td>
<td>1%</td>
<td>2196</td>
<td>5117</td>
<td>102</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>&gt;4hr</td>
<td>5245</td>
<td>95</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>1284</td>
<td>6082</td>
<td>72</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>27</td>
<td>12176</td>
<td>66</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2844</td>
<td>37</td>
<td>7.1</td>
<td>9.9</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table 4.4: Results- EpRCRP
problems. The Lagrangian relaxation based heuristic occasionally finds better solutions than the greedy one or finds some solution when the greedy heuristic and CPLEX fail to do so. A useful strategy would be to solve both heuristics and select the best solution.

4.7. Case Study: Relocating Fire Stations in Toronto

In the previous chapter we studied the problem of improving the location of fire stations in the city of Toronto. Toronto fire Services (TFS) operates 82 fire stations in Toronto and is planning the addition of 4 more stations (TFS 2008). The Toronto Master Fire plan and the National Fire Protection Association (NFPA) 1710 standard recognize a target response time of 5 minutes for emergency services (TFS 2007). Considering pre-trip delays, we argued in the previous chapter that we will use a 2 minute response time for our analysis.

Our network for the city of Toronto consists of 3220 nodes, i.e., road intersections, and 9630 links, i.e. major roads and streets. Travel times and traffic volumes in Toronto are highly dependent on the time of the day. Therefore, we define 24 scenarios, one per each hour, for the network. To study system performance under adverse conditions, we include one additional scenario - the “snow storm”, which triples the travel times on all links. Such events occur several times per year in Toronto and thus the fire service certainly should take them into account. On the other hand, these events are quite rare (on an annual basis), thus we set the probability of the associated scenario to 0. Data on hourly travel times was provided by the Data Management Group of the Civil Engineering Department at The University of Toronto.

In the previous chapter we presented optimal (greedy) locations for the 82 fire stations based on expected coverage and worst case coverage objectives. We also presented a recommended set of locations using the EpRCP that balances the improvement on the
Figure 4.2: Trade-off curves for relocating $k$ fire stations ($k$ is shown next to each curve)

two objectives above. However, this recommended solution is likely unrealistic - it would take too much of the financial and political capital to relocate all of the 82 fire stations in Toronto. This naturally leads to the following question: what level of improvement can be expected by relocating $k$ stations for different values of $k$?

We use Algorithm 4.4 to find a trade-off set consisting of 82 trade-off curves over expected and worst case coverage, one per each facility relocation. A simplified version of the resulting trade-off set is presented on Figure 4.2 together with the value for the current fire station locations. The trade-off set can aid decision makers at TFS in comparing the various costs of relocating facilities versus the benefit of improved expected and worst case coverage. Based on Figure 4.2, we note that 70%-80% of the potential improvement of relocating all 82 stations can be realized by relocating about 30 (i.e. 36%) of the current stations (for any chosen level of $\rho_E$ and $\rho_R$) - this may be much more manageable than the full-scale relocation.

Since TFS is planning the addition of 4 new fire stations, in the previous chapter we also provided an expected coverage–worst case coverage trade-off curve for 4 new station. Based on Figure 4.2, we note that the trade-off curve for 5 relocations is very
close to the trade-off curve for 4 new stations presented earlier. Thus instead of adding new stations to the system, the planners should consider relocating a similar number of current stations - it is likely more cost-effective and leads to better coverage levels.

4.8. Conclusion

We study a multi-objective maximum covering problem on a network with travel time uncertainty that aims at relocating the fewest number of facilities while maximizing expected and worst case coverage over all scenarios of the network. Three single-objective variations of the problem are presented. The expected covering relocation problem (ECRP) relocates the fewest number of facilities such that the excepted weighted cover over all scenarios is more than a given bound $\rho_E$. The robust covering relocation problem (RCRP) relocates the fewest number of facilities such that the minimum weighted cover over all scenarios is more than a given bound $\rho_R$. The expected $p$-robust covering relocation problem (EpRCRP) relocates the fewest number of facilities such that the excepted and minimum weighted covers over all scenarios are more than given bounds $\rho_E$ and $\rho_R$, respectively. Varying the values of $\rho_E$ and $\rho_R$, we find the set of efficient solutions for the multi-objective problem.

We present integer programming formulations and develop Lagrangian and greedy heuristics for the three problems. Our numerical results show that solution time increases exponentially with size for the integer programming formulations. The Lagrangian and greedy heuristics, instead, provide near optimal results in reasonable time. Finding the set of efficient solutions via exact parametric optimization is computationally prohibitive. We present a greedy exchange algorithm to find an approximate efficient set.

We use real data for the city of Toronto to analyze the current location of fire stations with respect to the 24 scenarios representing travel times during different hours of the day and one additional scenario representing the traffic disruption due to a snow storm. We
find that relocating about 30 stations would allow Toronto to capture a large part of the coverage gap between the current and optimal locations. We also show that, considering lower cost implications, the city should consider relocating fire stations instead of building new ones.
Bibliography


Bassamboo, A., S. Kumar, R.S. Randhawa. 2007. Dynamics of new product introduction in closed rental systems. Working paper, McCombs School of Business, University of Texas at Austin, Austin, Texas.


