Towards Achieving Highly Parallelized Publish/Subscribe Matching at Line-Rates Using Reconfigurable Hardware

by

Harshvardhan Pratap Singh

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright © 2011 by Harshvardhan Pratap Singh
Abstract

Towards Achieving Highly Parallelized Publish/Subscribe Matching at Line-Rates Using Reconfigurable Hardware

Harshvardhan Pratap Singh
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto
2011

We present fpga-ToPSS (Toronto Publish/Subscribe System), an efficient FPGA-based middleware platform geared towards high-frequency and low-latency event processing. fpga-ToPSS is built over reconfigurable hardware—FPGAs—to achieve line-rate processing by exploiting unprecedented degrees of parallelism and potential for pipelining, only available through custom-built, application-specific and low-level logic design. Furthermore, our middleware solution hosts an event processing engine that is built on a hardware-based packet processor and Boolean expression matcher. Our middleware vision extends to a wide range of applications including real-time data analytics, intrusion detection, algorithmic trading, targeted advertisement, and (complex) event processing.
Acknowledgements

This work would not have been possible without the constant support, strong faith and contributions of a few individuals, to whom I’ll always be indebted to in life. It is my utter pleasure to thank them.

First off I would like to thank my mother, Girja Singh, for whom I fall short of words to quantify the level of moral guidance and support she has always provided. Her dedication and faith in God strengthens my resolve with unrelenting dedication to persevere in overcoming various challenges in life. I would also like to thank the rest of my family - my father, Uday Pratap Singh, through whose vision I’ve always been able to clarify what’s important in life and Aishwarya, my fiance, for her constant support and love.

Secondly, this thesis would not have been possible without the guidance of my supervisor, Prof. Hans-Arno Jacobsen, who has made available his support in a number of ways. His vision, expertise, and encouragement from the beginning enabled me to develop an understanding of the subject and apply interdisciplinary methods effectively. His efforts and commitment have been invaluable to the progression of my graduate career.

I am also indebted to the Middleware Systems Research Group (MSRG) members for providing a friendly and intellectually stimulating environment. Their innovative ideas and constructive remarks have been essential in producing this work.

In addition, I would also like to thank my thesis defence committee for taking the time to review my work and for the valuable feedback and comments.

Finally, I would like to acknowledge my friends - Naweed Tajuddin & Sriram Kalyanasundaram and fellow MSRG members: Mohammad Sadoghi, Young Yoon, Vinod Muthusamy for always being there to offer help whenever I needed it the most.
Contents

1 Introduction .. 1
 1.1 Motivation ... 1
 1.2 Problem Statement ... 3
 1.3 Contributions .. 4
 1.4 Thesis Structure ... 6

2 Background ... 7
 2.1 FPGA - The Internals ... 7
 2.2 FPGA - Design Steps .. 9
 2.3 FPGA - Employed for Acceleration 11
 2.4 Target Application ... 12

3 Related Work .. 13
 3.1 FPGA .. 13
 3.2 Matching ... 15
 3.3 FPGA-based Middleware Architecture 15
 3.3.1 Data Processing Model 15
 3.3.2 Hardware Design Model 16

4 On-Chip Memory-based Architecture Model 17
 4.1 On-Chip Memory-based Designs 17
4.2 Direct Connect - Architecture Overview .. 19
 4.2.1 On-Chip Cluster Access ... 20
 4.2.2 Direct Connect - Step-wise Operation ... 21
 4.2.3 Direct Connect - Design Trade-offs .. 22
4.3 Dynamic Connect - Architecture Overview .. 24
 4.3.1 Dynamic Connect - Step-wise Operation 26
 4.3.2 Dynamic Connect - Design Trade-offs .. 27

5 Hardware Encoded Data-based Architecture Model 30
 5.1 Hardware Encoded Data design ... 30
 5.2 Index Encoded - Architecture Overview ... 31
 5.2.1 Index Encoded - Design Trade-offs ... 32
 5.2.2 Index Encoded - Step-wise Operation 33

6 Evaluation .. 35
 6.1 Evaluation Methodology .. 35
 6.1.1 Evaluation Tool and Methodology .. 35
 6.1.2 Evaluation Platform ... 37
 6.1.3 Workload Description .. 37
 6.1.4 Metrics ... 38
 6.2 Latency and Processing Throughput ... 38
 6.2.1 Latency Measure .. 38
 6.3 Latency Breakdown ... 42
 6.3.1 Direct Connect Design .. 42
 6.3.2 Dynamic Connect Design .. 45
 6.3.3 Hardware Encoded Design .. 48
 6.4 Throughput Measure ... 50
 6.5 Hardware Resource Consumption ... 53
List of Tables

6.1 Processing Latency (sim) - Direct Connect Design 39
6.2 Processing Latency (sim) - Compare All Designs 41
6.3 Latency Breakdown - Direct Connect Design 44
6.4 Latency Breakdown - Dynamic Connect Design 46
6.5 Latency Breakdown - Hardware Encoded Design 49
6.6 Max. Clock Rate vs. Workload Size - On-Chip Memory-designs 54
6.7 Max. Clock Rate Vs. Workload Size - Hardware Encoded Design 54
6.8 LUT Usage vs. Workload (Unif) Size - Direct Connect-designs 58
6.9 LUT Usage vs. Workload (Unif) Size - Dynamic Connect-designs 59
6.10 LUT Usage vs. Workload (Zipf) Size - Direct Connect-designs 60
6.11 LUT Usage vs. Workload Size - Hardware Encoded designs 61
6.12 BRAM Usage & Util. vs. Workload (Unif) Size - Direct Connect-designs 63
6.13 BRAM Util. vs. Workload(Zipf) Size - Direct Connect-designs 64
6.14 Power Consumption vs. Level of Parallelism - (N×HW Ver.I) Design . . 66
6.15 Power Consumption vs. Workload (Unif/Zipf) size - (N×HW Ver.I) Design 66
6.16 Relative Power Consmp. vs. Level of Parallelism - (N×HW Ver.II) Design 68
6.17 Relative Power Consumption - 4× Dynamic Connect Design 68
6.18 Power Consumption vs. Workload size - Hardware Encoded Design . . . 70
List of Figures

2.1 FPGA - The Internals ... 8
2.2 FPGA - CAD Flow .. 10

4.1 On-Chip Memory design model 19
4.2 On-Chip Cluster Organization and Access Strategy 20
4.3 Direct Connect Design ... 21
4.4 Dynamic Connect Design ... 25
4.5 Dynamic Connect design - currently implemented 27

5.1 Hardware Encoded design architecture 33

6.1 Implementation Detail: Pub/Sub Format 38
6.2 Processing Latency (sim) - Direct Connect Design 40
6.3 Latency (sim) vs. Design Type 41
6.4 Raw Proc.Throughput - On-Chip Memory Design(1) 51
6.5 Raw Proc.Throughput - On-Chip Memory Design(2) 51
6.6 Lut Usage vs. Deg. of Parallelism 57
6.7 Power Consumption vs. LUT Usage Comparison - All designs 72
6.8 Average Latency vs. Workload Size compr. - N×HW Ver.I & all designs 76
6.9 Average Latency vs. Workload Size compr. - N×HW Ver.II & all designs 77
6.10 Max.Clock Rate vs. Workload size comparison - All designs 79
6.11 LUT Usage vs. Workload size comparison - All designs 80
Chapter 1

Introduction

1.1 Motivation

The next generation of line-rate\(^1\) middleware is becoming an integral part of a growing number of event processing applications such as real-time data analytics \[27, 4, 33\], intrusion detection \[4, 7\], algorithmic trading \[21\], targeted advertisements \[14, 8, 23\], and (complex) event processing \[1, 6, 5, 31, 8, 22, 23\]. What is common among all these scenarios is a predefined set of patterns (subscriptions) and an unbounded event stream of incoming data (events) that must be processed against these patterns in real-time over high-rate data streams.

In particular, the challenges for today’s real-time data analytics platforms are to meet the ever growing demands in processing large volumes of data at predictably low latencies across many application scenarios. For example, the volume of traffic on the Internet has undergone an immense increase over the last decade which is apparent in deployments of high communication bandwidth links across the globe (e.g., OC192 at 9.92Gbit/s). Furthermore, according to Gilbert’s law, communication bandwidth is projected to double

\(^1\)The term line-rate processing often refers to the processing throughput required for a network device to seamlessly perform data analysis faster than the link data rates in order to avoid adding any delays to the flow of network traffic.
every 9 to 10 months, but conventional computation architectures underlying existing middleware systems are showing signs of saturation in terms of offering the necessary processing bandwidth to sustain demands imposed by future growth of Internet bandwidth.

Achieving high processing bandwidth is the key ingredient in enabling the innovation of high-throughput real-time data analytics to process, analyze, and extract relevant information from streams of events. Therefore, as proliferation of data and bandwidth continues, it is becoming essential to expand the research horizon to go beyond the conventional software-based approaches and adopt other key enabling technologies such as reconfigurable hardware in form of FPGAs, for example. A Field Programmable Gate Array (FPGA) offers a cost-effective hardware acceleration option that has the potential to excel at analytics-based computations due to their inherent parallelism. FPGAs can exploit low-level data and functional parallelism in applications with custom, application-specific circuits that can be re-configured, even after the FPGA has been deployed. In addition, FPGAs can meet the required elasticity in scaling out to meet increasing throughput demands of time-critical middleware applications.

However, this revolutionary outlook has a few caveats that make the acceleration of any data processing with FPGAs a challenging undertaking for our middleware systems community as a whole. First, current FPGAs (e.g., 800MHz Xilinx Virtex 6) are still much slower compared to commodity CPUs (e.g., 3.2 GHz Intel Core i7), yet on the positive side, FGPAs have the potential to utilize faster and greater transistor density processors in the time to come. Second, the accelerated application functionality has to be amenable to parallel processing. Third, the on-/off-chip data rates must keep up with chip processing speeds to realize a processing speedup by keeping the custom-built processing pipeline busy. Finally, FPGAs restrict the designer’s flexibility and the application’s dynamism, both of which are hardly a concern in standard software solutions. However, the true success of FPGAs is rooted in three distinctive features:
hardware parallelism, hardware reconfigurability, and substantially higher throughput rates. Moreover, an FPGA can also be utilized, as an evolutionary outlook, as a non-intrusive interface that sits between the traditional middleware and the network, to enrich the functionality of middleware without actually changing the engine. One possible add-on functionality that we envision is to annotate data packets with lineage and provenance information as they pass through the middleware; this need for maintaining provenance information is a well-known challenge [30, 15, 12, 9].

Therefore, we must seek innovative approaches to effectively enable meeting the demands of middleware for data-intensive application through hardware acceleration in the coming years. On this front, programming on hardware is becoming more accessible to the software community due to the number of research and industry projects that are working on adapting a higher-level language (such as Java or C) and runtime environment that dynamically and adaptively allows (all) portions of an application to be executed on both software and hardware or on developing software-to-hardware compilers. An example of the former project is IBM Liquid Metal, that is, based on a Java-compatible language and a runtime that enables execution on both FPGA and GPU [2, 26]; examples of the latter initiative for accelerating software algorithms on FPGA are ImpulseC C-to-FPGA\(^2\) and OSCI C++-to-FPGA\(^3\).

1.2 Problem Statement

Motivated by the above technological trend towards employing highly specialized hardware for various software applications coupled with the fact that current state-of-the-art is quite lacking in addressing the problem of publish-subscribe matching at line-rate throughputs - we therefore, endeavour to gather results for the following specific questions.

\(^2\)http://www.impulseaccelerated.com/

\(^3\)http://www.systemc.org/
1. How fast can we execute publish-subscribe matching on FPGAs?

2. What is the highest level of parallelism that can be achieved?

3. How many subscriptions can be supported?

4. What are the hardware and energy consumption costs involved?

Answers to the above questions will help clarify the feasibility of using FPGAs for publish-subscribe matching and pave the way for future hardware based designs targeted for line-rate middleware applications and other event processing systems.

1.3 Contributions

We draw our vision as an FPGA-based middleware supporting line-rate processing of data streams (events) over a collections of patterns (subscriptions). As a first step towards line-rate FPGA-based middleware, we make the following contributions.

1. We lay out our vision towards achieving line-rate middleware through reconfigurable hardware—FPGA (cf. Sec. 2.3.3).

2. We introduce a novel hardware design that focuses on increasing the level of parallelism through horizontal data partitioning while leveraging the on-chip memory with direct memory-to-processor interface (cf. Sec. 4.2).

3. We propose a novel hardware design that minimizes overall chip idleness, adapts as subscriptions workload changes, and enables subscriptions updates. The key intuitions governing this design are flexible and dynamic memory-to-processor interface to equate the memory and processing bandwidth and de-coupling of memory and matching units (custom processors) to adapt as subscription workload changes (cf. Sec. 4.3).
4. We develop a novel pure-hardware design (with no on-chip memory) that encodes the subscriptions directly onto the hardware to reach the maximum level of throughput (for a static subscription set), i.e., achieving the highest level of parallelism in our design space, and supports subscriptions consisting of arbitrary Boolean expression; moreover, its novel encoding reduces resource usage, essentially, gives rise to an effective compression technique that enables scaling to a large number of subscriptions (cf. Sec. 5.1).

5. We present a comprehensive evaluation to explore our design space for various workload statistics and in-depth study of FPGA on-chip resource-usage and energy consumption (cf. Sec. 6).

Our contributions leverage the ability of an FPGA to be re-configured on-demand into a custom hardware circuit with a high degree of parallelism, which is the key advantage over commodity CPUs for data and event processing in middleware. Using a powerful multi-core CPU system does not necessarily increase processing rate (Amdahl’s Law) as it increases inter-processor signalling and message passing overhead, often requiring complex concurrency management techniques at the program and OS level. In contrast, FPGAs allow us to get around these limitations due to their intrinsic highly inter-connected architecture and the ability to create custom logic on the fly to perform parallel tasks. In our design, we exploit parallelism, owing to the nature of the matching algorithm, by creating multiple matching units which work in parallel with multi-giga bit throughput rates, and we utilize reconfigurability by seamlessly adapting relevant components as subscriptions evolve. Another benefit of an FPGA-based solution is that there are multiple high bandwidth (giga-bit) I/O pins that allow these devices to be inserted into the high data-rate streams without added latency on the outgoing traffic. In modern server systems, however, there is the additional OS layer latency overhead in moving data between input and output ports. Finally, PCs suffer from the Von Neumann bottleneck (i.e., discrepancy of CPU speed and memory bandwidth). Current memory
interfaces are significantly slower compared to the rate of data being utilized by the processors. Hence, until innovations such as optically-coupled-memories and optical interconnect fabric technology become available \[10\] memory access latency must also be considered while designing FPGA-based hardware solutions. We also address this issue in two ways: using our dynamic memory-to-processor interface to balance the processing and memory bandwidth and in our pure-hardware design to completely eliminate memory and processing bandwidth mismatch.

1.4 Thesis Structure

The remaining chapters of this thesis are organized as follows: Chapter 2 provides the necessary background about the basic internal components of an FPGA, overview of the design flow methodology and target applications that are relevant to this work. Chapter 3 summarizes relevant work in the area of fpga-based matching including regular expression based matching. We also introduce the data processing model, data structure and the matching algorithm employed for all our hardware based designs, followed by outlining our hardware design model. We begin the description of our proposed On-chip Memory-based architecture in Chapter 4 where we also discuss particular trade-offs exhibited by each of the designs implemented based on this architecture and finally provide a step-wise description of how the design runs in reality. Above structure is again repeated in Chapter 5 where we now discuss about our Hardware Encoded Data-based architecture. In Chapter 6 we evaluate all the designs against various design metrics and measurement data. Towards the end of this chapter a summary of the results (c.f.Section 6.7) is included to highlight some of the key findings from the data presented in previous sections of the chapter. Finally, we conclude our work and outline future research directions in Chapter 7. Additional implementation details regarding the Dynamic Connect design is also provided in Appendix A.
Chapter 2

Background

Field Programmable Gate Arrays bring to realization a platform for developers to prototype and implement any system conceivable with ever shorter development time. In contrast, the predominant Application Specific Integrated Circuit (ASIC) design involves elaborate design steps and expensive fabrication processes; thus, making it impossible to customize the ASIC after it is fabricated and shipped to the client. FPGAs are reprogrammable devices and can be updated in a few seconds to meet the new requirements as it evolves over time. Currently, FPGAs for designers are increasingly becoming a viable alternative for accelerating software applications by designing custom accelerators to surgically exploit higher level of parallelism that is inherent in the algorithm but is otherwise inhibited to achieve even when ran on a high-end commodity multi-core CPU system. Thus, the key crowning advantages of a FPGA based design are re-programmability, parallelism and shorter development cycle.

2.1 FPGA - The Internals

FPGAs contain a matrix of interconnected discrete Static RAM cells (cf. Fig. 2.1) which can realize any boolean function (few vendors utilize FLASH based non-volatile memory cells for FPGAs that require retaining the configuration while power is switched off).
Figure 2.1: Fundamental Internal Components of a FPGA. An example of a 2-input LUT is shown to implement an XOR gate. An LUT comprises of a memory cell and a multiplexer to select each of its address location. Each SLICE contains 4 6-input LUT and a DFF pair each with a by-pass MUX. CLBs are interconnected to the FPGA Interconnection Matrix via cross-point switches toggled by the design bitstream.

Each memory cell, called the Look-Up-Table (LUT), is essentially implemented as a 2^N bit array where, N is number of address lines for the LUT. Each LUT is capable of implementing an N-input, 1-bit output boolean function (circuit) by saving all circuit output valuations for each N-input combination. Therefore, a LUT is an incarnate of a truth-table constituting the most fundamental block of the FPGA fabric. A D-type Flip-Flop (DFF) register selectable via a 2-1 multiplexer, is present at the output of each LUT to either realize a combinational (asynchronous) circuit by by-passing the DFF or a sequential circuit by selecting DFF to latch the output result every clock cycle. Lower gate delay and higher logic density are the two major advantages of a LUT based architecture compared to that offered by other families of CPLDs (Complex Programmable Logic Devices), since the gate delay associated with a LUT based N-input combinational circuit
is equal to the latency for a single look-up into the LUT. Next higher level in the hierarchy of the FPGA internal blocks, is a SLICE that contain 4 6-input LUTs, 4 DFFs with additional routing logic to connect with neighbouring SLICEs. Some SLICE (dedicated for digital signal processing) DSP, contain discrete multipliers and shift-register blocks. Moving further up the hierarchy, we encounter a Configurable Logic Block (CLB) that contains 4 SLICEs with horizontal and vertical routing resources that enable each CLB to interface with neighbouring CLBs or to by-pass signals unaffected through to other CLBs. Fast cross-point switches make/break interconnections between CLBs and high speed IOBs (I/O blocks) with intended signal processors via the on-chip interconnection matrix. The cross-point switches are individually toggled when the FPGA is configured by downloading the configuration bitstream containing the final compiled design.

FPGA also offers two on-chip memory options: Block RAM (BRAM) and Distributed RAM. BRAMs are discrete dual-ported single-cycle access latency on-chip memories that offer several kilobits of storage. These can either be initialized with data at configuration time or be internally updated at run time. Block RAM in Xilinx Vertex 5 family of FPGAs are available as $36Kb \times 1$ discrete blocks but each can be used as two independent $18Kb \times 1$ blocks. Moreover, several BRAM blocks can be tied together to create wide ported memories, without paying any fan-out penalty. Distributed RAM is realized by configuring several LUT based cells to act as memory. Distributed RAM is expensive and is generally discouraged, as it reduces the logic real estate available on the FPGA and incurs higher signal routing cost.

2.2 FPGA - Design Steps

Design entry usually starts with the description of the digital circuit using a high level Hardware Description Language (HDL) such as Verilog, VHDL or SystemVerilog (cf. SLICE is a Xilinx specific terminology.)
Fig. 2.2: FPGA CAD Flow

Fig. 2.2: These allow users to specify the circuit behaviourally using traditional C++ style keywords for condition, loop and data type specification. In addition to this HDL also includes special expressions to express concurrency and timing specific behaviour between various processes. A more direct form of design description using gate level constructs is also supported by the HDL. Once the design description has been completed a synthesis tool is used to convert the circuit description into a netlist file which contains circuit implementation consisting of gate instances and connections (nets) between them. A netlist is platform independent and does not include any user specified timing constraints. Once the netlist has been generated it needs to be customized for implementation on a specific target technology. This step is called, Design Mapping (cf. Fig. 2.2) and is carried out by vendor specific tool suites that replace generic netlist gate instances with appropriate gate instances from a hardware library that meet user specified timing, energy and device space constraints. Design Mapped output is in vendor specific circuit format and is targeted to run on a particular FPGA technology.

Finally, a Place & Route (PAR) tool maps the timing critical design components to the appropriate sections of the FPGA and optimizes on-chip signal routes; both of these steps significantly impact the over all maximum clock frequency the design can be safely run at without causing timing violations and other erratic behaviour. Of course the designer, cognizant of the underlying FPGA architecture, can always vary the initial
design description to take advantage of the special features of the physical hardware and reduce signal routing cost to potentially speed up the design operation. Generally, signal routing cost goes up as more nets carrying frequently changing states (especially clocks) must be routed along longer paths across the chip fabric introducing race conditions and signal skews. Moreover, the designer may often be forced to trade-off simpler design complexity utilizing slower wide-width data bus for a high bandwidth serial link utilizing dedicated SERDES (serializer/deserializer) IP blocks. The final PAR design is compiled and encoded into a bitstream file that is used to configure the FPGA. Bitstream can either be downloaded to the FPGA via the JTAG port using the boundary scan protocol or be stored on an on-board FLASH memory to configure the FPGA every time upon power-up.

2.3 FPGA - Employed for Acceleration

There are two primary schemes by which FPGAs may be employed to accelerate software application. First most common scheme is to use a hybrid computing model that uses heterogeneous computing platforms (e.g., Supercomputer Cray XD1, Intel Stellarton) featuring an array of FPGAs instantiated on the motherboard as additional computational units along side mainstream multi-core CPUs. These FPGAs can either be programmed with an application specific accelerator (co-processor) design that helps to off-load certain computation intensive task from the main CPU or may even be programmed with a standard x86 architecture processors to execute segments of application code in parallel. The current challenge is with the software application and OS developers to generate code that is well partitioned to take advantage of these hybrid processing elements in real-time. FPGAs have high-bandwidth interface pins (IOBs) that enable them to be seamlessly integrated with the rest of the system using standard digital interface standards (e.g Ethernet, PCIe, USB, SATA, FSB (Front side bus)). Second scheme, is a
non-conventional computation model that is currently an active area of research, is to develop dedicated stand-alone hardware system solutions. The challenge associated with this approach is to come up with a clean-slate architecture for running a specific application at extremely high rates. We investigate the latter scheme by proposing two processing models for achieving line-rate processing of middleware applications.

2.4 Target Application

We choose a real-world middleware application of a content based router (CBR) operating in the context of automated financial trading environment as the target candidate to achieve line-rate processing via FPGA-based acceleration. A CBR is an event processing platform which forwards events (publications) to interested parties (subscribers) based on whether the subscriber has expressed interest in that event by subscribing to it. This is an important element of content-based routing.

An example application of a CBR in algorithmic trading, where financial news and market data are expressed as publications such as: \([stock = ABX, \; TSX_{ask} = 40.04, \; NYSE_{ask} = 40.05]\); and investment strategies are formulated by financial institutions and brokers in the form of subscriptions such as: \([stock = ABX, \; TSX_{ask} \neq NYSE_{ask}]\) or \([stock = ABX, \; TSX_{ask} \leq 40.04]\). A scalable CBR operating at line-rate must efficiently find all investment strategies (subscriptions) that match incoming market events faster than network rates (1Gb/s), supporting up to a million market events per second \[34\]. Our proposed dedicated FPGA-based solution achieves (1.06Gb/s) raw processing rates while processing 8 million (8.33Mmps) events per second throughput \[2\] without incurring the complexities, resource overheads, memory coherence issues involved in designing a similar system in software running on a muti-processor system.

\[\text{2Value quoted for Hardware Encoded design operating at 125Mhz. As shown in Figure 6.15 and 6.14}\]
Chapter 3

Related Work

3.1 FPGA

An FPGA is a semiconductor device with programmable lookup-tables (LUTs) that are used to implement truth tables for logic circuits with a small number of inputs (on the order of 4 to 6 typically). FPGAs may also contain memory in the form of flip-flops and block RAMs (BRAMs), which are small memories (a few kilobits), that together provide small storage capacity but a large bandwidth for circuits in the FPGA. Thousands of these building blocks are connected with a programmable interconnect to implement larger-scale circuits.

Past work has shown that FPGAs are a viable solution for building custom accelerated components [16, 18, 29, 17, 19, 32, 20, 24, 28, 35, 36]. For instance, [16] demonstrates a design for accelerated XML processing, and [17] shows an FPGA solution for processing market feed data. As opposed to these approaches, our work concentrates on supporting a FPGA-based middleware for general event processing applications specifically designed to accelerate the event matching computation. Similarly, [19] presents a database query processing framework that uses FPGAs to efficiently run hardware-encoded queries while in [32], demonstrated running hardware-encoded regular expression queries; the key in-
sight was the realization that the deterministic finite automata (DFA), although suitable for software solutions, results in explosion of space; thereby, to bound the required space on the FPGA, a non-deterministic finite automata (NFA) is utilized in [35], [36]. Our approach differs from [19], [32] as we primarily focus on developing FPGA-based middleware (as opposed to running a database query on hardware) for large scale event processing applications that scales to thousands of subscriptions on a single FPGA chip, while stacking multiple FPGA chips enables the scaling to millions of subscriptions.

On a different front, a recent body of work has emerged that investigates the use of new hardware architectures for data management systems [11]; for instance, multi-core architectures were utilized to improve the performance of database storage manager [13] and to enhance the transaction and query processing [21].

Finally, the sketch of our initial experience with FPGA-based event processing was presented in [24], [25]; however, our current work aims to address a boarder vision that aims at developing a generic FPGA-based middleware solution designed for wide range of event processing applications. Toward this end, this work introduces two novel categories of chip designs: (1) the on-chip memory design that with the use of novel memory-to-processor interface minimizes the chip idleness, which was the main shortcoming in designs developed in [24], [25], and that by decoupling the memory and matching units adapts to changes in subscriptions workload, which was also lacked in [24], [25], and (2) pure-hardware design solution that encodes the subscriptions directly onto the hardware to reach the maximum level of throughput for subscription workload that are orders of magnitude larger that those supported in [24], [25], and also supports subscriptions having arbitrary Boolean expression which again was not supported in [24], [25]. Another major contribution of this work is an extensive experimental evaluation for various workload statistics and in-depth study of FPGA on-chip resource-usage and energy and power consumptions, which were not addressed in the prior work [24], [25].
3.2 Matching

The matching is one of the main computation intensive components of event processing which has been well studied over the past decade (e.g., [1, 3, 5, 6, 8, 22, 23]). In general, the matching algorithms are classified as (1) counting-based [6, 31], and (2) tree-based [1, 23]. The counting algorithm is based on the observation that subscriptions tend to share many common predicates; thus, the counting method minimizes the number of predicate evaluations by constructing an inverted index over all unique predicates. Similarly, the tree-based methods are designed to reduce predicate evaluations; in addition, they recursively cut through space and eliminate subscriptions on the first encounter with an unsatisfiable predicate. The counting- and tree-based approaches can be further classified as either key-based (in which for each subscription a set of predicates are chosen as identifiers [6]), or as non-key method [1]. In general, the key-based methods reduce memory access, improve memory locality, and increase parallelism, which are essentials for a hardware implementation. One of the most prominent counting-based matching algorithms are Propagation [6], a key-based method while one of the most prominent tree-based approach, BE-Tree, which is also a key-based method [23].

3.3 FPGA-based Middleware Architecture

Data processing and hardware design models are the key cornerstones of our implemented FPGA-based system as they govern system functionality and performance requirements.

3.3.1 Data Processing Model

Subscription Language & Semantics The matching algorithm takes as input an event (e.g., market event, stock feed, user profile) and a set of subscriptions (e.g., investment strategies, targeted advertisement constraints) and returns matching events. The event is modeled as a value assignment to attributes and the subscription is modeled as a
Boolean expression. Each Boolean predicate is a triple, i.e., \([\text{attribute}, \text{operator}, \text{values}]\). Formally, the matching problem is defined as follows: given an event \(e\) and a set of subscriptions, find all subscriptions \(s\) satisfied by \(e\).

Matching Algorithm The Propagation algorithm is a state-of-the-art key-based counting method that operates as follows [6]. The Propagation data structure has three main strengths which makes it an ideal candidate for a hardware-based implementation: (1) subscriptions are distributed into a set of disjoint clusters which enables highly parallelizable event matching through many specialized hardware matching units, (2) within each cluster, subscriptions are stored as contiguous blocks of memory which enables fast sequential access and improves memory locality, and (3) the subscriptions are arranged according to their number of predicates which enables prefetching and reduces memory accesses and cache misses [6].

3.3.2 Hardware Design Model

A high-level classification of our proposed architectures is best represented by the following two abstract hardware design models: (I) *On-chip Memory* based design (II) *Hardware Encoded Data* design. Each of the two design abstractions offer trade-off between performance (i.e., end-to-end processing time, maximum clock frequency supported and degree of parallelism exploited) versus system scalability (i.e., utilization of hardware resources) for a given subscription workload. In what follows, we provide in-depth description and analysis of the various FPGA designs that we have proposed.
Chapter 4

On-Chip Memory-based Architecture Model

In this section we present two novel architecture models which enable creation of designs that utilize on-chip memory resources to perform Publish/Subscribe matching in a highly parallelized fashion.

4.1 On-Chip Memory-based Designs

The On-chip Memory-based design abstraction, models the architectures that store subscription workload data on fast (single-cycle access latency) on-chip (BRAM) memories that are distributed across the FPGA chip (Sec. 2.1). The distributed nature of these memories lends itself to circumventing the Von-Neumann memory bottleneck by utilizing dedicated high bandwidth memory-to-processing unit interconnect. Von-Neumann memory bottleneck is most common in chip-multi-processor architectures, where fast parallel processing units are coupled with large capacity memories via shared address/data buses, which ultimately undermine the performance by forcing the processing units to stall for several clock cycles while data is fetched. Using multiple off-chip (DRAM) memories via dedicated interfaces is certainly an alternative to match processing bandwidth with
equal memory bandwidth, however one must be aware of the multi-cycle access latencies associated with them, which requires the need to use faster on-chip cache or data transfer buffers. Demand for large capacity memories by typical data centric applications have usually neglected the potential of utilizing the fast high bandwidth on-chip memories due to the limited capacities offered by the current state-of-the-art. However, trends predict on-chip memory capacities to grow much faster than the meager reduction of, already plateauing, access latencies for off-chip memories. Furthermore, many high speed applications rely on a very limited and relatively static mission critical data, which is ideal for a On-Chip Memory-based design implementation. Motivated by the above observations we adopt On-Chip Memory design abstraction as our design basis to implement and evaluate the Direct Connect (i.e., direct memory-to-processor interface) and the Dynamic Connect (i.e., dynamic memory-to-processor interface), shown in Fig. 4.1 and Fig. 4.4 respectively, architectures. These two architectures highlight two distinct approaches of coupling several parallel processing units with distributed on-chip memories.
4.2 Direct Connect - Architecture Overview

Figure 4.1: On-Chip Memory design model based Direct Connect architecture. Processing bandwidth is wasted due to idling of matching units due to variation in the distribution of subscription workload data set across each BRAM table (e.g. at time step t_2 and t_3).

Why use Direct Connect memory model?

Direct Connect architecture (Fig. 4.1) features an On-chip memory-based design in which every subscription matching unit (MU) is directly coupled with a dedicated BRAM block (subscription table), thereby allowing every MU to operate in parallel and in-synch with each other. The are two key benefits for a Direct Connect architecture. First, this architecture fully utilizes the available distributed on-chip (BRAM) memory resources by partitioning and uniformly distributing the global Propagation algorithm’s data structure across each BRAM associated with a matching unit (MU). The Direct Connect then allows each MU an exclusive access to a chunk of the global Propagation algorithm’s data structure residing in its dedicated BRAM. Therefore, the degree of parallelism is a direct function of the degree of horizontal data partitioning (specified as a parameter during the design synthesis stage) and is limited ultimately by the number of MUs that can be physically supported by available hardware resources of the underlying FPGA chip. Secondly, the Direct Connect interface between the MUs and dedicated BRAM units avoids complicated arbitration and hand-shaking logic that is otherwise required with
Despite, the ease with which the Direct Connect architecture based designs can be scaled to higher degree of parallelism, they’re quite sensitive to the distribution of workload across all the BRAM tables. Therefore, we ensure that each BRAM table contains an equally sized subset of every subscription cluster. Otherwise, an uneven distribution of subscription cluster data will cause some MUs to exhaust their data sooner and remain idle before the rest have completed matching, thus nullifying the overall gain of having scaled up to the design containing more MUs (higher degree of parallelism) - idling MUs represent waste of available processing bandwidth. This scenario is depicted in Fig. 4.1 where at time step $t1$ all MUs are utilized since each BRAM has sufficient subscription data. However, at time step $t2$ BRAM3 and BRAM4 have no more valid data to supply to MU3 and MU4 respectively, thus causing these to idle which is equivalent to a 50% reduction in the degree of parallelism.

4.2.1 On-Chip Cluster Access

![Figure 4.2: On-Chip Cluster Organization and Access Strategy](image)

A performance limiting component in the On-Chip Memory-based Designs is the system that controls access to the on-chip subscription data store. Figure 4.2 depicts the steps involved in order to access/fetch the clusters containing subscriptions that need to be matched against a given Pub event. Upon arrival of a Pub event (cf. step (1) in Fig. 4.2) containing attribute-value pairs (e.g P1 P2..Pn), each attribute-value pair is independently hashed to generate a cluster index vector (2) that is used to look-up
(3) the cluster address from the *Index Table*. The cluster *Index Table* is precomputed before the design compilation/synthesis is done and stores the physical address of every cluster that may reside in one or many distributed on-chip memories (cluster distribution is design dependent). Large size of the index table makes it impractical to duplicate the table to allow parallel look-up for each *cluster index vectors*. Therefore, in the current implementation, access to the *Index Table* table has been pipelined with the hash function evaluation step in order to minimize the cluster access serialization latency.

We’ve explored two of several possible schemes of distributing clusters (subscription data) across multiple on-chip BRAM memory tables. The *Direct Connect* designs use even distribution of each cluster across all BRAM memory tables and padding memory tables with null subscription in case when cluster size (number of subscriptions) is not completely divisible by the number of memory tables. On the other-hand *Dynamic Connect* design allocate each cluster in one BRAM memory table entirely (cluster data is not distributed).

4.2.2 Direct Connect - Step-wise Operation

Figure 4.3: Currently Implemented Direct Connect design. The step-wise operation of design is marked by indexed circles.
A high-level description of the stepwise operation of our Direct Connect architecture is depicted in Fig. 4.3. Upon arrival of an event as an UDP packet, the Ethernet controller and packet parser module (EMAC) stripes and transfers (1) the packet payload (event) to the input queue of the system. A custom hardware sub-module, Dispatcher unit, extracts event attribute-value pairs as input to hash functions for generating cluster indexes (cf. Section 4.2.1 for description of cluster address look-up steps). Cluster indexes are used to look-up BRAM cluster start addresses (2) of the relevant subscription clusters residing in each BRAMs. The Dispatcher then inserts all cluster start addresses (3) into the cluster address queue, while pops one cluster start address to be fed (4) to all BRAM-based matching units (BMUs) via the MU Data Bus (common to all BMUs). Next, all parallel BMUs are signalled to initiate matching (5). Every BMU consists of a four state Finite State Machine (FSM), that performs matching by sequentially fetching one subscriptions every clock cycle from the dedicated BRAM memory. Since all BMUs are run in parallel and in sync with each other, the Dispatcher must dispense (4) the next cluster start address only when all BMUs have completed matching all subscriptions in the current cluster. The BMUs stop once they receive a cluster end marker from each BRAMs. In the final phase (6), once all BMUs finish matching the subscriptions’ in every cluster accessed by each attribute-value pair of the event, the final result tallying phase is initiated. In this phase the match results (6) (subscriptions or number of match found) are placed on the match hit vector and consolidated as a final result value by the Dispatcher unit followed by inserting it into the result output queue. The final result (7) is then transferred to the EMAC via the output queue. Lastly, the EMAC assembles and transmits the UDP result packet to the intended host(s).

4.2.3 Direct Connect - Design Trade-offs

The Good.

The Direct Connect architecture benefits from its embarrassingly parallel and simple
design that supports up to hundreds of matching units by horizontally partitioning the data. This high level parallelism directly translates to boosting system performance; thus, making it a competitive solution.

The bad and the ugly. There are two performance limiting concerns (besides the obvious available hardware resource constraint), that emerge as a trade off for the high degree of parallelism that is offered by the *Direct Connect* architecture. Namely, first the performance of the design (Fig. 4.1) is quite sensitive to the distribution of subscription data across dedicated BRAM for a particular BMU. Secondly, in order to realize a high degree of parallelism while keeping the system complexity low, all BMUs are operated in parallel and in sync with each other (lack of pipelining) which translates in all events being processed sequentially at high rates.

Furthermore, the process of aggregating match results from all BMUs turns out to be a bottleneck. As all the BMUs must be stalled for the result tallying phase to complete, which otherwise cannot commence earlier and/or operate in a progressive fashion owing to the consequences of the first reason (as all BMUs must complete the event matching phase before results can be tallied.) Therefore, to maximize event processing throughputs via increase in parallelism in *Direct Connect* architecture, the subscription data clusters are required to be distributed evenly across each BMU. The later requirement is also made clear via an example shown in Fig. 4.1 where at time step t_1 all BRAMs are able to supply data to each MU. However, at time steps t_2 and t_3 due to change in subscription distribution in BRAM3 and BRAM4, they are not able to supply MU3 and MU4 any more data. This causes the matching units to idle thus resulting in wasted processing bandwidth and lowering the level of parallelism.

Moreover, in consideration of adding the future support of being able to update subscription workload during run-time, the *Direct Connect* architecture offers a trade-off between the adjustable level of parallelism versus the cost of supporting updates to the subscription workload at run-time. Therefore, due to the even distribution of global data
structure across all BRAMs, it necessitates updating the entire system (all BRAMs) even if the update concerns a small data set local to a single BRAM. If the system update is done in parallel (updating all BRAMs concurrently), then the cost entails added hardware cost of dedicated data/address buses for each BRAM, but if the update is done sequentially via shared address/data buses, then the cost entails a slower update cycle and added hardware cost of additional address decode logic for each BRAM. (Note - current scope of evaluation does not cover subscription update trade-off as mentioned above.)

Lastly, another trade-off is the even distribution of global data structure across all BRAMs in the Direct Connect architecture does not bode well for efficient utilization of on-chip memory space due to the required padding of the cluster data with null subscriptions, done to preserve constant address offsets for each cluster segment stored in every BRAM table - i.e. the cluster occupancy (size) in all BRAM tables is kept constant such that all cluster segments begin at the same address in every BRAM table.

4.3 Dynamic Connect - Architecture Overview

Why use Dynamic Connect memory model?

Design level abstraction that formed the seed for the initial concept of an architecture that guarantees best effort to maximally utilize processing bandwidth, represented by number of matching units in the system against the available memory output bandwidth, represented by amount of valid data retrieved by a memory unit per cycle. In the previous Direct Connect design (cf. Fig. 4.1) each BMU is coupled directly to a dedicated cluster BRAM unit containing a subset of subscriptions from every cluster. Even, though this is a highly parallel model for matching, it renders a couple of matching units useless once the dedicated BRAMs have exhausted the data to supply from a given cluster, i.e., all MUs must wait until a cluster is completely processed (serializing cluster processing).
Figure 4.4: On-Chip Memory design model based Dynamic Connect design. Each MU is decoupled from the BRAM units. The cross-bar based interconnect dynamically matches available memory bandwidth with processing bandwidth. At time step t_1 all $VbMc$ are requested to output 1 (1x bandwidth) subscription per cycle. However, at time step t_2 $VbMc1$ and $VbMc2$ are requested to operate at 2x bandwidth and the cross-bar routes additional two subscriptions to MU3 and MU4, thereby keeping all MUs supplied with data.

In contrast, the Dynamic Connect architecture (cf. Fig. 4.4) decouples the BRAM units from each MUs via a dedicated ($M \times P$) inputs to 1 output) cross-bar ($Xbar$) switch based interconnect (shown combined as a monolithic $Xbar$ unit in Fig. 4.4). The $Xbar$ allows dynamic routing of subscription data by dynamically connecting any memory output port from any memory to a matching unit (MU). Moreover, each BRAM is replaced by a Variable bandwidth Memory controller ($VbMc$) unit which is a custom wrapper design built around a conventional BRAM to realize a multi-ported memory with tunable output burst length (set by the Bandwidth Request BWr input) during the runtime (cf. Appendix A for further design details). The $VbMc$ is used to store clusters in their entirety (i.e. subscription distribution no longer needs to be consistent across multiple BRAMs in the system) which lends itself to each cluster being processed independently.
in parallel with other clusters, which is limited only by the processing bandwidth or the number of matching units available in the system. Even in the worst case, if all clusters that need to be processed happen to be stored on one \(VbMc \) (or BRAM unit), the underlying \(Xbar \) interconnect is capable of supplying all MUs with subscription data from the one \(VbMc \) unit that is signaled to operate at maximum output bandwidth (i.e. \(VbMc \) \(BWr \) input is set to \(4 \times \)) in Fig. 4.4 to output a new subscription on each of its 4 output ports every clock cycle. Hence, each cluster is accessed sequentially but always processed in parallel; thus, none of the MUs are left to idle.

In Fig. 4.4, dynamic routing is exemplified in contrast to the operation seen in the \textit{Direct Connect} architecture (cf. Fig. 4.1). At time step \(t1 \) all \(VbMc \) are operated to output one subscription per cycle (\(1 \times BWr \)) as each has sufficient data. However, at time step \(t2 \) when \(VbMc3 \) and \(VbMc4 \) run out of subscription data, in order to avoid idling of MU3 and MU4, the \(VbMc1 \) and \(VbMc2 \) are requested to read 2 subscriptions per cycle (\(2 \times BWr \)) which results in subscription\# 3 being routed to MU3 and MU4 via the \(Xbar \) - thus the memory output bandwidth is scaled-up to match the processing bandwidth in-order to compensate for the change in workload distribution.

4.3.1 \textit{Dynamic Connect} - Step-wise Operation

A high-level description of the stepwise operation of our \textit{Dynamic Connect} architecture is depicted in Fig. 4.5. Upon arrival of an event as an UDP packet, the Ethernet controller and packet parser module (\textit{EMAC}) transfers (1) the packet payload (event) into the input queue. Appropriate cluster start address is found and loaded (2) into the \(VbMc \) units containing those clusters (cf. Section 4.2.1 for description of cluster address look-up steps). Initially each \(VbMc \) starts at \(1 \times \) bandwidth setting and all cross-bar connect all MUs to the first port of each \(VbMc \). On subsequent cycles the \(VbMc \) \textit{BW Controller}, the design runs under the feed-back control loop. The control loop begins with \(VbMc \) \textit{and Xbar Controller} sampling (3) the bandwidth values (\(BWavl \)) currently begin reported
Figure 4.5: Currently Implemented 4xDynamic Connect design

by each VbMc unit, followed by generating (4) the values of the bandwidth requested (BWreq) in response to the values for each VbMC unit, while the crossbar control signals are given (5) an additional one cycle to settle, followed by workload data being routed to the appropriate MUs, finally MUs assert their Acks to VbMc and Xbar Controller, thus completing the feedback loop. The system stops when all VbMcs units have exhausted data or run to the end of the clusters, this is followed by final results being tallied (6) and transferred to the EMAC via the output queue. Lastly, the EMAC assembles and transmits the UDP result packet to the intended host(s).

4.3.2 Dynamic Connect - Design Trade-offs

The Good.

The key feature of the Dynamic Connect architecture is a cross-bar based intercon-
nection scheme between the on-chip subscription (workload) data stores (Block RAMs) and the MUs (matching units) while supporting dynamic distribution of workload across all the MUs, to keep them evenly supplied with data (*with best effort*).

As a result the degree of parallelism is retained by dynamically matching the available processing bandwidth (MUs) against the available memory output bandwidth every clock cycle; thereby, achieving much finer grained parallelism compared to Direct Connect architecture. Furthermore, Dynamic Connect architecture makes the design least sensitive to the distribution of workload across the on-chip memories.

In addition, as cluster access adds to the overall processing latency, Dynamic Connect design attempts to minimize this overhead by: (1) storing each cluster on a on-chip BRAM memory entirely as opposed to distributing its data over multiple BRAMs. This allows each MU to access subscriptions from a cluster independently and simultaneously of other MUs as soon as the cluster address is obtained. In contrast, if a single cluster is distributed across multiple BRAMs (as is in the case of Direct Connect designs), then all BRAM memory tables will be busy serving subscription from a cluster to all MUs at a time while other MUs have to wait for the BRAMs to free up before the next cluster can be accessed - serializing cluster access. (2) by decoupling the BRAM memory tables from the MUs, allows easy swapping of BRAM clusters that have been processed completely with other BRAM clusters that are yet to be processed. Moreover, cluster data in BRAM does not need to be padded with null subscriptions as each $VbMc$ (BRAM) stores the cluster in its entirety, resulting in a greater efficiency of on-chip memory usage in contrast to what is possible in the Direct Connect architecture. The outcome of adopting the crossbar based interconnect (cf. Fig. 4.4) is the natural realization of the above two desirable features.

Lastly, aggregation of final match results from all matching units is no longer a bottleneck since it can easily be pipelined to run in a progressive fashion as each matching unit is sequentially stalled to extract accumulated results while other matching units
continue to run, in contrast with Direct Connect architecture, where all BMUs must be run in synch and cannot not be stalled independently.

The bad and the ugly. The advantages of the Dynamic Connect architecture comes at the expense of increased design complexity and higher hardware resource utilization owing to the additional logic required to implement the cross-bar switch, Variable bandwidth Memory controller (VbMC) and cross-bar/VbMC feed-back loop controller. This design is also more expensive to scale up to support more matching units in comparison to Direct Connect architecture as a result of the exponential increase in size of the cross-bar control table with respect to the number of matching units in the design. Therefore, loss in performance of the Dynamic Connect architecture is attributed to the added latency incurred as a result of the inter-module synchronization penalty paid along the BWreq feedback control loop.
Chapter 5

Hardware Encoded Data-based Architecture Model

In this section we present a novel architecture model that encodes subscription data in FPGA fabric as circuits to achieve unprecedented level of parallelism while performing Publish/Subscribe matching.

5.1 Hardware Encoded Data design

The *Hardware Encoded Data* based design model features an architecture that directly encodes subscription data into the FPGA fabric as combinational circuits. This design is a purely hardware solution and attains the highest degree of parallelism possible on the FPGA platform to match all subscriptions concurrently in one clock cycle. Nevertheless, at the core of this data processing model lies few key challenges such as finding efficient data encoders and fast compression and decompression techniques that are ideal for hardware implementation and finding the optimal encoding scheme that achieves highest spatial efficiency which ultimately impacts signal routing costs, system operating frequency, and power consumption of the FPGA platform. Towards this end, we implement and evaluate the *Index Encoded* architecture, that utilizes bit vector index based encod-
ing to maximize the number of subscriptions that can be supported at a time which also paves the way for supporting subscriptions defined over arbitrary Boolean expressions.

5.2 *Index Encoded* - Architecture Overview

The *Index Encoded* architecture (cf. Fig. 5.1) is built by a compiler that takes as input a subscription workload and generates two HDL modules: *Predicate Detector Array* and *Hardware Encoded Sub Array*. The *Predicate Detector* module is generated by first, creating an index hash map of all unique predicates (attribute, value and operator) found across subscriptions in the workload. The predicate hash map assigns each predicate a unique index value ranging from $0 \cdots P - 1$ where P is the total number of unique predicates discovered by the compiler. Next, the compiler instantiates *Predicate Evaluator (PE)* module to detect and evaluate each predicate inserted into the hash map. Output of each PE module indicates whether a particular predicate is satisfied by the attribute and value pairs present in the event. Finally, the outputs of each PE module is latched by corresponding 1-bit registers whose outputs drive the P_i bit to *Predicate Evaluation (PEVAL) vector*. Each bit index of the PEVAL bit vector corresponds to index in the hash map that is associated with a particular predicate detected and evaluated by a PE module. Encoding of the actual subscription workload is captured in the *Hardware Encoded Sub. Array* module. In order to generate this module, the compiler generates HDL code for the combinatoric logic that represents the logical relation between the predicates of each subscription; this logical relation can be of any arbitrary Boolean expression. Next, the compiler replaces each predicate reference with the corresponding bit value indexed into the PEVAL bit vector. Therefore, the final index encoded subscription is essentially a combinatorial circuit, in which each of its inputs represents a predicate evaluation bit value, and the output represents the result of subscription logic evaluation.
5.2.1 *Index Encoded* - Design Trade-offs

Line-rate processing is the prominent advantage of the *Hardware Encoded Data*-based design through its embarrassingly parallel structure for static subscription set. The *Index Encoded* architecture takes advantage of the fact that there are a relatively small set of distinct predicates that constitute all subscriptions due the overlap among the subscription set. Therefore, evaluating all the predicates from this finite set prior to subscription evaluation avoids having to duplicate hardware resources for re-evaluating the predicates for each subscription multiple times.
Chapter 5. *Hardware Encoded Data-based Architecture Model*

5.2.2 *Index Encoded* - Step-wise Operation

The *Index Encoded* architecture operates in two stages (Fig.5.1). In the predicate evaluation stage, upon the arrival of an event (1), each of its attribute value pairs (each demultiplexed on separate lines by the *Event Splitter*) are sequentially fed via input multiplexers to the *Predicate Evaluator (PE)* modules for predicate evaluation. Once all attribute value pairs have been selected, the outputs of *PE* in the *Predicate Detector Array* are latched (3) to stabilize the value of the *PEVAL* bit vector that is then fed (4) to an array of circuits in the subsequent subscription evaluation stages of the operation.

![Figure 5.1: Hardware Encoded design based on Index Encoded architecture. The step-wise operation of design is marked by indexed circles.](image)

Figure 5.1: Hardware Encoded design based on Index Encoded architecture. The step-wise operation of design is marked by indexed circles.
In the second stage (4), all subscriptions that have been hard-wired to appropriate bits of the $PEVAL$ bit vector is used to generate an output flag bit from each subscription circuit. As shown in Fig[5.1] the output of each subscription is OR’d with the output of the next subscription, this is done in order to carry forward the match results to eliminate the expensive hardware cost of having to OR all the circuit outputs to generate the final result. Entire second stage consumes one clock cycle for all the subscription circuit to set their match result bit. The match results are then tallied pushed (5) into the output queue for the Ethernet controller module (EMAC) to assemble the UDP result packet to be sent to the intended host(s).
Chapter 6

Evaluation

In our evaluation, we present the comparison of various aspects of our proposed architectures built around the On-chip Memory- and Hardware Encoded Data-based design models. We study these architectures in depth to highlight the relative merits and trade-offs offered by each of these design models. Furthermore, we envision the two design models to serve as aids for the system designers to predict the hardware cost and performance gains while implementing custom hardware solutions for accelerating middleware applications using FPGAs.

6.1 Evaluation Methodology

6.1.1 Evaluation Tool and Methodology

Design verification is done using the Modelsim SE 6.6b, a HDL circuit simulator tool for performing pre-synthesis behavioural simulations and verification of the design logic. Processing latency in terms of number of clock cycles spent while processing a publication event by a design under test is initially obtained via behavioural simulations using Modelsim SE 6.6b. In simulation latency measure entails pushing 5 publication events back-to-back into the design Input Queue followed by measuring the number of clock
cycles spent until a result is pushed into the Output Queue by the design (marking the end of matching). The measured latency value set is then averaged to obtain a simulated average latency value for the design. In addition, our actual throughput measurement testbed involves a host PC running a custom script that transmits a given input stream of publication event packets over a dedicated gigabit Ethernet link to the target FPGA board that has been configured with the design under test. Each hardware design incorporates a free running count of the number of clock cycles elapsed from when each event is pushed into the Input Queue till the corresponding result is pushed into the Output Queue. Cycle count latency value is then sent back as part of the reply packet payload along with match result from the design after having processed an event. The script on the host PC stores the reply payload data in an output file for further analysis. Finally, by averaging the clock cycles spent processing each event, an average end-to-end event processing latency and event processing throughput for the architecture design under test is obtained. A Xilinx XPower Analyzer software tool is used to estimate the power consumption of each post-implemented place and routed designs. This tool is quite versatile in calculating both the Quiescent (static) and Dynamic power consumption values broken down by design hierarchy. Unlike estimating static power or stand-by power consumption, which depends on the number of transistors in the design, dynamic power estimate can only be as accurate as the activity (switching) rate information for each net or signal in the design. For the purpose of our evaluation we use XPower Analyzer’s default (50% toggle probability per-clock cycle) activity rates for each control and data net. We understand that the power consumption estimate values thus obtained will be overly conservative nevertheless these are useful in relative comparison of various designs. Lastly, for occasional instances where on-chip debugging was required, Xilinx’s ChipScope Analyzer tool was utilized.
6.1.2 Evaluation Platform

Each architecture design is evaluated on a Xilinx ML505 Vertex 5 FPGA evaluation board featuring one Xilinx Vertex 5 (XC5VLX50T) FPGA chip, 1GigE port and an on-board 200Mhz clock source. Xilinx Vertex 5 FPGA (XC5VLX50T) device is capable of operating at 550Mhz and contains four 1Gb/s hardened Ethernet Media Access Controller IP blocks (only one of which is wired to a physical RJ-45 Ethernet port on the ML505 board), 120 × 18Kb BRAM cells (on-chip memory) and 28800 6-input Look-Up-Tables (LUTs) each with a D flip-flop register.

6.1.3 Workload Description

We compare various designs with key controlled experimental conditions: workload distribution and workload size. Each subscription (a Boolean expression) in our workload consists of a set of Boolean predicates, where each predicate is presented by an attribute, operator, and values. For each workload distribution (Unif - Uniform or Zipf - Zipfian), predicate’s attribute is chosen based on either a uniform or a Zipfian distribution; while the predicates operator could be chosen from any common relational operator such as (,<,≤,=,≥,>) and the value is of type integer. On the other hand, for the event workload, each event is an attribute and value pair, in which the attribute and values are selected using the same technique as in subscription generation. For example, when generating the uniform workload, both subscription and event workloads, the attribute are chosen uniformly from a set of attributes. Finally, on average we use five predicates per subscriptions and five attribute value pairs for events.

For the purpose of implementation an 8 bit integer value is used to represent each attribute and value token (restricted between 1 to 10) used in all publication events and subscriptions, while the pub/sub ID is represented by an 16 bits value. The operator is always assumed to be equality (=) and therefore is eliminated from the subscription data
format. The following figure 6.1 shows the bit format that has been adopted to represent both publication and subscriptions in all the designs discussed in this document.

<table>
<thead>
<tr>
<th>Publication/Subscription Format</th>
<th><Val.5></th>
<th><Atrb.5></th>
<th><Val.2></th>
<th><Atrb.2></th>
<th><Val.1></th>
<th><Atrb.1></th>
<th>Pub ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit index [MSB:LSB]</td>
<td>[95:88]</td>
<td>[87:80]</td>
<td>[47:40]</td>
<td>[39:32]</td>
<td>[31:24]</td>
<td>[23:16]</td>
<td>[15:0]</td>
</tr>
</tbody>
</table>

Figure 6.1: Shows the adopted 96 bit format used to represent publication events & subscription data in all the implemented designs discussed herein.

6.1.4 Metrics

The remainder of this section is organized by the metrics that highlight the relative merits and trade-offs exhibited by each design under our two proposed *On-chip Memory* and *Hardware Encoded data*-based architectures. The metrics lay broadly categorized under *Design Feature* and *Cost*. *Design Feature* metrics include those variables that we expect to be able to tune as per clients needs - such as *Latency and Event Processing Throughput*, number of subscriptions supported (*Workload Size*) and *Subscription update rate*. *Cost* metrics include characteristics - such as *Hardware Resource* and *Power consumption* cost of the design that is being developed to meet the client needs.

6.2 Latency and Processing Throughput

6.2.1 Latency Measure

This experiment (based on the above methodology cf. Section 6.1.1) is repeated for all designs to study the effect on overall end-to-end processing latency as workload set size is swept from containing 250 to 100K subscriptions in simulation. This experiment is also performed for each scaled-up versions of *Direct Connect On-chip Memory*-based design as the number of parallel matching units (BMUs) in the design is increased from 1 MU
Chapter 6. Evaluation

Table 6.1: Simulation Results: Processing Latency (# clock cycles) vs. Workload size, when # of MUs are swept in the Direct Connect architecture for On-chip Memory-based design.

<table>
<thead>
<tr>
<th>Workload (subscriptions)</th>
<th>1× MU</th>
<th>4× MUs</th>
<th>32× MUs</th>
<th>128× MUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>75</td>
<td>55</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>1K</td>
<td>93</td>
<td>61</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>10K</td>
<td>640</td>
<td>190</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>50K</td>
<td>2235</td>
<td>599</td>
<td>123</td>
<td>73</td>
</tr>
<tr>
<td>100K</td>
<td>7146</td>
<td>1826</td>
<td>276</td>
<td>193</td>
</tr>
</tbody>
</table>

(1× parallelism) to 128 MUs (128× parallelism). Finally, each design is synthesized to generate an implementation bit stream that can be used to program the FPGA evaluation platform. Processing latency and throughput are also measured in reality by running each design on the board. In this experiment a stream of fixed size (96 bit) publications is sent from a host PC (using 64 Byte UDP frame per event) to the FPGA evaluation platform over a 1 Gbps Ethernet link. In response to each publication event the design replies back with publication event ID, match result and number of cycles spent matching the event. Finally, based on all the event replies logged by the host PC, match clock cycle count values are averaged over number of publication events sent. Actual processing latency and throughput are easily derived by using operating clock frequency of the design, network data rate and event packet size.

It is evident from Table 6.1 (cf. Fig. 6.2) that the end-to-end processing latency for the Direct Connect architecture is improved as we increase the degree of parallelism; in fact, the improvement is proportional to the number of matching units employed in the design. For instance, at 250 subscription workload, we only see a 2× improvement in the latency when scaling from 1× to 128× MUs, whereas for 50K workload, we observe approximately
Figure 6.2: Matching latency decreases with level of parallelism and increases with workload size (based on Table 6.1).

30× improvement for the same scale up in parallelism. This result highlights the key characteristic of the Direct Connect architecture, i.e., the loss in parallelism due to idling of MUs due to skewed workload combined with the ability to scale to a larger number of MUs through an effective horizontal data partitioning. This is caused by the change in distribution of workload across all BRAMs, such that when the subscription distribution is uniform (or when workload data set size is larger), the subscriptions are distributed evenly across all BRAMs, whereas when the subscription is skewed (or when the workload data set is smaller), the subscriptions are distributed unevenly across all BRAMs which causes a few matching units to be starved of workload data to process and thus remain idle. Therefore, Direct Connect architecture is sensitive to the workload distribution capable of undermining the maximum level of parallelism the system can operate at while processing the workload set.

Table 6.2: Simulation Results: Processing Latency (# clock cycles) vs. Workload size for 4× Direct Connect (repeated here again for ease of comparison) and Dynamic Connect architecture for the On-chip Memory-based design. Last column shows latency values for Hardware Encoded data-based architecture for the Index Encoded design.

<table>
<thead>
<tr>
<th>Workload Size</th>
<th>4× Direct Connect</th>
<th>4× Dynamic Connect</th>
<th>Index Encoded</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>55</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>1K</td>
<td>61</td>
<td>43</td>
<td>14</td>
</tr>
<tr>
<td>10K</td>
<td>190</td>
<td>332</td>
<td>14</td>
</tr>
<tr>
<td>50K</td>
<td>599</td>
<td>1130</td>
<td>14</td>
</tr>
<tr>
<td>100K</td>
<td>1826</td>
<td>3570</td>
<td>14</td>
</tr>
</tbody>
</table>

![Matching Latency (Clock cycles) Vs Type of Design](image)

Figure 6.3: Latency (clock cycles) comparison based on Table 6.2
A similar observation can be made from the results in Table 6.2 (cf. Fig. 6.3), in which *Dynamic Connect* architecture outperforms (exhibits lower latency) *Direct Connect* architecture especially when processing smaller workload sets (uptil 1K). This is again due to the decline in parallelism suffered by the *Direct Connect* architecture while processing smaller workload sets as there is less data available to be distributed evenly across all the matching units. However, the *Dynamic Connect* manages to operate at full \((4\times)\) parallelism even at lower workload sets as all matching units are always kept supplied with data. However, at larger workloads, the *Dynamic Connect* architecture suffers in performance due to added latency of inter module handshaking inherent in this implementation of the design. Hence, it is evident that *Direct Connect* designs perform well when workload data set is large enough to employ all the available (level of parallelism) matching units while processing the workload set.

The *Index Encoded* architecture for the *Hardware Encoded Data*-based design exhibits (cf. Table 6.2) a constant processing latency for all workloads, as every subscription is transformed into an independent circuit entity that runs in parallel; thus, all subscriptions are evaluated in a single clock cycle.

6.3 Latency Breakdown

Accounting the number of clock cycles spent per stage in the operation of all the designs during matching, further improves our handle on the latency exhibited by each design. The following table capture the entire matching process as a sequence of *stages* each design transitions while matching an event against the workload set.

6.3.1 *Direct Connect* Design

Table 6.3 shows number of cycles spent by both *Direct Connect On-chip Memory*-based Version I and Version II designs. Both designs share identical logic for receiving and
parsing input packet events and thus consume the same amount of clock cycles in the Receive stage, which is pipelined with the packet parser to continue receiving an event stream until the Event Input Queue is full. The benefit of hardware pipelining of the Receive stage is that it recovers or masks the clock cycles spent while processing an continuous stream of events - as when one event is being processed the subsequent event is being parsed simultaneously. Subsequently, the parsed publication event data is pop’d from the Event Input Queue in the Pop Event stage followed by calculation of hash functions (in the Hash Calc. stage) using the event predicate tuples (attribute-value pair) as inputs. The Hash output is used to retrieve cluster index addresses (CID) from an on-chip cluster address look-up table (cf. Fig 4.2). The former two stages are always executed sequentially with rest of the following stages in On-chip Memory-based Version I (N×HW Ver.I) design.
<table>
<thead>
<tr>
<th>Stage</th>
<th>Step</th>
<th>Cycles (N×HW Ver.I)</th>
<th>Cycles (N×HW Ver.II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive</td>
<td>Packet Receive - ENET FIFO</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Packet Parsing</td>
<td>Push (4 x 32bit words) Pub into Event Input Queue</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pop Event</td>
<td>Pop Event from Event Input Queue</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hash Calc.</td>
<td>5 Hash Calc. & Cluster Index Look-up</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Initiate Matching</td>
<td>Send Pub Data to MUs</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Initiate Matching</td>
<td>Pub Data → Load First Cluster ID (CID)</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Initiate Matching</td>
<td>Load First CID → Start Matching</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Matching</td>
<td>CID Load → End of Cluster reached</td>
<td>X</td>
<td>X - Average Cluster Size</td>
</tr>
<tr>
<td>Matching</td>
<td>End of Cluster → Load Next CID</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Matching End</td>
<td>End of Last Cluster reached → Push match result into Output Queue</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Restart</td>
<td>Push match result → Pop next event from Event Queue</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Worst Case Latency</td>
<td>47 + nX</td>
<td>32 + nX and 23 + nX</td>
</tr>
</tbody>
</table>

Table 6.3: Table shows a high level breakdown in terms of number of clock cycles spent at various stages of operation the *Direct Connect On-chip Memory*-based Version I and Version II designs go through, starting at receiving an pub event → matching it → output the final result → restart by loading the next pub event. Theoretical worst case latency depends on number (n) and size (X) of each clusters accessed. (*) These stages have been pipelined.
However, in the On-chip Memory-based Version II \((N \times HW \ Ver.II)\) design both Pop Event and Hash Calc. stages have been pipelined to immediately start pre-processing the next event in the Event Input Queue to have the hash pre-evaluated and cluster addresses looked-up for the design when it is ready to process the next event. Therefore, pipelining results in a saving of 9 clock cycles from the overall latency experienced by all subsequent events in \((N \times HW \ Ver.II)\) design. In the Initiate Matching stage the publication data and first cluster address are dispensed to all the matching units sequentially after which all the matching units are signalled to commence matching. In the Matching stage, each matching unit fetches a subscription in the cluster from its directly interfaced dedicated BRAM memory table every clock cycle, therefore number of clock cycles spent in this stage is equal to the cluster size \((X) \times (n)\) number of unique clusters that are accessed while processing an event. When a cluster end is encountered by all the matching units (always simultaneously due to evenly sized clusters in all BRAM subscription tables) the next cluster address is dispensed to recommence matching. Significant streamlining of the Initiate Matching and Matching stages has resulted in consuming even less number of clock cycles in the \((N \times HW \ Ver.II)\) design when compared to its Ver.I counterpart. In the final Matching End stage the final match result is pushed into the output queue and the next event is pop’d from the Event Input Queue.

6.3.2 Dynamic Connect Design
Chapter 6. Evaluation

Table 6.4

<table>
<thead>
<tr>
<th>Stage</th>
<th>Step</th>
<th>Cycles</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive</td>
<td>Packet Receive - ENET FIFO</td>
<td>68</td>
<td>HW Pipelined</td>
</tr>
<tr>
<td>Packet Parsing</td>
<td>Push (4 x 32bit words) Pub into Event Input Queue</td>
<td>5</td>
<td>HW Pipelined</td>
</tr>
<tr>
<td>Pop Event</td>
<td>Pop Event from Event Input Queue</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hash Calc.</td>
<td>5 Hash Calc. & Cluster Index Look-up</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td>1st Cluster ID (CID) dispensed and matching begins</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Initiate Matching</td>
<td>Next CID is dispensed as soon as a VbMc become free</td>
<td>K</td>
<td>Handshaking delay</td>
</tr>
<tr>
<td>Matching</td>
<td>CID Load → End of Cluster reached</td>
<td>0.75X</td>
<td>X - Average Cluster Size, 3 cycles to fetch 4 subscriptions</td>
</tr>
<tr>
<td>Reload</td>
<td>Hit End of Cluster → Load Next CID</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Matching End</td>
<td>End of Last Cluster reached → Push match result into Output Queue</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Restart</td>
<td>Push match result → Pop next event from Event Queue</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Worst Case Latency</td>
<td>$22 + n0.75X + K$</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4: Table shows a high level breakdown in terms of number of clock cycles spent at various stages of operation the Dynamic Connect On-chip Memory-based design go through starting at receiving an pub event → matching it → output the final result → restart by loading the next pub event. Theoretical worst case latency depends on number (n) of clusters accessed and & average size (X) of clusters accessed and (K) VbMc availability.
The above table (cf. Table 6.4) shows the latency breakdown analysis for the Dynamic Connect On-chip Memory-based design. The first four stages cover similar function as in the Direct Connect \((N \times \text{HW Ver.I and II})\) designs described above (cf. Table 6.3), with the difference being in the way the Dynamic Connect design dispenses the cluster IDs (CIDs) to the Variable Bandwidth Memory Controllers \((\text{VbMc})\) which are responsible for accessing the entire cluster (in contrast to Direct Connect design where each cluster is equally distributed across all subscription tables). The system switches between Initiate Matching and Matching stages as it queues the request for the VbMc units associated with all five CIDs. The scenario when all CIDs are associated with one particular VbMc unit causes serialization of cluster access, nevertheless each VbMc unit is capable of supplying all matching units with workload data and retain the level of parallelism at all times. However, serialization incurs additional inter module handshaking delay \((K)\), which adds to the overall latency.

Another functional difference between the Direct Connect \((N \times \text{HW Ver.I and II})\) and Dynamic Connect designs is in amount of cycles spent to access a subscription from memory and the effective size \((X)\) of the cluster being processed. For example assuming the absolute size of a cluster is \(U\) subscriptions then, for the Direct Connect designs the effective size of each cluster \((X = \frac{U}{m})\) is scaled as the level of parallelism (i.e. \(m\) number of matching units) is increased - since cluster data is evenly distributed across all matching units. It also takes 1 cycle to access each subscription from the cluster, hence it takes \(X\) (or \(\frac{U}{m}\)) cycles to consume the entire cluster. Whereas in the Dynamic Connect designs the effective size of the same cluster \((X = U)\) remains the same - each cluster is mapped entirely to a VbMc unit and its data is not distributed. Furthermore, it takes 3 cycles to access \(m\) subscriptions, (where again \(m\) is the level of parallelism), which effectively translates into \(3 \times \frac{X}{m}\) (or \(\frac{U}{m}\)) cycles to consume the same cluster. As as result of this at higher workload sizes as the actual cluster size \((U)\) grows the effect of \(3 \times \) access latency overhead becomes more prominent causing the Dynamic Connect designs to lag
in performance compared to their Direct Connect counterparts. (Note 0.75 in Table 6.4 results due to number of matching units being $m = 4$)

6.3.3 Hardware Encoded Design

The following table (cf. Table 6.5) shows the latency breakdown analysis for the Hardware Encoded data based design. The first three stages cover similar function as in all the On-chip Memory-based - Direct Connect and Dynamic Connect designs described above (cf. Table 6.3, 6.4). In the Initiate Matching stage, every cycle each predicate tuple (attribute-value pair) is fed to an array of attribute-value pair detector circuits which toggles a bit in the Predicate Evaluation (PEVAL) bit vector corresponding to the matching predicate tuple. Currently this stage detects each event predicate tuple per cycle, which can be further reduced if this stage were to be pipelined. In the Matching stage the PEVAL bit vector is fed in parallel to the hardware encoded subscriptions which are combinatoric circuits capable of producing the match result in a single cycle. Therefore the overall event processing latency exhibited by the Hardware Encoded data is always constant.
### Stage	Step	Cycles	Notes
Receive	Packet Receive - ENET FIFO	68*	HW Pipelined
Packet Parsing	Push (4 x 32bit words) Pub into Event Input Queue	5*	HW Pipelined
Pop Event	Pop Event from Event Input Queue	3	
Initiate Matching	Predicate evaluation & Predicate Bit Vector settling	6	Detecting 5 Event Predicates per cycle.
Matching	Subscription Matching	1	All subscription matched in parallel in single cycle.
Matching End & Restart	Push match result → Pop next event from Event Queue	4	
Total Worst Case Latency	14	Constant latency	

Table 6.5: Table shows a high level breakdown in terms of number of clock cycles spent at various stages of operation the Hardware Encoded data based design goes through starting at receiving an pub event → matching it → output the final result → restart by loading the next pub event. Theoretical worst case latency is independent of workload size. (*) These stages have been pipelined.
6.4 Throughput Measure

Raw processing throughput of a design represents the maximum rate at which a publication event is matched or processed. Raw processing throughput is expressed in **Mega bits per second** rate and is calculated by taking into account the operating frequency (125 MHz) the design is running at, size of the publication event (96 bits) being processed and total average latency in cycle counts spent processing an event (cf. Equation 6.1). Similarly, the average message (event) processing throughput is obtained by using total average latency in cycle counts spent processing an publication event while running at a particular operating frequency (125 MHz). We adopt **Mega Messages per Second** unit to represent the average message (event) processing throughput (cf. Equation 6.2).

However, in order to obtain a more accurate value representing the Raw processing throughput of the *Hardware Data Encoded* based design, we use the publication message event size to be equivalent to 4 32 bit words or 128 bits vs. 96 bits that is used in case of the *On-Chip Memory* based designs. The rationale behind this difference is grounded in the fact that while both designs pop 4 32 bit words from the Input Queue, only the *Hardware Data Encoded* based design considers all 128 bits as valid event data while the *On-Chip Memory* based designs discards the rest to only use 96 bits as event data to be processed.

\[
RawProcessingThroughput(Mbps) = \frac{Pub.Size(bit/pub) \times Freq.(Mhz)}{Avg.Latency(cycles)} \tag{6.1}
\]

\[
Message(Event)ProcessingThroughput(Mmps) = \frac{Freq.(Mhz)}{Avg.Latency(cycles)} \tag{6.2}
\]
Chapter 6. Evaluation

Figure 6.4: 1

Figure 6.5: 2
Graph 6.4 compares the raw processing throughput for the On-Chip memory-based Direct Connect $N \times \text{HW Ver.I}$ designs against the Dynamic Connect $4 \times \text{HW Ver.I}$ design. As evident the processing throughput decreases faster - 94% drop in throughput for $60 \times$ increase in workload size (250 to 15K) than compared to the decrease in throughput evident due to decrease in parallelism - 24% decrease in throughput for $32 \times$ decrease in parallelism from $32 \times \text{MUs}$ to $1 \times \text{MU}$ design for a 250 size workload data set. This shows that the On-Chip memory-based design throughput performance is more sensitive to workload size than it is with respect to the degree of parallelism. Furthermore, at smaller workloads (250 to 1K) Dynamic Connect performs slightly better than the Direct Connect $4 \times \text{HW Ver.I}$ design, since data is dynamically routed to minimize idling of MUs (cf. Section 4.3), which is not the case in the later design where there is insufficient data available per matching unit resulting in MU starvation or idling.

Graph 6.4 also compares the throughput performance of each design when processing the a zipf distribution type workload data set. The data shows that for Direct Connect $N \times \text{HW Ver.I}$ designs the performance does not vary a lot (8.5% difference between unif vs. zipf distribution type workload data sets at 250 size workload for $1 \times$ design), moreover this performance gap further closes at higher workload sizes (only 5% difference between unif and zipf at 10K size workload for $1 \times$ design). This behaviours is again attributed to the amount of data begin distributed across all MUs is more when the level of parallelism is low (i.e. for $1 \times \text{MU}$ to $4 \times \text{MUs}$ designs), than the amount of data distributed across all MUs in case of higher level of parallelism ($32 \times$) designs. Therefore, $32 \times \text{HW Ver.I}$ design exhibits a notable difference in the throughput between unif vs.zipf, while processing larger workload sizes, since zipf has slightly more data available per cluster to be be distributed per MUs than in case of unif distributed type workload data set of the same size. Therefore, sensitivity of the raw throughput performance of the On-Chip Memory-based designs to the workload type is more apparent at higher levels of parallelism than at lower.
Similar conclusions may be drawn based on the trends shown in Graph 6.5, which shows the raw processing throughput for the On-Chip memory-based Direct Connect $N \times HW$ Ver.II designs against the Dynamic Connect $4 \times$ design. However, one main difference is that $N \times HW$ Ver.II designs show significantly higher (more than 50%) processing throughput compared to their Ver.I counterparts, which is attributed to pipelining of the Hash calculation stages (cf. Section 6.3.1).

6.5 Hardware Resource Consumption

Hardware resource consumption constraints the desire to scale-up a given hardware design arbitrarily, thus developing proper hardware resource consumption cost models are the key to ascertain the viability of a given solution derived to meet a demand. In this section a hardware cost model is presented that predominantly includes LUT usage, on-chip memory usage (BRAM) and maximum operating frequency supported. The latter may not be a physically consumable entity but is a direct result of the Place and Route (PAR) tool’s output during hardware synthesis that governs the on-chip routing of control and data nets, proximity of related circuit blocks at various parts the FPGA and complexity of combinatoric logic which ultimately constraints the maximum processing throughput of the design.

6.5.1 Clock Frequency vs. Workload Data Set Size
Table 6.6: Maximum clock frequency Supported vs. Workload size for both Direct Connect and Dynamic Connect architectures. (Note above maximum operating clock frequency values are obtained as a result of stand-alone synthesis of only the design. However, full system synthesis includes the design plus other logic components such as Ethernet transceiver modules that tend to reduce overall maximum operating frequency supported by the target FPGA board.)

<table>
<thead>
<tr>
<th>On-chip Memory-based design</th>
<th>Workload size</th>
<th>Maximum Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1× MU Direct Connect</td>
<td>250 to 15K</td>
<td>293.1 Mhz</td>
</tr>
<tr>
<td>4× to 128× MU Direct Connect</td>
<td>250 to 15K</td>
<td>243.3 Mhz</td>
</tr>
<tr>
<td>4× Dynamic Connect</td>
<td>250 to 15K</td>
<td>189.2 Mhz</td>
</tr>
</tbody>
</table>

Table 6.7: Maximum clock frequency Supported vs. Workload size for Index Encoded Architecture. (Note above maximum operating clock frequency values are obtained as a result of stand-alone synthesis of only the design. However, full system synthesis includes the design plus other logic components such as Ethernet transceiver modules that tend to reduce overall maximum operating frequency supported by the target FPGA board.)

<table>
<thead>
<tr>
<th>Hardware Encoded Data-based design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload size</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1K</td>
</tr>
<tr>
<td>10K</td>
</tr>
<tr>
<td>30K</td>
</tr>
<tr>
<td>40K</td>
</tr>
</tbody>
</table>
Synthesis results in Table 6.6 show that the maximum clock frequency of the two On-chip Memory-based designs is not sensitive to the workload size. Because a larger size subscription workloads translates into higher on-chip memory usage and does not incur any additional logic, hence the clock frequency remains unaffected. However, when compared with the 4× Dynamic Connect architecture, all 4× to 128× Direct Connect architectures synthesize to operate at higher clock frequencies owing to lower signal routing cost and no additional logic required to interface each BRAM with its dedicated matching unit. Similarly, it is evident that 1× MU Direct Connect architecture synthesizes to a higher clock frequency (cf. Table 6.6) compared to the rest of the 4× MU to 128× MU versions because of lower signal routing cost owing to a single direct connection between one BRAM and one MU. Interestingly, 4× MU to 128× MU versions synthesize to same clock frequency, since the PAR tool optimizes the signal routing cost by allocating and connecting the closest available BRAM to the corresponding matching unit. Thus the cost of routing is approximately the same as incurred in each 4× to 128× versions of the Direct Connect architecture. On the other hand, the Dynamic Connect architecture features a cross-bar switch between each BRAM and matching unit which incurs higher signal routing cost with additional control logic and associated inter-module hand-shaking delays; therefore, this design is synthesized to operate at a lower clock frequency.

Unlike the On-chip Memory designs, the Hardware Encoded Data-based design exhibits a high sensitivity of the maximum clock frequency with respect to the workload size (cf. Table 6.7). This expected characteristic of the Index Encoded architecture is due to extensive signal routing involved to wire each index of the PEVAL bit vector to a large number of combinational circuits (representing subscriptions) that may be scattered all over the FPGA fabric; thus, incurring longer signal routes. Longer signal routes impose greater signal propagation delays and other minor electrical subtleties that also affect signal integrity issues when high frequency signals must be sent over these routes.
Therefore, PAR tool is forced to scale down the maximum operating frequency of the design to avoid erroneous circuit operation. Moreover, the output of each combinational circuit is not registered (cf. Fig 5.1) and is directly OR’d with the subsequent circuit, which creates a daisy-chain of gates with each gate contributing its own gate delay.

6.5.2 LUT usage vs. Workload Data Set Size and Type

The Hardware cost of a Direct Connect architecture for the On-Chip Memory-based Ver.I and Ver.II designs (cf. Table 6.8 and Fig 6.6) follows an identical trend as seen with the maximum clock frequency vs. workload size results (cf. Table 6.6) i.e., both hardware cost and clock frequency are least affected by the workload set size because a given workload data simply resides in on-chip memories and does not consume any more hardware logic (LUT) resources than consumed by a design supporting larger subscription workloads. However, hardware cost does show a reasonable increase (14%) as the degree of parallelism is increased (due more matching units being employed) from $1 \times$ to $128 \times$. Fortunately, this increase in cost is well compensated by the maximum clock frequency remaining unaffected (cf. Table 6.6) with the scale-up in parallelism. The above trends also apply to the Dynamic Connect (cf. Table 6.9) architecture, however due to higher design complexity it incurs higher (33%) hardware cost (for $4 \times$ parallelism) and lower operating frequency compared to its $4 \times$ Direct Connect design counterparts. As expected, the Hardware cost of the On-Chip Memory-based Ver.II design is slightly less compared to Ver.I design (cf. Table 6.8-b), since the former design has been re-designed to include several improvements that result in using even lesser circuit elements.
Figure 6.6: LUT Usage (or design complexity) comparison based on Table 6.8
Table a: LUT Usage for *Direct Connect (N×HW Ver.I)* Design

<table>
<thead>
<tr>
<th>Workload</th>
<th>1× MU</th>
<th>4× MUs</th>
<th>32× MUs</th>
<th>128× MUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2446 (8.5%)</td>
<td>2845 (9.9%)</td>
<td>6253 (21.7%)</td>
<td>18280 (63.5%)</td>
</tr>
<tr>
<td>500</td>
<td>2435 (8.5%)</td>
<td>2823 (9.8%)</td>
<td>6253 (21.7%)</td>
<td>n/a</td>
</tr>
<tr>
<td>1K</td>
<td>2512 (8.7%)</td>
<td>2823 (9.8%)</td>
<td>6253 (21.7%)</td>
<td>n/a</td>
</tr>
<tr>
<td>10K</td>
<td>2570 (8.9%)</td>
<td>3198 (11.1%)</td>
<td>6564 (22.8%)</td>
<td>n/a</td>
</tr>
<tr>
<td>15K</td>
<td>2662 (9.2%)</td>
<td>2844 (9.9%)</td>
<td>6699 (23.3%)</td>
<td>n/a</td>
</tr>
<tr>
<td>20k</td>
<td>2673 (9.3%)</td>
<td>3243 (11.3%)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table b: LUT Usage (scaled) for *Direct Connect (N×HW Ver.II)* Design

<table>
<thead>
<tr>
<th>Workload</th>
<th>1× MU</th>
<th>4× MUs</th>
<th>32× MUs</th>
<th>128× MUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.91</td>
<td>0.92</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>500</td>
<td>0.92</td>
<td>0.92</td>
<td>0.97</td>
<td>n/a</td>
</tr>
<tr>
<td>1K</td>
<td>0.93</td>
<td>0.92</td>
<td>0.97</td>
<td>n/a</td>
</tr>
<tr>
<td>10K</td>
<td>0.92</td>
<td>0.94</td>
<td>0.93</td>
<td>n/a</td>
</tr>
<tr>
<td>15K</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>n/a</td>
</tr>
<tr>
<td>20k</td>
<td>0.93</td>
<td>0.95</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*Table 6.8: Logic Resource Utilization (%LUT) vs. Workload Size (# of subscriptions), as # of MUs is scaled-up in the *Direct Connect* architecture for On-chip Memory-based (N×HW) Ver.I and Ver.II design shown above in Table a and b respectively. Values in Table b have been scaled for (N×HW) Ver.II design with the LUT usage values for Ver.I design (Table a) for ease of comparison. (* Uniform and Zipfian distributed propagation workload. n/a - designs failed synthesis due to exhaustion of BRAM resources.*)*
LUT Usage for *On-chip Memory*-based *Dynamic Connect 4×* Design

<table>
<thead>
<tr>
<th>Workload</th>
<th>LUT (% Usage)</th>
<th>Scaled Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>9610 (33.37%)</td>
<td>3.38</td>
</tr>
<tr>
<td>500</td>
<td>9890 (34.34%)</td>
<td>3.50</td>
</tr>
<tr>
<td>1K</td>
<td>9930 (34.48%)</td>
<td>3.52</td>
</tr>
<tr>
<td>10K</td>
<td>9802 (34.03%)</td>
<td>3.07</td>
</tr>
<tr>
<td>15K</td>
<td>9816 (34.08%)</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Table 6.9: Logic Resource Utilization (%LUT) vs. Workload Size (# of subscriptions), for a 4× MU Dynamic Connect On-chip Memory-based design. Last column shows LUT usage scaled with respect to LUT usage for 4× On-chip Memory-based design synthesized with Uniformly distributed workload (cf. Table 6.8-a). (* Uniform and Zipfian distributed propagation workloads.)

Furthermore, not only does the LUT usage not vary with Workload set size for all On-chip Memory-based designs, data in Table 6.10 further shows that the LUT usage also does not vary with the type of (Unif or Zipf distributed) workload data set either.

Finally, the hardware logic cost of an Index Encoded architecture for the Hardware Encoded Data-based design (cf. Table 6.11 and Fig 6.11) follows an approximately linear increase with respect to the workload size due to the increase in combinational circuit size.
Relative LUT Usage for *Direct Connect*(\(N \times HW\ Ver.I\)) Design With Zipf Workload set

<table>
<thead>
<tr>
<th>Workload</th>
<th>1× MU</th>
<th>4× MUs</th>
<th>32× MUs</th>
<th>128× MUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>500</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
</tr>
<tr>
<td>1K</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
</tr>
<tr>
<td>10K</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>n/a</td>
</tr>
<tr>
<td>15K</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
</tr>
<tr>
<td>20k</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 6.10: Logic Resource Utilization (LUTs) vs. Workload Size (# of subcriptions), as # of MUs is scaled-up in the *Direct Connect* architecture for *On-chip Memory*-based design synthesized with Zipf workload sets. The values have been scaled with respect to LUT usage for *On-chip Memory*-based \((N \times HW\ Ver.I)\) design synthesized with Uniform distributed workload data set (cf. Table 6.8-a). (*Zipfian distributed propagation workload. n/a - designs failed synthesis due to exhaustion of BRAM resources.*)
LUT Usage for Hardware Encoded Design.

<table>
<thead>
<tr>
<th>Workload</th>
<th>LUT (% Usage)</th>
<th>Scaled Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2338 (8.12%)</td>
<td>0.82</td>
</tr>
<tr>
<td>500</td>
<td>2564 (8.90%)</td>
<td>0.91</td>
</tr>
<tr>
<td>1K</td>
<td>2976 (10.33%)</td>
<td>1.05</td>
</tr>
<tr>
<td>10K</td>
<td>8529 (29.61%)</td>
<td>2.67</td>
</tr>
<tr>
<td>20K</td>
<td>13614 (47.27%)</td>
<td>4.20</td>
</tr>
<tr>
<td>40K</td>
<td>23226 (80.65%)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 6.11: Logic Resource Utilization (%LUTs) vs. Workload Size (# of subscriptions), for the Hardware Encoded data based design. Last column shows LUT usage scaled with respect to LUT usage for On-chip Memory-based (4xHW Ver.I) design (cf. Table 6.8-a). (* Uniform and Zipfian distributed propagation workloads. n/a - LUT usage unavailable for 40K in Table 6.8-a.*)
6.5.3 BRAM usage vs. Workload Data Set Size and Type

BRAM (Block RAM) usage for the On-chip Memory-based designs is a critical cost parameter and depends on the dimension (width and depth) of the memory table being implemented. The currently used FPGA technology offers 60 64Kbit (or 120 18Kbit) one dimensional bit array (BRAM) blocks which are partitioned by output multiplexers to realize user memory tables of various dimensions. For instance in order to implement a memory table of dimension 96 bit wide \times 1024 deep (total memory required 96Kbits) it requires 3 64Kbit blocks each having been partitioned to behave like a two dimensional 96 bit wide \times 384 deep memory (total memory used 108Kbits). Even though any arbitrary dimension user memory table may be implemented (few restrictions apply) however, overall optimal utilization of total available On-chip Memory memory resource is governed by the dimension (aspect ratio) of the user memory table. For instance in the previous example, the BRAM memory utilization ratio ($\text{total required}/\text{total used}$) is 0.89 or 89% in other words approximately 11% of the BRAM will be wasted. Therefore, choice of user table aspect ratio governs how much of the FPGA on-chip memory can be utilized to store useful data which may be important in data intensive applications such as ours.

BRAM usage for implementing subscription data tables (for uniform distribution data set) for the Direct Connect architecture On-chip Memory-based designs ($(N \times HW Ver.I/II)$) is shown in Table 6.12-a. As expected BRAM usage is higher for larger workload data sets.

A more interesting result to note is how the BRAM utilization deteriorates as the level of parallelism is scaled up (i.e. when number of memory tables are increased) as shown in Table 6.12-b. This is due to the fact that the dimension of the memory tables currently implemented does not maximize BRAM utilization, therefore utilization tends to be lower (e.g. 66.67% for 1x 250 subscription table) at smaller workload data sets as there is less data available to fully occupy the BRAM memory allocated to implement
Table-a. Sub. Table Dimension vs Block RAM Consumption

<table>
<thead>
<tr>
<th>*Workload</th>
<th>1 x width x depth</th>
<th>36Kb Block</th>
<th>4 x width x depth</th>
<th>36Kb Block</th>
<th>32 x width x depth</th>
<th>36Kb Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1 x 96 x 512</td>
<td>2</td>
<td>4 x 96 x 512</td>
<td>6</td>
<td>32 x 96 x 80</td>
<td>48</td>
</tr>
<tr>
<td>500</td>
<td>1 x 96 x 1024</td>
<td>3</td>
<td>4 x 96 x 512</td>
<td>6</td>
<td>32 x 96 x 92</td>
<td>48</td>
</tr>
<tr>
<td>1000</td>
<td>1 x 96 x 1050</td>
<td>5</td>
<td>4 x 96 x 512</td>
<td>6</td>
<td>32 x 96 x 108</td>
<td>48</td>
</tr>
<tr>
<td>10K</td>
<td>1 x 96 x 10240</td>
<td>28</td>
<td>4 x 96 x 2600</td>
<td>34</td>
<td>32 x 96 x 410</td>
<td>48</td>
</tr>
<tr>
<td>15K</td>
<td>1 x 96 x 15060</td>
<td>41</td>
<td>4 x 96 x 3840</td>
<td>44</td>
<td>32 x 96 x 570</td>
<td>96</td>
</tr>
<tr>
<td>20K</td>
<td>1 x 96 x 20070</td>
<td>54</td>
<td>4 x 96 x 5100</td>
<td>56</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table-a contd.

<table>
<thead>
<tr>
<th>*Workload</th>
<th>128 x width x depth</th>
<th>36Kb Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>128 x 96 x 80</td>
<td>92</td>
</tr>
<tr>
<td>500</td>
<td>128 x 96 x 92</td>
<td>n/a</td>
</tr>
<tr>
<td>1000</td>
<td>128 x 96 x 108</td>
<td>n/a</td>
</tr>
<tr>
<td>10K</td>
<td>128 x 96 x 180</td>
<td>96</td>
</tr>
<tr>
<td>15K</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>20K</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table-b. Sub. Table BRAM Utilization for Unif Workload Data Set

<table>
<thead>
<tr>
<th>*Workload</th>
<th>1 x 36Kbit</th>
<th>4 x 36Kbit</th>
<th>32 x 36Kbit</th>
<th>128 x 36Kbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>66.67%</td>
<td>88.89%</td>
<td>13.89%</td>
<td>13.89%</td>
</tr>
<tr>
<td>500</td>
<td>88.89%</td>
<td>88.89%</td>
<td>15.97%</td>
<td>n/a</td>
</tr>
<tr>
<td>1000</td>
<td>54.69%</td>
<td>88.89%</td>
<td>18.75%</td>
<td>n/a</td>
</tr>
<tr>
<td>10K</td>
<td>95.24%</td>
<td>79.66%</td>
<td>71.18%</td>
<td>62.50%</td>
</tr>
<tr>
<td>15K</td>
<td>95.66%</td>
<td>90.91%</td>
<td>49.48%</td>
<td>n/a</td>
</tr>
<tr>
<td>20K</td>
<td>96.79%</td>
<td>94.87%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 6.12: Table-a shows BRAM resource usage (# 36Kbit BRAM blocks) for data tables of various dimensions vs. Workload Size for # of MUs in the Direct Connect design. Table-b shows corresponding BRAM utilization for the data tables of various dimensions. (* Unif distribution type workload set. n/a - designs failed synthesis due to BRAM exhaustion.)
Table 6.13: Shows utilization of dedicated BRAM memory (# 36Kbit BRAM block) by the subscription data tables of dimension similar to those shown in Table 6.12-A (* Zipfian distributed propagation workload. n/a - designs failed synthesis due to exhaustion of BRAM resources.)

the table. For the same reason, utilization improves as workload data set size is increased (e.g. 96.79% for 1x 20K subscription table). Similarly, utilization also drops when the number of memory tables are increased to scale-up the level of parallelism (e.g. 66.67% for 1x vs. 13.89% for 128× for 250 subscription table) - again it is due to lesser amount of useful data being available per table as all data must be equally distributed across more tables.

BRAM usage is also affected by the type of workload data set. Table 6.13 shows slightly higher BRAM utilization values for the subscription tables containing Zipfian distribution type workload data set, in comparison to the values obtained for the subscription tables containing Uniform distribution type workload data set (cf. Table 6.12-b). This variation is due to the distribution characteristic of the Zipfian distribution type workload data set that contains on average higher number of non-empty clusters than found in the Uniform distribution type workload data set. This feature results in more
useful data being available (as each non-empty cluster contains at least one subscription and an cluster terminator word), especially at smaller size data sets, to occupy the allocated BRAM memory per table. For example for 250 $32 \times$ tables the utilization is 22.22\% for containing Zipfian distribution type workload data set (cf. Table 6.13) vs. 13.89\% for similar dimension tables containing Uniform distribution type workload data set (cf. Table 6.12b).

6.6 Power Consumption

Power consumption of electronic devices is becoming an important design constraint as designers must work with ever tighter energy budgets to extend operation on a single battery charge, while others have to be concerned about rate of thermal dissipation (or cooling) from the high performance chips as their package (die) size shrink further. We profile our designs in simulation to gain better insights on how much power is expected to be consumed and explain the results based on key design features. We used the Xilinx XPower Analyzer software tool to run post-synthesis power analysis simulations. As per expectation the power consumption (cf. Table 6.14) for the Direct Connect On-chip Memory-based ($N \times HW$ Ver.I) design increases favourably (logarithmic rise), owing to the increase in design complexity (higher LUT usage) as the degree of parallelism is scaled-up. More specifically, it is the increase in Dynamic Power consumption that is most notable when the designs are scaled-up to higher degrees of parallelism - caused by increase in switching activity of additional matching units. For example, the $128 \times$ design consumes approximately 4 times more dynamic power than its $4 \times$ counterpart - this represents only 4 times more power consumption for a 32 times scale-up factor. Hence, data shows that power consumption scale-up is dependent on level of parallelism for On-chip Memory-based designs.
Power Consumption Vs. Level of Parallelism in Direct Connect($N\times HW$ Ver.I) Design

<table>
<thead>
<tr>
<th>MUs</th>
<th>Quiescent Power</th>
<th>Dynamic Power</th>
<th>Total Power</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.458W</td>
<td>0.395W</td>
<td>0.853W</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>4</td>
<td>0.461W</td>
<td>0.448W</td>
<td>0.908W</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>32</td>
<td>0.482W</td>
<td>0.905W</td>
<td>1.387W</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>128</td>
<td>0.527W</td>
<td>1.758W</td>
<td>2.286W</td>
<td>129.9Mhz</td>
</tr>
</tbody>
</table>

Table 6.14: Estimated Total (Quiescent, Dynamic) power(Watts) vs. Number of MUs for all Direct Connect On-chip Memory-based Ver.I design. Data shows that power consumption scale-up is dependent on level of parallelism.

Power Consumption Vs. Workload Size and Type for Direct Connect($N\times HW$ Ver.I) Design

<table>
<thead>
<tr>
<th>*Workload</th>
<th>Unif</th>
<th>Clock</th>
<th>Zipf</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.38W (0.48W, 0.90W)</td>
<td>129.9MHz</td>
<td>1.39W (0.48W, 0.91W)</td>
<td>129.9MHz</td>
</tr>
<tr>
<td>500</td>
<td>1.38W (0.48W, 0.90W)</td>
<td>129.9MHz</td>
<td>1.39W (0.48W, 0.91W)</td>
<td>129.9MHz</td>
</tr>
<tr>
<td>1K</td>
<td>1.38W (0.48W, 0.90W)</td>
<td>129.9MHz</td>
<td>1.39W (0.48W, 0.91W)</td>
<td>129.9MHz</td>
</tr>
<tr>
<td>10K</td>
<td>1.38W (0.48W, 0.90W)</td>
<td>129.9MHz</td>
<td>1.39W (0.48W, 0.91W)</td>
<td>129.9MHz</td>
</tr>
<tr>
<td>15K</td>
<td>1.38W (0.48W, 0.90W)</td>
<td>129.9MHz</td>
<td>1.39W (0.48W, 0.91W)</td>
<td>129.9MHz</td>
</tr>
</tbody>
</table>

Table 6.15: Estimated Total (Quiescent, Dynamic) power(Watts) vs. Workload Type (both Uniform and Zipfian) Workload (# of subscriptions) for a 32xMUs Direct Connect On-chip Memory-based Version I design. Data shows that power consumption is neither affected by workload distribution nor size.
Table 6.15 compares between the power consumption exhibited by the Direct Connect On-chip Memory-based (32xHW Ver.I) design synthesized with Uniform and Zipfian distribution type workload data sets of various sizes. The data indicates that both workload data size and type has no impact on the total power consumption. This is due to the fact that workload data simply resides in on-chip memory and thus does not necessarily increase the design complexity in the same way the scale-up in the level of parallelism does (cf. 6.8). Hence, power consumption is neither affected by workload distribution nor size for On-chip Memory-based designs.

Slightly lower design complexity of the Direct Connect N×HW Ver.II design (as it utilizes only 93% of LUTs compared to N×HW Ver.I design (cf. Table 6.8-b)), is reflected in its slightly lower (2% less) power consumption (cf. Table 6.16) when compared to its (N×HW Ver.I) counterpart (cf. Table 6.14).

Conversely, the Dynamic Connect 4× design being more complex, utilizing approximately 3.5 times more LUTs compared to N×HW Ver.I design (cf. Table 6.9), ends up consuming approximately 1.38 times more power compared to its Direct Connect 4× HW Ver.I counterpart (cf. Table 6.17).

The above correlation between design complexity (LUT usage) and power consumption is also shown in Graph 6.7.
Relative Power Consumption of *Direct Connect*\((N \times HW \text{ Ver.II})\) Design with respect to \((N \times HW \text{ Ver.I})\)

<table>
<thead>
<tr>
<th>MUs</th>
<th>Scaled Quiescent Power</th>
<th>Scaled Dynamic Power</th>
<th>Scaled Total Power</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>4x</td>
<td>1.00</td>
<td>0.96</td>
<td>0.98</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>32x</td>
<td>1.00</td>
<td>0.96</td>
<td>0.97</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>128x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>129.9Mhz</td>
</tr>
</tbody>
</table>

Table 6.16: Estimated Total (Quiescent, Dynamic) Power(Watts) vs. Number of MUs for all *Direct Connect* On-chip Memory-based Version II design. Values have been scaled by power consumption values recorded for *Direct Connect* On-chip Memory-based Version I design (cf. Table 6.15). Data shows that power consumed by Ver.II designs is slightly less than its Ver.I *Direct Connect* design counterparts due to lower design complexity. (n/a - designs failed synthesis due to exhaustion of BRAM resources.)

Power Consumption of *Dynamic Connect* 4x Design with respect to \((4 \times HW \text{ Ver.I})\)

<table>
<thead>
<tr>
<th>*MUs</th>
<th>Scaled Quiescent Power</th>
<th>Scaled Dynamic Power</th>
<th>Scaled Total Power</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>1.03</td>
<td>1.73</td>
<td>1.38</td>
<td>129.9Mhz</td>
</tr>
</tbody>
</table>

Table 6.17: Estimated Total (Quiescent, Dynamic) Power(Watts) vs. Workload Type (both Uniform and Zipfian) Workload (# of subscriptions) for the 4xMUs *Dynamic Connect* On-chip Memory-based design. Values have been scaled by power consumption values recorded for 4xMUs *Direct Connect* On-chip Memory-based Version I design (cf. Table 6.15) since it represent an equivalent amount of parallelism. Data shows that power consumed by *Dynamic Connect* designs is slightly higher than its *Direct Connect* Version I design counterpart.
Lastly we look at the power consumption profile exhibited by the *Hardware Encoded* data-based *Index Encoded* design. Data in Table 6.18 suggests, as expected, the power consumption to be affected by the size of the workload data set since each subscription is encoded as a combinatorial circuit, thus larger data set design will be more complex, however it manages to consume less amount of power when compared with the two *On-chip Memory*-based designs for every workload data set size. For instance, the increase in design complexity incurred moving from 250 to 10K subscription in the *Index Encoded* design is approximately 20% (cf. Table 6.11 and Graph 6.7) which corresponds to approximately 130% increase in power consumption (cf. Table 6.18), yet the design only consumes approximately 48% less power compared to that consumed by the *Direct Connect (128× HW Ver.I)* counterpart (cf. Table 6.19). (Power consumption estimate was performed using maximum clock frequency the complete system is synthesized to operate at, which is constrained by the clock supported by the target FPGA board.). Hence, The power consumption profile for *Hardware Encoded data*-based design is not affected by workload distribution, but is affected by workload size only.
Power Consumption of *Hardware Encoded*-based Design Vs. Workload Size and Type

<table>
<thead>
<tr>
<th>Workload</th>
<th>Unif</th>
<th>Clock</th>
<th>Zipf*</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.84W</td>
<td>129.9Mhz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>0.86W</td>
<td>129.9Mhz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1K</td>
<td>0.85W</td>
<td>129.9Mhz</td>
<td>0.85W (0.45W, 0.39W)</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>10K</td>
<td>1.09W</td>
<td>129.9Mhz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20K</td>
<td>1.32W</td>
<td>129.9Mhz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40K</td>
<td>2.01W</td>
<td>129.9Mhz</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6.18: Estimated Total (Quiescent, Dynamic) power(Watts) vs. Workload Type (both Uniform and Zipfian) Workload (# of subscriptions) for the *Hardware Encoded data*-based *Index Encoded* design. Power consumption is affected by workload size and not the type. (Zipf* - Synthesis run for all Zipfian workloads was not performed as power consumption values are expected to be identical to the same size Uniform workloads, as is shown for 1K size.)
Relative Power Consumption of *Hardware Encoded*-based Design with respect to *Direct Connect* Design

<table>
<thead>
<tr>
<th>Workload</th>
<th>Scaled Quiescent Power</th>
<th>Scaled Dynamic Power</th>
<th>Scaled Total Power</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.87</td>
<td>0.22</td>
<td>0.37</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>500</td>
<td>0.87</td>
<td>0.23</td>
<td>0.38</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>1000</td>
<td>0.87</td>
<td>0.22</td>
<td>0.37</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>10K</td>
<td>0.89</td>
<td>0.35</td>
<td>0.48</td>
<td>129.9Mhz</td>
</tr>
<tr>
<td>20K</td>
<td>0.91</td>
<td>0.48</td>
<td>0.58</td>
<td>129.9Mhz</td>
</tr>
</tbody>
</table>

*Table 6.19: Estimated Total (Quiescent, Dynamic) power vs. Workload Type (*both Uniform and Zipfian*) Workload (# of subscriptions) for the Hardware Encoded data based design. Values have been scaled by power consumption values recorded for 128×MUs Direct Connect On-chip Memory-based Ver.I design (cf. Table 6.15) since it shows the highest power consumption for the currently implemented Direct Connect design.*
Figure 6.7: Power Consumption Vs LUT (%) Usage for all On-chip Memory and Hardware Encoded-based Architectures. Both On-chip Memory-based Direct Connect (N×HW Ver.I) and (N×HW Ver.II) grow in power consumption as they are scaled from 1× to 128× parallelism. On-chip Memory-based Dynamic Connect (DYN 4×) consumes more power compared to its 4× Direct Connect (N×HW Ver.I/II) designs due to higher design complexity. Hardware (Index) Encoded design while consuming less power grows as it is scaled from 250 to 40K size subscription workload data set.
6.7 Summary Of Results

This section summarizes the results and highlights the key findings from data presented in previous sections.

6.7.1 Designs Under Test

To reiterate the following designs are implemented and evaluated

1. *On-chip Memory*-based *Direct Connect* design Version I: N\(\times\)HW Ver.I.

 Design Features:
 (a) Uses BRAM based memory tables to store subscription data.
 (b) Every cluster data is distributed evenly across all BRAM memory tables.
 (c) Parallelism is scaled-up by employing more (1\(\times\), 4\(\times\) and 32\(\times\)) matching units (MUs) (cf. Fig. 4.3) with maximum of 20K subscription supported.
 (d) Interface between each MUs and its dedicated memory table is direct (cf. Fig. 4.1).
 (e) Hash calculation and cluster index-lookup stage is not pipelined.

2. *On-chip Memory*-based *Direct Connect* design Version II: N\(\times\)HW Ver.II.

 Design Features:
 (a) Similar in functionality and design and the maximum subscription supported compared to N\(\times\)HW Ver.I design.
 (b) Design complexity is approx. on average is 7% less compared to N\(\times\)HW Ver.I design due to design streamlining (cf. Table 6.8-c).
 (c) Hash calculation stage and cluster index-lookup stage has been pipelined.

3. *On-chip Memory*-based *Dynamic Connect* (DYN 4\(\times\)) design.

 Design Features:
(a) Uses BRAM based memory tables to store subscription data.

(b) Uses four custom built variable bandwidth (1x to 4x) memory controller (VbMC) (cf. Fig. 4.4).

(c) Interface between each MUs and all four VbMc is via a Cross-bar based interconnect (cf. Fig. 4.5).

(d) Each cluster is allocated entirely to a BRAM memory table. (i.e. cluster data is not distributed.)

(e) Maximum of 15K subscription supported.

(f) Hash calculation and cluster index-lookup stage is pipelined.

4. **Hardware Encoded-based Index Encoded** (HW-ENC) design. Design Features:

 (a) Subscription data is encoded as combinatoric circuits (cf. Fig. 5.1).

 (b) Parallelism is maximal as each subscription is matched in one cycle.

 (c) Maximum of 40K subscription supported.

6.7.2 Latency Vs Workload Size

Processing latency in terms of number of clock cycles spent matching a publication event increases for all On-chip Memory-based Direct Connect and Dynamic Connect designs as workload size being processed is increased. This trend is validated by the latency measurement data obtained from both simulations and on-board tests.

In graphs 6.8 and 6.9 latency grows sharply for On-chip Memory-based Direct Connect designs with lower level of parallelism than it does for designs with higher parallelism (e.g. 1×HW Ver.I vs. 32×HW Ver.I) as the effective size of each cluster being processed per matching unit is the larger in the former case.

Both 4×HW Ver.II (Direct Connect) and 4×DYN (Dynamic Connect) exhibit similar processing latency until 1K workload size then the latter deteriorates in performance for
larger workload sizes (also seen in simulation data cf. Table 6.2). This is due to the 3 cycles per subscription access latency overhead present in the Dynamic Connect designs which begins to show its prominence (cf. Section 6.3.2) at larger workload data sets when the cluster sizes are large.

Hardware encoded designs are immune to the increase in workload size (cf. Graph 6.8 and 6.9) and exhibit constant processing latency in terms of clock cycles spent matching an event (cf. Section 6.5) as all subscriptions are encoded as combinatoric circuits which are run in parallel. However, scaling-up to support larger workload data set sizes does deteriorate the maximum clock frequency the design can be run at (cf. Table 6.7) due to the increase in design complexity.
Figure 6.8: Average Latency vs. Workload Size for N×HW Ver.I and all other designs synthesized for both Uniform and Zipfian distribution type of workload data set. (Latency measurement data was extracted from on-board tests.)
Figure 6.9: **Average Latency vs. Workload Size for N×HW Ver.II and all other designs synthesized for both Uniform and Zipfian distribution type of workload data set (results repeated here for ease of comparison).** (Latency measurement data was extracted from on-board tests.)
6.7.3 Max. Clock Rate and LUT Usage Vs Workload Size

Maximum operating frequency for the On-chip Memory-based Direct Connect and Dynamic Connect designs remains unaffected as the workload data set size is swept (cf. Graph 6.11). This is due to design complexity (LUT usage) being un-affected by the increase in on-chip BRAM usage as the workload size is increased (cf. Fig 6.10).

Design complexity of Hardware Encoded-based designs is proportional to the workload data set size, hence it affects the maximum operating clock frequency the design can be run at, which ultimately affects the processing throughput and latency. However, the rate of deterioration of maximum clock frequency supported in Hardware Encoded-based designs is less pronounced than the rate of increase in processing latency incurred by the On-chip Memory-based designs as the workload data set size is scaled-up (cf. Graph 6.8 and 6.9). Therefore, the affect of workload data set size on the overall processing latency is expected to be more evident (starting at smaller workload sizes) on the On-chip Memory-based designs than it would be in case of the Hardware Encoded-based designs.
Figure 6.10: Max. operating clock rate supported by various designs as workload data size is increased. Only the Hardware Encoded design deteriorates in Max. operating clock rate when synthesized to support larger workload data sets.
Figure 6.11: Design complexity or LUT usage of On-chip Memory-based designs does not vary with workload data set size but rather scales-up proportional to the level of parallelism. However, design complexity of Hardware Encoded design is proportional to the workload data set size.
6.7.4 BRAM Utilization Ratio

BRAM utilization ratio \((Total\ memory\ required / Total\ memory\ allocated)\) should be an important design consideration while fixing the dimension of the \((on-chip\ Memory)\) BRAM based memory tables, where the \(Total\ memory\ required\) is the user demand and the \(Total\ memory\ allocated\) depends on the native size of the BRAM blocks available on the target FPGA technology and the number of such discrete memory blocks allocated by the synthesis tool to realize the required dimension memory table (cf. Section 6.5.3). Dimension of the memory tables directly affects the total amount of useful data that can be stored in total memory allocated for the table and limits the highest level of parallelism that can be supported by the design - i.e. before all BRAM resources are exhausted.

BRAM utilization deteriorates as the level of parallelism is increased in the \(on-chip\ Memory\)-based designs for a given workload data set size but it improves as workload data set size is increased at a given level of parallelism. Therefore, there is an optimal level of parallelism for a given workload size that yields a maximum BRAM utilization ratio. For example we see that the \(4 \times \ Direct\ Connect\) designs yield above 80% utilization for a majority of workload data set sizes (cf. Graphs 6.12 and 6.13).

BRAM utilization ratios for Zipfian distribution type workload data set are slightly better compared to the Uniform distribution type workload data set (e.g. BRAM Util. for \(32 \times\ MU\) is 15.9% for 500 unif workload size vs. 88.89% for 500 zipf workload size. cf. Graphs 6.12 and 6.13). This is because, as mentioned previously (cf. Section 6.5.3), the zipfian type workloads contain on average higher number of non-empty clusters than found in the Uniform distribution type workload data set, as a result more data is available to be distributed at higher level of parallelism. Therefore, scaling to higher levels of parallelism at a given workload usually entails increased wastage of the premium \(on-chip\ Memory\) resources.
Figure 6.12: BRAM Utilization ratio (%) shown for Uniform distribution type workload data set for the On-chip Memory-based Direct Connect designs (similar results for Dynamic Connect is omitted here for brevity).
Figure 6.13: BRAM Utilization ratio (%) shown for Zipfian distribution type workload data set for the On-chip Memory-based Direct Connect designs (similar results for Dynamic Connect is omitted here for brevity).
6.7.5 Line-rate Processing Comparison

Finally, we compare the throughput of each designs against our initial target of achieving line-rate processing while performing publish-subscribe matching.

We compare the designs against two types of Line-rate targets: Raw processing throughput (Mbps) and Message processing throughput (Mmps). Raw processing throughput takes into account the the bear metal (physical) performance of the design in terms of amount of data that gets processed per unit time (Mbps - Megabits per second rate) - this includes rate at which subscription data gets accessed from memory to be matched against an publication event (cf. Equation 6.1 in Section 6.4 used to calculate raw proc. throughput). Line-rate target here represents the maximum bit rate supported by the publication event channel - which in our case is 1000Mbps or 1Gbps Ethernet link.

Raw processing throughput of the Hardware (HW) Encoded-based design exceeds the line-rate target and remains unaffected by the workload data set size due to its constant processing latency profile (cf. Section 6.3.3) (throughput is calculated using 14 clock cycles that are spent to process 4×32 bit words from the Input Event Queue).

Next, the On-chip Memory-based $32 \times$ HW Ver.II design dominates in performance compared to all other On-chip Memory-based designs this is attributed to to the pipeling of the Hash calculation stage and other design streamlining (cf. Section 6.3.1).

Lastly, the $4 \times$ DYN Dynamic Connect design at smaller (250 to 500) workload data set sizes tends to perform slightly better than the $32 \times$ HW Ver.I design due to diminished parallelism caused by idling of many data starved matching units, which is exactly the problem that is rectified by the Dynamic Connect design (cf. Section 4.3.2). However, the Dynamic Connect design loses due to several overhead taking prominence at larger workload sizes (cf. Section 6.3.2).
Figure 6.14: Compares the highest raw processing throughput (Mbps) supported by various designs against the maximum (1000Mbps) line-rate supported by the channel injecting the publication event messages to the design under test.
It is more meaningful to compare the design performance against the Line-rate target which is represented in terms of the maximum number of event messages that can be delivered by the channel per unit time (Mmps - Mega messages per second) - calculated using the delivery time for a 64-byte frame on a 1Gbps Ethernet link.

Message processing throughput for each design is the reciprocal of the average processing latency incurred per publication event message (cf. Graph 6.8 and 6.9) (cf. Equation 6.2 in Section 6.4 used to calculate message proc. throughput).

Message (Event) processing throughput of the Hardware (HW) Encoded-based design dominates again due to the unprecedented level of parallelism offered by the design such that all publication event messages are processed under 14 clock cycles irrespective of the workload data set size (cf. Section 6.3.3). All other designs also outperform with respect to the message processing line-rate target (cf. Graph 6.15).
Figure 6.15: Compares the highest event processing throughput (Mmps) supported by various designs against the maximum (2.0 Mmps) message line-rate supported by the channel injecting the publication event messages to the design under test.
Chapter 7

Conclusions & Future Work

Our vision is to meet the line-rate middleware challenge that is at the core of many event processing scenarios such as real-time data analytics and financial applications. Furthermore, to enable the high-frequency and low-latency requirements of these applications, we presented an efficient event processing platform over reconfigurable hardware that exploits the high degrees of hardware parallelism for achieving line-rate processing. In short, the success of our fpga-ToPSS framework is through the use of reconfigurable hardware (i.e., FPGAs) that enables on-board packet processing and hardware acceleration for matching through custom logic circuits. Our hardware solution not only eliminates the OS layer latency, but also achieves an unprecedented level of parallelism not available to pure software solutions.

We ultimately envision moving towards the heterogeneous architectures hosting both FPGAs and CPUs for the next generation of middleware applications. This vision, which extends our current framework, is motivated by the emergence of FPGA-based co-processors on motherboards (e.g., Intel Xeon FSB FPGA Socket Fillers by Nallatech) integrated via high bandwidth interconnects (64-bit 1066MHz FSB), with up to 256GB direct system memory access and a 8GB/s peak bandwidth. This is a promising platform for transforming cutting edge event processing applications to achieve real-time complex
data analysis by orchestrating computations across FPGAs and CPUs.
Appendix A

Dynamic Connect - Implementation Detail

Figure A.1: $4 \times VbMc$. A variable width (BWreq) sliding window is used to schedule reads from the dual-port BRAM unit to have subscriptions ready prior to be shifted into output shift register array.

A.1 Variable Bandwidth Memory Controller

A $VbMc$ (Variable Bandwidth Memory Controller) (cf. Fig A.1) is a wrapper design build around a conventional dual-port BRAM unit (each port may be independently addressed). $VbMc$ mimics a memory controller that can variably output either one (1×)
Appendix A. Dynamic Connect - Implementation Detail

to a maximum of $P (P \times)$ number of subscriptions per cycle, where P is number of $VbMC$ output ports or maximum output bandwidth supported. For this project, a $4 \times VbMc$ has been implemented. It is also essential that BRAM units store P subscriptions per address entry in order to keep memory access latency uniform up to $P \times$ operating mode. Inputs to the $VbMc$: $BWreq$ is Bandwidth requested in previous cycle, E.g. $0 \times$ - indicates null request, $1 \times$ - left shifts all subscriptions by one from all 4 output ports while shifting a new subscription into the last port ($PortA \leftarrow PortB \leftarrow PortC \leftarrow PortD \leftarrow \text{new sub}$) ... $4 \times$ - performs no left shift as all output ports need to be refreshed with new subscriptions for each ($PortA \leftarrow \text{new sub0}$, $PortB \leftarrow \text{new sub1}$, $PortC \leftarrow \text{new sub2}$, $PortD \leftarrow \text{new sub3}$). The Address input (value computed during the cluster index lookup step (Sec 4.2.1)) is used to initialize the $VbMc$ to the beginning of a cluster stored in its BRAM unit. Besides, the $VbMc$’s output data ports is the $BWavl$ output that indicates the maximum bandwidth the $VbMc$ can satisfy for the next request cycle: E.g. $0 \times$ - indicates zero subscriptions remaining to be read for the next request, .. $3 \times$ - indicates only 3 subscriptions remaining before cluster ends, $4 \times$ - indicates maximum number of subscription remaining before cluster ends since $VbMc$ has no knowledge of the cluster until the cluster end marker enters into its $4 \times$ shift window. Major design challenges encountered were particularly with implementing the logic responsible for computing dual-port BRAM address pointers while considering wrap around of the sliding window and scheduling the reads to avoid stalling of the output shift registers (cf. Fig A.1). The current $4 \times VbMc$ is synthesized to operate at 372.583MHz max, while consuming 1776 Slice LUTs & 375 Slice Registers.

A.1.1 Crossbar

The crossbar(Xbar) design (cf. Fig A.2) implemented for the project is essentially a monolithic 16-to-1 multiplexer with 80 bit wide ports selected as a result of evaluating two other designs in terms of operating frequency and resource utilization. The
Figure A.2: $4 \times$ Crossbar. Allows connection of any one output port of the four $4 \times VbMc$s to a Matching Unit. Monolithic design (left) operates at higher frequency than Hierarchical design (right). Select signal: MID sel selects $VbMc$ unit and Port sel selects its corresponding port.

The monolithic design synthesized to operate at 170.35MHz while utilizing 400 Slice LUTs. An alternate approach includes - a hierarchical design using two ranks of 4-to-1 multiplexers which synthesized to operate at 144.4MHz while utilizing 484 Slice LUTs. This may be attributed to a fact that, while using smaller sub-modules bodes well for lower design complexity, it however results in an added routing overhead between the various sub-modules and thus reduces the ability of the synthesis tool to do a global design optimization. Lastly, a cross-tie based crossbar design that utilizes tri-state buffers was also considered, however tri-state buffers are not available as discrete cells in Virtex 5 FPGA and are realized using standard FPGA SLICE/LUT resources thus resulted in the same operating frequency and cost as incurred by the monolithic (cf. Fig A.2) design.

A.2 $VbMc$ & Xbar Controller

The $VbMc$ & Xbar controller module is responsible for assigning bandwidth request ($BWreq$ (Sec A.1)) values to each $VbMc$ unit while simultaneously generating crossbar select signals to connect appropriate $VbMc$ output ports to a matching unit (MU). A look-up table (cf. Fig A.3) based feedback control scheme is adopted in implementing the logic that assigns appropriate $BWreq$ values in response to the available bandwidth.
Appendix A. Dynamic Connect - Implementation Detail

Figure A.3: VbMc & Xbar Control Table. Lookup address is formed by concatenating the sampled available bandwidth (here $3 \times$ for MID0 & MID1) values. Each 32 bit table entry contains BW_{req} assignments and Xbar select signals (BW_{avl} (Sec A.1)) values (Table is compiled by using a script prior to design synthesis). This module constantly cycles between states SAMPLE (when all BW_{avl} values are sampled) \rightarrow READ_TABLE (control table is looked-up) \rightarrow HOLD (BW_{req} and Xbar select signals are asserted and held valid until MUs acknowledge back for new subscriptions).

The control table stores for each permutation of system state (captured by concatenating all BW_{avl} values), the appropriate assignments of BW_{reg} and Xbar control signals (MID sel, Port sel cf. Fig A.2) values for each VbMc unit and crossbar dedicated to each MU respectively.

An obvious advantage of having a table based control scheme is a resulting design that is cheap (consumer: 67 Slice LUTs & 14 Slice Registers) and fast (synthesized to operate at 615.764MHz) however, the size of the control table becomes prohibitively large as number of VbMc units per design are increased. Nonetheless, several optimizations are possible to reduce the number of states that are required to be stored in this table. One such optimization that is implemented in this project is one that truncates each sampled BW_{avl} value to just 2 bits (i.e. only BW_{avl} $0\times$ to $3\times$ are used in constructing the table.
look-up address, cf. Fig. A.3 thereby reducing the table size for four \(VbMc \) units to just 256 entries. Furthermore, \(BWreq \) and Xbar assignments in response to trivial system states are logically computed. For example: scenario \(A \): if all \(VbMc \) units show \(BWavl \geq 1 \times \) then set each \(BWreq = 1 \times \) and connect every MU to PortA of every \(VbMc \) unit.

Rationale since number of active \(VbMc \) units equal the number of MUs, each \(VbMc \) can be run at \(1 \times \) to match processing bandwidth. Scenario \(B \): if atleast one \(BWavl \geq 3 \times \) then set corresponding \(BWreq = 4 \times \) and set all other \(BWreq = 0 \times \) and connect every MU to PortA through PortD of this active \(VbMc \) unit.

Rationale as long as one \(VbMc \) can be operated at maximum bandwidth (\(4 \times \)) then it is done so, and all MUs are connected to all the ports of the lone \(VbMc \).

A.3 Preliminary Results

![Average processing latency vs subscription workload for 4x\(DYN_HW \)](image)

Figure A.4: Average processing latency vs subscription workload for \(4 \times DYN_HW \)

In this section, performance of the \((4 \times DYN_HW) \) design (Fig. 4.4) consisting of 4 MUs with a crossbar based interconnect between the MUs and 4 shared \(VbMc \) units is compared with the baseline \((4 \times BMU_HW) \) design (cf. Fig. 4.1), which consists of 4 MUs that are each connected directly to a dedicated BRAM unit holding smaller
subsets of entire subscription cluster workload. Average of total processing time (T_{proc}) for various workload sets were measured in simulation by inserting ten pre-generated pub events into the input queues of the two designs under test and waiting for all the events to be sequentially processed (or matched against the subscription workload). The results summarized in Fig A.4 indicate that the baseline design outperforms the new ($4 \times DYN_{HW}$) design by up to a factor of 4.5. This apparent loss in performance is attributed to the added latency incurred as a result of the inter-module synchronization penalty paid along the BW_{req} feedback control loop (Sec. A.2). The control loop begins with $VbMc \& Xbar _Controller$ sampling the current $VbMc _BWavl$ values, then generating new BW_{req} values for each $VbMC$ unit, while the crossbar control signals are given an additional one cycle to settle, followed by workload data being routed to the appropriate MUs, finally MUs assert their Acks to $VbMc \& Xbar _Controller$, thus completing the feedback loop. On the other hand, each MU in the baseline design continually matches the pub event against the locally stored subs every clock cycle without any interruptions. Due to the above results, further measurements of the overhead latency (T_{ovh}) (as initially intended) is postponed till the above issues are further resolved. However, the new design does manage to keep all the MUs busy and idling is completely avoided.

Both the designs synthesized to operate at 135.501MHz, however the baseline design did better in terms of hardware cost (consuming: 2350 Slice LUTs, 2420 Slice Registers & 5 18Kx2 BRAM primitive cells, whereas the new design is expensive (consuming: 12726 Slice LUTs, 3854 Slice Registers & 384 18Kx2 BRAM primitive cells.

A.4 Future Work

A significant portion of the total project time was consumed by implementation and resolving CAD tool related issues. Hence, in future further efforts will be spent to gain a deeper understanding of the dynamic routing model. Particularly to answer the
question, why is it difficult to achieve the theoretical performance gain owing to dynamic
distribution of workload, as anticipated in the project proposal. Several key lessons
were learnt from the design experience. Namely, design hierarchy must be sacrificed (i.e.
design must be flattened) to reduce inter-module handshaking synchronization penalties,
secondly adding buffers at the the output of the cross-bar would help to decouple the
MUs from VbMc & Xbar Controller thus shortening the feedback control loop, lastly it
is much cost efficient to keep the data closer to the processing units to avoid reliance on
interconnect fabric to deliver performance critical data. In consideration of the above
lessons learned, a well educated design decisions could be utilized to further improve the
new design.
Bibliography

