INTRODUCTION

Testing for HIV antibodies is an important component of prevention and intervention programmes designed to curb the spread of HIV infection. Because pretest and posttest counselling are offered to individuals who test either HIV positive or HIV negative, there is an opportunity for individualized intervention to discuss risky and safer behaviours and ways to modify risky behaviour patterns. HIV testing and counselling have been shown to promote risk reduction (in certain groups). Most studies involving couples in Africa show that knowledge of HIV test results promotes behaviour change and reduces transmission.

The recent development of new treatments for HIV has brought improvements in the medical care of people with HIV. The benefits of early detection of the virus have also increased because the most effective treatment results occur in the earliest stage of HIV. A concern is that not all individuals who may be at risk for HIV infection choose to be tested. Kalichman and Hunter reported that only 36% of individuals who reported at least one high-risk behaviour had been tested for HIV. Kalichman and Hunter reported that only 36% of individuals who reported at least one high-risk behaviour had been tested for HIV. Therefore, it is important to examine factors that motivate, or deter, individuals from seeking HIV antibody testing.

ATTITUDES TOWARDS HIV-ANTIBODY TESTING AND PEOPLE WITH AIDS AMONG UNIVERSITY STUDENTS IN INDIA, SOUTH AFRICA AND UNITED STATES

KARL PELTZER, ESTHER NZEWI, KRISHNA MOHAN

ABSTRACT

CONTEXT: Stigmatizing attitudes toward persons with AIDS (PWAs) may reduce people’s willingness to have themselves tested for Human Immunodeficiency Virus (HIV) - thereby increasing the risk of transmission. AIM: To examine attitudes towards (HIV) testing and determinants of attitudes towards PWAs. Settings and design: A cross-sectional. MATERIAL AND METHODS: 600 first-year university students from South India, South African and America filled in a self-administered questionnaire. Main outcome measures included an Attitudes towards HIV-Antibody Testing Scale and Readiness to engage in personal forms of contact with People With AIDS. RESULTS indicate that the majority of American and South African students and only 10 percent of the Indian students had been sexually active in the past 12 months. Almost one fifth of the American and South African participants but only 10% of the Indian students admitted to having had an HIV test. American students had a much more positive attitudes toward HIV testing than South African and Indian students. Regression analysis for the Indian student sample identified blaming, irritation and negative attitudes toward homosexuals as independent predictors of readiness to engage in personal contact with PWAs, while the regression analyses for both South African and American students identified pity and irritation as independent predictors of contact readiness with PWAs. Positive HIV testing attitudes were positively associated with contact readiness with PWAs. CONCLUSION: The findings are important for the role of HIV testing and counselling in campus AIDS programmes. The findings reveal important factors related to HIV testing and suggest strategies for developing effective HIV/AIDS counselling programmes in universities.

KEY WORDS: Attitudes, HIV-antibody testing, people with AIDS, university students.
students that (a) attributions of personal responsibility are primarily a function of mode of illness transmission, (b) fear of AIDS contagion is predictive of stigma and social avoidance of PWAs, and (c) AIDS-related stigma and attributions of blame are largely a function of symbolic associations between homosexuality and IV drug abuse and AIDS.

Burnette, Redmon and Poling found among American college undergraduates that they generally expressed sympathy for AIDS victims, the tendency to work with AIDS patients was weak and subjects endorsed statements that promoted isolation of victims.

Thompson, Geher, Stevens, Stem and Lintz found among American university students that favorable attitudes toward persons with AIDS were positively correlated with knowledge about AIDS transmission, perceived communication with partners about safe sex, and fear of acquiring AIDS. Examining attitudes toward PWAs in American 7th, 8th, and 9th graders, females appeared to be more tolerant than males, and students with greater knowledge about HIV transmission through casual contact, transmission of HIV through blood products, ways of preventing HIV infection, and myths about HIV prevention had more tolerant attitudes toward PWAs. Zimet (1992) investigated attitudes of American students who know someone with AIDS and matched them with students who did not know anyone with AIDS. Those who knew a person with AIDS showed less anxiety about infection, and myths about HIV prevention had contributed to the differential prevalence rates of HIV/AIDS in the three countries. The three counties selected for the study are a good representation of Asia, Africa and North America.

These countries were chosen because of their different prevalence rates of HIV and stages of the AIDS epidemic. They would therefore provide the basis for assessing factors contributing to the differential prevalence rates of HIV/AIDS in the three countries. The three counties selected for the study are a good representation of Asia, Africa and North America. Pondicherry University is a Central University and has predominantly students from South Indian States like Tamil Nadu/ Pondicherry, Karala and Andhra Pradesh and is a good representation of South India when compared to many state Universities in India. The US represents one of the countries that match the participants on other demographic factors such as social-class because of the alarming rate of new infections. The United Nations Program on HIV/AIDS (UNAIDS) statistics indicate that in South Africa, the incidence of HIV among adults have increased from less than 1% in 1990 to almost 25% in 2000. In 2002, according to a national household HIV seroprevalence survey conducted in South Africa, the estimated national South African HIV prevalence rates for young people, per age group were: 15 to 19 year-olds 6% (4% in males and 7% in females), 20 to 24 year-olds 13% (8% in males and 17% in females) and 25 to 29 year-olds 28% (22% in males and 32% in females), and among African/Black youth (15-24 years) 10.2%. Coloured youth 6.4%, Indian youth 0.3% and Whites (15-49 years) 6.2%. These three levels of rates of the HIV/AIDS epidemic across the three countries would provide a basis for cross-cultural comparison of attitudes of the participants towards HIV/AIDS.

MATERIAL AND METHODS

The participants consisted of a total of 600 undergraduate university students randomly selected from a pool of volunteers: 200 Indian students from Pondicherry, South India, (100 male, and 100 female) in the age range from 18 to 30 years (M=23.6, SD=3.5), 200 South African students from Limpopo Province (100 male and 100 female) in the age range from 17 to 30 years (M=22.8, SD=2.8), and 200 first-year American students from San Francisco (100 male and 100 female) in the age range from 17 to 24 years (M=23.7, SD=6.2). The three universities were chosen because of easy access to students. First year university students were used because it seemed important to have participants with a fairly similar age. The samples were matched by equal number of male and female participants. No effort was made to further match the participants on other demographic factors such as social-class because of the differential levels of income, per capita income and criteria for social class classification in the three countries. The response rate for participation in each institution was 100%. American students were by ethnicity 10% African American, 56% Caucasian American, 25% Asian American and 9% and Hispanic American, and reflected the proportions of students from each ethnic groups in the university. Indian students were 44% Tamil, 31% Malayalam and 25% Telugu speaking, and South African students were all Black South African. The study was conducted in all three sites in the year 2003.

Questions asked sought information on biographic data (3 items), sexual behaviour and attitudes (10 items) and HIV testing behaviour (4 items). Sexual behaviour, knowledge, and attitudes items included: (1) Sex during the past 12 months, (2) number of sex partners during the last 12 months, (3) condom use during last sex, (4) history of sexually transmitted disease in the past 12 months (for example, herpes, gonorrhea, chlamydia, genital warts), (5) personally know someone with HIV or AIDS? (6) Susceptible or at risk are you to get HIV? (anchored from 1=very susceptible to 5=not susceptible at all), (7) “How is your knowledge about HIV infection?” (anchored from 1=very poor to 5=very good), (8) “Did you previously receive AIDS education?” (Yes or No), (9) Condom use intention when having sex with a new partner?
ATTITUDES TOWARDS HIV-ANTIBODY TESTING AND PEOPLE WITH AIDS

The following measures were taken from Dijker, Kok and Koomen\(^1\): A 3-item scale on Readiness to engage in personal forms of contact with People With AIDS (PWAs). Participants were first informed that they would be presented with different situations in which they could meet a person with AIDS. They were then required to respond to each of the following situations: “a situation in which the person lives nearby in the same street or neighbourhood”, “a situation in which the person is a fellow student”, and “a situation in which there is often personal contact with the person with AIDS”. The response alternatives were: 1=very unacceptable, 2=unacceptable, 3=acceptable, and 4=very acceptable. This four-point scale was used as it was used in previous studies. Higher scores on this scale indicate more willingness to engage in personal contact with PWAs. Cronbach’s alpha for this scale was .82.

Emotion questions included were: “When I think about someone having AIDS, I feel pity”; “When I think about someone having AIDS, I become afraid”; “When I think about someone having AIDS, I feel irritated.” Participants could respond to each item on a 3-point Likert scale: 1: not at all, 2: a little bit, and 3: very strongly.

Attitude towards homosexuals. This attitude was measured by a single item: “How do you generally feel about homosexuals?” and could be answered on a 4-point scale, ranging from 1=very sympathetic, 2=sympathetic, 3=unsympathetic, and 4=very unsympathetic. This scale was recoded such that higher scores represented more positive attitudes.

Risk perception of casual contact with PWAs.

The different questions addressing perceived risk of contamination with HIV were introduced as follows: “Could you indicate for each of the situations described below how much risk is involved in getting infected with HIV?”: (1) “Someone drinks from a glass used by an infected person”, (2) “Someone eats in a restaurant with an infected person”, (3) “Someone drinks from a glass used by an infected person”. The questions were anchored by 1: no risk, 2: small risk, and 3: large risk. Cronbach’s alpha for the risk perception measure was .76.

Blaming of PWAs. The question “If one gets AIDS, it is one’s own fault” could be answered with 1=agree, 2=partly agree, partly disagree, and 3=disagree. This item was recoded such that higher scores mean a greater tendency to blame PWAs for their condition.

Trained postgraduate research assistants administered the questionnaires to the students. Students filled in the questionnaires voluntarily after informed consent was taken in the presence of the research assistants and were free to ask questions for clarification. Anonymity and confidentiality were assured. No time limit was given, but on average students took 20 to 30 minutes to answer all the questions. Permission was obtained from human ethics committees and the relevant authorities.

All the questionnaires used in the study were pilot tested in each of the three countries. The subjects (40 in each country) involved in the pilot test had no difficulties with any of the items and responded accurately to all the items. Two of the American students would have preferred the word “empathy” to “pity” in one of the items related to emotion. A decision was made to retain “pity” since the Indian & South African students as well as some American students might have more difficulty with the concept of empathy than pity. A practice administration during which the research assistants administered the questionnaires and received needed feedback was conducted to increase the reliability of the research administrators.

Data analysis

The Kruskal Wallis Test was used to compare the three samples. ANOVA with posthoc Scheffe tests were used for comparing means by country, and multiple hierarchical regression analyses to identify independent predictors for the willingness to engage in personal contact with PWAs.

RESULTS

Table 1 indicates sexual behaviour among university students studied. Majority of American and South African students and only 10 percent of the Indian students had been sexually active in the past 12 months. The sexually active Indian students reported having more sexual partners in the past 12 months than South African and American students. About half of the sexually active students across the three countries had used a condom at last sex, had sex under the influence of alcohol and personally knew someone with HIV or AIDS. None of the Indian students, a quarter of the South African and almost half of the American students reported that a doctor or other health professional had told them that they had a sexually transmitted
Post hoc tests with Scheffé showing significant differences are designated with a superscribed (I=Indian, S=South Africa, U=United States) superscript. Positive attitudes or higher susceptibility, measured on a scale from 1 to 3, with higher scores indicating greater intensity or risk perception; b measured on a scale from 1 to 4, with higher scores indicating more than lower-bound 68.0 1.16 0.49 3.02 2.25 2.07 P<0.001 <0.001 <0.001 <0.07 <0.001 <0.001

Table 1: Sexual behaviour by country and in percent (2 to 6. are calculated from the sexually active sample only).

<table>
<thead>
<tr>
<th>Item</th>
<th>Indian</th>
<th>South African</th>
<th>American</th>
<th>Chi-Square</th>
<th>P df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Had sex in past 12 months (Proportion of male in percent)</td>
<td>10.2(60)</td>
<td>64.1(59.1)</td>
<td>74.9(52.3)</td>
<td>188.93</td>
<td><p.001 2</td>
</tr>
<tr>
<td>Number of sex partners in past 12 months (SD)</td>
<td>2.6 (2.5)</td>
<td>0.6 (0.5)</td>
<td>0.5 (0.5)</td>
<td>10.09</td>
<td>0.006 2</td>
</tr>
<tr>
<td>History of STD in past 12 months</td>
<td>57.9</td>
<td>47.5</td>
<td>50.7</td>
<td>53.16***</td>
<td><0.001 2</td>
</tr>
<tr>
<td>History of STD in past 12 months</td>
<td>0</td>
<td>22.8</td>
<td>42.6</td>
<td>96.13***</td>
<td><0.001 2</td>
</tr>
<tr>
<td>Know someone personally with HIV or AIDS</td>
<td>55.0</td>
<td>54.0</td>
<td>45.6</td>
<td>8.09*</td>
<td>0.017 2</td>
</tr>
<tr>
<td>Ever had sex under the influence of alcohol</td>
<td>42.1</td>
<td>50.4</td>
<td>53.0</td>
<td>79.31***</td>
<td><0.001 2</td>
</tr>
</tbody>
</table>

The main reasons for not having been tested for HIV were in descending order of importance: (1) 'It's unlikely that I have been exposed to HIV' (32.7%); (2) 'Attitude towards HIV-antibody testing and People with AIDS

Table 2: Descriptive statistics for the Attitudes towards HIV-Antibody Testing Scale, HIV testing behaviour and other HIV parameters by country.

<table>
<thead>
<tr>
<th>Students</th>
<th>HTAS total</th>
<th>Had an HIV test</th>
<th>Got HIV tests results</th>
<th>Intention to go to HIV test</th>
<th>Susceptible to HIV</th>
<th>Condom use intentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian</td>
<td>61.7 (12.2)</td>
<td>9.8</td>
<td>86.7</td>
<td>2.89 (1.4)</td>
<td>2.23 (1.3)</td>
<td>2.39 (1.2)</td>
</tr>
<tr>
<td>South African</td>
<td>62.2 (14.4)</td>
<td>22.4</td>
<td>77.5</td>
<td>3.33 (1.7)</td>
<td>2.72 (1.4)</td>
<td>2.98 (1.1)</td>
</tr>
<tr>
<td>US</td>
<td>84.3 (13.4)</td>
<td>24.5</td>
<td>92.5</td>
<td>3.98 (1.3)</td>
<td>2.26 (1.2)</td>
<td>1.21 (0.5)</td>
</tr>
<tr>
<td>HTAS total</td>
<td>F=118.52</td>
<td>F=1.41 F=0.13</td>
<td>F=11.98 F=43.40</td>
<td>r=0.06 F=5.08</td>
<td>r=0.07 F=7.72</td>
<td>r=0.46 F=168.62 P <0.001 <0.001 <0.001</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>68.0 16</td>
<td>49</td>
<td>3.02</td>
<td>2.25</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td>70.8 22</td>
<td>60</td>
<td>3.28</td>
<td>2.51</td>
<td>2.28</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Descriptive statistics of variables relevant to attitudes toward PWAs and significant tests for country differences. Among the three emotions (fear, irritation, and pity) the highest ratings were given for pity toward PWAs (2.26), followed by fear (1.83) and irritation (1.58). Blaming of PWAs was moderately high with 2.04, especially for Indians, but respondents tended to find personal contact with PWAs generally acceptable. Attitude toward homosexuals was with a score of 2.52 neither positive nor negative. However, Indian and South African students had a more unsympathetic attitude toward homosexuals than American students.
Table 4 shows a multiple hierarchical regression analyses with willingness to engage in personal contact with PWAs as the dependent variable. The regression analyses for the total and for the Indian student sample, identified blaming, irritation and negative attitudes toward homosexuals as independent predictors of readiness to engage in personal contact with PWAs, while the regression analyses for both South African and American students identified pity and irritation as independent predictors of contact readiness with PWAs.

Positive HIV testing attitudes were positively associated with contact readiness with PWAs ($r=0.11$, $P<0.01$).

DISCUSSION

The study investigated attitudes towards HIV testing among American, African and Indian university students as well as the correlates of such attitudes. The findings of the study are important for determining the psychosocial factors associated with HIV risk in these three populations as well as likely influences on their participation in HIV risk reduction counselling.

The majority of American and South African students and only 10 percent of the Indian students were found to have been sexually active and the sexually active Indian students reported to having more sexual partners than South African and American students (see Table 1). US students’ low intention to use condom may be related to a large number of the students considering themselves as being in committed relationships and felt a sense of trust that their partners were faithful. Indian students had moderate use of condoms in this study, which is similar to a study among university students in Delhi where only four in 10 used a condom sometimes during sexual intercourse. Low rates of premarital sex among Indian university students has also been reported by Sachdev. With regard to the low rate of sexual intercourse, Indians are conservative and only after marriage is intercourse allowed. This may be one reason why many of the young Indian men visit prostitutes and it could be the main reason for a high rate of STD’s. It is logical that when intercourse is not allowed before marriage and most of the participants are not married the intercourse rate is less and those who visit prostitute are infected with STDs. Taboo is very much associated with STD’s hence low rate of reporting in India.

For STDs, students generally take self medication and do not report to the health centers.

In India even among friends of opposite sex, sex is not a common feature - unlike in the western and African cultures. This is an important and unique aspect of Indian culture which is deeply rooted in Hindu religious ethos. For Indian woman premarital sex is a taboo and having STD is a greater taboo, there fore self reporting is very rare for STD.

None of the Indian students, a quarter of the South African and almost half of the American students reported a history of STD in the past 12 months, which is a cause of concern and should be addressed. The high rate of self-reported STDs among American students could be explained as a function of the students’ definition of sexually transmitted diseases. They may have generalized the concepts of sexually transmitted diseases to all forms of sexual infections. Thus, they classified as sexually transmitted diseases any sexual infections for which they had been treated. Some of these infections do not meet the criteria for classification as “sexually transmitted diseases.” For example, many respondents may have considered genital candidiasis as a sexually transmitted disease because it is an infection of the genitalia. However, candida is usually not transmitted sexually. It is also likely that the American students did have a higher rate of sexually transmitted diseases. These findings seem to be consistent with research data in the US on sexually transmitted diseases. For example, Blakeslee’s estimated that almost half of female teenagers in a number of US cities were infected with genital warts, the human papillomavirus and that one million new cases were treated annually. Catotti, Clarke, & Catoe; Ubell reported increases in the number of cases of genital herpes in the United States.

Another explanation of the varying rates of sexually transmitted diseases among participants is perhaps cultural differences in levels of self-disclosure among the three groups. As a result of the perceived levels of greater threat related to stigmatization, Indian and South African students may have been less willing to disclose accurate levels of infection with STDs. That is, the difference in levels of willingness to acknowledge and reveal personal problems. Triandis suggests that when a culture is homogeneous, there is a greater tendency for members of the culture to be willing to disclose the public and collective self whereas more heterogeneous cultures tend to reveal the private self. Triandis further suggests that people in “collectivists” and “tight” cultures are often concerned about acting correctly. Consequently the public and private self may be different. It is therefore likely that the Indian and South African students, from “collectivist” and “tight” cultures may have experienced some concerns about societal expectations. They are more likely to experience anxiety with the resultant inhibition of self-disclosure about STDs. This position is supported by Doi’s study on self-disclosure of public and private selves in Japan and United States. Doi concluded that individuals in collectivist cultures are less likely to disclose private selves that may be at variance with public expectations.
In this study 10% (India) to 25% (US) of the students indicated that they had already been tested for HIV. This finding is similar to that by MacNair-Semands and Simono with a sample of American university students. MacNair-Semands and Simono found that 25.4% of American college students had been tested for HIV. In a national survey among Italians (18-49 years) the prevalence of having ever been tested, whether voluntary or not, among heterosexual men and women was 27% and 32.8% respectively.

Of the South African students who went for the HIV test, 22.5% did not get the results of the last test, while only 7.5% of the US students did so. In a general population survey in the US it was found that 12 or 13% of individuals receiving an HIV test failed to return for their results. Interventions are available to counsellors and clients to improve the rate of return for HIV results such as being offered to receive tests results by phone, rapid testing for HIV and improving risk identification among HIV testers during pretest counselling. The high rate in this sample of not receiving their HIV test results could be partially attributed to the belief that they have been (unknowingly) tested for HIV when receiving routine outpatient hospital treatment involving blood draws. Medical practitioners and counsellors could help alleviate this likely misperception by discussing with patients or clients the specific purposes for which any blood samples are collected from them, and the results of such tests.

Similar to high-risk individuals in the US, the major reasons for concern in this sample were also fear of learning that they are HIV positive, and thinking that they are HIV negative. The study found some country differences regarding HIV testing and attitudes. American students had a significantly more positive attitude towards HIV testing and stronger intentions to go for HIV testing than South African and Indian students. This may be, in part, related to the strong presence in many universities in the US of programs on education and prevention of infection with HIV Virus and indicates some positive outcomes of such programs.

HIV counselling and testing appears to provide an effective means of secondary prevention for HIV positive individuals. HIV-positive individuals who underwent HIV counselling and testing increased their safer sex behaviours and reduced their risk behaviours, thereby decreasing their likelihood of infecting others or becoming re-infected with HIV or other STDs. However, HIV counselling and testing, as conducted in reviewed studies, appears not an effective primary prevention strategy for uninfected participants. Readiness to engage in personal contact with PWAs was among South African (3.0) and American (3.2) students similar to two different Dutch samples (3.1 in Dijker et al. and 3.0 in Bos, Kok & Dijker respectively). However, contact readiness was low among Indian university students.

In contrast to Dutch samples, fear was not related to attitude among Indian, South African and Americans students studied here.

This study found country differences regarding emotional reactions toward PWAs, contact readiness with PWAs and attitudes toward homosexuals. South African students scored higher on the two emotional reactions (fear and irritation) than students from the US and India. One explanation for this finding could be that South Africa has the highest prevalence rate of HIV infections among the three countries, which could arouse higher emotional reactions toward PWAs. American and South African students showed more positive attitudes toward willingness to engage in personal contact with PWAs than students from India. The least sympathetic attitudes toward homosexuals were held by Indian students, which needs further investigation.

This study further found that both emotional (pity and irritation) factors for the South African and American sample and cognitive factors (attitudes towards homosexuals, blaming, and risk perception) for the Indian sample contributed to willingness to engage in personal contact with people with HIV/AIDS, which is partly consistent with studies conducted in the Netherlands. However, fear was in this sample not significantly related with willingness to engage in personal contact with PWAs, whereas in both Dutch samples they were.

Generally, of major importance are the findings in this study, that intentions to avoid risky behaviors and knowledge of factors that increase the risks of being infected do not necessarily translate into practices that reduce the risks of infection with HIV. The three groups of students had high intentions for condom use but were inconsistent in their actual use of condoms. This was particularly the case with both South African and American students. Thus indicating the need to incorporate behavioural components into prevention programmes in the universities.

Further, this study found that positive HIV testing attitudes were positively associated with contact readiness with PWAs. Similarly, Kalichman and Simbayi found among men and women living in a black township in Cape Town that compared to people who had been tested, individuals who were not tested for HIV demonstrated significantly greater AIDS related stigmas; ascribing greater shame, guilt, and social disapproval to people living with HIV.

The study has certain limitations. Some measurement instruments, e.g. on attitudes towards homosexuals was only measured with one item, and further research should assess this with more detailed measures. Although the questionnaires provided important measures of the target behaviors, the study did not specifically address cultural, social, gender and economic factors that may be important to the risk of being infected in the three countries. It is desirable, in future research on HIV/AIDS in these three countries, to assess cultural, social and economic factors in the distribution of the disease, to determine who is most at risk and the costs of treatment and prevention. In the United States, for example, cultural and economic factors seem to account for why the African American men and women are at greatest risk followed by White and then Latino Americans (Center for Disease Control, Morality and Morbidity Weekly, April, 1993). The samples chosen by convenience were
CONCLUSION

The findings of the study are important for mapping the psychosocial factors associated with HIV risk in the three populations and likely influences on students’ participation in HIV risk reduction counselling. The findings further highlight the role of HIV testing and counselling in the university campus AIDS programme. Efforts to promote VCT require education about the benefits of testing and, perhaps more important, reductions in stigmatising attitudes towards people living with AIDS. Structural and social marketing interventions that aim to reduce AIDS stigmas will probably decrease resistance to seeking VCT.

ACKNOWLEDGEMENTS

The financial assistance of the National Research Foundation (South Africa) towards this research is hereby acknowledged. Opinions expressed this publication and conclusions arrived at, are those of the author and are not necessarily to be attributed to the National Research Foundation.

REFERENCES
