Chapter 5: Migration and Re-settlement: Early Third Millennium BC (Godin level IV) Mitchell S. Rothman Web version
[Figure numbers are from the volume On the High Road: The History of Godin Tepe]

Introduction

In the early third millennium B.C. societies in Mesopotamia were transforming into states and expanding their influence far beyond their heartland. In the mountainous regions north and east of the Tigris and Euphrates river valleys another set of fundamental cultural changes were occurring. Scholars refer to this phenomenon as Early Transcaucasian or Southern Caucasian cultures. These Early Transcaucasian cultures are part of a great Eurasian culture zone whose importance for world history is only now getting the attention it deserves.

The Early Transcaucasian physical and cultural landscape was fundamentally different than that of the lowlands (see Chapter 2). As described in Chapter 4, a resource-poor, alluvial plain dependent on irrigation agriculture spawned the Mesopotamian revolution with its cities, state level organization, and the creation of interregional exchange networks. The north and east are mineral-rich, mountainous zones with small-scale rainfall agriculture and extensive pasturelands. The cultural changes and geographical expansion emerged there from among pastoralists, farming communities, and short-lived towns. Despite these differences, the two cultures were not isolated from one another; rather they were interconnected in ways we are only beginning to understand. They met at Godin Tepe in levels VI:1 and IV.

The Early Transcaucasian Cultures (ETC) are so named because of their origin in the Transcaucasus (South Caucasus) and the bordering lands of northeastern Turkey; that is, the basins of the Kura and Araxes Rivers, east of the Black Sea, west of the Caspian Sea, and south

of the high Caucasus mountain range (see Figure 5.2). It is the region that borders Central Asia to its north, Turkey and Iran to its south. This region consists of the modern countries of Georgia, Armenia, and Azerbaijan, and a bridge from Central Asia along the Caspian shore into the Transcaucasus, the Daghestan area of Russia. Transcaucasia varies from high mountains and broad river valleys and is more open than the central western Zagros described in Chapter 2, to high plateaus and smaller ranges of northwest to southeast running highlands with narrow valleys that continue unaltered into Taurus Mountains of Eastern Turkey north of Lake Van and into the Zagros Mountains of Iran north of Lake Urmia (see Figure 5.2).

The general dating of this phenomenon is outlined in Table 5.1. The first column represents the broader dating system for Mesopotamia. The next set of columns represents two alternatives dating schemes for the South Caucasus. The last column ties the ETC into northern Caucasian and European cultures and chronologies. The Chalcolithic and Bronze Age

classifications, derived from the older three-age system (eras of copper and stone, bronze, and iron), are applied in confusing and contradictory ways, so that what is Late Chalcolithic in one area is Early Bronze (EB) I and sometimes II in another. In this chapter I will therefore use the Kura Araks I-III periodization, a still to be debated but fairly clear temporal sequence.

Although the social forms that evolved in the Transcaucasus are much less complex than those in Mesopotamia, explaining the nature of these mountain peoples may be even more difficult. Over a period of more than a thousand years \(^4\) from the middle of the fourth into the mid-third millennium BC, a seemingly uniform culture spread from its homeland over the whole of the highlands surrounding the Mesopotamian basin and down into the Jordan Valley (see Figure 5.4). As you will read, this uniformity is in many ways illusory.

\(^4\) The beginning of ETC culture is largely settled at 3500 BC. The end is a matter of much debate. Sagona includes the period of the Kurgan Culture, so ends it at 1600 BC, many South Caucasian archaeologists would not see the culture continuing past 2400 BC.
Archaeologists identify the ETC first and foremost by its distinctive pottery: a small corpus of handmade, burnished forms, often black or black on the exterior and red on the interior, but also red, gray, and dark buff in color. Incised and raised plastic designs are another feature of this distinctive ware (see Figure 5.3). These pottery styles are easy to identify, but their cultural meaning is still puzzling. Did migrating groups bring this distinctive pottery with them over so wide an area of the mountainous Middle East? Or did local potters copy the exotic style or even trade the pots themselves? If it was a migration, what were the relations of these newcomers with the established, local populations? Perhaps, most puzzling, why did they retain their pottery making techniques and styles when they were surrounded by peoples with much more advanced production techniques? Most of the ETC migrants probably never even saw their Transcaucasian homeland, so what does this very long continuity in potting techniques and styles indicate culturally?

Using solely the presence of black burnished pottery as a definition of cultural identity and variation can also be misleading. Although the Middle Bronze Age cultures used black burnished pots, their cultural patterns of adaptation, social structure, and belief really do not fit the ETC pattern, resembling more closely the horse nomads of the Kurgan cultures (see below).

The Social Meanings of Early Transcaucasian Style

How then do we identify Early Transcaucasian culture, with its variations within the Transcaucasus and especially outside of its homelands?

Are these cultures, as some have argued, ethnicities? Ethnicities are most commonly found in pluralistic or multi-cultural settings. Anthropologists tend not to refer to groups as ethnicities if the original homeland represents a fairly homogeneous culture, but outside the homeland the nature of cultural groups is often considered ethnic.

Ethnicities can be defined along two axes of variability: essentialist and boundary. The essentialist definition distinguishes ethnicities by their cultural content, including cultural values, similar ways to organize governing, adapting economically to their environments, and worshiping their divine. Also included are a common language, customs, and cultural artifacts reflecting their commonalities through symbolic style. This can often lead ethnic groups to occupy particular ecological or occupational niches and territories. When the Bantu populations expanded in Africa; they migrated only into those ecological niches where agriculture with iron tools was possible, leaving areas like the Kalahari Desert for the older San population.

An example of ethnicity is modern Italian-Americans. They share a common language, preferred foods and preparation techniques, family organization, modes of doing business, religion, and symbols. When Italians migrated to North America, many of those ethnic essentials remained, at least for a few generations, as did their concentration in particular neighborhoods. As assimilation to North American culture and adaptation to a new economic environment progressed, however, they adopted more and more of the essence of the culture around them, as the locals around them adopted elements of Italian culture. Eating pizza or pasta

with red sauce in the West is hardly restricted to those of an Italian ethnicity, yet it is still traditional among Italian families to eat some of those foods at social gatherings.

In contrast to the essentialist approach for defining ethnicity, the boundary approach emphasizes those elements that distinguish one group from another; that is, with “membership which identifies itself, and is identified by others,” as distinct and often opposed. In competing with other groups, some of the cultural essentials are emphasized to maintain close alliances among the members of the ethnic group so they can compete against other ethnic groups. Stereotyping and prejudice between North American ethnic groups, is another marker of the boundary definition.

Ethnicity then is constructed by identity, adaptation, and competition. It is marked by artifact, custom, attitude, behavior, organization, and symbolism. These ethnic identities are fluid, and their strength depends on many social, political, and economic factors. When intermarriage is common, they become functionally irrelevant over time, even though some of the essentials may remain in diluted form.

Archaeologists are missing much of the evidence for ethnicity that an ethnographer would have, especially for pre- or very early historic periods. Language and active behavior are key markers of ethnicity, yet, in the absence of written texts, these cultural features are buried with their users. Fortunately, ethnicity is in part, also reflected in the style of the objects that people use and archaeologists can, therefore, still find evidence for elements of social identity that may be defined as ethnicity. These would involve the variation in behaviors and symbol systems that can be found among archaeological remains. Because we do not have access to living people and their mental processes, the question to ask of symbols in particular is how the

ancients used them in establishing identity rather than what they meant to them. That way the archaeologist can discover meaningful patterns without imposing his or her cultural viewpoint on them to the degree possible.

Pottery Style

One of those elements is pottery style. When making or perhaps visualizing a finished vessel, potters first have to incorporate its function. Obviously, a jar will be differently shaped than a bowl. There are also certainly elements of pottery making that are a result of the technical process; whether a pot is handmade, slow or fast wheel made, tempered with sand and fine grit or tempered with straw or large grit and grog (crushed pottery used in tempering) will affect the potential shapes and details of form. What variation is left after function and technology are factored out is style: often shape (body, rim, and base) and certainly decoration. Designs, whether painted, incised, or applied, are often more than mere decoration. A study of painted pottery style, in this case in prehistoric southwestern Iran, demonstrated that one suite of designs began as markers of status, later became a broader symbol of ethnicity, and in the end lost their meaning as symbols identified with any particular group. Their particular style continued only as a convention by potters.

The social context then becomes a critical factor in determining the meaning of style as a social marker. In the Italian-American example above, within their own homeland Italians differentiate among Northern Italians, residents of Rome, and Sicilians, among others. In North

America, especially among assimilated, suburban-dwelling Italians, these distinctions are less marked, in part because they are not recognized by their non-Italian neighbors.

Distributions of the various style groups within Transcaucasus and the areas to which ETC peoples migrated are not static; they shift and re-combine through time inside and outside their core areas. Design traditions include Shida Kartli, Ţsalka, Armenian, Upper Euphrates/Khirbet Kerak, and Kvemo Kartli (see Figure 5.5). Their typical forms are shown in Figure 5.5.

The importance of these style variations is in explaining the movement of people and adaptation to new places. As the ETC peoples migrated or their culture diffused, certain key elements of style appear to mark the source of this culture out of the ETC homeland. Figure 5.6 shows the Kura Araks II period distribution. Ţsalka style was dominant wherever else ETC appeared, although the path of these people crossed with those from the north Caucasus Maikop culture. At Kazane in the Urfa Plain, excavators recovered Ţsalka styled pottery in Late Chalcolithic levels (Figure 5.7). In the Kura Araks III period (Figure 5.8), styles associated with Armenia dominate to the west and Kvemo Kartli to the east. Shida Kartli remains concentrated in its former niche, and some of the intrusive cultures, Kurgan, begin to appear. At the same time, in Kura-Araks III period, a new sub-set of the Armenian design, the so called dimple and groove or line and groove (Figure 5.2, f) appear in southern Armenia and throughout a very wide area from Eastern Turkey into Iran, west of Lake Urmia (Figure 5.9). This design, I have argued,

is associated elsewhere with the largest pastureland for sheep and goat in the highlands. In some of its range it was an admixture or assimilation of local and new ETC potting techniques (Figure 5.3). The design appeared throughout this range, crossing the other design corpuses, but it never appears in the more optimal agricultural zones, west, east, or south.

The picture that emerges is one in which adaptation to the environment and association with Transcaucasian and northeastern Turkish homelands is critical. At the same time, it is far less distinct than Figures 5.6, 5.8, and 5.9 would suggest. For example, Haftavan and Yanik Tepe are both located on the northeast plains of Lake Urmia in Iran, yet the former shares design elements with Ernis at the northern tip of Lake Van in Turkey in the Armenian design zone and the latter shares elements of Kvemo Kartli style (see Figure 5.2). In other words, these style types may be dominant in certain areas, but in fact all the styles tend to crisscross over the landscape. This suggests that rather than a single or few large migrations or diffusions, we are probably looking at many smaller movements outward and possibly back over a long span of time, what elsewhere I have called ripples in the stream. It also suggests that as migrating populations assimilated, they developed their own variations on common stylistic themes. At the same time this ETC zone, despite its mountainous terrain, was porous to influences from Europe, Central Asia, Anatolia, and even Mesopotamia.

The times of greatest social complexity, certainly among the north Caucasian groups, correlate with contact with Mesopotamian and later state organizations. However, unlike

Mesopotamia, where craft traditions and large open plains tended to homogenize style, the ETC phenomenon represents a very complex admixture of local styles.

Godin’s ware and design corpus is fairly limited in terms of this plethora of zones described above. It points to a fairly direct source in Kvemo Kartli style, but even more to largely local modifications of that style that moved down the eastern side of Lake Urmia. Its origins are only indirectly from the Transcaucasian homeland. Rather, after a long period of occupation in the northern areas near Yanik Tepe, Haftavan, and perhaps even sites from Lake Urmia into the highlands of Eastern Turkey, ETC related peoples were pulled toward major exchange routes down into the Central Zagros and eastward along the southern Caspian Sea in the late fourth millennium. Visual inspection of some Yanik sherds at the University of Pennsylvania Museum, however, shows how much finer the Yanik examples were compared to largely crude Godin IV wares.

Pottery Function

Since food preferences and food preparation are part of what marks an ethnic group, serving and cooking vessels that reflect the foods that are made and the way they are served can also be used to identify ethnicity. More large pots for pasta and sauces should be evident in an Italian-American household than in a Chinese-American household. Archaeologically, studies of remains from Hacinebi Höyük in southeastern Turkey demonstrate the ability of archaeologists to distinguish ethnic differences through pottery function. The site contained a local Late

Chalcolithic and a foreign Uruk population. Among the ways that archaeologists were able to differentiate these populations was based on differences in the form and function of pottery reflecting their methods of cooking and serving, as well as the source and selection of preferred cuts and butchering of meat-bearing animals and the making of flint tools to process animal flesh.

Andirons and Ritual.

The ideological elements of ethnicity and culture are another important element to factor into our analysis of the ETC and particularly Godin. These are often the most difficult elements for an archaeologist to recover, but for the ETC an artifact category, the andiron, a sometimes mobile fire-place stand, may help. Andirons are placed in hearths in the center of houses. These andirons come in a variety of shapes and are often decorated with human, animal, or abstract designs. Some of the shapes, like those with horn-like projections (Figure 5.10), are most often found in the North Caucasus and northern Transcaucasian areas (inner Georgia). Horseshoe shaped ones are rare in the North Caucasus, but the most common type in the areas of lower Georgia, Armenia, Azerbaijan, and throughout the remaining ETC territory. A circular form and sets of separate cylindrical stands also existed throughout the region from the Caucasus to the Taurus and Zagros Mountain areas. The particular designs and shapes of these andirons provide another indicator of the source areas for ETC culture.

Godin Tepe yielded a number of andiron pieces. Most of these ironically are from late III levels, which represent not so much a continuity of culture from IV as contact with other populations (see chapter 6 below). The ones recovered from Godin IV are of the simplest cylindrical kind, but the large building in Squares B01-B2/C1 (see below) had a painted design on its western wall that is reminiscent of an andiron piece from Yanik Tepe, a site on the eastern side of Lake Urmia (see Figure 5.2). As you will read below, Yanik shares more design elements with Godin than any other excavated site.

From one point of view the andirons are even more important than pottery in understanding the culture of Early Transcauscians. Unlike the Mesopotamians, the ETC cultures appear to lack formal, centralized religious buildings. That does not mean that ETC peoples lacked religious ritual. Their religious focus was the everyday. Some researchers suggest that the ritual at the core of ETC belief therefore involved the hearth and its andiron. At Korucutepe and Norşuntepe sets of three andirons were positioned, sometimes in front of a bench (a very typical ETC architectural feature) in potentially special rooms. Plates were found on the andirons. At an ETC site, Pulur (Saykol), in Elâzig quite a few houses had hearth shrines with benches, andirons, pottery, etc. (Figure 5.11, 12). One such shrine, number 80, in level X may be more specialized and is relevant to interpreting a Godin building of IV (see Figure 5.1). Even among the small wattle and daub houses of Sos Höyük in Erzurum a religious ritual is suggested. Hearths were the focus of the house at the center of round single-room structures. Residents intentionally buried horned animal figurines and the best quality bone and

26 Possible exceptions were found at Korucutepe and Norşuntepe in the Elâzig Province of Eastern Turkey. Smogorzewska, Anna. Andirons and Their Role in Early Transcaucasian Culture. Anatolica XXX:151-177.
stone tools, often tanged arrowheads of obsidian, in a clear pattern around the hearth. Their use of vessels decorated with abstract animal and human designs and of different color combinations may also signal some ideological system that reflects ritual. The hearth was the focus of ritual, one element of which were the symbols of the hearth, and yet another is likely to have been a ritual meal or feasting (Figure 5.12)

Feasting appears to be an ancient communal activity going back to the Neolithic. “The motivation for feasting is complex, but there is no doubt that it played a significant social role in bringing communities together in a common act, whether on a small or larger scale.” Feasting depended on the collection of surplus food, and often entailed a competition for who could put on the best feast. Chiefly lineages often used the feast as a symbolic way to establish the legitimacy of their rank, certainly tying the feast to the supernatural world through religious ritual.

Andirons are mobile; they often have handles, so that if a group moves as pastoral nomads or transhumants (villages with a large segment traveling seasonally with animals) or other mobile groups, they can take the hearth with them. The fact that these decorated mobile andirons increased in number in Transcaucasia toward the end of the fourth millennium BC, Kura Araks I, when the streams of migration or contact began to increase suggests that they were more ideologically important than as simply functioning hearth pieces. We do not have the

‘dictionary’ to translate their precise meaning, but they are clearly connected to food production, fertility, and economic activities.

Religious ritual serves yet another function: to integrate members of a culture or ethnic group. Durkheim defines religion as creating a moral community of divine belief that brings people together for more than just worship. The cult is also one of the ways that people bring new members from other groups they encounter into their ethnic fold.

In southern Armenia, at Mokhra Blur and Shegavit, a more public multi-site ritual may have evolved. Each site yielded a large obelisk of basalt that must have been dragged nine to twelve kilometers to its final resting place. At Mokhra Blur the obelisk was set on top of a tower some six meters high that should have been visible to other sites in its vicinity. Each of these instances can be attributed to small local systems of sites rather than larger political units. However, the labor needed to build and maintain these larger monuments indicates a degree of control and complexity of organization not hinted at by the small size and lack of differentiation of houses at these sites. The presence of such a specialized building indicates that the organization of a site its related sites may be more complex than an egalitarian society would be.

Architecture, Tradition, and Function.

The last of the elements relating to identity concerns architecture. Like pottery, understanding the social meanings of architecture encompasses its functions, construction methods, and symbolism.

Those meanings are reflected in their size, its layout, and its furnishings. Clearly, houses can be differentiated from churches or factories. Within the category of houses the way

functions are apportioned space is critical. "We have found that whether a culture is settled or nomadic, the form of its family and the presence or absence of status distinctions are related to its house type, and that house type can in turn be inferred from the floor plan." 35

For the ETC, four basic types of building shapes, construction, and layouts existed. The first is a series of tightly packed round house made of wattle and daub, often with adjoining storage units. 36 This form of housing already existed in the Neolithic period, where the houses as whole form a circle. 37 A second form is squarer with the hearth in the middle of the large room and a short front, entry room (Figure 5.13 a and b). Mud brick buildings with elongated front rooms were set side by side in a large semi-circle at Pulur (Saykol) (Figure 5.7), as they were in Godin IV:1b (see Figures in web page). At Kvatskhelebi in Georgia these types of houses are scattered about the village without a clear plan other than that the doorways mostly face south. This type of structure was made of wattle and daub walls anchored to corner posts (Figure 5.9d). Wattle and daub construction is little used in Iranian sites where mud brick or mudbrick over a stone foundation was most common (however, see IV:2 described below). Roofing is either mud over a frame of wooden beams or thatch, with a pitched or flat roof. Possibly a domed roof was added (Figure 5.13 d), as one can still see today along the Turkish-Syrian border at Harran or in Afghanistan (where many of the other architectural forms

mentioned here are still being built). A third type, as found at Yanik Tepe was a mudbrick round house with internal fittings. The last is the construction of square mudbrick rooms. One scholar suggests the transition from predominantly round to square buildings denotes a chronological change, however, at Shengavit in the Ararat Valley of Armenia (Figure 5.13e) stone built structures combine the two styles. The square buildings of Yanik Tepe (Figure 5.13f) are reminiscent of early Godin III architecture, while retaining the features of ETC buildings, such as benches. At Norsuntepe in Elâzığ, these square building took another form, called the “palace” by its excavators (Figure 5.13,g to the left). 39 From artifacts recovered, the palace’s role included storage; 100 large storage pots were found on what was a first of two floors. 40 Other activities in this two-story building are hard to reconstruct. Its floor plan suggests that communal or public activities coordinated by socially ranked individuals were conducted there. Still, the Norşuntepe structures differ from the surrounding Mesopotamian-influenced sites in retaining ETC features like benches, curved hearths, and so forth. Because the site can hardly be the center of a state society, naming the building a palace is probably inaccurate, as was naming the Arslantepe ETC tomb “royal” (see below). The implication is, however, either that the ETC residents of this settlement adopted a model closer to the increasingly complex Mesopotamian ones around them, or that the ETC tradition was producing a different form of ranked society, still following the Transcaucasian traditions (see below).

All of these buildings were quite small, only 25-40 meters square. This is comparable to larger, modern nomad tent (yurts) in the Middle East. 41 The organization of activities inside the

houses probably mirrors that of nomad families as well. \footnote{Cribb, Roger. \textit{Nomads in Archaeology}. Cambridge: Cambridge University Press. 1991.} A study of domestic activities in ETC houses at the site of Karagündüz east of Lake Van showed an expected range of functions: cooking, food serving, leather working, and weaving dominate the household. \footnote{Kozbe, Gülriz. Activity Areas and Social Organization within Early Trans-caucasian Houses at Karagündüz Höyük, Van. In \textit{A View From the Highlands: Archaeological Studies in Honour of Charles Burney}, edited by Antonio Sagona, 35-53. Herent: Peeters.} These activities overlap in space. Grinding of grains, however, appears to have happened outside the house. Each house had hearths, often two, one in the corner of the room and one in its center, garbage pits, ash pits near the hearths, silos, bins, benches, and wall niches. Similarly, a typical nomad tent has a bench of mud or stone as dry storage for bedding and other goods that might get wet, external storage units, a small internal hearth for heat and small cooking tasks, with a large exterior oven for most cooking. \footnote{p. 92-97. Cribb, Roger. \textit{Nomads in Archaeology}. Cambridge: Cambridge University Press.} In fact, the ground plan of many nomad tents is very similar to village houses in Kurdistan, Iran, \footnote{Watson, Patty Jo. \textit{Archaeological Ethnography in Western Iran}. Tucson: Universirty of Arizona Press Viking Fund Publications in Anthropology 57.} and Eastern Turkey. \footnote{p. 97-101. Cribb, Roger. \textit{Nomads in Archaeology}. Cambridge: Cambridge University Press.}

A last category of symbolic behavior that is recoverable archaeologically is mortuary practice. For the Early Kurgan cultures and Maikop cultures that surround the ETC, for instance, far more necropolises have been recovered than settlements, and these burial methods are a big component in the definition of these cultures. Surprisingly few ETC burials have been recovered, however; there are certainly not enough to draw any general conclusions about the culture’s treatment of death. However, one common type of burial, the stone lined cist tomb, \footnote{Palumbi, Giulio, From Collective Burials to Symbols of Power. \textit{Scienze dell’Antichità} 14: 20-44 (2007).} is adopted over a wide area of the Transcaucasus and highland Northern Mesopotamia into the steppes along the modern Turkish Syrian border. This marks the early third millennium. As Palumbi argues, these types of burials show little evidence of differential social status in the homeland; its
use as a marker of group, perhaps ethnic identity is more likely. In the Diaspora, however, among ETC populations and those of northern Mesopotamian affiliation, they become a symbol of rank- Palumbi argues power- at places like Arslantepe after the fall of the temple palace institutions of the fourth millennium.

There are, then, a core set of material characteristics, including pottery, ritual artifacts and architecture, that define Early Transcaucasian culture as distinct from its Mesopotamian and Iranian neighbors. Outside of the homeland as they mix with the local cultures, it may be appropriate to identify this distinct cultural phenomenon as an ethnic group. Does this mean that it was a migration that led to the widespread dispersion of the ETC, and, if so, how and why did such a migration take place?

The Origins and Dispersal of Early Transcaucasian Cultures.

Origins of the ETC Cultural Patterns.

The earliest evidence for the artifactual hallmarks of Early Transcaucasian Culture is found in the mid-fourth millennium BC. However, this cultural pattern did not arrive with new peoples or represent a totally new set of cultural arrangements, technologies, and perceptions. Rather, “a general cultural continuum, albeit a tenuous one given our patchy record, existed from the end of the Transcaucasian Neolithic … to what might be termed the “Proto-Kura-Araxes” horizon at the end of the Late Chalcolithic period. On present evidence, it appears that during this transitional period a socioeconomic structure was established that was broadly adopted by Kura-Araxes communities of the subsequent third millennium.”

Perhaps the most critical change of this pre-ETC period was a change in exploitation of the natural environment. Whereas the earlier Neolithic peoples of the Transcaucasus lived on the agricultural soils of the Kura depression, Chalcolithic populations used a wider range of ecological niches, including the pasturelands at higher elevations. Animal domesticates included sheep, goat, cattle, and pig. The last of these suggests that they were not necessarily pastoral nomads, as pigs to be sure are not particularly good herd animals.

Pastoral nomadism, one of the models for later Kurgan cultures, is an adaptation in which people are dependent on their animals, mostly sheep and goat. These species are temperate climate animals that don’t like extremes of hot or cold and require rich grassland to graze. In most cases, the animals are exploited for their milk, fibers (wool), and blood. To kill one’s animal for meat or hide is to lose one’s capital. When pastoral nomads live among settled peoples, however, supplying meat is often emphasized. These nomads must move, in some cases like the modern Bakhtiari, Basseri, or Qashqa’i of Iran, hundreds of kilometers to satisfy their animals.

A number of scholars see an alternative model to nomadism, called transhumance, where part of the population remains in the agricultural village, while another segment follows the animals to pasture. However, because the assertion of largely transhumant population is based on settled sites, the very real possibility of a pastoral nomad segment of ETC society

exists. Pastoral nomads rarely occupy or at least archaeologists cannot readily find their dwellings. The similarity of ETC houses to pastoral nomad tents in size and internal plan even in the settled agricultural villages also indicates some cultural connection between settled and mobile segments of the society.

A third alternative is a form of wandering transhumants. I and others have attributed much of the early ETC movement to pastoral nomads. For places like Muş I still think we are looking at nomads in the search for new pasture (see below). However, for the longer migrations to places like Arslantepe and for Godin Tepe, I would argue the nomadic alternative does not seem as appropriate. Pastoral nomads always have the problem of finding pasture. They traditionally set up rights for summer and winter pasture and negotiate pasturing rights through the territory of settled populations between their own pasturelands. Even when the whole group is migrating, as in the case of the Oghuz described below, those rights had to be negotiated in advance for new territories. Smaller transhumant segments of these larger groups, perhaps like the Romani Gypsies, might be more likely to risk longer moves, and be pulled to new economic opportunities.

For much of the ETC range pastoral nomadism is, however, probably an appropriate model. Within these ethnically diverse groups, a number of nomadic groups may have existed and competed with one another. A large stone wall of the late Proto-Kura Araks phase VA at Sos Höyük in Erzurum and in the Kura Araks II and III periods at sites in Armenia (Shengavit) and northwestern Iran (Tell Razak and Yanik Tepe) may be evidence of such conflict. It is hard to imagine that the mobile segment of Sos Höyük’s own population represented a threat to family members living at the home site, causing them to invest the labor to build such a significant wall. Pastoral nomad groups, who often have had a complex mix of competitive and

54 Barth, Frederik. Nomads of South Persia.
cooperative relationships with settled populations throughout history, are certainly one possible
group against whom the residents of Sos Höyük needed to defend themselves.

Many of the typical pottery styles of the ETC were presaged in the Neolithic and Proto-
Kura Araxes cultures. The openness of the ETC culture geographically even at its inception is
illustrated by the source of one of the hallmarks of the ETC: the pottery with black exterior and
red interior. New evidence indicates that the technology of making this pottery (see below) was
invented in the Erzurum area of Eastern Turkey and then spread into the Transcaucasus.

Still, many elements of the precursors to the ETC’s pottery making, bone, and chipped
stone tool industries continue into the Kura Araxes cultures.

Spread of Early Transcaucasian Cultures.

A number of theories have been proposed to explain the geographically wide distribution of
Early Transcaucasian cultural elements over a period of more than 1,200 years. The earliest
theory proposed a single mass migration of small farmers out of the ETC homeland in the
Transcaucasus, moving progressively southwest into modern eastern Turkey (the Erzurum, Muş,
Elâzig, Malatya, and the Amuq) and the Jordan Valley and southeast into western Iran (see
Figure 5.2). Others have emphasized the role of trade and emulation, in which ETC pottery and
pottery styles passed along the same routes as metals, obsidian, precious and semi-precious
stones, and perhaps viniculture (the cultivation of grapes). Some point to changing environments
and with that pressure to find new places to grow crops and graze animals.

The possibilities of

migration are likely to have influenced decisions to move, but none of these possibilities is completely satisfactory for all cases.

Recent excavations and surveys have determined that ETC long-term, year-round settlements outside the southern Caucasus were mostly small villages occupied by farmers and transhumant or pastoral nomads. In the Transcaucasus larger towns developed at sites like Shengavit 58 in Yerevan, Armenia.

The ETC cultural traditions continued in the “homeland.” In the areas outside the core zone where the ETC pottery types are found, they mixed with local populations. ETC ware became the dominant style in some places, and in others elements of ETC culture existed alongside local pottery-making and cultural/ethnic traditions.

To begin to understand the role of migration and diffusion as factors in explaining the changes we see in the material record and the cultural reality that lies behind it, we reject a purely typological analysis. That is to say that merely tightening our chronological analysis or a more detailed categorization of artifact types from neighboring geographical areas will not produce a satisfactory way to explain why people moved or even exchanged goods. "How is migration to be identified archaeologically? This is, of course, an important methodological question, but it is not the place to begin." 59 "While it is often difficult to identify specific causes of particular migrations, even with the help of documentary data, it is somewhat easier to identify general structural conditions that favor the occurrence of migrations. Moreover, particular structural conditions favor migrations of particular types." 60 In other words, we need to understand the natural, cultural, and socio-political environments of the time we are studying

58 Burney, Charles and Lang. Peoples of the Hills; etc.
and then if there were significant movements of human, groups, goods, or information, begin to understand how that changed the adaptations of all the societies involved. \(^{61}\) "It is only after the structure of the migration process is understood that appropriate methods can be identified or developed to detect its archaeological signature." \(^{62}\)

The Seljuk Turks or Oghuz \(^{63}\) represent a historically attested migration of groups from Central Asia in the first millennium AD. Their homeland was farther East than the ETC, occurring as it did on the borders of Afghanistan east of the Caspian Sea in Transoxiana. These groups eventually migrated into the Kura Araxes basin and Eastern Turkey. Modern Turks claim their ancestry from the Seljuks of Rum, one of these groups. \(^{64}\) The populace that moved was made up of nomadic pastoralists and small farmers like most believe the ETC populations to have been. Historical records indicate that initial reason for migration was economic. "As with most of the great Turkish migrations in history, here too the major impetus seems to have been a lack of land and pasturage." \(^{65}\) A number of elements of the natural, cultural, and socio-political environments make this a less than perfect model for the ETC migration. However, this case demonstrates how many factors must be taken into account. For one thing, the Seljuks had a travel advantage in having the camel and modern horse available, technological advantages that greatly aided their mobility. Second of all, the political organization of the Oghuz and their neighbors was much more sophisticated than the ETC group was likely to have been. The Seljuk and his sons were part of a series of competing states with capital cities and

\(^{63}\) Seljuk was the name of the leader of a number of sections of the tribal group known as the Oghuz. Rice (1961:26) sees Seljuk as part of the Kabak tribe of the princely house of Afrasiab.

sophisticated military organization. In addition to land competition they were competing with other states, the Khazar State and the Qipchaq confederation. Because of their size and military prowess, they were pulled into Anatolia initially as mercenaries for the Byzantines, and early on in their migration made political alliances with Muslims. The conversion of Turkic tribes to Islam was really a political move, seeking access to pasture and allies.

The case of the Seljuk Turks, although not a direct model for the ETC, does point to a number of elements of a methodology to study cultures on the move and in contact with other populations. "Migration is a social strategy, not an automatic response to crowding." 66 Simply to say that the Seljuks lacked enough land in their old homeland and therefore somehow wound up in Eastern Turkey does not explain the full story.

Demographers speak of a "push" and a "pull" in all migrations. There must be some reason to be pushed out of an earlier homeland, but there must also be something that pulls the mobile population in a particular direction. At the same time, configurations of political economy, where economics and social organization intersect, underlie all the different possible itineraries. Primogeniture or other customs favoring one family member, one kinship segment, ethnicity, or class over another, for example, may cause the less economically fortunate to migrate. On the other hand a way for would-be leaders to be promoted is to lead their followers to new settlements. 67 This was the model of the Vikings. Ideology may also factor into the equation. For example, the filling of America's Western frontier was caused by more than

67 Stephen Batiuk has suggested that his was the case for ETC migrants.
population pressure in the East or purely economic opportunity. The philosophies of American individualism and Manifest Destiny were major pulls for the Euro-American population.

Part of the pull for migrants assumes that they have information about their destination. Rarely does a completely isolated group migrate, except under the greatest duress. This in turn is largely determined by the prior history of migration. Earlier migrants return home carrying information about optimal routes and destinations. In the case of the Seljuk Turks, they were familiar with the peoples in the areas to which they eventually migrated. In the seventh and eight centuries A.D. Arab traders were going "in ever-increasing numbers" into Central Asia.

At times this informational pull involves "leapfrogging;" relatives or others who have migrated may draw migrants over large areas of available territory to a more distant locale. Diffusion of information and exotic goods along the stream may occur even in areas where the migrants do not settle. Arslantepe, represented by an early presence of ETC artifacts, was a trading entrepot because of its location at the intersection of north-south and east-west routes. It pulled the mobile elements of ETC populations southwestward. This is suggested by the fact that the obsidian at Arslantepe in the Kura Araks I was derived mostly from its east. ETC peoples may, in fact, have been critical for moving exotic goods like obsidian, lapis lazuli, and metals that were key goods in the Uruk trading system. They were clearly more than traveling salesmen, given the extent of their cultural products found there. Perhaps they were also bringing metallurgical expertise (see below). Whether they were nomads or maybe, as suggested above, smaller communities of transhumant traders or crafts persons is not possible to say at this

moment. Other groups of ETC peoples clearly followed and to some extent filled in the open spaces in the Malatya and neighboring Elâzig areas.

Similarly, the early Italian immigrants to North America tended to follow fellow Italians, not simply to where work was available, but to where their numbers were sufficient to provide comfort, opportunity, and protection. The beautiful stone carving of many Manhattan buildings reflects the unique skills of immigrant Italian (as well as African American) stone-carvers concentrated in the cities of the East Coast of the Americas.

In fact, the make-up of early migrants may not represent the entire population from which they came. At the beginning of migrations, especially into frontier zones, the population tends to be mostly male and young, as may be the case in the Period VI Oval compound at Godin. 72 Among the earliest migrant groups, one often emerges as an "apex family" when migration pulls more members of the group into new territory. 73 These families provide resources for other migrants as they arrive and act as cultural "translators" and liaisons with the native population. If necessary they serve as organizers of defense and even expansion for their own group. As result these apex families gain special status among migrant groups.

Because migrants follow established routes to established localities, migration forms more of a stream than a wave. Often because the migrants follow their predecessors, migration appears to be like flows in a river, each representing a subsequent group migrating along the same stream.

The utility of the wave theory, like that used for the Neolithic in Europe, is therefore questionable in our case, because it assumes a gradual and wide band of migration and information flow (diffusion).

Alternatively, the migration stream may also consist of a mix of groups all in the same direction and on the same path. Again, this is what I have called ripples in the stream, because stones thrown from different directions will set up a confusing pattern of ripples. However, these ripples may yet be possible to trace back to their source, the place from which the stone was thrown. Such ripples are most likely the result of a series of homelands, where the social organization consists of identifiable segmentary units (clans, sodalities, lineages, and other associations). Since internally coherent units that are nonetheless subsets of the larger group break off and move, these segments are more likely to maintain elements of their former group, especially as reflected by cultural identity worked into artifact style.

Last, and certainly not least, the structure of migrations must be understandable in terms of the adaptations of the groups to their natural and human environments. Most migrating groups move into new territories to which they are pre-adapted. The degree of fit to a particular set of environmental factors can limit or open potential new migration routes. Food production and general subsistence behaviors are naturally the most critical elements of the social strategy of migrations. These are of two types. Groups practicing focal subsistence strategies have quite specialized and narrow possibilities. The terrain into which they migrate must offer readily available resources. Alternatively, groups practicing a diffuse subsistence strategy are more

74 (Ammerman and Cavalli-Sforza 1973)
75 Abay
readily adaptable to a wider set of resources. The speed of migration often is dependent on whether a focal or diffuse subsistence strategy is practiced.

What we know about the adaptation of the ETC people is that they practiced agriculture to varying degrees. Evidence for cultivation includes sickle blades, grinding stones (querns and rubbing stones), mortar and pestles, grain bins, and the remains of domesticated plant seeds. Species most often found were barley and wheat; at Korucutepe and other sites in the Altinova Plain of Elâzig during the Kura Araks II these were mostly barley (Hordeum distichum) and wheat (Triticum aestivum and Triticum durum).

Animal husbandry was always an important element in the ETC economy. In Azerbaijan cattle predominated in the Kura Araks I to early II, although sheep began to predominate in the Kura Araks III. A similar pattern of animal exploitation occurred at Arslantepe (see below). At Korucutepe during the Kura Araks III 26 percent of identifiable animal bones were cattle, 66 percent sheep and goats, and 8 percent pigs. Sos Höyük’s remains yielded a similar pattern.

The relative percentages of species are important, but as important are ratios of gender and age within species determined by animal bone remains, especially for sheep and goat. By monitoring the relative gender ratio, it is possible to discover whether milk, implied by a higher ratio of females to males, or meat, a ratio emphasizing younger males, or wool, maintaining a

high ratio of older animals, are exploited. For Sos Höyük as with northern Mesopotamian sites, a ratio typical of meat utilization is common. An exception is at Korucutepe, where ethnozoologists determined that the ratio was typical for wool exploitation.

For cattle, herd management curves suggest that significant numbers of females were kept, presumably for milk and cheese-making, and more males were kept than were necessary as breeders, so some were killed for meat or hides but many were kept for their labor.

This same pattern holds for the higher or lower elevations. For ETC villagers a diffuse subsistence strategy appears most likely, permitting them to adapt to the many different environments they would encounter.

These ratios just discussed may not represent the nomadic elements of ETC society. We are looking at settlements. Modern pastoral nomad groups like the Yörük of modern southeastern Turkey focus on cheese-making for exchange with settled populations in order to obtain agricultural and craft goods they do not make.

The trend of the foregoing discussion is that we are looking at the actual movement of people. How do we know?

Indicators of Migration.

Above I have argued that in order to explain changes in antiquity that involve migration, it is necessary first to understand the full environmental and cultural context. I have proposed that an analytical orientation that investigates the movement of human groups as a social strategy and the changes that result over the range of space involved as a series of adaptations will yield the best explanation.

It is still necessary to establish that migrations did occur before we can understand what their nature was. Since migrations are demographic shifts, the first indication of a migration should be population growth in areas to which migrants go. Populations do have a natural growth rate and increase in population does not necessarily mean the introduction of new peoples. The longer the chronological period, the harder it is to assert that increased numbers of sites and occupied hectares represents migration. However, if the numbers of migrants are significant, surveys should show a relatively rapid population growth that cannot be explained by indigenous population increase. Also, unless somehow the migrants and the native population share an identical adaptation and cultural traditions, settlement patterns should vary between groups initially. A migrating group might use ecological niches other than those used by a native group, unless warfare is endemic between ethnic groups. Since settlement patterns theoretically represent social and economic patterns that generate them, these too should be distinctive. The remaining indicators have to be artifactual. To the degree that stylistic variation can be attributed to migrating human groups, it must be understood in context.

Examples from Eastern Turkey (the Muş province, the Malatya plain, and the ‘Amuq plain), the Levant (the north Jordan valley), and later in more detail our present case, Kangavar in the Central Western Zagros, present a case for migration in diverse ecological zones and for different sets of “pulls” toward specific places. Some environments are quite similar to the original ETC homeland and others quite different; all appear to move along a limited number of traditional roads.

The Muş Province is one such case (see Figure 5.2). The Muş province lies west and northwest of Lake Van in highland eastern Turkey. The lowest elevation on the plain is 1,500 m above sea level, with mountains rising up to 2,900 m. Although it is a marginal zone for

agriculture, with poor soils, bad drainage, and six feet of snow six months of the year, there are large areas of rich pasture for sheep and goat. It is also endowed with rich sources of fine obsidian for tool-making, providing opportunities for trade.

During the fifth and fourth millennia BC Chalcolithic Period, settlements were sparse and isolated in the middle and northern edges of the plain. The only new sites founded during the following Kura-Araks II were located in the hills on the routes toward the Transcaucasus, an ideal zone for pastoralism and gardening. During the subsequent Kura Araks III, the number of sites including many on the plain increased dramatically.

While the number of settlements increased, new pottery styles using Transcaucasian forms and techniques appeared in Muş (see Figure 5.3 above). Through time ceramics appeared that were admixtures of both pottery-making techniques. This seems to indicate two ETC migrations. The first ones, during the Kura Araks II, consisted mostly of small groups of transhumants perhaps with some nomads as well, while the latter ones, during the Kura Araks III, involved significant groups of farmers and pastoralists mixing with the local population. The pull in this case was the available land. If as at least one analysis indicates, the southern parts of Georgia and presumably Armenia were much more heavily forested, the pull for more pasture (and perhaps the push of early Kurgan people) would have made the journey into the pastureland of Eastern Turkey a reasonable choice.

89 Connery and Sagona
Two much earlier (sixth millennium BC Halaf period) sites in Muş were resource collection sites for the obsidian trade to Mesopotamia. Was trade a pull in the case of the ETC? For Muş this is probably not the case. Migrants from the Transcaucasus did not need to import obsidian. So, this area is a classic case for migration, largely to obtain subsistence resources.

A contrasting picture is presented by the Malatya plain. Approximately 900 m above sea level, its soils are rich for agriculture and horticulture, and it experiences moderate snowfall during the winter. Malatya is also a transportation hub where routes from the east over the Taurus Mountains and along the Murat River intersect with passes from the west to the Anatolian plateau and those from the south along the Euphrates River. In that sense, it is like Godin Tepe, which sits on the High Road through the Zagros mountains. During much of the fourth millennium BC, Arslantepe acted as a primary center for its surrounding valleys. A system of regulated exchange or tribute, controlled by bureaucrats who worked for leaders out of a series of superimposed palaces/temple complexes, defined the primary role of the site.

Although comprehensive archaeological surveys have just begun and only preliminary assessment of settlement patterns are yet available, modern excavations at Arslantepe—the center of a late fourth millennium BC state—have identified some of the earliest examples of ETC pottery to appear outside of the high mountain areas. These finds seem to indicate the presence of exchange, or perhaps small numbers of immigrants from the Transcaucasus pulled by economic opportunities of this trade entrepot. Sufficient ETC pottery is present to suggest an early Kura Araks population. Later, toward the end of the 4th millennium, the number and

percentage of ETC pottery types increased, and suggest the appearance of full ETC settlements, but at Arslantepe they remain under half of the whole pottery corpus.⁹² At the same time, the more mobile sheep and goat dominated the animal remains at the site; cattle and pig declined dramatically in number.⁹³ After the burning of the temple/palace complex at Arslantepe (ca. 3000 BC), the same area of the settlement saw settlers with their largely ETC-styled pottery and wattle and daub post-hole houses. In the larger area, many small, short-lived sites were occupied at this same time.⁹⁴ At the heart of what looks like a more extensive ETC settlement, new leadership forms appeared. Excavators recovered a tomb with sacrificed individuals and rich funerary goods, containing both ETC wares and local Plain Simple Wares and metal weapons and containers made from unique alloys of silver and copper and arsenical copper⁹⁵ that are reminiscent of Maikop metallurgy.

Metallurgy was one of the early specialties of the ETC homeland. The Ergani copper mines are quite near Arslantepe. The correlation of metal mines and ETC population may indicate one reason for their early presence, especially as the more advanced arsenical bronze metallurgical installations occurred after the destruction of the palace/temple compounds. Some of the minerals found as part of the smelting and alloying process at Arslantepe originated in Azerbaijan.⁹⁶

Following the tiny ETC occupation, ancient residents built a small walled town with houses and pottery more typical of the local culture before the burning of the last palace/temple complex of VIA and occupation by ETC-related groups. The wall around the site presumably reflects the unrest of the times, in which mobile ETC groups no doubt played a role. Presumably, some of the ETC population assimilated into this renewed local control system, some opposed it and some moved on. Again, explaining the cultural sequence at Arslantepe without seeing an immigrant population is hard to do. Their pull may originally have been trade, although the rich agricultural land and pastures made subsistence easy.

The presence of this underlying immigrant population may also be clear from preliminary survey results. Following the burning of the last palace/temple complex of VIA, seasonal occupation of small sites on natural hilltops away from the Euphrates and central valley increased. These were presumably part of that immigrant population or residents of Arslantepe moving away from ETC leaders.

West of Malatya is the ‘Amuq valley between the Anatolian plateau to the north and the low plains of the Levant to the south, much closer to sea level than either Malatya or Muş. Snows are limited in winter, and its fertile soils are fed by many streams, rivers, and springs, providing rich agricultural and horticultural potential along with pasture land and mineral deposits in the surrounding foothills and mountains.

At the end of the Kura Araks I and beginning of Kura Araks II, the first ETC ceramics appeared in this area, followed by a dramatic increase during the Kura Araks III. This increase in ETC ceramics corresponds with a dramatic shift in settlement from relatively large sites found in the valley’s center during the earlier period to a proliferation of small sites (1-2 ha) along its

outskirts during the latter period. Furthermore, at large sites (e.g. Tell Tayinat) excavators found a mixture of local wheel-made pottery and handmade ETC wares. In contrast, the smaller sites (e.g. Tabarat al-Akrad) yielded almost exclusively ETC ceramics. 98

This situation is similar to the Muş region and probably indicates multiple migrations and internal changes from the earliest occupations; first came mobile populations, maybe from Malatya or Elâzig, followed by farmers establishing themselves on the outskirts of the indigenous settlement system, and no doubt providing some unique skills or animal products to local leaders. During the Kura-Araks III, the local and “foreign” cultures assimilated each other. Variations in the fabrics of the ceramics suggest that all were made locally, perhaps in households, following local forms and those from Elâzığ. The ‘Amuq’s pull appears to be both metallurgical and subsistence.

Even further south the diffuse subsistence strategy of ETC populations is evident. Contrasting with the Eastern Turkish areas, the southern Levant presents an environment completely different from the Transcaucasus. At 200 m below sea level, with higher temperatures and lower precipitation, it is still marginal in some senses. However, sites are located on predominantly arable or irrigable land that, similar to the ‘Amuq, have high agricultural and horticultural potential.

Although ETC ceramics (the local variant is called Khirbet Kerak ware) are found at 45 sites over substantial parts of the southern Levant, they are most intensely concentrated in the north Jordan and adjacent river valleys. ETC wares make a sudden appearance in the southern Levant around 2700 BC at sites generally located in the lowlands on fertile soils with good access to water. Once again, larger sites (e.g. Khirbet Kerak or Megiddo) yielded a mixed

assemblage of local pottery and ETC wares, while smaller sites (2 ha) (e.g. Beth Shean or Tell Yaqush) produced almost exclusively handmade and heavily burnished ETC ceramics.

Variations in the ceramic fabrics again suggest that ETC wares are being locally made in the north Jordan valley at each site, mixing earlier local traditions with the intrusive Transcaucasian forms and techniques. Although some pottery appears to be inspired by local traditions, a number of forms are either unique or innovations originally from the ‘Amuq assemblage to its north. Some forms can even be traced back to eastern Turkey. Subsistence appears to play the largest role here in pulling the ETC population of Eastern Turkey south into the Jordan Valley.

In all these movements, transportation plays a role. Donkeys were domesticated in the fourth millennium BC. Transporting pottery in significant amounts on donkey-back seems implausible. This might explain the relatively low number of ETC sherds found during the earliest phase of ETC migration and the evidence for household production of ETC pottery. The idea that these styles emerged because of itinerant potters does not hold up to scrutiny either. Why are so many of these pots found? Why would local potters abandon their local traditions, unless the ETC peoples were in effect assimilating one stratum of the local population to their occupational or ethnic group?

In sum, the ETC represents a set of cultures ethnically different than the cultures that occupied the lands into which they migrated. A common diffuse subsistence strategy based on animal husbandry and simple agriculture, often in less than optimal areas, is a shared characteristic, as are modes of pottery production and style, living arrangements, domestic ritual, and technical crafts, especially in metals and obsidian. In their movements they were likely

pulled toward areas where some opportunity to use their expertise and resources in large trading networks existed or where subsistence resources were readily available where competition with local populations was minimal.

At the same time the ETC is clearly not a uniform phenomenon. Rather than a single outward migration, it appears to have been stream after stream of people moving out of the Transcaucasus and northeastern Turkey. Sometimes they jumped over territory, sometimes they filled in the territory their predecessors jumped over, sometimes they moved from one migration site along to others, and in some cases, some must have returned to territories from which they came.

The pattern of ceramics linked with settlements is fairly consistent. First a trickle of potsherds appeared at sites, then the number of sites with almost exclusively ETC ceramics increased, often in more marginal areas, and finally, a mixture of ETC pottery types and local wares appeared at large sites, while small sites with only ETC wares continued as scattered enclaves.

Another pattern that seems clear is the subsequent appearance of sites, especially small villages, with exclusively ETC pottery in these areas that were previously dominated by local Late Chalcolithic and Early Bronze Age cultures (and pottery styles). This suggests that the later spread of ETC material resulted from immigrants who came as settlers (farmers or transhumants), not pastoral nomads or pioneering trading or technical groups.

Although the pattern is becoming clear, the details of the social dynamics behind these streams of migration remain to be explained.

What of these patterns explains the remains of Godin Tepe? What pulled its population, from where, and why?

Godin Tepe IV.
The remainder of this chapter will look specifically at one manifestation of this ETC expansion, Godin Tepe IV.

Limitations.

Although Godin presents a rich collection of artifacts for study, a number of problems in the excavation and recording of this level limit the conclusions one can reach. Most of level IV was dug in the final 1973 season. In 1971, the team had discovered the Oval of VI:1/V. Therefore, a general rush was on to clear the Oval and obviously everything above it before the end of the project.

As a result, some excavators hurried the unearthing of IV. For example, gaps in the architecture of the earliest phase of IV (IV:2), especially in operation A1, do not necessarily reflect the absence of architectural remains, only a failure to record them. Similarly, not all the architecture was drawn to scale. Some of the plans published here had to be pieced together from scale sketches and some from crude hand drawings.

An overall problem was a lack of consistent recording of elevations, so matching up buildings that existed in separate operations was difficult, and placing oplots in the same square stratigraphically is tricky.

The problems of recording also affect the pottery analysis. As in any collection, there are many body sherds whose form cannot be determined. Many seem to have been saved because they had an incised design; the reasons for saving some other ones are unknown. In the lower strata, recovery was clearly not comprehensive. Field notes indicate that not all sherds were brought back nor were many precisely located within oplots. The pottery sheets recorded at the time of excavation only divide the corpus into “crude, common, and fine,”100 which does not

help to establish the kind of typology needed for relative chronology. Therefore, what the sample in Toronto represents of the whole corpus of pots originally in the mound is not possible to know precisely.

Dating the Level.

The earliest appearance of ETC wares at Godin is in VI:1/V (see chapter 3), so that, like at Arslantepe, at Godin Tepe these wares first occur in the Late Chalcolithic period as it is defined in Mesopotamia (see Table 5.1). This is before the beginning of larger scale migration in the Kura Araks II, although at Godin, it is not as early as at Arslantepe.

Period IV itself begins after the final stage of VI is over, and continues through two distinct architectural phases, IV:2 and IV:1, and three subphases (IV: 1b, IV:1a2 and 1a1). The dates for all of IV is bracketed at its beginning by the end of VI:1/V and at its end by III:6. That end is really a transition, because although a limited hiatus may exist between the levels, it is short.

A number of III walls cut deeply into IV (Figure 5.18 and 19, also see web versions) suggesting a fairly short period between them; that is, because these were not monumental walls that would often be sunk deep into wall trenches they indicate a lack of knowledge of walls beneath, but close proximity.

Also, the typical forms of IV pottery continue well into III. Six percent of the III:6 pottery would be indistinguishable from IV pottery, and even the shapes of many of the painted pots near the beginning of the III periods are continuities of ETC forms. These stylistic continuities may be ethnic markers within a larger cultural scene that represents the

102 figures 9, 12, 18. ibid.
incorporation of the Kangavar Valley into the early Elamite polity, centered in the Susiana plains to its south.

Two methods of dating Godin period IV are possible: absolute and relative. In absolute terms, the end date of VI:1 based on calibrated carbon 14 dates is no later than 3,050 BC. However, two factors indicate that there may have been some time gap between the end of the occupation of the Oval and the occupation of IV. First is a meter deep deposit between the highest VI deposits and the earliest IV ones in the Brick Kiln Cut down the slope east of the Deep Sounding (Figure 5.20)

The so-called Deep Sounding was at the pinnacle of a fairly steeply sloping mound. The major building of IV:1 in operations B01, B1, and B2 had to be buttressed to its south to prevent it from being undermined as the slope took a sharper downward angle in the middle of operation B2 (see below). When placed over the Oval, the first major building level, demonstrates that no walls were reused nor were the buildings oriented in the same direction; in other words, the buildings of the Oval were not visible at the time IV buildings were constructed.

Precision in absolute dating come from a number of sources. The most important is the context from which carbon samples- charcoal, burnt seeds, animal bone- are recovered. Even in a burned level, a lot of post-depositional moving occurs. In normal, unburned layers the movement is even greater. Re-modeling, terracing for new foundations by residents of later

103 p. 131-136. ibid.
104 Carbon 14 dates are based on the absorption of a free carbon isotope, Carbon 14. At the time the living tissue dies, the amount of C14 remaining in its tissue begins to decline at a predictable rate; half is gone in 5,730 years. The speed of that decline is based on other dating techniques, including the tree rings of the bristlecone pine tree. As scientists who do this work account for atmospheric changes and other natural phenomena, they recalibrate the curve from which dates are derived. See p. 87-90. Fagan, Brian. Archaeology, a Brief Introduction. Saddle River, NJ: Prentice-Hall.
106 This problem has created a whole new field, taphonomy. See e.g., Huntley, Jacqueline, and Sue Stallibrass, eds. Taphonomy and Interpretation. Oxford: Oxbow Books. 2000.
strata, and pits of various types can all move a potential carbon sample away from the provenience where it was originally deposited. Laboratories that pre-treat samples differently can also yield quite different dates.

The earliest dates for III are in the 26th century BC, but they are not from the lowest strata and are not from very secure proveniences (see table 5.2). A transitional zone between IV and III also distorts the end date. Newly run dates for IV suggest that the later phase of period IV, IV:1, began close to 2900 BC and was finished by 2700 BC. The earliest phase of period IV, IV:2, must therefore have been before 2900 and after 3050 BC. Because of the quality of record keeping, there is no way to precisely determine its duration. In the deep sounding, it is unlikely to be more than 60 years, leaving about a 90 year hiatus between the end of VI:1 and the beginning of IV. Because IV remains were found everywhere on the mound where excavations were deep enough, however, we may be missing key transitional remains.

The other method of dating is relative chronology. Mostly based on pottery, relative chronology determines the period of a particular stratum by comparing its ceramics to other presumably contemporaneous sites. The assumption underlying it is that styles change in a fairly regular pattern. New styles are introduced, become popular, and then decline in number over time. By taking percentages of all types from a stratum, one can theoretically match the same profile to another site to see if they are relatively the same. This method works best when at least one of the sites was particularly well excavated and yielded a significant number of carbon 14 dates.

For Godin, in fact for the broad geographical range of the ETC, relative chronology is difficult. ETC peoples tended to be very conservative. Pottery was handmade in houses rather

than workshop made. Therefore, no clear standards for style existed. As described above, smaller circumscribed areas in the ETC homeland underwent regular changes in pottery style over time and therefore can fit the model. Outside of those homelands, styles appear to mix in fairly irregular ways that are not as time sensitive. Also, for Godin in particular, there are no other sites that were both very carefully excavated and recorded and from which many absolute dates are available.

The best analog is Yanik Tepe west of the modern city of Tabriz and east of Lake Urmia (see Figure 5.2), but it, too, was dug quickly with a very limited number of supervisors to record contexts and finds. Trying to make sense of Yanik as a chronological marker shows the pitfalls of relative dating. The latest analysis of Yanik—a full report has never been published—attempts to define the larger period based on architecture. At Yanik there is a clear division between periods during which round buildings dominated the settlement’s plan and periods when square buildings dominated it. That analysis further points out that in the square house levels pottery is no longer decorated with incised designs. As I noted above, the layout of Yanik in the period of square buildings is much more like III:6 than IV. Godin IV is not the tightly packed warren of square houses that typify both late Yanik and Godin III:6. It is in III: 6-4 when impressed designs stop being produced on black-gray ETC wares. So, is the purported dating of the square house period at Yanik actually of early III date? Logic would say so, but there is no independent data to confirm this.

Outside of the absolute dates, relative dating is not as reliable for Godin IV as it might be for VI or for another period. A review of pottery and pottery styles that follows will point to some parallels, but their finer placement in time remains unclear.

Artifactual Remains of Godin IV

Archaeologists reconstruct the activities people engaged in by mapping artifact types onto the architectural and open spaces on the mound. Where sets of artifacts that may have been used to pursue a single activity, whether craft, ritual, social, or political, are found they establish the presence of that activity in a particular building or open space.

Often these same clusters of activities can define other aspects of society such as social status, or economic specialization, or organization. Taken together these functional spaces can encode economic and social dynamics that extend beyond the limits of the settlement. Residents of any site depend on others for raw materials or goods to be consumed: as consumers of goods; as sources of mates; as allies or enemies in politics, ideology, and conflict; as pools of labour; as potential centers for leaders to lead or people to be led. These activities create networks of interaction that can be local or extend to the limits of travel and communication.

Societies develop social organizations to facilitate the performance of these functions: to maintain order, to set policies, to define group goals, and to connect to other networks. Cities usually employ a state level of organization with central control mechanisms, leaders with authority to make and enforce decisions, and hierarchies of power and privilege. Small, less independent systems or polities can be organized by chiefly lineages. Even smaller and still less interdependent societies can function by forging consensus when needed among kinship or communal groups.
If we envision a settlement as a set of functions within larger networks, we can then build a picture of both local functions and the organization lying behind them by plotting artifacts in the context of buildings and open spaces. We can also determine which, if any, of the models of migration discussed above apply to Godin IV.

Pottery.

Pottery is one of the more important and ubiquitous categories of artifacts for answering questions about the nature and spread of Early Transcaucasian cultures. Pottery can speak to the connection in time and culture to other manifestations of the ETC. It can reveal the activities of residents of the mound through its functions. It can begin to uncover the underlying economic and social structures of a society through manufacturing technology and craft organization.

The pottery of Godin IV fits well within the ETC corpus of vessel types and styles. Approximately 3,000 potsherds and a few whole pots are stored at the Royal Ontario Museum. A small number of whole pots are housed in Tehran. For this analysis I inspected each and every potsherd in Toronto, from which I constructed a typology (see Figures 5.57-62). Of the 3,000 sherds, 627 were measured in detail. These included all those from the better proveniences and a sample of each type wherever they were found. This analysis can paint a good general picture of the Godin IV pottery, but a finer, especially statistical analysis would not be likely to give valid results due the problems discussed above.

One usually thinks of ETC pottery as being black. However, the colors of Godin IV pots include black, gray, gray brown, dark buff, buff yellow, light brown, pale red, and burnt sienna.

111 A more finely wrought typology will appear for professional archaeologists on the website discussed in Chapter 1.
Of those black is the most common exterior color with 322, gray brown 134, light brown 42, light red 42, dark buff 21, burnt sienna 20, gray 19, buff 15, and pale red 12.

For the database the following Godin IV pottery colors match with the Globe Soil Color book.

<table>
<thead>
<tr>
<th>Color</th>
<th>Munsell Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale red</td>
<td>7.5R 7/4</td>
</tr>
<tr>
<td>Burnt sienna</td>
<td>10R 6/6</td>
</tr>
<tr>
<td>Black</td>
<td>N3/</td>
</tr>
<tr>
<td>Gray brown</td>
<td>10YR 5/2</td>
</tr>
<tr>
<td>Buff yellow</td>
<td>10YR 8/4</td>
</tr>
<tr>
<td>Light brown</td>
<td>10YR 6/4</td>
</tr>
<tr>
<td>Gray</td>
<td>N6/</td>
</tr>
<tr>
<td>Dark buff</td>
<td>10YR 7/4</td>
</tr>
</tbody>
</table>

Virtually all the pots have a thin clay slip in and out, and if the predominance of interior color is a true reflection, the fabric color is generally gray brown. The interior color tends to match the exterior color. Only 15 sherds of those recorded in detail have the characteristic black exterior and red interior, and a handful of the other exterior colors have a contrasting interior color. For jars it is common to have a black exterior and gray brown interior. The vast majority of black and burnt sienna exteriors are burnished, often highly. A few open bowl forms are also burnished on the interior.

The manufacture of IV pots indicates a fairly low level of technology. One technical analysis of its manufacture revealed that the pottery “is a technically inferior product. Beneath the carefully burnished surface adorned with striking white-filled excised geometric decoration is a poor quality fabric. Xeroradiographs of Godin sherds from two sites in two different areas (Godin Tepe in the Kangavar Valley and Sangalan in the Hamadan plain) reveal numerous internal voids, cracks, and flaws. The course grit inclusions tend to be at least 1 mm in diameter;
many have maximum dimensions of at least several millimeters. This fabric is generally quite
friable, crumbling readily. Such friability suggests a relatively low firing temperature.” 113

Potters used an unusually high percentage of grog (ground up pottery) to temper the
fabric of the pots (Figure 5.24). 114

This grog tempering has many advantages in simplifying the production of pottery,
because its characteristics will be the same as the pots to be made. Other tempers may yield
quite variable results, and as a household industry reliability and simplicity might be seen as a
very positive good. Some of the minerals in these grog inclusions appear to be from outside the
Central Western Zagros suggesting some movement of pottery, although not a formal trading
system. The black/gray wares of Godin III lack this grog tempering, a factor which the authors
of the study 134 see as a major cultural, even ethnic, shift. It may imply that pottery had begun to
be made in more centralized workshops, but that conclusion plus the statement that there were no
cooking pots cast some doubt on its analytical results. In addition to grog and coarse grit, both
quartz and basalt, sand and occasionally straw were used in tempering. Analysts could find no
evidence of the use of a fast or slow wheel. Most likely, pots were fired by digging a pit or
building an above-the-ground stack of pots, surrounding them with straw or other fuel, and
setting the pile on fire. 115 If the two alternative modes of production of pottery are workshop or
household manufacture (in more modern times, industrial as well), Godin IV pots were made in
the household by individual potters.

(1999).
115 For an illustration of the bonfire method, see figure 49, Kramer, Carol. Pottery in Rajisthan. Washington DC:
Smithsonian Institution Press. 1997. See also p. 152f., Rice, Prudence. Pottery Analysis: A Sourcebook. Chicago:
University of Chicago Press.
This technology does raise an interesting question: how was the bi-color pottery created, especially in such a low technology environment? Ceramicists have offered a number of theories. One is that the clays were basically of a reddish color. The interior, which remained red, would be stuffed with straw and sealed. In the fire, the flash of flame would make the exterior black while the interior remained red. This theory does not, however, account for the fact that in many bi-chrome (inside and out) pots, the interior color spills over in an irregular way on the outside of the pot near the rim. A theory that seems to make more sense is that some kind of grease was applied to the exterior, which when burned at low temperature turned the greased surface black.

In the following sections, I will (1) briefly describe the types, (2) point to comparable types at other sites in order to establish cultural connections if not precise relative chronology, (3) discuss their possible uses, and below in the next section (4) discuss the possible social uses of the designs incised into them.

Types

Typologically, all of Godin IV pottery fits in eleven categories: conical bowls, rounded bowls, hole mouth bowls, carinated bowls, cooking pots (with or without handles), storage jars, trays, s-shaped jars (short neck or narrow mouth), tall pointed base jars, cups or mugs, and lids (Figures 5.57-62, see typology this webpage).

Note: the typology presented in the book is somewhat less detailed than that represented in the database of pottery measurements in this web archive. See the typology figures in the webpage as well.

Bowls (Figures 5.57 and 5.58).

technical skill of the potters, the differences between Types I and II could be an artifact of the archaeologist’s analysis rather than that of the maker; they might easily serve the same purpose.

Lids (Figure 5.62). The final category of pottery is the lid. They are either simple convex circles of clay like xxx, or they have handles, either strap in the middle or of Nachichevan type near the rim. Although the range of bowl and jar diameters at the rim is quite broad, those diameters appear best suited to cooking pots, ledge rim bowls (Types I, II, or IV), or storage jars.

Parallels

For an archaeologist among the factors that make pottery important for interpretation are its cultural connections and chronology. With all of the caveats mentioned above in mind, the following are some observations about those connections.

Table 5.5 Parallels to Godin Ceramic Types

<table>
<thead>
<tr>
<th>Godin Type</th>
<th>parallels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowls I, 1 Figure 5.57a</td>
<td>a-c= Yanik Tepe,(^{117}) and at Tepecik, Norşuntepe, and Avculî in Elâzığ, (^{118}) similar with a handle in southern Armenia at Shengavit. (^{119}) d= Değirmentepe and Norşuntepe in Elâzığ, Pulur (Saykol), various sites in Muş. (^{120})</td>
</tr>
<tr>
<td>Bowls I, 2 Figure 5.57a</td>
<td>Variants of I, 1</td>
</tr>
<tr>
<td>Bowls II Figure 5.57a</td>
<td>a= Korucutepe, Elâzığ b= Yanik Tepe (type 7), c= Pulur Saykol, Değirmentepe, and other sites in Elâzığ, Malatya, and Muş. (^{121}) e= Yanik Tepe f= Van, Turkey, Garni, South Armenia (^{122})</td>
</tr>
<tr>
<td>Bowls III</td>
<td>Too genealized</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bowls IV</th>
<th>a & d= Elar, Me/tsamor in southern Armenia, Samshvilde and Kiketi in Georgia; b= (lug, not bowl shape)= Korucutepe; d= Yanik Tepe (type 57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5.58b</td>
<td></td>
</tr>
<tr>
<td>Cooking pots</td>
<td>Unclear from descriptions in other sources which are cooking pots</td>
</tr>
<tr>
<td>Storage jars</td>
<td>Yanik Tepe (type 27)figure 5.9 b; fig 5.9c;a Karaz in Erzurum, Aşvan Kale, Künk, and Değirmentepe in Elâzig.</td>
</tr>
<tr>
<td>Jars I</td>
<td>e= Değirmentepe, Korucutepe, Norşuntepe, Tepecik in Elâzig; g= Baba Derviş Azerbaijan</td>
</tr>
<tr>
<td>Jars II</td>
<td>a= Shengavit Armenia; g= Anı Kalesi Kars Turkey, Karaz Erzurum, Geoy Tepe, Iran</td>
</tr>
<tr>
<td>Jars III</td>
<td>a= Yanik Tepe, Karaz and Cinis Höyük in Erzurum Turkey, b= Yanik Tepe; c= Ernis, Iremir Van Turkey; e= Kvâtskhelebi, Georgia; g= Yanik Tepe (type 30)</td>
</tr>
<tr>
<td>Figure 5.61e</td>
<td></td>
</tr>
<tr>
<td>Jars IV</td>
<td>b= Yanik Tepe (type 54); e= Iremir Van</td>
</tr>
<tr>
<td>Jars V</td>
<td>Rims only</td>
</tr>
<tr>
<td>Cups</td>
<td>d= Amiranis Gora Georgia in shape not size</td>
</tr>
<tr>
<td>Lids</td>
<td>Yanik Tepe (round handled, type 96) wide area of Georgia,</td>
</tr>
</tbody>
</table>

Erzurum and Elâţig in Eastern Turkey.

The geographical spread of these comparable pottery styles is very suggestive. Most of the comparisons are to Yanik Tepe east of Lake Urmia in Iran. However, a very significant number are to sites along the Murat River. Presumably this implies that there was a route connecting the western part of the Murat River where it joins the Euphrates to western Iran. A number of historic period routes have been mapped. One skirted the northern Mesopotamian steppe and then went south along the Tigris crossing into the highlands through the Gebel Maqlub northeast of modern Mosul or farther south up the Diyala River northeast of Baghdad. An alternate path followed the Murat River eastward, heading south near Bitlis and across the bottom of Lake Van to Lake Urmia. Then it would have snaked through the mountain passes in the Central Western Zagros through Hamadan, Nehavand, and Malayer down into the Kangavar Valley. Since no ETC pottery is found west of Kangavar in the Mahi Dasht, Hulailan, or Deh Luran Plains, the use of the piedmont route is less likely. Rather the intramontane route from Yanik, the north-south part of the High Road, was the more likely route. This would have been part of the same pathway that brought lapis lazuli from Afghanistan over the central desert of Iran, the Dasht-I Kavir, past that site in Gilan mentioned above with Godin IV pottery. It could also imply that immigrants to Godin traveled that same way.

The few good comparisons with Georgia, such as type IV bowls, are rarities; only 4 type IV bowls were found in our sample compared to 92 type I (1 and 2) bowls or 80 type II bowls.

Where direct connections with Transcaucasia exist, they are mostly to the Ararat Valley in southernmost Armenia or southern Azerbaijan north of Iranian Azerbaijan. In other words, the cultural connections are not with the south Caucasus homeland, but with the secondary migration areas in southeastern Turkey. Even connections with the northern part of the Taurus massif in Erzurum are rare. This is especially interesting because in the earlier Godin VI period, a similar route was indicated between Elâzig and both the piedmont at Tepe Gawra and the western Zagros front at places like Geoy Tepe. See the results of instrumental neutron activation analysis in chapter 4 and webfile.

Relative Chronology

Chronologically, the distribution through time of type I and II bowls mirrors the battleship curve predicted by the relative chronology model. Some already existed at the end of period VI, then increased as a percentage in phase IV:2, reached their maximum in IV:1b and then declined in phase IV:1a. Bowl type III existed at the end of VI, and the only other ones in our sample were from unknown phases. This is not surprising as it is really a Chalcolithic or Kura Araks I type. On the other hand, bowl type IV, the one with Georgian comparisons, appeared for the first time in IV:1a after the occupation at Godin had been long established.

Other forms show a slightly different phasing. Cooking pots and cups are evenly spread over the three phases of IV, as is jar type I. Jar type II, which connects mostly to the Ararat Valley and adjoining northeast Turkey (Kars) is most often found in phase IV:1a, whereas type IV jars do not exist in IV:1a and are most common in IV:1b. The wide trays appeared in small numbers until IV:1b. These seem like the basis of a relative chronology, but are too few to really construct an adequate seriation.

In terms of the larger region, chronologically the pottery styles would be placed in Kura Araks II or early III in Sagona’s 1984 analysis \(^{142}\) or more generally in early Kura Araks II, according to Badalyan and Smith (see Table 4.1). It is not possible to place the Yanik vessels back into their exact level, so a relative chronology based on that site is not possible to create.\(^ {143}\) Summers’ dissertation study of Yanik Tepe, however, would place Godin IV into his ETC IIA (although his examples also point to a possible IIB attribution).\(^ {144}\) This period, according to Summers, begins in the late fourth millennium BC and extends to about 2700 BC, so it is equivalent to Sagona’s Kura Araks II. In terms of the carbon 14 dates from Godin, this is not so far off. Precisely dating the sub-level phases of Godin IV is not possible, although overall a period from the earliest 3\(^{rd}\) millennium to about 2700 BC is suggested by both absolute and relative chronology.

These types reflect not only style, but function, permitting ceramic analysis to aide in our portrayal of its residents’ lives, their activities and organization. Therefore pottery from all the best contexts were measured, because they could be used to construct activity areas, based on the functions of the pottery and correlated to other types of artifacts, each representing its own function.

Table for web Archive. Identifiable pottery types by number and period

<table>
<thead>
<tr>
<th>type</th>
<th>VI:1</th>
<th>IV:2</th>
<th>IV:1b</th>
<th>IV:1a</th>
<th>Not clear</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Bowls I, 1</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>19</td>
<td>32</td>
<td>55</td>
</tr>
<tr>
<td>Bowl I, 2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>18</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>Bowl II, 1</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>27</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Bowl II, 2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>Bowl III</td>
<td>1</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{143}\) Summers, Geoffrey, personal communication.

Functions.

The functions of these pottery types can be determined by their characteristics, such as shape, rim diameter, and height. For example, most cooking pots are short and squat, thick walled, with a height of 6-41.5 cm, roughly a third as wide as they are tall. The vessels independently classified as cooking pots fit these criteria. An additional criterion is calcification. All Middle Eastern clays are high in calcium carbonate and when wet or repeatedly heated this salt comes to the surface.

In a study of modern pottery use in an Iranian village, serving and eating vessels differed in size depending on whether they were meant for individuals or groups. “The individual-sized vessels range from 6 to 8 cm in height (mean, 7 cm) and from 10 to 23 cm in maximum diameter (mean, 14 cm) while family capacity bowls range from 4.4 to 23.4 cm in height (mean 10 cm) and from 8.4- 95 cm in maximum diameter (mean, 24.6 cm).” These figures suggest that jar

types I, II, and IV may have been used as individual eating vessels, and bowl types I and IV and jar type III as serving dishes.

The small size of jars (including storage jars) compared to contemporaneous Mesopotamian wares indicates that they had a different function. Why in most ETC collections are there so many of these smaller jars? From our sample they are 50.6 percent of all jars. Except for cups they have the thinnest bodies and rims and the smallest diameters at the rim. Their height is barely more than most bowls. That cooking pots were placed on andirons would suggest stewed meals, although a griddle type of cooking hearth is common in IV:1b. As individual eating bowls, the decorated small jars would make a lot of sense. In room 80 of Pulur (Saykol) level X \(^{147}\) a cooking pot and a series of small type II bowls surround a hearth with a larger serving jar, demonstrating this use of small vessels for eating (see Figure 5.12 above).

Communal serving in the larger bowls, especially those with lids is equally possible. From ethnographic analogy, bowl types I and IV fit the average family serving bowls size. There were also griddles in Godin IV houses, so other cooking techniques are also likely, shanks of meat would seem to be better suited to an open bowl.

With their handles and pointed bases, type III jars would make most sense for storing and serving liquids.

Trays from Godin IV match the average cooking trays in the study mentioned above, however, there are so few that it seems unlikely. A function in roasting or otherwise processing grain appears more likely, if not at all certain.

Designs

The final elements of pottery analysis are the designs incised on them (Figure 5.49-52). For Godin, these are all incised designs, not raised or appliqué designs.

Some analysts see them as reflecting woven designs on textiles that clearly did not survive in the ground. The evidence from the animal bone analysis at Godin that suggests that sheep were primarily raised for their wool would add some credence to that possibility. However, other researchers suggest that the designs and generally the shapes reflect metal vessels, few of which have been recovered. At this stage we really cannot say whether any one of these theories is the most plausible.

As discussed above, however, ceramic style as reflected in these incised designs may have social meanings. Identity is one of the most important elements of any set of social relations. If I do not know who you are as an individual or as a member of a group I do not know how I am supposed to behave toward you. Design can and often does reflect status, ethnicity, or family relationships. It can, on the other hand, just be a craft convention that has little deeper meaning.

Given that most Godin pottery appears to have been a household product, it should reflect a very intimate set of markers of identity, as craft goods “are social objects that assume an importance beyond household maintenance and reproduction. They signify and legitimize group membership and social roles.”

Without knowing the mind of ancient peoples, are there any patterns that can demonstrate how the residents of Godin derived or manipulated these symbols? To some small degree there

148 Kelly-Buccellati, Marilyn. The Outer Fertile Crescent Culture: Northeastern Connections of Syria and Palestine in the Third Millennium B.C. Ugarit-Forschungen. 11:413-430.
are, but because the excavations represent only a small sample of one site and because the only
published corpus of ETC pottery design is two decades old, we may be looking at a skewed
comparative sample. My conclusions are at best theories or maybe even speculations that
hopefully excavators at new sites in the region can test.

A number of factors might permit us to uncover these patterns. If designs are
differentially distributed in the site it might indicate some possible distinctiveness among social
groups, each marked by its own emblem. This assumes that the designs are not simply limited to
a particular pottery type. More importantly, if the designs link the maker to another place, it
might indicate where they came from, or to which of their social ties remain active. The
alternative explanation that the pots were simply traded from another place is belied by their
local production. A last factor is time. A change in pot design over time can indicate a re-
alignment within the site or broader society.

Design 16 appeared on a bowl and a cup of level VI:1/Vb, and then again on type II
rounded bowls in phase IV:2. The closest parallel is from the site of Baba Dervish in Azerbaijan
along the Kura River and the Sarur Plain in the Nachichevan area of Azerbaijan \(^{150}\)
(see Figure 5.52).

Given our typological comparison, this would be one of the places from which one would
expect migrants to come into western Iran. \(^{151}\) Type 51 at Yanik Tepe, \(^{170}\) an early design, may be
a simplified parallel. At Godin, its provenience places it firmly in good context on the floor of a
wattle and daub house under the large B1 building of IV:1b. The design is not noted on any of

\(^{150}\) Figure 6 Ashuraov, Safar. An Introduction to the Bronze Age sites in the Šarur Plain. In *Archäologisches

\(^{151}\) Figure 24: 26. Kushnareva, K. Kh. *The Southern Caucasus in Prehistory: Stages of Cultural and Socioeconomic
Development from the Eighth to the Second Millennium BC*. Philadelphia: University of Pennsylvania Museum
the Toronto sherds after IV:2, so this represents one good connection to a potential source area linking northern Azerbaijan through Iranian Azerbaijan to Godin.

Overall, the simpler the design the less likely it is to bear a specific social meaning. Design types 1 and 2 were incised on virtually every pottery type from the site throughout the whole of period IV. They occur in many different contexts throughout those periods. The fact that a similar design appeared at Elar and Shengavit in Armenia, Pulur (Saykol) in Elâzığ and at Yanik Tepe probably is less significant than if a design like 16 is involved. The problem is that as with all symbol systems, the simpler designs often cannot carry much information.

One of the elements that may be significant is the inclusion of a white paste, possibly lime, in these incised designs, which so far are evidenced only at Yanik, Godin, and at the Gilan site of Diarjan. In fact most of the parallels to Godin pottery designs are from Yanik Tepe. The round eyes, Godin design 28, is paralleled by Yanik type 13; Godin 12 by Yanik 18, Godin 25 by Yanik 43, Godin 15 by Yanik 51, Godin 18 possibly by Yanik 79, Godin 5 by Yanik 99, Godin 21 by Yanik 84, and Godin 22 by Yanik 123. Diarjan in Gilan shares Godin design 1, 2, and 8, as far as published illustrations inform us.

Are there then internal patterns? Except for 18 and probably 20, which appear to be animals (16 might be an abstracted animal as well), the designs at Godin were all abstract. Designs were either bands such as 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 16, 21, 22, 23, 25 and 27, or designs made for the round or as stand alone items; for example, they would be used on bases. Those include designs 7, 9, 10, 15, 17, 24, and 28. Only designs 1, 2, 6, and 21 were found

whole town plan. Town plans encode economic and social dynamics that extend beyond the limits of the settlement.

People do not live in isolated places, but in areas and larger regions. Residents of any settlement are almost never truly self-sufficient. They depend on others for raw materials or goods to be consumed, as consumers of goods they produce, as sources of mates, as allies or enemies in politics, ideology, and conflict, as pools of labor, as potential centers for leaders or people to be lead. These activities create networks of interaction that can be local or extend to the limits of travel and communication. In the current global economy these networks have become interdependent links that literally encompass the globe, where goods, capital, and people flow from one place to another, so that a crisis in one place affects industry and trade throughout the entire world.

To understand how a society functions and evolves, we must be able to reconstruct both how people live and what sorts of networks connected them to the outside world. For example, in this framework a city then becomes not simply a big town, but a place that fulfills very special roles within its larger network as centers of manufacturing, trade, political control, or services from sports to the arts to social welfare, education, and religion. People come to cities because of what is happening there; things do not happen there initially because a lot of people decide to live in one place. A town is smaller than a city, but more importantly has some, but fewer central functions or is the pinnacle of a less complex society.

These networks develop social organizations to facilitate the performance of these functions, to maintain order, and to set policies, define group goals, and connect to other

networks. Cities usually imply a state level of organization with central control mechanisms, leaders with authority to make and enforce their decisions, hierarchies of power and privilege or social status. Small, less independent systems or polities can be organized by chiefly mechanisms. A town can be the center of a small pre-state polity. Smaller and still less interdependent societies can function by forging consensus when needed in kinship or communal groups, usually represented by sets of very similar sites.

If we envision a settlement as a set of functions within larger networks, we can then build a picture of both local functions and organization lying behind it beginning with artifacts in the context of buildings and open spaces. Where artifacts occur together they signal activity areas. If these activities are isolated in particular buildings, sometimes those utilized by a wider public, we can paint a picture of evolving societies stretching beyond the mound, in this case to encompass the Kangavar Valley and the wider ETC world beyond.

The following will describe the architecture, but look at how the interplay of architecture, artifact, and activity serve to describe what is happening at the site.

For this analysis, charts with all the recovered artifacts will be included as a kind of index of possible change in function. For the site distribution maps, however, only artifacts in the better contexts will be used. These are contexts referred to as primary or secondary. Primary contexts are relatively rare in archaeological sites. These are contexts where artifacts are left exactly where they were used, although as discussed above these contexts often are affected by post-depositional movement. Often primary proveniences are in burned buildings or buildings

suddenly abandoned. The next level, secondary, describes those contexts where artifacts are not exactly where they were originally used, but nonetheless can be traced to a primary source. A trash midden is a secondary context as people intentionally put material from limited sources—central trash collection in the ancient world is all but non-existent—into deposits that remain intact, or from building collapse. Tertiary deposits are radically moved from their original findspot through architectural leveling, wall trenches, etc. Their original source can only be guessed at and the deposit often mixes not only contemporaneous deposits but also material from other levels.

The artifacts I am analyzing here were mostly recorded on lot sheets drawn up after the excavation of a square in a particular season was completed. These sheets give little detail. More detail can be found in registry cards for the small percentage of artifacts that were registered as objects and kept either in Tehran or Toronto.

Table 5.1 Godin IV Functional Artifacts by Phase

<table>
<thead>
<tr>
<th></th>
<th>Lithics</th>
<th>Food Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Flake tools</td>
</tr>
<tr>
<td>IV:1a</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>IV:1b</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>IV:2</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Metallurgy</th>
<th>Pottery</th>
<th>Fabric/leather</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slag</td>
<td>Crucible</td>
<td>object</td>
</tr>
<tr>
<td>IV:1a</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IV:1b</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>IV:2</td>
<td>?</td>
<td>2</td>
<td>1**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bead</td>
</tr>
<tr>
<td>IV:1a</td>
<td>1</td>
</tr>
<tr>
<td>IV:1b</td>
<td>6+</td>
</tr>
</tbody>
</table>
Additional artifacts: IV:2- brazier, clay cone, stone donut, stone circles, faceted stone, stone block; IV:1b- clay grinder base, 2 stone bowls, stone cylinder; IV:1a- pierced stone, flaker, ground pottery base.

What Table 5.3 shows is the comparability of the functional artifacts across the phases of Godin IV. For example, each phase has evidence for the manufacture of chipped stone. A study of the chipped stone industry from Godin found both continuity and change from Godin VI to IV. 159 For both periods the flintknappers used two techniques. One was hard percussion with a hammer stone on a partially prepared core, yielding flake tools. The other was the creation of bifacial, so-called Canaanean blades from a well prepared core with a clean flattened striking platform (Figure 5.31).

The Canaanean blades are mostly retouched on both edges in order to get the right cutting angle. Over half have sickle sheen, a kind of shiny polish that occurs when flint is used to cut grasses. These blades show regular retouching, which indicates that they were rare enough to continue to use them until they were completely exhausted. These two techniques tend to be used with different stone types: the former mostly cherts, the latter felsites or quartzite.

Elsewhere in Late Chalcolithic and Early Bronze Age northern Mesopotamia, these Canaanean blades tend to be made in central workshops, which may explain their rarity at Godin Tepe. In general, however, the study concludes that this part of the chipped stone repertoire continues unchanged from Godin VI into IV.

Another craft in Godin IV is metallurgy (see box). Early opinion among scholars was that the major contact between ETC peoples and the Mesopotamian world involved both sources

of metal ores and technologies of metallurgy. This specialty of ETC peoples is somewhat validated by work on Arslantepe metals discussed above. For Godin, evidence of metallurgical work begins in earnest in IV. There are metallurgical ores in late VI, but evidence of smelting—this would include metal slag, crucibles, and perhaps a smelting installation in IV:1a (see below)—is significant. Metallurgy was a craft, but hardly an industry from the materials available (see Metallurgy Box in Chapter 4).

Another piece of the productive puzzle is, of course, food production. Half of the sites with ETC pottery are located in the rich valley bottom. This would tend to indicate along with the large percentage of blades with sickle sheen that grain agriculture was a major part of the local economy and that the ETC occupation was not predominantly pastoral nomads, certainly by the time of IV:1b.

The other food producing enterprise is pastoralism. Table 4.9 shows a fairly consistent percentage of animals across the occupation of the mound. Sheep and goat (caprines) are the dominant species with cattle following that. Early on in VI and IV pigs are rare, as are equids (the same family as horses but not probably true horse before Godin II). The real change in animal production occurs in Godin II, where cattle and pig are the highest percentage and caprines the lowest.

Table 5.2 Percentages of animal remains across the history of Godin Tepe

<table>
<thead>
<tr>
<th>Species</th>
<th>Godin VI</th>
<th>Godin IV</th>
<th>Godin III</th>
<th>Godin II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>14.6</td>
<td>10.6</td>
<td>17.3</td>
<td>17.9</td>
</tr>
<tr>
<td>Caprines</td>
<td>81.8</td>
<td>84.4</td>
<td>77.4</td>
<td>62.4</td>
</tr>
<tr>
<td>Pigs</td>
<td>0.8</td>
<td>0.9</td>
<td>2.6</td>
<td>13.5</td>
</tr>
<tr>
<td>Equids</td>
<td>2.8</td>
<td>3.6</td>
<td>2.7</td>
<td>6.1</td>
</tr>
</tbody>
</table>

As discussed above, the really important factor in ethnozoological analysis is often not the species, but their ages and genders. “I have been playing with the caprine dental and epiphyseal aging data for Godin IV. Most of the animals are mature adults, including a number of elderly sheep and goats. I think that the data are consistent with wool production. In addition, you have almost no really young animals, which makes me think that the caprines are being raised outside Godin. They appear to be culling a number of 2-4 year old animals for meat, but many of the animals are mature and elderly. These animals are either culled from wool producing flocks or they are females that are no longer productive.”

As will be apparent below, most of the recovered animal bone are concentrated in and around one building, and probably reflect either feasting or ritual sacrifice.

However, the real importance of this distribution may lie in the fact that the sheep and goat are probably coming into Godin from outside, either from villagers or perhaps pastoral nomads. As such it would appear that Godin was more than a village, because villages tend to be primary producers at least of a significant number of their own animals. This centralizing function of Godin will become clear in the analysis of the phases below.

A last category of craft tools involves those that convert the wool and/or leather into clothing material. Three categories of artifact are probably involved: spindle whorls, bone awls, and burins (see Figure 5.38, 5.39). Spindle whorls are rounded weights through which a stick is passed. In the process of making the raw wool into yarn for weaving, the wool is attached to the stick and the spindle whorl is spun with one hand as the wool is twisted with the other. Awls are used to pierce the wool or hide for sewing—buttons were not discovered at this date—as would the sharper and stronger burins, which are blades that have been snapped at a 45 degree
angle near one end. Awls and burins could be used for other tasks as well, but ethnographically, these are among their most common uses.

Beads are less interesting for their use than the source of their materials. One bead of lapis lazuli was found in IV:1a. The only known source of lapis is Afghanistan. Unfortunately, it was found in removing walls, so it could from IV: 1a or anywhere below it where clay for brick making was mined. Shell is also unlikely to be local. This again implies inclusion in networks of exchange outside the local area.

Lastly, excavators recovered a number of animal figures. Figurines of sheep and cattle are ubiquitous across the region in the Early Bronze Age, both mountains and lowlands. Their function is unclear; some scholars refer to them as merely toys, others as some sort of religious icons. Their similarity and ubiquity would suggest that they are more than just toys and perhaps less than formal religious items. Another plausible explanation is their use in magic. Many such figurines appear broken in antiquity as some of the Godin figurines were. Magic is a way of controlling the world around through mechanical means. The sample at Godin is small, so a pattern of where these were found or how they were treated is hard to establish, but given their importance, some kind of spell for fertility would not be out of the question. The one human figurine (Figure 5.41), whose provenience unfortunately is very unclear, was made of metal.

Having reviewed the categories of artifacts and the activities they represent, the larger question remains, what does their distribution say about the nature of Godin IV society?

Period IV:2 was the earliest occupation of Godin IV after initial contact in VI:1 (Figure 5.42). As described above, this level is poorly documented. However, when the artifacts in the

Surprisingly little animal bone was recovered from the deep sounding in IV:2, some cow, other ungulates, and a few sheep or goat.

The distribution of pottery designs in IV:2 shows commonalities, but mostly differences (Figure 5.42). As with artifacts only primary and secondary contexts were used here. Aside from designs 1 and 2 (Figure 5.49), design 5 is common to buildings 1, 2, 4, 5, and 6. Type 16 appears only in IV:2 and VI:1/Vb, design 28 only in IV:2. The rest of the buildings appear to have a different set of designs, implying both individual household potters and some clear differentiation in the symbolic association of their occupants.

Overall, IV:2 represents a relatively small settlement of Early Transcaucasian people. Like the round house phase at Yanik it consisted of a series of undifferentiated households with very limited goods and very similar activities. For Yanik Tepe, an exception might be a grain silo in the middle of the residences, a feature not found at Godin Tepe. 165

Possibly, the houses at Godin are not even year-round occupations, and what I am presenting as a coherent settlement may represent many re-occupations. The residents of Godin IV:2 were clearly settled or at least transhumant people. They conducted the sorts of activities that one would expect of villagers: cooking, eating, very likely growing grain crops and raising domestic animals, making tools, etc. There is evidence of metallurgy, which is important for our understanding of what may have drawn them to Kangavar in the first place. This evidence does not imply large-scale production or exchange, as mentioned above, although the very few exotic materials of shell and lapis lazuli must have been imported. These imports, given their scarcity could easily represent what anthropologists call down-the-line trade, where the farther one goes

from the source area, less and less of the exchanged raw material or good are traded. Nonetheless, these residents were part of a larger network of interaction.

Godin phases IV:1b and 1a are defined stratigraphically by the building and re-modeling of the large building in operations B01, B1, and B2 (Building 3), alongside the significant changes in the buildings of operations A2, A1, and A01 from IV:1b to IV:1a (2 and 1) (Figure 5.45). They represent a significant change in the nature and role of the site in its surroundings. The foci of this change are the functions of Building 3 (Figures 5.1). Like those from Pulur (Saykol) illustrated in Figure 5.11, this building is square, with an entrance from the short side (north) and stairs to go from the first room (8) into the second room (7). Unlike those Pulur buildings the more important activities appear to occur in the first room entered. That first room had black painted benches all the way around its interior. The northeastern wall had a painted design (see Figure 5.10). In the center was a raised platform. What is so striking about the contents of the main, supposedly pebbled floor, as well as the area under that floor are the numbers of animal bones, 158 in all. Most of these are sheep or goat (117), with 16 cow bones, 23 small hoofed ungulates, and two dog bones (2). The pebbled floor area yielded one cooking pot and serving or eating vessels. No other activities are indicated on this IV:1b floor.

At more than 25 m2 room 407 is by far the largest Godin IV room. The interpretation of its artifacts and structure must indicate a public function. Two possibilities are that it served as a place for ritual sacrifice and/ or public feasting.

This description certainly fits what we see in room 8 of building 3. A similar pattern continues into the later phase of building 3 in IV: 1a with 143 animal bones in that same room on a higher floor.

The pull toward this most southerly expansion of ETC culture in the Iranian Zagros is best explained by the expanding exchange networks, as it was at Arslantepe and at the stunningly large settlements of the North Caucasus in the earlier Kura Araks I period, ending at about 3000 BC. I envision the first ETC occupants of Godin to have been wandering clans of transhumants. I compared them above to extended Romani families. They clearly were able to adapt to the natural environment of this area with a diffuse food-producing adaptation, but I would theorize (the evidence is still sketchy) that their inclusion in the Uruk exchange network involved metallurgy, perhaps cloth making, or other less visible crafts.

The source of the ETC people was from its north. Yanik Tepe on the eastern side of Lake Urmia with which Godin IV shares most of its ceramic parallels was a very deep, long-lived site, settled long before Godin and probably lasting beyond the end of Godin IV. The route of ETC movement came down the traditional north-south routes in the Zagros, again leading to a very long lived, multi-level ETC site at Sangalan in the Hamadan Plain. Unfortunately, our lack of knowledge of the contents of Sangalan\(^\text{167}\) and our crude relative chronology does not permit us to say what the chronological span of that site was. Thus we do not know if the immigrants to Godin came at about the same time as Sangalan was occupied or whether they were an off-shoot of an already long established settlement. At the same time the many style connections to Eastern Turkey, especially to sites in Elâzig indicate that the ETC population at Godin, especially in the IV:1b and 1a phases were culturally more a part of other immigrant populations of Kura Araks II and early III than those in the Transcaucasia or Southern Caucasus home or northeastern Anatolia (Erzurum or Kars). The date of the beginning of Khirbet Kerak ware in the Jordan Valley is about the same time as Godin IV ends.

The cultural symbols among ETC populations were pervasive. From Azerbaijan to Syro-Palestine when the ETC spread it usually did so with its main cultural identifiers (i.e. burnished pottery, hearth stands, and the use of elaborate architectural accessories) intact. As one scholar of Syria Palestine wrote, “the Outer Fertile Crescent culture [ETC] did spread to Syria and Palestine. The distribution of its influence there was, however, selective as we find artifacts associated with this culture mainly on inland sites. When it did spread it did so with its main cultural identifiers intact. That is, those cultural elements which we can single out from the archaeological record as being the most significant (i.e. burnished pottery, hearth stands, and the use of elaborate architectural accessories) were essentially unchanged in Syro-Palestinian sites.”

This highlights the strength of its ethnic identity over a very long period of time. One can only assume that the migrants were in competition with some of the local groups. The initial ETC occupation was often on the fringe of local societies, and they utilized land for a somewhat different adaptation than the locals. If the ETC represents a migration where did the old Godin VI population go?

The survey results suggest that many may have stayed where they were. The distribution of sites of ETC (Godin IV) and Godin VI are mostly complementary (Figure 5.56). Like the other Eastern Turkish area described above, ETC immigrants filled in the empty areas. The Godin VI sites are arrayed in clusters, two in the southeastern part of the plain, one on the west side of the Khoram Rud, and one in the Velishgird Uplands. Interestingly none appear very close to Godin itself. The remaining sites are scattered in the Kangavar Hill country. Sites with

Uruk related VI:1 pottery are few, one in the southern plain cluster, one in the Velishgard Uplands and one at the farthest western part of the Kangavar Uplands. The ETC sites are not in any clusters. In fact they appear to be equidistant from one another, as if each defined an area (of pasture?). Most of the occupied hectares are represented by Godin and Karkhaneh (18 out of 30.61). The total for VI at 30.24 is almost identical although spread over many more sites, but less than half the 73.45 hectare total in III (scattered over 6 sub-phases). Some of the ETC sites are as small as .16 hectares (V47), almost more of an encampment than a village. Seven ETC sites are on the plain, two in the Velishgard Uplands, and three in the Kangavar Hills. Only five Godin IV sites were built on top of Godin VI sites, including Godin itself, and each other than Godin is at the farthest ends of the valley system. The penchant for comparatively larger ETC sites- to put this into perspective, 10 hectares would barely be a town in southern Mesopotamia—appears to exist throughout the Central Western Zagros.

The evolution of ETC society at Godin appears to go through a familiar pattern in immigrant areas elsewhere in the ETC range. Small groups of migrants—apex extended families—are pulled to an area in search of either land or exchange opportunities. Godin period IV:2 represents this phase. Other migrants are then drawn to this new place and settle, increasing the size of overall settlement and establishing larger central sites, although without the kinds of clusters of satellite sites found in state societies like those of contemporary southern Mesopotamia. This influx gives a permanence to the settlement system, and creates the need, or perhaps opportunity, for some very limited central functions like Building 7 of IV:1b and a. The organizations that evolve remain well short of state societies and probably are closer to the social

systems of some larger pastoral nomad groups in the ethnographic present than even to what archaeologists call complex chiefdoms.

In all of this, talk of an “invasion” of ETC peoples probably overstates the competitive balance. There are certainly not enough weapons from IV to suggest an armed invasion. Some of the older population most probably remained, perhaps masked from view by an adoption of household pottery techniques taught them by the new immigrants, perhaps simply unchanged in certain ways.

Certainly as the dawning of period III approached, Kangavar was readily incorporated into the new cultural and political system of that time, maintaining much of what must have been a common adaptation that continued from VI.