Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

by

Michael Christopher Delorme

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright © 2013 by Michael Christopher Delorme
Abstract

Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

Michael Christopher Delorme
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto
2013

We explore efficient parallel radix sort for the AMD Fusion Accelerated Processing Unit (APU). Two challenges arise: efficiently partitioning data between the CPU and GPU and the allocation of data in memory regions. Our coarse-grained implementation utilizes both the GPU and CPU by sharing data at the beginning and end of the sort. Our fine-grained implementation utilizes the APU’s integrated memory system to share data throughout the sort. Both these implementations outperform the current state of the art GPU radix sort from NVIDIA. We therefore demonstrate that the CPU can be efficiently used to speed up radix sort on the APU.

Our fine-grained implementation slightly outperforms our coarse-grained implementation. This demonstrates the benefit of the APU’s integrated architecture. This performance benefit is hindered by limitations in the APU’s architecture and programming model. We believe that the performance benefits will increase once these limitations are addressed in future generations of the APU.
Dedication

This thesis is lovingly dedicated to my dear mother, Daniela Belluz-Delorme.

Thank you for twenty wonderful years of love, care, and encouragement.

Gone now but never forgotten, I will miss you always.
Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Professor Tarek S. Abdelrahman. He has provided a level of patience, encouragement, and insight that has been invaluable to my academic development. His feedback and expertise have helped guide me through my research.

I have taken several courses during graduate school that have provided me with the necessary background to undertake this research. I would therefore like to thank professors Andreas Moshovos, Gregory Steffan, and Natalie Enright Jerger. Additional thanks go to professors Andreas Moshovos, Gregory Steffan, and Konstantinos Plataniotis for acting as members of my M.A.Sc. committee.

I would like to extend my gratitude to fellow graduate student David Han. In addition to providing me with a great deal of feedback on my work, he has also given me a great deal of support and perspective when research was looking bleak.

I owe my parents and grandparents a debt of gratitude that I am certain I will never be able to repay. Special thanks go to my caring father Michael J. Delorme and my loving partner Karley Hatherell. I would not have been able to complete this work without their unfailing love and support.
7.2 Software Platform .. 67
7.3 Performance Metrics .. 68
7.4 Evaluated Implementations .. 69
7.5 GPU-Only Results ... 70
7.6 CPU-Only Results ... 72
7.7 Coarse-Grained Results ... 76
7.8 Fine-Grained Static Results ... 81
7.9 Fine-Grained Static Split Scatter Results .. 86
7.10 Fine-Grained Dynamic Results .. 91
7.11 Impact of Memory Allocation ... 94
7.12 Comparative Performance ... 98

8 Related Work ... 102

9 Conclusions and Future Work .. 105
 9.1 Future Work ... 106

Bibliography ... 109
List of Tables

3.1 OpenCL memory allocation and access capabilities by region. 18

6.1 Table of GPU-Only kernel launch parameters. 52

6.2 Table of CPU-Only kernel input tile sizes. 53

6.3 Memory buffer allocation details for the Fine-Grained Static implementation. 60

6.4 Memory buffer allocation details for the Fine-Grained Dynamic implementation. 63

7.1 Summary of evaluation platforms. 67

7.2 Optimal per-kernel partition points for the Fine-Grained Dynamic implementation. 92
List of Figures

2.1 An overview of the Llano APU hardware. ... 6

3.1 The OpenCL Platform Model. ... 12
3.2 An example of an NDRange index space. ... 15
3.3 The OpenCL Memory Model. ... 19
3.4 Zero copy buffer mapping on the AMD Llano architecture. 24

4.1 An example of a set of values being sorted from least to most significant
digit. ... 27
4.2 Pseudocode representation of the sequential version of radix sort. 28
4.3 Pseudocode representation of the sequential version of counting sort. ... 29
4.4 Pseudocode representation of the histogram step in the sequential version
of counting sort. ... 29
4.5 Pseudocode representation of the rank step in the sequential version of
counting sort. ... 30
4.6 Pseudocode representation of the scatter step in the sequential version of
counting sort. ... 31
4.7 The counters buffer is stored in column-major order for the prefix sum
operation. ... 33
4.8 Pseudocode representation of the parallel version of radix sort. 34
4.9 Pseudocode representation of the parallel local sort kernel. 35
4.10 An example of a 1-bit split operation being carried on an array of values using each element’s least significant bit. 35

4.11 An illustration of the contiguous regions of equally-valued elements that are generated in the local sort step. 36

4.12 Pseudocode representation of the parallel histogram kernel. 37

4.13 Pseudocode representation of the parallel scatter kernel. 39

5.1 Pseudocode representation of the Coarse-Grained algorithm. 44

5.2 Pseudocode representation of the Fine-Grained Static algorithm. 46

5.3 Pseudocode representation of the Fine-Grained Dynamic algorithm. 48

5.4 A taxonomy of each algorithm with respect to the partitioning method, data sharing granularity and memory allocation method. 50

6.1 Pseudocode of the local sort kernel in the CPU-Only implementation. .. 54

6.2 Pseudocode of the histogram kernel in the CPU-Only implementation. .. 55

6.3 Pseudocode of the rank kernel in the CPU-Only implementation. 56

6.4 Pseudocode of the scatter kernel in the CPU-Only implementation. 56

6.5 Pseudocode of the merge kernel in the Coarse-Grained implementation. .. 58

6.6 An example illustrating how the theoretical optimum execution time and partition point are determined. 65

7.1 Sort time of the GPU-Only implementation on the A6-3650 and A8-3850. 70

7.2 The GPU-Only per-kernel execution time as a percent of all kernel execution time. .. 71

7.3 Throughput of the GPU-Only and NVIDIA reference implementation on the A6-3650 and A8-3850. ... 72

7.4 Sort time of the CPU-Only implementation on the A6-3650 as a function of input dataset size. 73
7.5 Sort time of the CPU-Only implementation on the A8-3850 as a function of input dataset size. .. 73
7.6 Throughput of the CPU-Only implementation sorting 128 Mi unsigned integer values across a varying number of threads on the A6-3650 and the A8-3850 platforms. .. 74
7.7 Sort time of the CPU-Only implementation on the A6-3650 and A8-3850. .. 75
7.8 The CPU-Only per-kernel execution time as a percent of all execution time. .. 75
7.9 Sort time of the Coarse-Grained implementation on the A6-3650 as a function of input dataset partitioning. .. 77
7.10 Sort time of the Coarse-Grained implementation on the A8-3850 as a function of input dataset partitioning. .. 77
7.11 Sort time of the Coarse-Grained implementation on the A6-3650 and A8-3850. .. 79
7.12 Sort time of the Coarse-Grained implementation on the A6-3650 and A8-3850 with and without the final merge step. .. 80
7.13 Merge time of the Coarse-Grained implementation on the A6-3650 and A8-3850 as a function of the GPU partition point. .. 80
7.14 Sort time of the Fine-Grained Static implementation on the A6-3650 as a function of input dataset partitioning. .. 82
7.15 Sort time of the Fine-Grained Static implementation on the A8-3850 as a function of input dataset partitioning. .. 82
7.16 Per-kernel idle time found in the Fine-Grained Static implementation on the A6-3650. .. 84
7.17 Per-kernel idle time found in the Fine-Grained Static implementation on the A8-3850. .. 84
7.18 Sort time of the Fine-Grained Static implementation on the A6-3650 and the A8-3850 as a function of input dataset partitioning. .. 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.19</td>
<td>Sort time of the Fine-Grained Split Scatter implementation as a function of input dataset size on the A6-3650.</td>
</tr>
<tr>
<td>7.20</td>
<td>Sort time of the Fine-Grained Static Split Scatter implementation as a function of input dataset size on the A8-3850.</td>
</tr>
<tr>
<td>7.21</td>
<td>Sort time of the Fine-Grained Split Scatter implementation on the A6-3650 and A8-3850.</td>
</tr>
<tr>
<td>7.22</td>
<td>Per-kernel idle time found in the Fine-Grained Static Split Scatter implementation on the A6-3650.</td>
</tr>
<tr>
<td>7.23</td>
<td>Per-kernel idle time found in the Fine-Grained Static Split Scatter implementation on the A8-3850.</td>
</tr>
<tr>
<td>7.24</td>
<td>The sum of the per-kernel idle times found in the Fine-Grained Static Split Scatter implementation on the A6-3650 and A8-3850.</td>
</tr>
<tr>
<td>7.25</td>
<td>The sort time of the Fine-Grained Dynamic partitioning implementation over a varying number of threads on the A6-3650 and the A8-3850.</td>
</tr>
<tr>
<td>7.26</td>
<td>The sort time of the Fine-Grained Dynamic partitioning implementation as the per-kernel partitioning varies on the A6-3650.</td>
</tr>
<tr>
<td>7.27</td>
<td>The sort time of the Fine-Grained Dynamic partitioning implementation as the per-kernel partitioning varies on the A8-3850.</td>
</tr>
<tr>
<td>7.28</td>
<td>Speedup resulting from the algorithmic complexity of managing multiple devices and buffers in the Fine-Grained Dynamic implementation.</td>
</tr>
<tr>
<td>7.29</td>
<td>Speedup resulting from alternate memory allocation strategies in the Fine-Grained Dynamic implementation.</td>
</tr>
<tr>
<td>7.30</td>
<td>Maximum sorting throughput of each implementation on the A6-3650 and the A8-3850.</td>
</tr>
<tr>
<td>7.31</td>
<td>Speedup with respect to the NVIDIA reference implementation on the A6-3650 and the A8-3850.</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Over the past decade there has been a considerable amount of interest in computer architectures that consist of many processing cores [30]. Examples of such architectures include graphics processing units (GPUs), the Intel Single-Chip Cloud Computer [17], and the Intel Many Integrated Core Architecture [13]. These many-core platforms have the potential to offer more processing capability while using less power than traditional processors [30].

GPU devices are commonly in the form of discrete graphics cards that are attached to the computing system via a Peripheral Component Interconnect Express (PCI-E) bus. These discrete cards contain some form of dedicated dynamic random access memory (DRAM) that acts as the GPU’s primary memory region. This is a separate memory from the main system DRAM that is used by the central processing unit (CPU). This makes it necessary to first allocate a region of memory in the GPU’s DRAM and copy pertinent data from the CPU’s memory to the GPU’s memory [30]. Once this is complete, the GPU executes a program or kernel, that operates upon this data. Once the kernel execution has completed, any data generated by the GPU is then copied back from the GPU’s memory to the CPU’s memory. Since the GPU and CPU have separate physical DRAMs and copying data across the PCI-E bus can typically take a considerable amount of time,
the CPU often remains idle and therefore underutilized during GPU kernel execution.

A new computing architecture was recently released by Advanced Micro Devices (AMD) called the *AMD Fusion Accelerated Processing Unit* (APU). This architecture integrates a CPU and GPU onto a single silicon die and allows both devices to share the same physical DRAM. This architecture appears promising since it has the potential to reduce data transfer time between the CPU and GPU. It is, however, unclear just how beneficial this architecture is to the area of general-purpose computing. It is also unclear how suitable the existing OpenCL programming model, which is commonly used to program GPU devices, is to these new APU platforms. In this thesis we answer these questions in the context of parallel sorting. We are motivated to consider sorting because it is a well known problem that is important in the area of computer science. Radix sort has already been efficiently implemented on GPU devices by Satish et al. [36], however there does not exist an implementation that efficiently utilizes both the CPU and GPU simultaneously.

1.1 Thesis Overview

We have studied the radix sort algorithm described by Satish et al. [36] and have adapted it for execution on both the CPU and GPU components of the AMD Fusion APU. Two challenges arise in doing so: (i) efficiently partitioning and sharing data between the CPU and GPU and (ii) determining the optimal memory region in which to store data. We have developed a version of radix sort in which very little data sharing takes place between the on-chip CPU and GPU. This version is called the *Coarse-Grained* algorithm. We have also developed several versions of radix sort in which there is a relatively large amount of data sharing between the CPU and GPU devices. These versions make use of the APU’s integrated architecture to provide fast data sharing between the GPU and CPU. We call these versions our *Fine-Grained* algorithms. We have implemented and benchmarked
these algorithms on two AMD Fusion APU models. Both of these algorithms execute faster than the original algorithm presented by Satish et al. [36], thereby demonstrating that it is possible to use the CPU to efficiently speed up radix sort on the APU.

The results indicate that the Fine-Grained algorithm executes slightly faster than the Coarse-Grained algorithm, thereby demonstrating the benefit of the APU’s integrated architecture. These benefits are, however, limited by the Fusion APU’s architecture and programming model. We quantify the degree to which these limitations impact the performance of the Fine-Grained algorithm through a series of experiments. We determine that these limitations impose a significant performance penalty on the algorithm and make recommendations for future generations of the APU hardware and software.

1.2 Thesis Contributions

In this thesis we make the following contributions:

1. We have provided the first sorting algorithms to efficiently make use of both the GPU and CPU simultaneously.

2. We have implemented and evaluated these algorithms on multiple APU models in order to better characterize their performance capabilities. Our work shows that workload partitioning is a suitable method of parallelizing radix sort on the AMD Fusion APU. We have also demonstrated that repartitioning this workload at each step of the sorting algorithm is beneficial to performance.

3. We demonstrate that the a fine-grained data sharing approach is beneficial to the performance of radix sort on the Fusion APU. In doing so, we expose the limitations of the APU’s architecture and programming model that hinder performance under fine-grained data sharing scenarios.
1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 details the hardware architecture of the AMD Fusion APU. This is followed by a description of the OpenCL programming model that is used to program the APU in Chapter 3. Chapter 4 describes both the sequential version of radix sort as well as the parallel version of radix sort that is presented by Satish et al. [36]. In Chapter 5 we describe the algorithmic overview of our Coarse-Grained and Fine-Grained variants of radix sort. We provide the implementation details for these radix sort variants in Chapter 6. Each of the implementations is evaluated in Chapter 7. A survey of related work is provided in Chapter 8. Finally, in Chapter 9 we present concluding remarks and recommendations for future work.
Chapter 2

The AMD Fusion Accelerated Processing Unit

We begin this chapter by describing the hardware characteristics of the AMD Fusion accelerated processing unit. Both the on-chip GPU and CPU devices are detailed. We then present the various memory regions that are available and describe how the CPU and GPU access them.

2.1 Hardware Overview

The Advanced Micro Devices (AMD) Fusion accelerated processing unit (APU) is a heterogeneous computing environment that integrates scalar and vector compute engines onto a single silicon die \[4, 23\]. The scalar compute engine is comprised of a multi-core central processing unit (CPU) while a graphics processing unit (GPU) acts as the corresponding vector compute engine. The current generation of Fusion APU is codenamed \textit{Llano} \[22\] and its high-level organization is depicted in Figure 2.1. The CPU and GPU components both utilize the same main system memory (DRAM) pool to provide memory to each device. This differs from traditional CPU and discrete GPU combinations where each device has its own dedicated DRAM.
2.1.1 CPU Hardware

The CPU portion of the APU contains several x86-64 cores. The exact number of CPU cores varies between two and four depending on the exact APU model [5]. Each CPU core has its own cache hierarchy. The dedicated L1 instruction cache is a 2-way set-associative 64 KiB cache with a cache-line size of 64 bytes. Cache misses are fetched from the L2 cache or main memory, and cache-line eviction takes place according to a least-recently-used replacement policy [8]. Each core’s dedicated L1 data cache is 64 KiB in size and is 2-way set-associative. This cache is a write allocate write-back cache, meaning that it allocates a new entry on a cache write miss and only copies data to the next level of memory on a cache eviction. Coherency between each CPU core’s cache is maintained via the MOESI
Each CPU core has its own general-purpose L2 cache that is not shared amongst the other cores. This cache features an exclusive cache architecture, meaning that it only contains cache blocks that were evicted from the L1 cache. The L2 cache is 1024 KiB in size and is 16-way set associative. No form of L3 cache is present on the chip.

It is important to note that throughout this document cached memory refers to a region of memory that is accessed via the CPU’s cache hierarchy. Similarly, uncached memory refers to a region of memory that is not accessed via the CPU’s cache hierarchy.

Each CPU core also has a write combining buffer. The buffer is used to combine multiple memory-write operations that are performed to uncached memory. In order to effectively utilize the write combining buffer, the memory addresses that are written to must fall within the same 64-byte memory region that is aligned to a cache-line boundary. Scattered writes that do not fall within the same 64-byte cache-aligned region will cause the buffer to flush its data before it is full.

Each core’s cache hierarchy accesses memory via the on-die northbridge, specifically the front end and instruction fetch queues. The front end is responsible for maintaining coherency and consistency across memory accesses, while the instruction fetch queue is the centralized queue that holds cacheable traffic. The front end and instruction fetch queues communicate with the available DRAM controllers via a crossbar switch. The Llano architecture has two integrated DRAM controllers. Each controller accesses DRAM memory via its own independent 64-bit memory channel. The Llano APU supports DDR3 memory at speeds up to 1866 MHz. The write combining buffers also access memory via the northbridge, however they do not make use of the front end coherency logic.
2.1.2 GPU Hardware

The GPU portion of the Llano APU contains several graphics cores which AMD refers to as Radeon cores \[5\] or GPU cores. Much like the number of CPU cores, the number of Radeon cores varies from 160 cores on the A4-3300 model to 400 cores on the A8-3870K model \[5\].

As shown in Figure 2.1, the GPU’s graphics memory controller is able to access memory via two different interfaces. The Garlic interface allows the graphics memory controller to access the DRAM controllers directly. This provides the GPU access to uncached memory. Note that the Garlic interface is replicated for each of the available DRAM controllers. The Onion interface allows the graphics memory controller to access memory via the same front end and instruction fetch queue that the CPU cache hierarchy uses. This provides the GPU access to cached memory while maintaining cache coherency with the CPU’s cache hierarchy \[8\].

2.2 Memory Access and Allocation

The main system memory is logically partitioned between the APU’s on-die CPU and GPU. This is achieved by assigning each device its own virtual address space. The CPU’s and GPU’s virtual memory regions are respectively referred to as host memory and device-visible host memory. It is important to note that device-visible host memory is always uncached with respect to the CPU’s cache hierarchy. In contrast, host memory may be designated as either cached or uncached at allocation time. It is currently not possible to change the caching designation of a host memory region once it has been allocated \[3\].
2.2.1 CPU Accesses to Cached Host Memory

The CPU accesses cached host memory via its L1 and L2 cache hierarchy [8]. This provides the fastest read/write path between the CPU and the on-chip DRAM controllers. As such, this memory region is referred to as the CPU’s preferred memory region. Single threaded performance has been measured at 8 GB/s for reads and writes, while multithreaded performance has been measured at 13 GB/s [22].

2.2.2 CPU Accesses to Uncached Host Memory

CPU writes to uncached host memory are performed using the available write combining buffers. This provides relatively fast streaming write access to memory [3]. Multithreaded writes can be used to improve bandwidth using multiple CPU cores. This is because each core has its own write combining buffer. Multi-threaded writes have been measured at up to 13 GB/s. However, both single-threaded and multi-threaded reads are very slow because they are uncached [22].

2.2.3 CPU Accesses to Device-Visible Host Memory

Both the CPU and the GPU are capable of accessing each other’s virtual memories. The CPU is able to access device-visible host memory by mapping a device-visible host memory region into the CPU’s virtual address space. Since device-visible host memory is uncached, writes take place using the CPU’s write combining buffer. Instead of writing directly to the DRAM controllers, the write combining buffers send the data over the Onion interface to the GPU’s graphics memory controller. The GPU’s graphics memory controller is then responsible for writing the data to memory over the Garlic interface. CPU reads from device-visible host memory are accessed via the Onion interface in a similar manner. CPU writes can peak at 8 GB/sec, while reads are very slow due to the fact that this memory region is uncached. Note that on systems with discrete cards,
CPU writes to GPU memory are limited to 6 GB/s by the PCIe bus [22].

2.2.4 GPU Accesses to Cached Host Memory

The GPU is able to access host memory regions by mapping a host memory region into the GPU’s virtual address space. The GPU must maintain cache coherency with the CPU when accessing this type of memory. As a result, GPU reads and writes take place over the Onion interface. Accessing memory through this interface ensures that GPU reads and writes remain cache coherent with respect to the CPU’s cache hierarchy. This cache coherent access comes at a cost, however. GPU reads and writes are now subject to the same cache coherency protocol as CPU reads and writes. This has potential to introduce cache invalidations and increase on-chip network traffic. Reads have been measured at 4.5 GB/s, while writes can take place at up to 5.5 GB/s [22].

2.2.5 GPU Accesses to Uncached Host Memory

Similar to cached host memory, the GPU is able to access uncached host memory once it has been mapped into the GPU’s virtual address space. Accesses to uncached host memory takes place via the Garlic interface. GPU accesses to uncached host memory operate slightly slower than accesses to device-visible host memory. Reads have been measured at up to 12 GB/s [22].

2.2.6 GPU Accesses to Device-Visible Host Memory

The GPU accesses device-visible host memory via the Garlic interface [8] (see Figure 2.1). This provides the fastest read/write path between the GPU and the on-chip DRAM controllers and is referred to as the GPU’s preferred memory region. GPU access to this memory region has been measured at 17 GB/s for reads and 13 GB/s for writes [22].
Chapter 3

Programming the Fusion Accelerated Processing Unit

In this chapter we present the OpenCL programming model for the AMD Fusion Accelerated Processing Unit. We begin by describing the various models that are provided by the OpenCL framework. We then describe relevant details of how the OpenCL programming model maps to the hardware of the Fusion Accelerated Processing Unit.

3.1 OpenCL

OpenCL is an open, standardized, cross-platform framework that is used for the parallel programming of heterogeneous systems [7]. The Khronos group describes OpenCL using a hierarchy of models [7]: the platform model, the execution model, the memory model, and the programming model. Each of these models is described in the following sections.

3.1.1 Platform Model

The Platform model for OpenCL describes the hardware abstraction hierarchy that OpenCL uses. As illustrated in Figure 3.1, one host is attached to one or more OpenCL
compute devices. These devices can represent a GPU, a multi-core CPU, or an accelera-
tor such as a DSP or FPGA. Each compute device is divided into one or more compute units. Each of these compute units is divided into one or more processing elements [7].

An OpenCL application runs on the host and submits commands to a device. These commands instruct a device to execute a computation on its processing elements. All of the processing elements within a compute unit execute the same instructions. This can be done in one of two ways. The processing elements within a compute unit may execute in *SIMD* (single instruction, multiple data) fashion, meaning that they execute instructions in lockstep with respect to one another. Alternatively, the processing elements may execute in *SPMD* (single program, multiple data) fashion. In this scenario, each processing element maintains its own program counter and is not required to execute in lockstep with the other processing elements within its compute unit. The method in which these instructions execute is dependent on the hardware characteristics of the device that they are executing on [7].
3.1.2 Execution Model

Kernel Execution on an OpenCL Device

The execution model of an OpenCL program is made up of two main components: the host program and one or more kernels. Kernels are functions that are written in the OpenCL C programming language and compiled by an OpenCL compiler. These kernels are defined in the host program, which is responsible for managing kernels and submitting them for execution on OpenCL devices.

When a kernel is submitted for execution on an OpenCL device, the host program defines an index space that the kernel will execute over. An instance of the kernel is executed for each point in this index space. These kernel instances are called work-items. Each work-item has a unique coordinate within the index space which represents the global ID of the work-item. All work-items within the same index space execute the same kernel code. However, the specific execution pathway can vary from one work-item to another due to branching. The data that is operated upon can also vary since data elements may be selected by using a work-item’s global ID.

Work-items are organized into work-groups that evenly divide a kernel’s index space. These work-groups are used to provide a more coarse-grained decomposition of the kernel’s index space than what is provided by individual work-items alone. Work-groups are assigned a unique work-group ID. Work-items within the same work-group are assigned a unique local ID. This allows work-items to be uniquely identified by their global ID or a combination of their local ID and work-group ID. Work-items within a work-group are scheduled for concurrent execution on the processing elements of a single compute unit. Multiple compute units may be used for concurrent execution of work-groups within a kernel’s index space.

A kernel’s index space is called an NDRange and may span N dimensions, where N is one, two, or three. An NDRange is defined by an integer array of length N which
specifies the size of the index space in each dimension. This NDRange index space starts at an index offset \(F \) (which is set to zero unless otherwise specified). Global IDs, local IDs, and work-group IDs are all represented as \(N \)-dimensional tuples. The individual components of global IDs are values that range from \(F \) to \(F \) plus the number of elements in the component’s dimension minus one. Work-group IDs are assigned in a similar fashion; an array of length \(N \) specifies the number of work-groups in each dimension.

Work-items are assigned to work-groups and given a local ID. Each component of this local ID has a range of zero to the size of the work group in that dimension minus one. In order to differentiate between the index space within a kernel and the index space within a work-group, the former will hereafter be referred to as the global index space while the latter will be referred to as the local index space. It is important to keep in mind that the local index space represents a specific subset of the global index space.

For example, consider the 2-dimensional NDRange depicted in Figure 3.2. A global index space is specified for the work-items \((G_x, G_y)\), as is the size of each work-group \((S_x, S_y)\) and the global ID offset \((F_x, F_y)\). The number of work-items in the global index space is given by the product of \(G_x \) and \(G_y \). Similarly, number of work-items in a work-group is given by the product of \(S_x \) and \(S_y \). The number of work-groups can be calculated by dividing the number of work-items in the global index space by the number of work-items in a work-group. Each work-group is assigned a unique work-group ID \((w_x, w_y)\). Each work-item may be uniquely identified by its global ID \((g_x, g_y)\) or by the combination of its work-group ID \((w_x, w_y)\), its local ID \((s_x, s_y)\) and the work-group size \((S_x, S_y)\). The relationship between a work-item’s global ID, local ID, work-group ID, and the work-group size is as follows:

\[
(g_x, g_y) = (w_x \cdot S_x + s_x + F_x, w_y \cdot S_y + s_y + F_y)
\]

The number of work-groups can be computed as:

\[
(W_x, W_y) = ([G_x/S_x], [G_y/S_y])
\]
where \(\lceil x \rceil \) denotes the ceiling function of \(x \). The ceiling function of \(x \) is defined as:

\[
\lceil x \rceil = \max\{m \in \mathbb{Z} \mid m \leq x\}
\]

where \(x \) and \(m \) are real numbers and \(\mathbb{Z} \) is the set of integers.

The work-group ID of a work-item can be computed as:

\[
(w_x, w_y) = \left(\frac{g_x - s_x - F_x}{S_x}, \frac{g_y - s_y - F_y}{S_y}\right)
\]
Context and Command Queues

While kernels are executed on OpenCL devices, the host is responsible for the management of these kernels and devices \[33\]. The host does this by defining one or more contexts within the OpenCL application. The Khronos group defines a context in terms of the resources it provides \[7\]:

- **Devices**: The collection of OpenCL devices to be used by the host.
- **Kernels**: The OpenCL functions that run on OpenCL devices.
- **Program Objects**: The program source and executable that implement the kernels.
- **Memory Objects**: A region of global memory that is visible to the host and the OpenCL devices. Global memory is described in detail in Section 3.1.3.

The host program uses the OpenCL API to create and manage contexts. Once a context is created, the host creates one or more command-queues per device. Command-queues exist within a context, are associated with a particular OpenCL device, and are used to coordinate execution of commands on the devices. The host places commands into command-queues, which are then scheduled onto the devices within a context. There are three types of commands which may be scheduled onto an OpenCL device \[7\]. *Kernel execution commands* execute a kernel on the processing elements of a device. *Memory commands* transfer data to, from, or between memory objects. Memory commands may also map memory objects to the host address space or unmapping memory objects from the host address space. *Synchronization commands* constrain the order of execution of commands.

The host code is only responsible for adding commands to a command-queue. It is the responsibility of the command-queue and underlying OpenCL API implementation to schedule commands for execution on a device. When a command queue is created, it
is designated for either *in-order execution* or *out-of-order execution*. When a command-queue is designated for in-order execution, it means that commands are executed on a device in the order that they appear in the command queue. In other words, a command cannot begin execution until all prior commands on the queue have completed. This serializes the execution order of commands in a queue. When a command-queue is designated for out-of-order execution, commands in the queue may be executed in any order. If any particular ordering is desired, it must be enforced by the programmer through explicit synchronization commands.

Whenever a kernel execution command or a memory command is submitted to a queue, a corresponding *event* object is generated. These event objects are used to track the execution status of a command. Event objects may indicate that their corresponding command is in one of the following states [7]:

- **Queued**: The command has been enqueued in a command queue.
- **Submitted**: The command has been successfully submitted by the host to the device.
- **Running**: The device has started executing the command.
- **Complete**: The command has successfully completed execution.
- **Error**: An error has occurred. An error code representing the exact error is returned.

When adding a command to a command-queue, it is possible to specify a dependency list of events that the command is dependent upon. When this happens, all of the events in the dependency list must be complete before the command will begin to run. This approach may be used to control the order of execution between commands. It is also possible to query the status of an event from the host to coordinate execution between the host and a device.
3.1.3 Memory Model

The OpenCL specification defines four distinct memory regions that work-items have access to. *Global memory* is a region of memory that permits read/write access to all work-items in all work-groups. Work-items can read from or write to any element of a memory object. Reads and writes to global memory may be cached depending on the capabilities of the device. *Constant memory* is a region of global memory that remains constant during the execution of a kernel. The host allocates and initializes memory objects placed into constant memory. *Local memory* is a memory region local to a work-group. This memory region can be used to allocate variables that are shared by all work-items in that work-group. It may be implemented as dedicated regions of memory on the OpenCL device. Alternatively, the local memory region may be mapped onto sections of global memory. *Private memory* is a memory region specific to a work-item. Variables defined in one work-item’s private memory are not visible to another work-item. Table 3.1 summarizes kernel and host capabilities with regards to memory allocation and access in the various memory regions.

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Constant</th>
<th>Local</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host allocation</td>
<td>Dynamic</td>
<td>Dynamic</td>
<td>Dynamic</td>
<td>None</td>
</tr>
<tr>
<td>Host access</td>
<td>Read/write</td>
<td>Read/Write</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kernel allocation</td>
<td>None</td>
<td>Static</td>
<td>Static</td>
<td>Static</td>
</tr>
<tr>
<td>Kernel access</td>
<td>Read/write</td>
<td>Read-only</td>
<td>Read/write</td>
<td>Read/write</td>
</tr>
</tbody>
</table>

Table 3.1: OpenCL memory allocation and access capabilities by region [7].

Figure 3.3 depicts the memory regions and how they relate to the platform model. Work-items execute on processing elements and have their own private memory. Work-items within the same work-group execute on a compute unit and share access to the same local memory region. All work-items have access to global memory.

Global memory or constant memory may be allocated by the host and are represented in OpenCL by memory objects. These memory objects may be one of two types: *buffer*...
objects or *image* objects. Buffer objects store a contiguous one-dimensional collection of elements. These elements may be a scalar data type, a vector data type, or a user-defined structure. Image objects are used to store a two- or three-dimensional texture, frame-buffer, or image.

The host’s memory and the OpenCL device’s memory are treated independently of one another. OpenCL does, however, provide a means for the host memory and device memory to interact with one another. This interaction can take place through explicit data copies or by *mapping and unmapping* regions of a memory object.

In order to perform an explicit copy, the host enqueues a memory command to transfer data between host memory and the OpenCL memory object. This may take place in a *blocking* or *non-blocking* manner. When a blocking memory transfer is enqueued, the host program pauses execution until the memory transfer is complete and the transferred
data is safe to use. When a non-blocking memory transfer is enqueued, the host program continues execution immediately and the memory transfer takes place asynchronously in the background.

The host may also map and unmap regions of memory objects into its address space. When a region of memory is mapped into an address space, a virtual address is created within that address space that can be used to access the mapped region of memory. This virtual address may map to either a physical address that can be directly resolved, or it may map to another virtual address that is resolvable by some external device [22].

Once a memory object map is completed, the host is given a pointer to the mapped region of the memory object. The host is then able to use this pointer to read and write to this memory region. Once the host has completed its memory accesses to this region, it unmaps the region.

It is important to note that the OpenCL specification does not define the following behaviour with regards to mapping and unmapping:

- Accessing a region of a memory object from a device kernel while any portion of that memory object is mapped to the host.

- Using the pointer returned from a previous map operation to access a previously mapped memory object region after that memory region has been unmapped from the host.

In other words, the OpenCL specification only defines behaviour for host accesses to mapped memory objects and device accesses to unmapped memory objects. It does not define any scenario where the host and device may access regions of the same memory object simultaneously.
Memory Consistency

OpenCL uses a relaxed consistency model for memory objects. This means that at any given moment, the loads and stores into OpenCL memory objects may appear to occur in a different order for different work-items [33].

Within a local memory region, the values seen by work-items within a work-group is only guaranteed to be consistent at work-group synchronization points such as a work-group barrier. All work-items within a work-group must execute the barrier before any are allowed to continue execution beyond the barrier. This ensures that all loads and stores before the barrier have taken place before any work-item within the work-group proceeds past the barrier. This sets a point in the kernel execution where local memory is guaranteed to be in a consistent state within a work group before execution continues.

Work-group barriers may also be used to provide global memory consistency points to the work-items within a work-group. Note that it is only possible to provide these consistency points across work-items within an individual work-group. OpenCL does not provide a mechanism of synchronization across work-groups within a kernel.

3.1.4 Programming Model

OpenCL supports both data parallel and task parallel execution models. Although OpenCL supports task parallel models, the OpenCL specification [7] states that the data parallel model was primarily used to drive the design of OpenCL.

Data Parallel Programming Model

A data parallel programming model applies a single sequence of instructions concurrently to multiple elements of a memory object [7, 33]. Data parallel algorithms can be expressed in OpenCL by defining work-items in the NDRRange index space and writing kernels that map data operations to these work-items. Note that OpenCL implements a relaxed version of the data parallel programming model where a strict one-to-one mapping between
work-items and data is not required.

OpenCL provides a hierarchical data parallel programming model. This is achieved by providing data parallelism from multiple work-items within a work group and data parallelism from multiple work-groups within an index space. This hierarchical subdivision may be specified explicitly or implicitly. In the explicit case, the programmer specifies the total number of work-items as well as the number of work-items per work-group. In the implicit case, the programmer only specifies the total number of work-items and the OpenCL implementation divides them into work-groups.

Task Parallel Programming Model

OpenCL defines a task programming model in which a single instance of a kernel is executed regardless of the NDRange index space [7]. Under this model, parallelism may be expressed by performing vector operations over vector data types. Parallelism may also be expressed by using event dependencies in combination with an out-of-order queue to execute multiple kernels simultaneously.

3.2 OpenCL on the AMD Fusion APU

The AMD Fusion’s on-die CPU and GPU are both programmable in OpenCL. This is possible through the use of the *AMD Accelerated Parallel Processing SDK*, also known as the *AMD APP SDK* [2]. The AMD APP SDK provides the necessary tools, libraries, and environment to develop and build OpenCL applications for AMD CPUs and GPUs. In addition to using OpenCL, it is also possible to program the CPU in common programming languages that support compilation for x86 processors, such as C and C++.
3.2.1 Programming the GPU in OpenCL

OpenCL supports the use of GPUs as compute devices, and the GPU portion of the AMD Fusion APU is no exception. Much like the hierarchy depicted in Figure 3.1, the GPU is made up of several compute units, each of which has a number of processing elements. Work-items within a work-group are executed on the processing elements within a compute unit. The number of work-groups in an NDRange index space may differ from the number of available compute units. Likewise, the number of work-items within a work-group may differ from the number of processing elements within a compute unit. The GPU uses a hardware scheduler to schedule the execution of work-groups on compute units and work-items on processing elements.

Wavefronts

The way in which processing elements execute within a compute unit is unique to the specific hardware that an OpenCL kernel is executing on. While OpenCL allows the programmer to specify the geometry of the NDRange index space in terms of work-items and work-groups, AMD uses *wavefronts* to map work-items to processing elements [3]. A wavefront is defined as a collection of work-items within the same work-group that execute in lock-step in a compute unit. The size of a wavefront is dictated by the number of processing elements within a compute unit, and is therefore specific to the particular hardware that is being used as a compute device. A wavefront size of 32 or 64 is used depending on the GPU model. The GPU found in the Llano APU uses a wavefront size of 64.

3.2.2 Programming the CPU in OpenCL

The AMD APP SDK supports the use of CPUs as OpenCL devices. Much like the on-die GPU, the CPU is treated as a compute device and the OpenCL platform model is applied
to it. Each CPU core is treated as a compute unit made up of one processing element. As a result, a wavefront size of one is used when treating the CPU as an OpenCL device.

3.2.3 Buffer Mapping on the AMD Fusion Platform

As discussed in Section 3.1.3, the OpenCL specification allows OpenCL buffers to be mapped to the host. The way in which these maps take place varies depending on the type of buffer that is being mapped. On the AMD Fusion platform, buffers are either categorized as *copy buffers* or *zero copy* buffers [3]. When a copy buffer is mapped to the host for reading, its contents are copied from the device to the host. Similarly, when a copy buffer that has been written to is unmapped from the host, the contents of the buffer are copied from the host to the device. When a zero copy buffer is mapped to the host, however, no data is copied. Instead, the buffer is mapped into the host’s virtual address space. Figure 3.4 depicts a zero copy buffer that has been mapped into the host’s address space. The on-chip CPU and GPU contain separate virtual memory page tables. When a zero copy buffer is mapped from the GPU’s address space into the CPU’s address space, the GPU’s virtual memory page table still contains a valid reference to

![Figure 3.4: Zero copy buffer mapping on the AMD Llano architecture [22].](image-url)
the buffer's location in physical memory. It should be noted, however, that accessing a mapped buffer in a device kernel is undefined as per the OpenCL specification [7]. Once a zero copy buffer is mapped, the host is able to read from and write to this buffer directly. When the zero copy buffer is unmapped, no data is copied from the host to device.
Chapter 4

Radix Sort

In this chapter we provide an overview of radix sort. We begin by detailing the algorithmic steps of the sequential version. We then describe the parallel radix sort algorithm as presented by Satish et al. [35, 36].

4.1 Sequential Algorithm Overview

Coreman et al. [24] classify sorting algorithms into one of two categories: comparison sorts and non-comparison sorts. A sorting algorithm is classified as a comparison sort if only value comparisons between elements are used to determine the order of the resulting output dataset. Radix sort is a sorting algorithm that does not meet this criteria. As such, it is classified as a non-comparison sort.

Radix sort operates on values that are encoded using positional notation. When a value \(x \) is encoded using positional notation, it is represented using a sequence of \(d \) coefficients (or digits) \(c_i \) of an infinite power series expansion with a base (or radix) \(r \) as follows [38]:

\[
x = \sum_{i=-\infty}^{\infty} c_i \cdot r^i = \cdots + c_2 \cdot r^2 + c_1 \cdot r^1 + c_0 \cdot r^0 + c_{-1} \cdot r^{-1} + c_{-2} \cdot r^{-2} + \cdots \quad (4.1)
\]

For example, consider the unsigned decimal number \(x = 365 \). As it is printed in this
document, the number 365 is encoded using positional notation with radix $r = 10$. It is represented using $d = 3$ digits, the coefficients of which are $c_2 = 3$, $c_1 = 6$, $c_0 = 5$. All other c_i coefficients are set to zero. Substituting these values into (4.1) yields:

$$x = \sum_{i=-\infty}^{\infty} c_i \cdot r^i = \cdots + 0 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10^1 + 5 \cdot 10^0 + 0 \cdot 10^{-1} + \cdots$$

$$= 300 + 60 + 5$$

$$= 365$$

When we sort a set of d-digit values using radix sort, the values are sorted one digit at a time. We carry this sorting operation out from least significant digit to most significant digit. As can be seen in Figure 4.1 traversing the digits from least significant to most significant results in a sorted output without the need for any additional steps. Since only one digit is considered during each pass of the radix sort, sorting a set of d-digit numbers requires d passes.

Figure 4.1: An example of a set of values being sorted from least to most significant digit.

The pseudocode for radix sort is provided in Figure 4.2. It assumes that each element in an n-element input array $A[1..n]$ is made up of d digits. It also assumes that the least significant digit is enumerated as digit 1 and the most significant digit is enumerated as digit d. Within each of the d passes of radix sort, a stable sort is performed. A sort is considered to be stable if the relative order of elements with the same valued digit is preserved. This characteristic is required to ensure that the final output dataset remains sorted after all d passes of the algorithm. Although any stable sort may be used on line 3, it is common to use a stable counting sort for each pass of radix sort [36].
1: function RadixSort(A, d)
2: for currentDigit ← 1 to d do
3: A ← CountingSort(A, currentDigit, r);
4: end for
5: end function

Figure 4.2: Pseudocode representation of the sequential version of radix sort.

Counting sort is a non-comparison sort that assumes each of its \(n \) input elements contains an integer value between 0 and \(k \) \([24]\). For each element \(x \) in an unsorted input array \(A \), counting sort determines the number of elements with a value less than \(x \). This value is then used to place \(x \) in the appropriate output position. For example, if there are 12 elements with a value less than \(x \), then it follows that \(x \) should be placed in position 13. This description is inadequate, however, in the case that there are several elements in \(A \) that contain the same value. To address this inadequacy we modify our description of counting sort as follows: for each element \(x \) in an unsorted input array \(A \), counting sort determines the number of elements with a value less than \(x \) in \(A \) and the number of elements with a value equal to \(x \) that occur before \(x \) in \(A \). For example, if there are 12 elements with a value less than \(x \) and 2 elements with a value equal to \(x \) that occur before \(x \) in \(A \), then \(12 + 2 = 14 \) elements should be placed before \(x \) and \(x \) should be placed at position 15. This modification ensures that the counting sort is stable since the order of equal valued elements is maintained.

The pseudocode for the counting sort that is used by radix sort is provided in Figure 4.3. It assumes that each element in an \(n \)-element input array \(A[1..n] \) is made up of \(d \) digits, each of which is in the range 0 to \(k \) inclusive. The algorithm returns a sorted output array \(B[1..n] \) and uses intermediate arrays \(counters[0..k] \) and \(countersSum[0..k] \). We begin by setting \(k = r - 1 \) where \(r \) represents the radix that is being used. We then execute the first step in the counting sort algorithm, which is called the histogram step.
Chapter 4. Radix Sort

1: function CountingSort(A, currentDigit, r)
2: k ← r − 1;
3: Histogram(A, counters, k, currentDigit);
4: Rank(counters, countersSum, k);
5: Scatter(A, B, countersSum, k, currentDigit);
6: return B;
7: end function

Figure 4.3: Pseudocode representation of the sequential version of counting sort.

The pseudocode for the histogram step is provided in Figure 4.4. The histogram step

does not utilize any existing data structures, except for the counters array.

1: function Histogram(A, counters, k, currentDigit)
2: for i ← 0 to k do
3: counters[i] ← 0;
4: end for
5: ▷ All elements of counters are now initialized to zero.
6: for i ← 1 to length[A] do
7: digitVal ← CalcDigitValue(A[i], currentDigit);
8: counters[digitVal] ← counters[digitVal] + 1;
9: end for
10: ▷ counters[i] now contains the number of elements equal to i.
11: end function

Figure 4.4: Pseudocode representation of the histogram step in the sequential version of counting sort.

generates a histogram of the values between 0 and k that are taken on by the current digit of each element in A. We begin the histogram step by initializing the contents of counters to zero. We traverse each element in A and store the value of the current digit that we are sorting on in digitVal. We then increment the counters element at index digitVal. Once this is complete for all elements in A, the i^{th} element of counters contains the number of elements in A that have a current digit value equal to i.
After completing the histogram step, the counting sort pseudocode in Figure 4.3 executes the rank step. The rank step is responsible for calculating the output location in B where we will place the elements in A. The pseudocode for the rank step is provided in Figure 4.5. The rank step carries out an inclusive prefix sum over $counters$ and stores

```plaintext
function RANK(counters, countersSum, k)
for $i \leftarrow 1$ to $k$
do
   $countersSum[i] \leftarrow counters[i] + countersSum[i - 1];$
end for
$\triangledown$ $counters[i]$ now contains the number of elements less than or equal to $i$.
end function
```

Figure 4.5: Pseudocode representation of the rank step in the sequential version of counting sort.

the result in $countersSum$. According to Blelloch [20], a prefix sum, or scan “instruction for a binary associative operator \oplus, takes a vector of values” X “and returns to each position of a new equal-length vector, the operator sum of all previous positions in” X. The prefix sum in Figure 4.5 is said to be inclusive because $countersSum[i]$ contains the sum of all the values in $counters$ from index 0 up to and including index i. The following example illustrates the concept of an inclusive prefix sum using the $counters$ and $countersSum$ buffers:

\[
\begin{align*}
\text{counters} & = [3 \ 2 \ 1 \ 1 \ 2 \ 3] \\
\text{countersSum} & = [3 \ 5 \ 6 \ 7 \ 9 \ 12]
\end{align*}
\]

Note that each element in the $countersSum$ buffer is equal to the sum of the elements in the $counters$ buffer that occur at a lower or equal array index value.

After completing the rank step, the counting sort in Figure 4.3 executes the scatter step. The scatter step is responsible for placing the contents of A in the correct position in B. The pseudocode for the scatter step is provided in Figure 4.6. The scatter step traverses array A backwards and writes each element to the appropriate location in array
4.2 Parallel Radix Sort Algorithm

Radix sort may be parallelized by dividing the unsorted input array A into T equally sized tiles. Within each pass of parallel radix sort, we assign each tile A_i in A to a work-group and carry out a modified counting sort. Much like in the sequential version of radix sort, this counting sort consists of histogram, rank, and scatter steps. Each of these steps is implemented in its own OpenCL kernel.
During a given pass of radix sort, the current digit that is being sorted on may take on integer values between 0 and \(k = r - 1 \) where \(r \) represents the radix value. The histogram in the sequential version of radix sort described in Section 4.1 is responsible for generating a histogram buffer \(\text{counters} \) of current digit values within \(A \). The purpose of this is to generate a buffer \(\text{counters} \) where the \(i^{th} \) element of \(\text{counters} \) contains the number of elements in \(A \) that have a current digit value equal to \(i \). Similarly, the histogram in the parallel version of radix sort is responsible for generating \(T \) histograms in a buffer \(\text{counters} \), one for each of the \(T \) tiles in \(A \). For each histogram tile \(\text{counters}_t \) in \(\text{counters} \), the \(i^{th} \) element of \(\text{counters}_t \) contains the number of elements in \(A_t \) that have a current digit value equal to \(i \).

Once the \(\text{counters} \) buffer is generated, the rank kernel may begin execution. The rank kernel in the sequential version of radix sort is responsible for carrying out a prefix sum over \(\text{counters} \) as described in Section 4.1. This generates a buffer \(\text{countersSum} \) where each element in \(\text{countersSum} \) is equal to the sum of the elements in the \(\text{counters} \) buffer that occur at a lower or equal array index value. The rank kernel in the parallel version of radix sort operates in a similar manner, however it must account for the fact that there are \(T \) tiles. In order to determine the correct position to place elements, we must determine the number of elements that have a lower current digit value in all \(T \) tiles of \(A \). In order for the sort to remain stable, we must also determine the number of elements that have an equal current digit value in earlier tiles of \(A \). This is accomplished by storing the contents of \(\text{counters} \) in column-major order as illustrated in Figure 4.7. The column-major prefix sum ensures that each entry in the resulting \(\text{countersSum} \) buffer includes the histogram of all elements in \(A \) with a lower-valued current digit plus the number of elements in \(A \) with an equally-valued current digit that reside in earlier tiles.

Once the rank step is complete, the scatter kernel may begin execution. The scatter kernel in the sequential version of radix sort is responsible for placing each element in the appropriate output location indicated by the \(\text{countersSum} \) data. The scatter kernel in the
parallel version is responsible for the same task. Each work-item is assigned an element to place in the correct output position. There are two problems in this approach. The first is that GPU performance of scattered writes is slower than that of streaming writes. This is because when all work-items within a wavefront access consecutive memory addresses, the GPU is able to \textit{coalesce} these memory accesses into a single transaction \cite{3}. Coalesced memory accesses provide higher data transfer rates than uncoalesced memory accesses. The second problem is that elements with the same current digit value may be located anywhere within a work-group’s unsorted input tile A_t. Work-items are not aware of how many elements with the same current digit value should be placed before or after the work-item’s assigned element. Satish et al. \cite{36} address both of these problems by introducing a new step at the beginning of each parallel radix sort pass that locally sorts the data within each tile.

The algorithm presented by Satish et, al. \cite{36} consists of four kernels: local sort, histogram, rank, and scatter. This algorithm has a complexity of $O(n)$ \cite{36}. The pseudocode for this radix sort is provided in Figure \ref{fig:4.8}. It assumes that each element in an n-element input array $keys[0..n-1]$ is made up of d digits. Each digit is made up of b bits and the radix is given by $r = 2^b$. The least significant digit is enumerated as digit 1 and the most significant digit is enumerated as digit d. Digits may take on a
value between 0 and \(r - 1 \). The algorithm uses intermediate arrays \(tempKeys[0..n-1] \), \(tileOffsets[0..m-1] \), \(counters[0..m-1] \) and \(countersSum[0..m-1] \) where \(m = r \cdot T \). The variable \(startBit \) contains the starting bit of the current digit in each pass.

```plaintext
1: function RadixSort(keys, d)
2:     for currentDigit ← 1 to d do
3:         LocalSort(out:tempKeys, in:keys, in:startBit, in:b);
4:         Histogram(out:tileOffsets, out:counters, in:tempKeys,
                  in:startBit, in:b, in:r, in:tileSize, in:t);
5:         Rank(out:countersSum, in:counters, in:m);
6:         Scatter(out:keys, in:tempKeys, in:tileOffsets, in:countersSum,
                  in:startBit, in:b, in:r, in:tileSize, in:t);
7:     end for
8: end function
```

Figure 4.8: Pseudocode representation of the parallel version of radix sort.

Each pass of the parallel radix sort algorithm begins with a call to the local sort kernel. This kernel is responsible for locally sorting each tile of data in \(keys \) and storing the result in \(tempKeys \) using an intermediate buffer \(localKeys \) that resides in on-chip local memory. The pseudocode in Figure 4.9 describes the local sort kernel in terms of the operations that are performed by each work-item. Each work-item in the local sort kernel begins by determining its local ID and its global ID using the OpenCL-provided GetLocalId() and GetGlobalId() functions, respectively. With this information, the work-items within each work-group copy their assigned element from the \(keys \) buffer into the \(localKeys \) buffer. Once this is done, the work-items synchronize with one another at a work-group barrier. As described in Section 3.1.3, all work-items within the work-group must execute the barrier before any work-items are allowed to continue execution beyond the barrier. This barrier ensures that the work-groups \(keys \) tile has been completely copied into \(localKeys \) before the loop on line 7 is executed.

The loop on line 7 iterates over each bit in the current digit. The work-items call the
1: function LOCALSORT(tempKeys, keys, startBit, b)
2: \[localId \leftarrow \text{GetLocalId}(); \]
3: \[globalId \leftarrow \text{GetGlobalId}(); \]
4: \[localKeys[localId] \leftarrow keys[globalId]; \]
5: WorkGroupBarrier();
6: ▷ This work-group’s keys tile has now been copied to the on-chip localKeys buffer.
7: for currentBit \leftarrow startBit to b do
8: Split(localKeys, currentBit);
9: WorkGroupBarrier();
10: ▷ localKeys has now been sorted by the currentBit bit.
11: end for
12: ▷ localKeys has now been sorted by all bits in the current digit.
13: tempKeys[globalId] \leftarrow localKeys[localId];
14: WorkGroupBarrier();
15: ▷ This work-group’s sorted localKeys data has been copied to the tempKeys buffer.
16: end function

Figure 4.9: Pseudocode representation of the parallel local sort kernel.

Split() function within this loop’s body. The Split() function carries out a split operation, which is defined by Blelloch [20] as an operation that “packs the keys with a 0 in the corresponding bit to the bottom of a vector, and packs the keys with a 1 in the bit to the top of the same vector. It maintains order within both groups.” Figure 4.10 illustrates the effect of a 1-bit split operation being carried out on an array of values using each element’s least significant bit. As can be seen, a split operation is effectively a one-bit

Figure 4.10: An example of a 1-bit split operation being carried on an array of values using each element’s least significant bit.
radix sort operation. Split operations have been efficiently implemented on GPUs by Harris et al. [28] and are available in GPU data parallel primitive software packages such as the CUDA Data-Parallel Primitives (CUDPP) library [12].

The contents of localKeys are sorted by the current digit once the work-items exit the loop on line 7. The work-items copy the contents of the localKeys buffer into the appropriate tile within the tempKeys buffer. The tempKeys buffer now contains tiles of locally sorted elements and the local sort kernel is complete. It is important to note that each tile in tempKeys now contains contiguous regions of elements with equally valued current digits as illustrated in Figure 4.11.

![Unsorted keys tile](image)

| 3 | 0 | 1 | 2 | 0 | 1 | 3 | 3 | 1 | 1 | 2 | 3 | 1 | 0 | 1 | 2 |

<table>
<thead>
<tr>
<th>Locally sorted tempKeys tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4.11: An illustration of the contiguous regions of equally-valued elements that are generated in the local sort step.

Once the local sort step is complete, the histogram kernel is executed. The histogram kernel is responsible for determining the size and location of contiguous regions of equally-valued elements within each tile. The sizes of these contiguous regions are stored in counters while the locations of these regions within each tile are stored in tileOffsets. The pseudocode for the histogram kernel is provided in Figure 4.12. The histogram kernel is provided with the start bit of the current digit startBit, the number of bits in the current digit b, the radix r, the number of elements per tile tileSize, and the number of tiles T that make up the tempKeys buffer. The histogram kernel makes use of intermediate on-chip local memory buffers localDigitVal, localCounters, and localTileOffsets. Each
1: function Histogram(tileOffsets, counters, tempKeys, startBit, b, r, tileSize, T)
2: localId ← GetLocalId();
3: globalId ← GetGlobalId();
4: groupId ← GetGroupId();
5: localDigitVal[localId] ← CalcDigitValue(tempKeys[globalId], startBit, b);
6: WorkGroupBarrier();
7: ▷ The current digit value of each element in the work-group's tempKeys tile has now been calculated and stored in localDigitVals.
8: if localId > 0 then
9: if localDigitVals[localId] ≠ localDigitVals[localId − 1] then
10: val ← localDigitVals[localId];
11: valOffset ← localId;
12: localTileOffsets[val] ← valOffset;
13: end if
14: end if
15: WorkGroupBarrier();
16: ▷ localTileOffsets now contains the offset within each tempKeys tile where contiguous regions of equally valued digits begin.
17: if localId < r − 1 then
18: localCounters[localId] ← localTileOffsets[localId + 1] − localTileOffsets[localId];
19: else if localId = r − 1 then
20: localCounters[localId] ← tileSize − localTileOffsets[localId];
21: end if
22: WorkGroupBarrier();
23: ▷ localCounters now contains the size of each contiguous region of equally valued digits.
24: if localId < r then
25: tileOffsets[(r · groupId) + localId] ← localTileOffsets[localId];
26: counters[(T · localId) + groupId] ← localCounters[localId];
27: end if
28: end function

Figure 4.12: Pseudocode representation of the parallel histogram kernel.
work-item begins by determining its local ID, global ID, and work-group ID. Each work-item then calculates the value of its assigned element’s current digit and stores this value in local memory. Once all work-items within the work-group have populated the $localDigitVals$ buffer, adjacent elements in the $localDigitVals$ buffer are compared with one another. Since each tile in $tempKeys$ is locally sorted by the current digit, the $localDigitVals$ buffer contains r contiguous regions of equally valued elements. If the value of two adjacent elements in the $localDigitVals$ buffer are not equal, then the boundary of one such contiguous region has been found. The location where the contiguous region begins within the tile is recorded in $localTileOffsets$ on line 12. Once $localTileOffsets$ is populated, taking the difference between adjacent elements in the buffer provides us with the size of each contiguous region. This value is stored in $localCounters$. Once this is complete, the tile offset and counters data is copied from local memory to global memory. It is important to note that $counters$ now contains the size of each of the aforementioned contiguous regions. Likewise, $tileOffsets$ now contains the index of each contiguous region within its tile.

After the histogram step is complete, the rank kernel is executed. Each of the T tiles in the $tempKeys$ buffer contains up to r contiguous regions of elements with equal current digit values. The rank kernel is responsible for determining the location where each of these regions should be placed. The kernel carries out an exclusive parallel-prefix sum of the $counters$ buffer and stores the result in the $countersSum$ buffer. A prefix sum is said to be exclusive since $countersSum[i]$ contains the sum of all the values in $counters$ from index 0 up to and not including index i. The following example illustrates the concept of an exclusive prefix sum using the $counters$ and $countersSum$ buffers:

\[
\begin{align*}
\text{counters} & = \begin{bmatrix} 3 & 2 & 1 & 1 & 2 & 3 \end{bmatrix} \\
\text{countersSum} & = \begin{bmatrix} 0 & 3 & 5 & 6 & 7 & 9 \end{bmatrix}
\end{align*}
\]

Prefix sum operations have been efficiently implemented on GPUs by Harris et al. [28] and are available in GPU data parallel primitive software packages such as the CUDA
Data-Parallel Primitives (CUDPP) library [12].

Once the rank operation has completed, execution of the scatter kernel begins. The scatter kernel is responsible for placing each contiguous region in tempKeys to its sorted output position in keys. The pseudocode for the scatter kernel is provided in Figure 4.13.

The scatter kernel is provided with the start bit of the current digit startBit, the number of bits in the current digit b, the radix r, the number of elements per tile tileSize, and the number of tiles T that make up the tempKeys buffer. The scatter kernel makes use of intermediate on-chip local memory buffers localTempKeys, localTileOffsets, and localCountersSum. Each work-item begins by determining its local ID, global ID, and work-group ID. The first r work-items read the tile’s tileOffsets and countersSum data from global memory into local memory. Work-items within a work-group synchronize with each other on line 10. Each work-item then calculates the value of its assigned

1: function Scatter(keys, tempKeys, tileOffsets, countersSum, startBit, b, r, tileSize, T)
2: localId ← GetLocalId();
3: globalId ← GetGlobalId();
4: groupId ← GetGroupId();
5: localTempKeys[localId] ← tempKeys[globalId];
6: if localId < r then
7: localTileOffsets[localId] ← tileOffsets[(r · groupId) + localId];
8: localCountersSum[localId] ← countersSum[(T · localId) + groupId];
9: end if
10: WorkGroupBarrier();
11: digitVal ← CalcDigitValue(tempKeysTile[localId], startBit, b);
12: globalOutputIdx ← localCountersSum[digitVal]
13: +localId − localTileOffsets[digitVal];
14: keys[globalOutputIdx] ← localTempKeys[localId];

Figure 4.13: Pseudocode representation of the parallel scatter kernel.
element’s current digit and stores it in local memory. Work-items calculate the output location where their respective elements should be placed in the keys buffer. The elements are copied to the correct position in the keys buffer and the scatter step is complete.
Chapter 5

Fusion Sort

In this chapter we propose utilizing the CPU in order to increase the performance of radix sort on the AMD Fusion Accelerated Processing Unit and discuss the resulting challenges that arise. We then present several means of addressing these challenges and discuss the potential performance implications that are associated with them. We finally provide an algorithmic overview of three radix sort algorithms which we collectively refer to as Fusion Sort. Each of these algorithms address these challenges differently.

5.1 Motivation

The parallel NVIDIA algorithm presented by Satish et al. \[35, 36\] is designed for execution only on a GPU device. The CPU remains idle during this execution and does not participate in the sort. Our goal is to allow the CPU to participate in the sort in order to further increase the performance of radix sort. Several challenges arise when introducing the CPU as a participant in the sort. These challenges can be addressed in several ways, each of which has an impact on performance.

The NVIDIA algorithm presented by Satish et al. \[35, 36\] employs a data parallel programming model that breaks each kernel’s input into tiles that are processed in parallel on the GPU. It is intuitive to extend this model in order to achieve parallelism between
the GPU and the CPU devices. Thus, we elect to use a data parallel programming model where the input dataset is partitioned between the GPU and CPU devices.

The goal of partitioning the input dataset between the GPU and CPU is to ensure that each device takes an equal amount of time to carry out its assigned portion of the algorithm’s computational workload, thereby reducing the overall execution time of the sort. This partitioning may take place once at the beginning of the algorithm and kept for the duration of its execution or the partitioning may change at each kernel step. We refer to the former as static partitioning and the latter as dynamic partitioning.

Static partitioning provides the advantage of allowing for a coarse-grained data sharing model where the amount of communication between the GPU and CPU is relatively low. Each device can be thought of as the owner of the data that it is reading from or writing to and little data is transferred between the two devices. Static partitioning may not, however, be a suitable choice if certain kernel steps perform better on the GPU while other kernel steps perform better on the CPU. In this case it may be better to repartition the dataset at each kernel step, which we call dynamic partitioning.

Dynamic partitioning allows the workload and its associated data to be distributed between the GPU and the CPU at each kernel step. This allows us to eliminate workload imbalance at a per-kernel granularity, which may increase the overall performance of radix sort. The disadvantage of dynamic partitioning is that it requires a fine-grained data sharing model where data is passed back and forth between the CPU and GPU. This results in a relatively high amount of communication and synchronization between the devices. It is therefore unclear which partitioning method will result in better radix sort performance.

The second challenge is identifying the optimal way in which to allocate the memory buffers used by the algorithm. These buffers may be allocated as either copy buffers or zero copy buffers, as discussed in Section 3.2.3. If a buffer is allocated as a zero copy buffer, then we must decide on the memory region in which to allocate it. There are
several possible regions in which memory may be allocated, each of which is accessible at different speeds by the GPU and CPU, as discussed in Section 2.2. We must therefore decide on how to best allocate data while considering how it will be used in each step of the sort.

We present three radix sort algorithms that address the aforementioned challenges in different ways. They each use a different combination of data sharing granularity, partitioning methods and memory allocation strategies. These algorithms are named *Coarse-Grained, Fine-Grained Static*, and *Fine-Grained Dynamic*.

5.2 Coarse-Grained Algorithm

The Coarse-Grained algorithm uses both devices to independently execute the parallel radix sort algorithm described in Section 4.2 on the unsorted input data. The pseudocode for the complete Coarse-Grained implementation is provided in Figure 5.1. The CPU’s pseudocode is provided in Figure 5.1a while the GPU’s pseudocode is provided in Figure 5.1b.

The algorithm begins by copying $p\%$ of the unsorted input data to the GPU. This value $p\%$ is the percent of the sorting workload that has been assigned to the GPU and is referred to as the GPU *partition point*. Once this data has been copied to the GPU, the GPU and CPU synchronize with one another on line 2 to ensure that the GPU’s portion of the unsorted input dataset has been written to the $gpuKeys$ buffer before the GPU begins executing the parallel radix sort algorithm. Once this synchronization takes place, the CPU copies the remaining $(1-p)\%$ of the unsorted input data into its $cpuKeys$ buffer and the two devices simultaneously execute their respective variants of parallel radix sort. After all passes of the parallel radix sort have been carried out on both devices, the GPU and CPU again synchronize with one another. At this point the elements in the $cpuKeys$ buffer and $gpuKeys$ buffer are individually sorted and the
1: Write \(p\% \) of unsorted data to \(\text{gpuKeys} \)
on the GPU;
2: \text{Sync}();
3: Write \((1 - p)\%\) of unsorted data to
\(\text{cpuKeys} \);
4: \textbf{for} \(\text{cpuPass} \leftarrow 1 \) \textbf{to} \(\text{numPasses} \) \textbf{do}
5: \text{LocalSort}(\text{cpuKeys},
\text{cpuTempKeys});
6: \text{Histogram}(\text{cpuTempKeys},
\text{cpuTileOffsets},
\text{cpuCounters});
7: \text{Rank}(\text{cpuCounters},
\text{cpuCountersSum});
8: \text{Scatter}(\text{cpuTempKeys},
\text{cpuTileOffsets},
\text{cpuCountersSum},
\text{cpuKeys});
9: \textbf{end for}
10: \text{Sync}();
11: \text{Read} \(\text{gpuKeys} \) from GPU;
12: \text{Merge}(\text{cpuKeys},
\text{gpuKeys},
\text{mergedKeys});
13: \textbf{return} \text{mergedKeys}

(a) CPU pseudocode.

1: \text{Sync}();
2: \text{Sync}();
3: \text{for} \(\text{gpuPass} \leftarrow 1 \) \textbf{to} \(\text{numPasses} \) \textbf{do}
4: \text{LocalSort}(\text{gpuKeys},
\text{gpuTempKeys});
5: \text{LocalSort}(\text{gpuKeys},
\text{gpuTempKeys});
6: \text{Histogram}(\text{gpuTempKeys},
\text{gpuTileOffsets},
\text{gpuCounters});
7: \text{Rank}(\text{gpuCounters},
\text{gpuCountersSum});
8: \text{Scatter}(\text{gpuTempKeys},
\text{gpuTileOffsets},
\text{gpuCountersSum},
\text{gpuKeys});
9: \textbf{end for}
10: \text{Sync}();
11: \text{Sync}();
12: \text{Merge}(\text{cpuKeys},
\text{gpuKeys},
\text{mergedKeys});
13: \textbf{return} \text{mergedKeys}

(b) GPU pseudocode.

Figure 5.1: Pseudocode representation of the Coarse-Grained algorithm.

CPU may read the contents of \(\text{gpuKeys} \) from the GPU. The CPU must then merge
the contents of the \(\text{gpuKeys} \) buffer with the contents of the \(\text{cpuKeys} \) buffer. This generates
a single sorted output and completes the Coarse-Grained sort algorithm.

While the same kernel steps are carried out on both the GPU and the CPU, the
details of the implementation vary between devices. When executing on the GPU, the
GPU kernel steps closely follow the kernel algorithms described in Section 4.2. The CPU, however, runs a modified set of kernels that have been optimized for execution on the CPU.

The Coarse-Grained algorithm addresses the first challenge by using a static partition point that is set at the beginning of the algorithm. As the algorithm’s name suggests, a coarse-grained data sharing model is employed; there are relatively few synchronization points in the algorithm and little data sharing takes place between the GPU and the CPU. Data is only shared between the GPU and the CPU when the $gpuKeys$ buffer is written to the GPU at the beginning of the algorithm and when the $gpuKeys$ buffer is read from GPU at the end of the algorithm. These steps must be carried out regardless of whether or not the $gpuKeys$ buffer is of zero copy type. As a result, we do not use zero copy buffers in this algorithm. Each device’s buffers are allocated in the device’s preferred memory region; the CPU’s buffers are allocated in cached host memory while the GPU’s buffers are allocated in uncached device-visible host memory.

5.3 Fine-Grained Static Algorithm

The Fine-Grained Static algorithm shares data between the CPU and GPU during each pass of the sort, thereby utilizing a finer granularity of data sharing than the Coarse-Grained algorithm. The pseudocode for this algorithm is provided in Figure 5.2. The CPU’s pseudocode is shown in Figure 5.2a while the GPU’s pseudocode is shown in Figure 5.2b.

At the beginning of the algorithm, the CPU copies p% of the unsorted input data into the $gpuKeys$ buffer. The two devices then synchronize and begin execution of the parallel radix sort algorithm. Each device carries out the local sort step on the data in its respective $keys$ buffer. This data is written out to the device’s $tempKeys$ buffer. The histogram step then executes and generates the device’s $tileOffsets$ and $counters$
1: Write \(p\% \) of unsorted data to \(gpuKeys \);
2: \texttt{Sync();}
3: Write \((1 - p)\%\) of unsorted data to \(cpuKeys \);
4: \texttt{for pass ← 1 to numPasses do}
5: \texttt{LocalSort(cpuKeys, cpuTempKeys);}
6: \texttt{Histogram(cpuTempKeys, cpuTileOffsets, cpuCounters);}
7: \texttt{Rank(cpuCounters, cpuCountersSum);}
8: \texttt{Sync();}
9: \texttt{Scatter(cpuTempKeys, cpuTileOffsets, cpuCountersSum, cpuKeys, gpuKeys);}
10: \texttt{Sync();}
11: \texttt{end for}
12: Read \(gpuKeys \) from GPU;
13: \texttt{return Concatenate(gpuKeys, cpuKeys);}

(a) CPU pseudocode.

1: \texttt{Sync();}
2: \texttt{Sync();}
3: for pass ← 1 to numPasses do
4: \texttt{LocalSort(gpuKeys, gpuTempKeys);}
5: \texttt{Histogram(gpuTempKeys, gpuTileOffsets, gpuCounters);}
6: \texttt{Rank(gpuCounters, gpuCountersSum);}
7: \texttt{Sync();}
8: \texttt{Sync();}
9: \texttt{Scatter(gpuTempKeys, gpuTileOffsets, gpuCountersSum, gpuKeys, cpuKeys);}
10: \texttt{Sync();}
11: \texttt{end for}
12: \texttt{return Concatenate(gpuKeys, cpuKeys);}

(b) GPU pseudocode.

Figure 5.2: Pseudocode representation of the Fine-Grained Static algorithm.

buffers. Each device then carries out the rank step on its portion of \textit{counters} data before executing the scatter kernel. The scatter kernel in this algorithm is modified to account for the fact that multiple devices are participating in the sort.

When a device executes the scatter kernel, it may need to scatter data to another device’s region of the \textit{keys} buffer. Since the \textit{keys} buffer is used as an input to the local sort kernel, we must ensure that all devices have completed their local sort step before
executing the scatter kernel. We do this by inserting a synchronization point at line 8. Likewise, we must ensure that all devices have completed the scatter operation before beginning execution of the next iteration’s local sort kernel. We ensure this by inserting another synchronization point at line 10. Once all passes of the sort are complete, the CPU reads the GPU’s portion of the keys buffer from the GPU. The CPU’s portion of the keys buffer is concatenated to this and the sort is complete.

The Fine-Grained Static algorithm addresses the challenge of workload partitioning by choosing a static partition point for the duration of the sort. As its name suggests, the Fine-Grained Static algorithm uses a fine-grained data sharing model. Several synchronization points take place before and after the scatter kernel during each pass of the sort. The scatter step shares a large amount of data between the CPU and the GPU as it moves elements to their sorted locations.

In order to prevent the introduction of extra steps that merge the CPU’s and GPU’s respective scatter outputs, this algorithm requires that the cpuKeys and gpuKeys buffers be writable by both devices simultaneously. We therefore must allocate these buffers as zero copy type. The cpuKeys buffer is allocated in cacheable host memory. This provides fast CPU write access during the scatter step as well as fast CPU read access during the local sort step. The GPU is able to write to this memory buffer at reasonable speeds during the scatter step. The gpuKeys buffer is allocated in uncached device-visible host memory. This provides fast GPU write access during the scatter step as well as fast GPU read access during the local sort step. The CPU is able to write to this region at relatively fast speeds during the scatter step by making use of the available on-chip write combining buffers.
5.4 Fine-Grained Dynamic Algorithm

The Fine-Grained Dynamic algorithm was developed to explore the impact of per-kernel partitioning on overall sort performance. Instead of assuming a constant partition point \(p \) for all kernels, this algorithm repartitions the workload for each kernel step.

The pseudocode for the Fine-Grained Dynamic algorithm is provided in Figure 5.3. The CPU’s pseudocode is shown in Figure 5.3a while the GPU’s pseudocode is shown in Figure 5.3b. Since work is partitioned before each kernel, data that is output by a kernel on one device may be used as input to a kernel on another device. For example, the

```
1: Write unsorted data to keys;
2: Sync();
3: for pass ← 1 to numPasses do
   4: LocalSort(keys, tempKeys);
   5: Sync()
   6: Histogram(tempKeys, tileOffsets, counters);
   7: Sync()
   8: Rank(counters, countersSum);
   9: Sync()
  10: Scatter(tempKeys, tileOffsets, countersSum, keys);
  11: Sync()
end for
13: return keys;
```

(a) CPU pseudocode.

```
1:
2: Sync();
3: for pass ← 1 to numPasses do
   4: LocalSort(keys, tempKeys);
   5: Sync()
   6: Histogram(tempKeys, tileOffsets, counters);
   7: Sync()
   8: Rank(counters, countersSum);
   9: Sync()
  10: Scatter(tempKeys, tileOffsets, countersSum, keys);
 11: Sync()
end for
13:
```

(b) GPU pseudocode.

Figure 5.3: Pseudocode representation of the Fine-Grained Dynamic algorithm.
output of the local sort kernel on one device may be used as the input to the histogram or scatter kernels on a different device. Likewise, the tileOffsets data that is generated on one device may be required in the scatter step of another device. One consequence of this is that we now require synchronization points between each kernel step as can be seen on lines 5, 7, 9 and 11. Another consequence is that we can no longer consider a device to be the owner of the data that it is reading from or writing to. Instead of dividing a buffer into one region for the CPU and another region for the GPU, the entire buffer contents must now be visible to both devices during kernel execution. This results in a relatively high amount of data sharing between the GPU and the CPU.

The large amount of data sharing makes the memory region in which data is stored more important since the CPU and GPU may access the same memory region at different speeds. The buffers must be carefully allocated across multiple memory regions in order to ensure that data is quickly accessible by both devices. The details pertaining to memory allocation in the Fine-Grained Dynamic implementation are covered in Chapter 6.

5.5 Summary

We have presented three algorithms that allow the CPU to act as a participant in radix sort. Each of these algorithms address the challenges presented in Section 5.1 differently. Figure 5.4 summarizes the way in which the algorithms address these challenges.
Figure 5.4: A taxonomy of each algorithm with respect to the partitioning method, data sharing granularity and memory allocation method.
Chapter 6

Implementation

In this chapter we present the various implementations of radix sort that were created for execution on the AMD Fusion APU. We begin by describing reference implementations that run on only the GPU or CPU devices. We then describe a coarse-grained data sharing implementation that runs on both the CPU and GPU simultaneously. This is followed by the introduction three implementations that use fine-grained data sharing between the GPU and CPU. We conclude by providing a model for a theoretical optimum sorting implementation using information obtained from the GPU-Only and CPU-Only implementations.

6.1 GPU-Only Implementation

The GPU-Only implementation closely follows the parallel radix sort algorithm presented in Section 4.2. This implementation provides a reference against which the performance of the Fusion Sort algorithms can be measured. As described in Section 4.2, each pass of the algorithm consists of four basic steps: local sort, histogram, rank, and scatter. Each of these basic steps is implemented in an OpenCL kernel, the algorithmic details of which are provided in Section 4.2.

For each kernel, input data is broken into tiles. Each of these tiles is then assigned
to an OpenCL work-group. In addition to the inter-tile level of parallelism described in Section 4.2, the GPU-Only implementation provides a level of parallelism within each tile. Each work-group consists of many work-items as discussed in Section 3.1.2. These work-items are assigned one or more input elements within each tile. Note that no two work-items are assigned the same input element for processing within a kernel step. Table 6.1 details the work-group size, the number of input elements per work-item, and the total input tile size for each of the aforementioned kernels.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Work-Group Size</th>
<th>Input Elements Per Work-Item</th>
<th>Input Tile Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Sort</td>
<td>256</td>
<td>4</td>
<td>1024</td>
</tr>
<tr>
<td>Histogram</td>
<td>256</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>Rank</td>
<td>256</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>Scatter</td>
<td>256</td>
<td>2</td>
<td>512</td>
</tr>
</tbody>
</table>

Table 6.1: Table of GPU-Only kernel launch parameters.

This implementation operates on 32-bit unsigned integer values. \(b = 4 \) bits are considered during each pass of the radix sort algorithm. This results in a total of \(d = 32 \div b = 8 \) digits and a radix value \(r = 2^b = 16 \). All global memory buffers are allocated in device-visible host memory since this is the GPU’s preferred memory region. These buffers are allocated as copy buffers since there is no data sharing between the CPU and the GPU during the sort. Unsorted data is explicitly copied to the \(\text{keys} \) buffer via the DMA engine before the first pass of the sort begins. Similarly, sorted data is explicitly copied out of the \(\text{keys} \) buffer via the DMA engine after the last radix sort pass has completed.

6.2 CPU-Only Implementation

Much like the GPU-Only implementation described in Section 6.1, the CPU-Only implementation provides a reference against which the performance of the Fusion Sort
algorithms can be measured. The CPU-Only implementation executes solely on the CPU. The implementation modelled after the parallel radix sort algorithm presented in Section 4.2, the pseudocode for which is provided in Figure 4.8. The same four basic steps make up the implementation, however these steps are not implemented in OpenCL kernels. Instead, these kernels are implemented in the C++ programming language. A specified number of threads are created for the purpose of executing the kernel steps. These threads are referred to as CPU worker threads. Native Windows threads are used to provide the threading environment in this implementation.

For each kernel, the input data is once again broken into tiles. Each of these tiles are statically assigned to one of the CPU worker threads. Unlike the GPU-Only version, the CPU-Only version does not provide a level of parallelism within each tile; the elements within a tile are processed sequentially. Table 6.2 details the tile size for each kernel step. Note that the rank kernel is not listed in Table 6.2. As will be discussed later in this section, the rank kernel is executed by a single CPU worker thread. Because of this, the input to this kernel is not broken into tiles.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Input Tile Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Sort</td>
<td>1024</td>
</tr>
<tr>
<td>Histogram</td>
<td>512</td>
</tr>
<tr>
<td>Scatter</td>
<td>512</td>
</tr>
</tbody>
</table>

Table 6.2: Table of CPU-Only kernel input tile sizes.

Much like the GPU-Only implementation, the CPU-Only implementation operates on 32-bit unsigned integer values. Four bits are considered per pass, which causes there to be a total of eight passes in the sort and the radix value to equal 16. The CPU’s cache hierarchy is used to copy unsorted data into the keys buffer before the first radix sort pass. This cache hierarchy is also used to copy the sorted data out of the keys buffer after the last radix sort pass. All memory buffers in the CPU-Only implementation are allocated in cached host memory.
The local sort kernel is the first kernel to be executed within each pass. The pseudocode for processing each tile in this kernel is provided in Figure 6.1. Unlike the GPU-

```plaintext
1: function Local Sort(keysTile, tempKeysTile, tileSize, startBit, b)
2:     ▷ Generate a histogram of digit values.
3:     for i ← 0 to (tileSize - 1) do
4:         digitVal ← CalcDigitValue(keysTile[i], startBit, b);
5:         Increment(digitHist[digitVal]);
6:     end for
7:     ▷ Perform a prefix sum over the histogram of digit values.
8:     for i ← 1 to (radix - 1) do
9:         digitHistSum[i] ← digitHistSum[i - 1] + digitHist[i - 1];
10:    end for
11:    ▷ Calculate the output index and carry out the write.
12:    for i ← 0 to (tileSize - 1) do
13:        digitVal ← CalcDigitValue(keysTile[i], startBit, b);
14:        tileOutputIdx ← digitHistSum[digitVal];
15:        tempKeysTile[tileOutputIdx] ← keysTile[i];
16:        Increment(digitHistSum[digitVal]);
17:    end for
18: end function
```

Figure 6.1: Pseudocode of the local sort kernel in the CPU-Only implementation.

Only implementation which carries out $b = 4$ iterations of a 1-bit split operation, the CPU-Only implementation performs a counting sort on the entire digit value. In lines 3 to 6 the CPU worker thread generates a histogram of current digit values. Note that the histogram generated in this kernel differs from the one generated in the histogram kernel. This is because the local sort kernel and the histogram kernel have different tile sizes. Once the histogram of digit values is created, a prefix sum operation is carried out. The output index of each element is then calculated and the element is written to the appropriate location in the tempKeys buffer.

After the local sort kernel step has completed, the histogram kernel is executed. The
The pseudocode for the histogram kernel is provided in Figure 6.2. The worker thread begins by calculating the digit value for all elements within its input tile and storing them in an array. In the for loop on line 7, the thread then searches this array for the locations where the digit values change. These locations represent the boundaries of contiguous regions of equally-valued digits. Once found, these boundary locations are stored in the tile’s tileOffsets buffer on line 11. Since this position also marks the end of the previous contiguous region, the size of the previous contiguous region is calculated and stored in the tile’s counters buffer on line 12. The size of the last contiguous region is calculated and stored on line 14.

The rank kernel takes place after the histogram kernel. During testing it was found
that this kernel exhibits a lower execution time when carried out by a single thread as opposed to multiple threads. The rank kernel is therefore executed by a single thread and the input data is not broken into tiles. The pseudocode for this kernel is provided in Figure 6.3. The kernel carries out a sequential exclusive prefix sum over all elements in the counters buffer. Once the kernel is complete, the countersSum buffer is populated with the prefix sum data.

The final step in the CPU-Only implementation is the scatter step. The pseudocode for this kernel is provided in Figure 6.4. CPU worker threads processes each element in their respective input tiles sequentially. Each thread begins by calculating the current
digit value for the current element. It then calculates the output index in the keys buffer where the element should be written to and carries out the write. Once this step is complete, the keys buffer contains the sorted result of the current pass.

6.3 Coarse-Grained Implementation

The Coarse-Grained implementation carries out the sort on both the CPU and GPU simultaneously. As discussed in Section 5.2, the Coarse-Grained algorithm assigns $p\%$ of the unsorted dataset to the GPU and the remaining $(1 - p)\%$ to the CPU. The GPU and CPU then respectively execute the GPU-Only and CPU-Only implementations on their assigned datasets. Once both devices have completed sorting their respective datasets, the CPU copies the GPU’s sorted dataset into cached host memory using the DMA engine. The CPU then merges the two independently sorted datasets together.

The merge step is carried out by a single CPU thread and is not implemented in OpenCL. The pseudocode for this merge operation is presented in Figure 6.5. $gpuIdx$, $cpuIdx$, and $outputIdx$ respectively represent an index within $gpuArray$, $cpuArray$, and $outputArray$. These indices initially contain a value of zero. The while loop in lines 3 to 15 represent the case where both the $gpuArray$ and $cpuArray$ contain data that has not yet been merged into the output array. Each iteration determines which of $gpuArray[gpuIdx]$ and $cpuArray[cpuIdx]$ has a lower value. This value is copied to $outputArray[outputIdx]$. The index to the array that contained the lower value is then incremented, as is $outputIdx$. When the condition of the while loop on line 3 is no longer satisfied, this indicates that the entire contents of either $cpuArray$ or $gpuArray$ have been merged into $outputArray$. If there are elements in $gpuArray$ that have not yet been merged into $outputArray$, they are copied into $outputArray$ in lines 17 to 21. Likewise, if there are elements in $cpuArray$ that have not yet been merged into $outputArray$, they are copied into $outputArray$ in lines 23 to 27.
1: function Merge(gpuArray, cpuArray, gpuArrayLen, cpuArrayLen, outputArray, outputArrayLen)
2: ▷ While there are elements in both arrays that need to be merged...
3: while (gpuIdx < gpuArrayLen) and (cpuIdx < cpuArrayLen) do
4: if gpuArray[gpuIdx] < cpuArray[cpuIdx] then
5: ▷ If the current GPU value is less than the current CPU value, save it.
6: outputArray[outputIdx] ← gpuArray[gpuIdx];
7: Increment(gpuIdx);
8: Increment(outputIdx);
9: else
10: ▷ If the current CPU value is less than the current CPU value, save it.
11: outputArray[outputIdx] ← cpuArray[cpuIdx];
12: Increment(cpuIdx);
13: Increment(outputIdx);
14: end if
15: end while
16: ▷ If there are any elements left in the GPU array, copy them to the output array.
17: while gpuIdx < gpuArrayLen do
18: outputArray[outputIdx] ← gpuArray[gpuIdx];
19: Increment(gpuIdx);
20: Increment(outputIdx);
21: end while
22: ▷ If there are any elements left in the CPU array, copy them to the output array.
23: while cpuIdx < cpuArrayLen do
24: outputArray[outputIdx] ← cpuArray[cpuIdx];
25: Increment(cpuIdx);
26: Increment(outputIdx);
27: end while
28: end function

Figure 6.5: Pseudocode of the merge kernel in the Coarse-Grained implementation.
6.4 Fine-Grained Static Implementation

Much like the Coarse-Grained implementation, the Fine-Grained Static implementation executes its sort on both the CPU and GPU simultaneously. As described in Section 5.3, each pass of the algorithm consists of the local sort kernel, histogram kernel, rank kernel, and scatter kernel. The unsorted input data is broken into tiles and \(p \%) of the tiles are assigned to the GPU for processing. The remaining \((1 - p)\%) are assigned to the CPU.

The GPU’s kernel steps are implemented in OpenCL while the CPU’s kernel steps are implemented in C++ using native Windows threads. The launch parameters pertaining to the GPU kernels do not differ from the GPU-Only implementation and can be found in Table 6.1. Likewise, the tile sizes used in the CPU’s kernel steps are provided in Table 6.2. The GPU and CPU kernel steps are modelled after the GPU-Only and CPU-Only implementations, the algorithmic details of which are respectively provided in Sections 4.2 and 6.2. Where necessary, additional information has been provided in each kernel to ensure that the GPU accounts for the number of tiles that have been assigned to the CPU and vice-versa. Much like the aforementioned implementations, the Fine-Grained Static implementation operates on 32-bit unsigned integer values. \(b = 4 \) bits are considered during each pass of the parallel radix sort algorithm. This results in a total of \(d = 32 \div b = 8 \) digits and a radix value of \(r = 2^b = 16 \).

The implementation of the Fine-Grained Static algorithm deviates slightly from the algorithmic description provided in Section 5.3. During implementation it was discovered that splitting the rank step across the CPU and GPU requires a significant amount of synchronization between the devices. Additionally, extra computational steps would need to be introduced in order to carry out the rank step across both devices. It was therefore decided that the rank step would be entirely carried out by only one device. The rank step in the CPU-Only implementation was empirically found to be faster than the rank step in the GPU-Only implementation. The CPU was therefore chosen to carry out the entire rank operation in the Fine-Grained Static implementation. This rank step
is carried out in the same single-threaded manner as the rank operation described in Section 6.2.

The OpenCL specification does not define a means of allowing multiple devices to write to the same memory buffer simultaneously. This prevents the GPU and CPU from both participating in the scatter step since both devices require write access to the entire keys buffer. In order to adhere to the OpenCL specification, the Fine-Grained Static implementation must carry out the entire scatter step on only one device. The entire scatter operation is therefore executed on the GPU since it was empirically found to execute the scatter step faster than the CPU.

Zero copy buffers are used since data is shared between the GPU and CPU in each pass of the Fine-Grained Static implementation. Table 6.3 details the memory region in which each buffer is allocated as well as whether not a buffer is of zero copy type.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Allocated Memory Region</th>
<th>Zero copy type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpuKeys</td>
<td>Uncached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>cpuKeys</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>gpuTempKeys</td>
<td>Device-visible host memory</td>
<td>No</td>
</tr>
<tr>
<td>cpuTempKeys</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>gpuTileOffsets</td>
<td>Device-visible host memory</td>
<td>No</td>
</tr>
<tr>
<td>cpuTileOffsets</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>gpuCounters</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>cpuCounters</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>gpuCountersSum</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
<tr>
<td>cpuCountersSum</td>
<td>Cached host memory</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 6.3: Memory buffer allocation details for the Fine-Grained Static implementation.

All CPU buffers are allocated in cached host memory to allow for fast CPU read/write access. These buffers are of zero copy type to facilitate fast data sharing between the CPU and GPU.

The gpuKeys buffer is allocated in uncached memory in order to provide fast GPU access. The AMD OpenCL Programming Guide [3] states that mapping a zero copy
buffer to the host and using the CPU’s write combining buffers is the fastest method of populating data into uncached memory. We allocate \textit{gpuKeys} as a zero copy buffer so that we may use this technique to populate it at the beginning of the Fine-Grained Static implementation. While it would be preferable to allocate \textit{gpuKeys} in the GPU’s preferred device-visible host memory, it was found during implementation that the amount of device-visible host memory that can be mapped to the CPU is limited. We allocate \textit{gpuKeys} in uncached host memory to circumvent this limitation.

The \textit{gpuTempKeys} and \textit{gpuTileOffsets} buffers are allocated in device-visible host memory to provide fast memory access to the GPU. These buffers are not allocated as zero copy buffers since their data is never accessed by the CPU. The \textit{gpuCounters} and \textit{gpuCountersSum} buffers are allocated in cached host memory. This is done because these buffers need to be read by the CPU during the rank step. These buffers are allocated as zero copy type in order to provide fast data sharing between the CPU and GPU.

6.5 Fine-Grained Static Split Scatter Implementation

The Fine-Grained Static Split Scatter implementation is a modification of the Fine-Grained Static implementation presented in Section 6.4 that allows the scatter to be executed by both the GPU and the CPU. As discussed in Section 3.2.3, the GPU and CPU have separate virtual memory page tables. When a zero copy buffer is mapped from the GPU’s address space to the CPU’s address space, the GPU’s virtual memory page table still contains a valid reference to the buffer’s location in physical memory. We leverage this fact and map the \textit{gpuKeys} and \textit{cpuKeys} buffers before carrying out the scatter step. This provides both the GPU and the CPU with simultaneous write access to these buffers. It is important to note that while this technique allows the GPU and CPU to access data simultaneously on the AMD Llano architecture, its behaviour is
not formally defined in the OpenCL specification. This implementation is therefore not strictly compliant with the OpenCL specification.

6.6 Fine-Grained Dynamic Implementation

The Fine-Grained Dynamic implementation modifies the Fine-Grained Static Split Scatter implementation presented in Section 6.5 by introducing per-kernel GPU partition points. Like the aforementioned implementations, the GPU’s kernel steps are implemented in OpenCL while the CPU’s kernel steps are implemented in C++ using native Windows threads. The launch parameters pertaining to the GPU kernels do not differ from the GPU-Only implementation and can be found in Table 6.1. Likewise, the tile sizes used in the CPU’s kernel steps are provided in Table 6.2. The GPU and CPU kernel steps are modelled after the GPU-Only and CPU-Only implementations, the algorithmic details of which are respectively provided in Sections 4.2 and 6.2. Once again, additional information has been provided in each kernel to ensure that the GPU accounts for the number of tiles that have been assigned to the CPU and vice-versa. Much like the aforementioned implementations, the Fine-Grained Dynamic implementation operates on 32-bit unsigned integer values. $b = 4$ bits are considered during each pass of the parallel radix sort algorithm. This results in a total of $d = 32 \div b = 8$ digits and a radix value of $r = 2^b = 16$.

Like the Fine-Grained Static and Fine-Grained Split Scatter implementations, the rank step in the Fine-Grained Dynamic implementation is carried out exclusively by the CPU device. The individual GPU partition points for the remaining kernels are denoted as $\textit{p}_{\text{localSort}}$, $\textit{p}_{\text{histogram}}$, and $\textit{p}_{\text{scatter}}$. Since data may be shared between the GPU and the CPU at each step of this implementation, all buffers are allocated as zero copy buffers. Since data is frequently shared between devices, we no longer consider a device to be the owner of the data that it is reading from or writing to. Instead of dividing a buffer
into one region for the GPU and another region for the CPU, the entire buffer contents must now be visible to both devices during kernel execution. These buffers are, however, divided into cached and uncached regions. The sizes of the cached and uncached regions are dictated by the partition points used in the algorithm. The size of each buffer’s uncached region is provided in Table 6.4. The size of the uncached region of the \textit{keys} buffer is given by $p_{\text{localSort}}$. The \textit{keys} buffer is only ever read from in the local sort kernel and allocating the buffer in this manner ensures that the CPU never reads from uncached memory. The size of the uncached region of the \textit{tempKeys} buffer is given by $\min(p_{\text{localSort}}, p_{\text{histogram}}, p_{\text{scatter}})$. This ensures that the CPU does not perform scattered writes to uncached memory in the local sort step, as well as ensuring that the CPU does not read from uncached memory in the histogram and scatter steps. The \textit{tileOffsets} buffer is completely allocated in cached memory. Allocating this buffer as one contiguous region simplifies the histogram and scatter kernels by reducing the number of branches that are present. This was empirically determined to improve the overall performance of the implementation. This buffer is located in cached memory so that the CPU does not read from uncached memory in the scatter step. The \textit{counters} and \textit{countersSum} buffers are completely located in cached memory so that the CPU does not read from uncached memory during the rank step. All cached portions of buffers are allocated in cached host memory while all uncached regions of buffers are allocated in uncached host memory.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Uncached Region (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{keys}</td>
<td>$p_{\text{localSort}}$</td>
</tr>
<tr>
<td>\textit{tempKeys}</td>
<td>$\min(p_{\text{localSort}}, p_{\text{histogram}}, p_{\text{scatter}})$</td>
</tr>
<tr>
<td>\textit{tileOffsets}</td>
<td>0</td>
</tr>
<tr>
<td>\textit{counters}</td>
<td>0</td>
</tr>
<tr>
<td>\textit{countersSum}</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.4: Memory buffer allocation details for the Fine-Grained Dynamic implementation.
6.7 Theoretical Optimum Model

The theoretical optimum is modelled after the dataflow that is present in the Fine-Grained Dynamic Algorithm described in Section 5.4. Its purpose is to model the execution time of the Fine-Grained Dynamic implementation without the overhead of memory accesses to non-preferred memory regions or the management of multiple devices and data buffers. This model should provide the lowest theoretically attainable execution time of the Fine-Grained Dynamic implementation.

This model assumes that per-kernel partitioning is taking place at the optimal partition point for all partitioned kernels. We define the optimal partition point for a given kernel as the GPU partition point that minimizes that kernel’s execution time. It models a sort implementation where all memory accesses are done to each device’s preferred memory region. It also models a sort where there is no additional complexity involved in having both the GPU and CPU participate in kernel steps simultaneously. Note that these characteristics are present in the GPU-Only and CPU-Only implementations.

Consider sorting \(N \) elements using the Fine-Grained Dynamic implementation. We determine the theoretically optimum execution time of a given kernel step by first plotting the GPU-Only implementation’s corresponding kernel execution time as a function of \(n \) where \(n \) varies between 0 and \(N \). We then plot the CPU-Only implementation’s corresponding kernel execution time as a function of \(N - n \) where \(n \) varies between 0 and \(N \). The result is illustrated in Figure 6.6. Once these values are plotted, the execution time of the theoretical model is given by the maximum execution time at each simulated partition point. The theoretical optimum execution time is found where the execution time of the GPU kernel is equal to that of the CPU kernel. We do this for the local sort, histogram, and scatter kernels in order to determine the theoretical optimum execution time for each of them. We perform an analogous operation to determine the theoretical optimum execution time for the initial population of data the keys buffer and the final retrieval of sorted data from the keys buffer. Since the rank step is only carried out on
one device, the theoretical optimum execution time for the rank step is calculated using the CPU-Only rank kernel execution time where $n = N$. The theoretical optimum sort time is given by the sum of each of these theoretically optimum kernel execution and data transfer times.
Chapter 7

Evaluation

In this chapter we present the experimental evaluation of several radix sort implementations. We begin by describing the hardware and software platforms used in the evaluation. We then define the performance metrics that will be used throughout the remainder of the chapter. Finally, we provide the evaluation methodology and results for each of the implementations described in Chapter 6.

7.1 Hardware Platforms

Each version of radix sort was evaluated on two hardware platforms. The specifications of the platforms are similar, however the APU model varies between them. One platform contains an A6-3650 model APU while the other contains an A8-3850 model APU. There are several differences between these APU models that affect their relative CPU and GPU performance. The CPU in the A6-3650 contains four cores, each with a clock speed of 2.6 GHz \[5\]. The CPU in the A8-3850 also contains four cores, however these cores clock at 2.9 GHz. The GPU in the A8-3850 contains 400 cores, each of which have a clock speed of 600 MHz. The GPU in the A6-3650 contains 320 cores that clock at 443 MHz. The result is that the GPU in the A8-3850 has 25% more cores than the A6-3650, each of which has a clock speed that is 35.4% faster than the A6-3650. In contrast, the
CPU in the A8-3850 has an equal number of cores to the A6-3650, each of which has a clock speed that is 11.5% faster than the A6-3650. Note the A8-3850 shows a higher percent increase in GPU core count and clock speed than CPU core count and clock speed when compared to the A6-3650. The complete specifications of the two platforms are summarized in Table 7.1.

<table>
<thead>
<tr>
<th>Hardware Specification</th>
<th>Platform 1</th>
<th>Platform 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU model</td>
<td>A6-3650</td>
<td>A8-3850</td>
</tr>
<tr>
<td>CPU cores</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CPU frequency</td>
<td>2.6 GHz</td>
<td>2.9 GHz</td>
</tr>
<tr>
<td>GPU model</td>
<td>HD 6530D</td>
<td>HD 6550D</td>
</tr>
<tr>
<td>GPU cores</td>
<td>320</td>
<td>400</td>
</tr>
<tr>
<td>GPU core frequency</td>
<td>443 MHz</td>
<td>600 MHz</td>
</tr>
<tr>
<td>APU DRAM type</td>
<td>DDR3</td>
<td>DDR3</td>
</tr>
<tr>
<td>APU DRAM frequency</td>
<td>1866 MHz</td>
<td>1866 MHz</td>
</tr>
<tr>
<td>APU DRAM size</td>
<td>8 GB</td>
<td>8 GB</td>
</tr>
<tr>
<td>Host memory size</td>
<td>6 GB</td>
<td>6 GB</td>
</tr>
<tr>
<td>Device memory size</td>
<td>2 GB</td>
<td>2 GB</td>
</tr>
</tbody>
</table>

Table 7.1: Summary of evaluation platforms.

7.2 Software Platform

Each of the GPU’s radix sort kernels is implemented using OpenCL C. The OpenCL C++ bindings are used in the host code. The CPU’s radix sort kernels and control flow code are written in C++. The OpenCL runtime and compilers are provided by version 2.6 of the AMD Accelerated Parallel Processing Software Development Kit [9] and version 11.12 of the AMD Catalyst driver suite [15]. All tests were run under Microsoft Windows 7 64-bit. All code that executes on the CPU was compiled using the Microsoft Visual Studio 2010 C++ compiler with /O2 optimizations enabled. Native Windows threads were used to provide the threading environment on the CPU.
7.3 Performance Metrics

The sort time of the algorithm is measured when conducting each experiment. We define sort time as the time it takes to copy the unsorted keys into the input keys buffer, carry out the sort operation, and read the sorted data back from the output keys buffer. Sort time is always measured using the CPU’s high-resolution performance counter.

Where appropriate, kernel execution time and data transfer time are also measured. When an OpenCL kernel or OpenCL memory command is submitted to the GPU, a corresponding OpenCL event object is generated, as discussed in Section 3.1.2 These events are queried to determine the execution time of OpenCL kernels that execute on the GPU. This execution time is measured using the GPU’s internal timer. Data transfers that use the DMA engine are also measured using this method since they are initiated in the form of OpenCL memory commands.

OpenCL events are generated when buffers are mapped to and unmapped from the CPU’s address space, however no OpenCL event is generated when the CPU transfers data to or from a mapped buffer. We therefore use the CPU’s high-resolution performance counter to determine the execution time of data transfers that take place to mapped zero copy memory buffers. This same performance counter is used to determine the execution time of kernel steps that execute on the CPU.

Sort time and kernel execution time are used to calculate throughput. We define throughput as follows:

\[\text{throughput} = \frac{\text{number of input elements}}{\text{time}} \]

When calculating throughput for the entire sort algorithm, the number of input elements refers to the number of elements that are to be sorted. When determining the throughput of the local sort kernel, the number of input elements refers to the number of elements in the kernel’s keys input buffer that are to be locally sorted. In the context of the histogram kernel’s throughput, the number of input elements equals the number of locally sorted
elements in the kernel’s tempKeys input buffer for which histogram and tile offset data will be generated. When referring to throughput for the rank kernel, the number of input elements refers to the number of elements in the kernel’s counters input buffer over which a prefix sum operation is performed. When calculating throughput for the scatter kernel, the number of input elements refers to the number of locally sorted elements in the kernel’s tempKeys input buffer that are to be scattered to the output keys buffer.

Sort time and execution time are also used to calculate the speedup of the sorting implementation or kernel step. We define speedup with respect to a baseline as follows:

$$\text{speedup} = \frac{\text{baseline time}}{\text{measured time}}$$

In addition to sort time and execution time, we also measure idle time when it is appropriate. Idle time represents the amount of time that one device remains idle while the other device executes a step in the sorting algorithm. For a given kernel step k, let the kernel execution time on the GPU and CPU be represented as $t_{k_{GPU}}$ and $t_{k_{CPU}}$, respectively. The idle time that is present during the execution of kernel step k is given by:

$$\text{idle time} = |t_{k_{GPU}} - t_{k_{CPU}}|$$

where $|x|$ represents the absolute value of x.

7.4 Evaluated Implementations

In the following sections, we specifically evaluate the following versions of radix sort: GPU-Only, CPU-Only, Coarse-Grained, Fine-Grained Static, Fine-Grained Static Split Scatter, Fine-Grained Dynamic, and Measured Theoretical Optimum. Each of these versions are described in detail in Chapter 6 of this document.
Chapter 7. Evaluation

7.5 GPU-Only Results

We begin our evaluation of the GPU-Only version by presenting the execution time of this implementation over a range of datasets that contain between 0 and 128 Mi randomly generated unsigned integer values. Since the GPU clock frequency and number of cores varies between platforms, it is expected that the GPU-Only implementation will perform differently across them. Figure [7.1] illustrates the sort time of the GPU-Only version on the A6-3650 and the A8-3850. Note that the A8-3850 has a sort time that is on average 39.8% lower than that of the A6-3650. Using the sort time on the A6-3650 as a baseline, this translates into a speedup of 1.66 when this implementation is run on the A8-3850. This speedup can be attributed to the increased core count and clock frequency found in the GPU of the A8-3850 that was described in Section [7.1].

In order to better understand the relative performance characteristics of each kernel in the GPU-Only version, we measure the time it takes for each kernel to execute. This experiment was carried out on both platforms using 128 Mi unsigned integer values.

Figure 7.1: Sort time of the GPU-Only implementation on the A6-3650 and A8-3850.

In order to better understand the relative performance characteristics of each kernel in the GPU-Only version, we measure the time it takes for each kernel to execute. This experiment was carried out on both platforms using 128 Mi unsigned integer values.
Figure 7.2 depicts the per-kernel execution time as a percent of total kernel execution time on the A6-3650. These results are identical to those of the A8-3850 platform.

![Figure 7.2: The GPU-Only per-kernel execution time as a percent of all kernel execution time.](image)

The fact that these per-kernel percent values are the same across APU models indicates that the relative performance difference of the GPUs affects all of the kernels in this implementation equally.

Note that the local sort operation represents the majority of kernel time in this implementation. The histogram and scatter kernels are the second and third most time consuming, respectively. The rank kernel is responsible for the least amount of kernel time. It should be noted that the scatter implementation has a larger number of global memory accesses than the local sort implementation, however it takes significantly less time to carry out. This is because the local sort kernel is significantly more computationally intensive on the GPU than the scatter kernel. This difference in computation time is larger than the difference in memory access time, which causes the local sort kernel to have a longer execution time than the scatter kernel.

As discussed in Section 6.1, the GPU-Only version is modelled after the NVIDIA reference algorithm proposed by Satish et al. [36]. NVIDIA provides an OpenCL implementation of this reference algorithm in their CUDA software development kit [10],
however this sample implementation is limited to sorting 4 Mi 32-bit unsigned integer values. In order to verify that the performance of the GPU-Only version is comparable to the NVIDIA reference implementation, we measure the throughput of each version using an input dataset size of 4 Mi elements. As can be seen in Figure 7.3, the throughput of the GPU-Only version is comparable to that of the NVIDIA reference implementation.

![Figure 7.3: Throughput of the GPU-Only and NVIDIA reference implementation on the A6-3650 and A8-3850.](image)

7.6 CPU-Only Results

We present the execution time of this implementation over a range of datasets that contain between 0 and 128 Mi randomly generated unsigned integer values. Figure 7.4 and Figure 7.5 illustrate the sort time of the CPU-Only implementation on the A6-3650 and the A8-3850, respectively. The sort time for the CPU-Only version also exhibits a linear increase with respect to the input dataset size. This is once again due to the fact that the complexity of radix sort is $O(n)$.

As can be seen in Figure 7.4 and Figure 7.5, increasing the number of CPU worker threads results in a consistent decrease in sort time. In order to assess how well the CPU-Only version scales to multiple cores, we calculate the throughput of the implementation over a varying number of threads. In this experiment we calculate throughput using...
Figure 7.4: Sort time of the CPU-Only implementation on the A6-3650 as a function of input dataset size.

Figure 7.5: Sort time of the CPU-Only implementation on the A8-3850 as a function of input dataset size.
the sort time of 128 Mi unsigned integer values on each platform. The results of this experiment are illustrated in Figure 7.6. Note that the throughput exhibits an almost linear increase with respect to the number of threads. From this we conclude that the CPU-Only implementation scales well up to four cores.

Since the CPU clock frequency varies between platforms, it is expected that the CPU-Only implementation will perform differently across them. Figure 7.7 illustrates the sort time of the CPU-Only version using three threads on the A6-3650 and the A8-3850 over a varying dataset size. The CPU-Only sort time of the A8-3850 is on average 12.6% lower than that of the A6-3650. Using the sort time on the A6-3650 as a baseline, this translates into a speedup of 1.15 when running this implementation on the A8-3850. Note that this is less than the speedup of 1.66 that was achieved when the GPU-Only version was run on the A8-3850 in Section 7.5. This is because when we move from the A6-3650 to the A8-3850, the GPU has a higher percent increase in both core count and frequency than the CPU as described in Section 7.1.
Figure 7.7: Sort time of the CPU-Only implementation on the A6-3650 and A8-3850.

In order to compare the relative performance of each kernel in the CPU-Only version, we measure the time it takes for each kernel to execute. This experiment was carried out on both platforms using three CPU worker threads to sort 128 Mi unsigned integer values. Figure 7.8 depicts the per-kernel execution time as a percent of total kernel execution time on the A6-3650. These results are identical to those of the A8-3850 platform. The fact that these per-kernel percent values are the same across platforms indicates that
the relative performance difference of the CPUs affects all kernels in this implementation equally. Similar to the GPU-Only version, the CPU-Only local sort kernel takes up the largest fraction of kernel execution time. Unlike the GPU-Only version, the scatter kernel accounts for the second largest fraction of kernel execution time. This discrepancy between the relative execution time of the scatter kernel in Figure 7.2 and Figure 7.8 is due to the fact that the GPU’s bandwidth to device-visible host memory is higher than the CPU’s bandwidth to cached host memory as described in Section 2.2.1 and Section 2.2.6. Since the scatter kernel is relatively memory intensive, it represents a larger percent of sort time on the CPU than it does on the GPU.

7.7 Coarse-Grained Results

In order to evaluate the Coarse-Grained version of radix sort, we measure the sort time of this implementation for a fixed dataset size of 128 Mi unsigned integer values. We measure this sort time with a varying $p\%$ of the input data allocated to the GPU and the remaining $(1 - p)\%$ allocated to the CPU. Figure 7.9 and Figure 7.10 illustrate the execution time of the Coarse-Grained sharing implementation on the A6-3650 and A8-3850, respectively. For each number of threads, note that the sort time varies with the partition point p and that there is a distinct global minimum. This variation in sort time takes place because the CPU and GPU are working in parallel to sort the input data. By varying the partition point, we vary the amount of idle time that is present in the sort. The global minimum takes place at the optimal partitioning point when there is a minimum amount of idle time and the workload is balanced across the GPU and the CPU. It should be noted that on each platform, the optimal partitioning point varies with the number of threads. Specifically, the optimal partitioning point p decreases as the number of threads increases. This is because the CPU’s throughput increases with the number of threads as demonstrated in Figure 7.6. As this throughput increases, the
Figure 7.9: Sort time of the Coarse-Grained implementation on the A6-3650 as a function of input dataset partitioning.

Figure 7.10: Sort time of the Coarse-Grained implementation on the A8-3850 as a function of input dataset partitioning.
GPU must be assigned a smaller percent of the input dataset to prevent the introduction of CPU idle time. There is, however, one exception to this. When the Coarse-Grained implementation runs with four CPU worker threads, the partition point does not move significantly. When a program makes use of the AMD OpenCL runtime, a background thread is created to manage the OpenCL device. This thread polls the device’s status and is responsible for enqueuing tasks to the device. The issue of thread contention for CPU cores arises when the Coarse-Grained sorting implementation is run with four CPU worker threads. GPU performance can degrade if the OpenCL background thread becomes starved. Conversely, CPU performance can degrade if the OpenCL background thread is not starved. When running the Coarse-Grained implementation with four CPU worker threads, these factors result in a large variation in sort time and optimal partition point from one iteration to the next. From this we conclude that the Coarse-Grained implementation does not scale well to four CPU worker threads on both the A6-3650 and the A8-3850.

For each number of threads, the optimal partitioning point also varies across platforms. For a given number of threads, the optimal partitioning point is lower on the A6-3650 than on the A8-3850. This can be seen in Figure 7.11 which depicts the sort time of 128 Mi unsigned integer values using three CPU worker threads across the two APU platforms. This fluctuation in optimal partition point takes place because the relative performance of the CPU and GPU are not equal across platforms as discussed in Section 7.1 and Section 7.6. When run with three CPU worker threads, the optimal partition point is at 38% on the A6-3650 and 50% on the A8-3850. This indicates that the CPU-Only and GPU-Only radix sort performance is more balanced across the A8-3850’s CPU and GPU than the A6-3650.

Since the two APU models exhibit different performance characteristics and have different optimal partition points, we expect the overall sort time to vary between them as well. This is evident in in Figure 7.11 which shows the sort time of 128 Mi elements using
three CPU worker threads. Note that while the sort time of the A8-3850 is consistently lower than that of the A6-3650, this difference is exaggerated to the right of the optimal partition point. This phenomenon can be attributed to the fact that the performance difference of the GPUs is greater than that of the CPUs.

In order to understand the impact of the merge step on the Coarse-Grained implementation, we measure the sort time with the merge step omitted. We carry out this measurement using three CPU worker threads on an input dataset size of 128 Mi unsigned integers over a varying GPU partition point. Figure 7.12 illustrates the Coarse-Grained implementation sort time with and without the merge step. Note that on a given platform, the removal of the merge step appears to result in a constant reduction in sort time. Figure 7.13 depicts the merge time as a function of the GPU partition point. This figure indicates that the execution time of the merge step is not a function of the GPU partition point.

In order to assess the extent to which the merge step impacts the performance of
Figure 7.12: Sort time of the Coarse-Grained implementation on the A6-3650 and A8-3850 with and without the final merge step.

Figure 7.13: Merge time of the Coarse-Grained implementation on the A6-3650 and A8-3850 as a function of the GPU partition point.
this implementation, we calculate the speedup of the Coarse-Grained implementation with respect to the Coarse-Grained implementation without the merge. This results in a speedup of 0.93 and 0.91 on the A6-3650 and A8-3850, respectively. From this we conclude that the merge step does have a measurable negative impact on the sort time of the Coarse-Grained implementation. Ahmdal's law \[18\] states that the speedup that can be obtained by parallelizing a program is limited by the fraction of the program that must be executed sequentially. It is important to note that this merge step limits the theoretical maximum speedup that can be obtained by parallelizing the Coarse-Grained algorithm across multiple devices.

7.8 Fine-Grained Static Results

We begin our evaluation of the Fine-Grained version by presenting the execution time of this implementation for a fixed dataset size of 128 Mi unsigned integer values. We measure the sort time with a varying \(p\%\) of the input data allocated to the GPU and the remaining \((1 - p)\%\) allocated to the CPU. Figure 7.14 and Figure 7.15 illustrate the execution time of the Fine-Grained implementation on the A6-3650 and the A8-3850, respectively. There is a definitive difference in execution time as the number of CPU worker threads vary in this implementation; the sort time decreases as the number of threads increases. This is because the throughput of the CPU increases with the number of threads, thereby reducing the amount of time it takes the CPU to carry out its portion of the sort algorithm. Note that this difference in sort time is large towards the left side of the graphs where the GPU partition point \(p\) is small. As \(p\) approaches 100\% the sort times appear to converge to a single common point. This is due to the fact that as we increase \(p\) less data is allocated to the CPU and more data is allocated to the GPU. As this occurs, the impact of the CPU throughput decreases and the sort time begins to approach the time it takes the GPU to sort its allocated dataset.
Figure 7.14: Sort time of the Fine-Grained Static implementation on the A6-3650 as a function of input dataset partitioning.

Figure 7.15: Sort time of the Fine-Grained Static implementation on the A8-3850 as a function of input dataset partitioning.
Figures 7.14 and 7.15 indicate that the sort time of the Fine-Grained Static implementation has a global minimum for each number of threads. As can be seen in Figure 7.14, this global minimum is located at $p = 100\%$ when the implementation is executed with one thread on the A6-3650. The sort time’s global minimum is located at $p = 0\%$ when the implementation is run with two, three, or four CPU worker threads on the A6-3650.

Figure 7.15 indicates that when the implementation is executed on the A8-3850 with one CPU worker thread, the sort time’s global minimum is found when the GPU partition point $p = 100\%$. When the implementation is executed with two threads, this global minimum is located at $p = 50\%$. The global minimum shifts to $p = 0\%$ when the implementation is executed with three or four threads on the A8-3850.

The optimal GPU partition point shifts to the left as the number of threads increases on both the A6-3650 and the A8-3850. As the number of threads increases, the throughput of the CPU increases as well. The optimal partition point shifts to the left so that more workload is allocated to the CPU.

The curves in Figures 7.14 and 7.15 exhibit a very shallow knee where the slopes of the curve change. This point is most easily seen when the Fine-Grained Static implementation is executed with two CPU worker threads. This knee is located at $p = 40\%$ on the A6-3650 and $p = 50\%$ on the A8-3850. Note that unlike the results for the Coarse-Grained implementation in Figures 7.9 and 7.10, the knees in Figures 7.14 and 7.15 do not necessarily correspond to the global minimum sort times. In order to determine why this is the case, we plot the idle time of each kernel. We do this using three threads over a varying GPU partition point with a total input dataset of 128 Mi unsigned integers. The results of this experiment are displayed in Figure 7.16 and Figure 7.17. On each platform, the local sort kernel idle time and histogram kernel idle time have a distinct global minimum. This takes place when the CPU and GPU take an equal amount of time to execute these individual kernels. Since the minimum idle times for these kernels occur at relatively similar partition points, we expect the total sort time to be minimized.
Figure 7.16: Per-kernel idle time found in the Fine-Grained Static implementation on the A6-3650.

Figure 7.17: Per-kernel idle time found in the Fine-Grained Static implementation on the A8-3850.
near this partition point. This does not occur, however, because the idle time of the rank and scatter kernels prevent the total sort time from decreasing significantly near this partition point.

Since the rank kernel introduces relatively little idle time into the overall sort algorithm, we focus our attention to the scatter kernel. If the scatter kernel were partitioned across both the CPU and GPU, then we would expect the idle time in the scatter kernel to approach zero as p approaches the optimal partition point for that kernel. This does not happen, however, since the scatter kernel executes solely on the GPU in the Fine-Grained Static implementation. The sort time for this implementation is inflated by the scatter kernel’s idle time, particularly around what would otherwise be the scatter kernel’s optimal partition point.

Since the performance characteristics of the CPU and GPU vary between platforms, it is expected that the Fine-Grained Static implementation will perform differently across them. Figure 7.18 illustrates the relative sort time of this implementation on the A6-3650 and the A8-3850. The sort time of the A8-3850 is consistently lower than that of the A6-3650. This difference in sort time increases with the GPU partition point p. As p increases, a larger portion of the input dataset in allocated to the GPU. As discussed in Section 7.1 and Section 7.6, the relative performance of the GPU and CPU are not equal across platforms. This difference in relative performance causes there to be a larger difference in sort time as more input elements are allocated to the GPU.
7.9 Fine-Grained Static Split Scatter Results

Here we measure the Fine-Grained Static Split Scatter implementation sort time of 128 Mi unsigned integer values. We measure this sort time with a varying $p\%$ of the input dataset allocated to the GPU and the remaining $(1-p)\%$ allocated to the CPU. The results of this experiment are presented in Figure 7.19 and Figure 7.20. Much like the Fine-Grained Static implementation, the sort time varies with the GPU partition point p. Unlike the Fine-Grained Static implementation, however, the sort times do not generally follow a linear trend. For each number of threads there is an optimal partition point p where the sort time is minimized.

In Figure 7.19 and Figure 7.20 the sort time varies as a function of the optimal GPU partition point p. This is caused by the idle time that is introduced at each partition point. Additionally, the sort time varies as a function of the number of CPU worker threads. As the number of CPU worker threads increases, the sort time at the optimal
Figure 7.19: Sort time of the Fine-Grained Split Scatter implementation as a function of input dataset size on the A6-3650.

Figure 7.20: Sort time of the Fine-Grained Static Split Scatter implementation as a function of input dataset size on the A8-3850.
partition point decreases. This is true when running the sort implementation with three CPU worker threads or fewer. When the sort implementation is run with four CPU worker threads, sort time at the optimal partitioning point is greater than when it is run with three threads. As described in Section 7.7, we encounter thread contention for CPU cores when the implementation is run with four threads. Because a background device management thread is launched by the AMD OpenCL runtime. When this occurs, there are more busy threads than available CPU cores. Because the CPU cores have been over allocated, the sort time at the optimal partition point increases. From this we conclude that this implementation does not scale well to four CPU worker threads on the platforms that were tested.

For a given number of threads, the optimal partition point and sort time vary across APU models. In Figure 7.21 we plot the sort time of 128 Mi elements over a varying GPU partition point using three threads on both the A6-3650 and the A8-3850. In this figure, the A8-3850 consistently achieves a lower sort time than the A6-3650. This is because

![Figure 7.21: Sort time of the Fine-Grained Split Scatter implementation on the A6-3650 and A8-3850.](image-url)
the CPU and GPU of the A8-3850 are capable of executing the individual sort kernels faster than the CPU and GPU of the A6-3650. The optimal partitioning point also varies from one platform to the other. This is once again due to the fact that the relative performance of the CPU and GPU is not constant across APU models as presented in Section 7.1 and Section 7.6. This causes the optimal partitioning point to be higher on the A8-3850 than on the A6-3650.

In order to assess the specific impact of allowing both the CPU and GPU to participate in the scatter step, we measure the per-kernel idle times when using three threads to sort 128 Mi elements. The results of this experiment are illustrated in Figure 7.22 and Figure 7.23. As these figures illustrate, there is an optimal partition point for the

![Figure 7.22: Per-kernel idle time found in the Fine-Grained Static Split Scatter implementation on the A6-3650.](image)

local sort, histogram, and scatter kernels where the idle time is zero. This partition point, however, varies from one kernel to the next. It appears as though the optimal partition point for the local sort and histogram kernels are relatively close together while the optimal partition point for the scatter kernel is significantly larger. As a result, there
exists no static partition that will cause the idle time in all kernels to equal zero. This is best illustrated in Figure 7.24, which plots the sum of the individual per-kernel idle times over a static GPU partition point. In this figure we see that there is no common GPU partition point that results in zero idle time. Furthermore, we note that the partitioning point where the idle time is minimized in Figure 7.24 is equal to the partition point where the overall sort time is minimized in Figure 7.21. From this we conclude that the sort time of the Fine-Grained Split Scatter implementation is affected by the amount of idle time that is present. We also conclude that we are unable to eliminate this idle time by using a common partition point across all kernels on both the A6-3650 and the A8-3850, which demonstrates the need for per-kernel partitioning.
Figure 7.24: The sum of the per-kernel idle times found in the Fine-Grained Static Split Scatter implementation on the A6-3650 and A8-3850.

7.10 Fine-Grained Dynamic Results

In this evaluation we aim to find the per-kernel GPU partition points that result in the lowest sort time for the Fine-Grained Dynamic partitioning implementation. Instead of performing a complete sweep of the entire search space, we begin by choosing partition point of 50% for each kernel step. We then measure the per-kernel execution times on the CPU and GPU and calculate the difference between them. For each kernel we adjust the GPU partition point so that more elements are allocated to the device that has the lower kernel execution time. This process is repeated until the corresponding CPU and GPU kernel execution times converge and the total sort time is minimized. The results of this experiment are illustrated in Figure 7.25. This figure indicates that the minimum sort time continuously decreases as the number of CPU worker threads increases up to a maximum of three threads. Sort time begins to increase once four CPU worker threads are created due to thread contention for CPU cores. As a result, we conclude that this
Figure 7.25: The sort time of the Fine-Grained Dynamic partitioning implementation over a varying number of threads on the A6-3650 and the A8-3850 implementation does not scale well to four threads. This figure also indicates that the minimum sort time for this implementation is lower on the A8-3850 than it is on the A6-3650. This can be attributed to the different hardware characteristics of the two platforms as discussed in Section 7.1.

The optimal per-kernel partition points for the Fine-Grained Dynamic implementation are provided in Table 7.2. For each kernel step, the value of the optimal partition point increases by approximately 10 percentage points when moving from the A6-3650 to the A8-3850. This can once again be attributed to the different hardware characteristics of the two platforms as discussed in Section 7.1.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Optimal Partition Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A6-3650</td>
</tr>
<tr>
<td>Local Sort</td>
<td>29 %</td>
</tr>
<tr>
<td>Histogram</td>
<td>49 %</td>
</tr>
<tr>
<td>Scatter</td>
<td>57 %</td>
</tr>
</tbody>
</table>

Table 7.2: Optimal per-kernel partition points for the Fine-Grained Dynamic implementation.

We perform another experiment in order to understand how per-kernel partitioning points affect the sort time of this implementation. We begin by setting all of the kernel
partition points to the optimal points provided in Table 7.2. We then choose one kernel and measure the sort time over all GPU partition points for that kernel. We carry out this procedure for the local sort, histogram, and scatter kernels. The results of this experiment are shown in Figure 7.26 and Figure 7.27. From these figures we confirm

![Figure 7.26: The sort time of the Fine-Grained Dynamic partitioning implementation as the per-kernel partitioning varies on the A6-3650.](image)

that the minimum sort time is located at different GPU partition points for each kernel. We also note that the minimum execution times occur at the optimal partition points provided in Table 7.2. From this we conclude that per-kernel partitioning is required to minimize idle time in the local sort, histogram, and scatter kernels. It should be noted, however, that idle time is still present in the rank kernel since this operation was not partitioned between the GPU and the CPU.
Figure 7.27: The sort time of the Fine-Grained Dynamic partitioning implementation as the per-kernel partitioning varies on the A8-3850.

7.11 Impact of Memory Allocation

In this section we explore the impact of accesses to non-preferred memory regions in the context of the Fine-Grained Dynamic implementation. We begin by assessing the performance of the Fine-Grained Dynamic implementation relative to the Theoretical Optimum. We use the Theoretical Optimum as a baseline to calculate the speedup of the Fine-Grained Dynamic Implementation, which we determine to be equal to 0.84 on both platforms. This means that the Fine-Grained Dynamic implementation exhibits a 16% decrease in throughput relative to the Theoretical Optimum. This difference in performance is a result of two factors: additional algorithmic complexity and accesses to non-preferred memory regions.

The fine-grained implementation contains additional logic, control flow, and arithmetic operations that are not present in the Theoretical Optimum. This additional complexity is required in order to allow multiple devices to operate on multiple input
and output buffers simultaneously. Before we can assess the impact of memory allocation on the Fine-Grained Dynamic implementation, we must first account for the performance that is lost as a result of this additional algorithmic complexity.

We quantify the impact of additional algorithmic complexity in the Fine-Grained Dynamic implementation by eliminating accesses to non-preferred memory regions. We begin by measuring the additional complexity that is present in the GPU kernels. We do this by measuring the sort time of the Fine-Grained Dynamic implementation with the entire workload allocated to the GPU. This causes data to reside in uncached memory and effectively eliminates GPU accesses to cached memory. We then calculate the speedup of this execution using the GPU-Only implementation as a baseline. We reason that any difference in performance between this execution and the GPU-Only implementation is a result of the aforementioned algorithmic complexity in the GPU kernels.

We perform a similar test for the CPU kernels. We first measure the sort time of the Fine-Grained Dynamic implementation with the entire workload allocated to the CPU. This causes data to reside in cached memory, thereby eliminating CPU accesses to uncached memory. We then calculate the speedup of this execution using the CPU-Only implementation as a baseline. We reason that any difference in performance between this execution and the CPU-Only implementation is a result of additional algorithmic complexity in the CPU kernels.

The results of these experiments are presented in Figure 7.28. The experiments were run using a total of 128 Mi elements with three CPU worker threads. The GPU speedups are 0.97 and 0.99 on the A6-3650 and A8-3850, respectively. This means that the GPU kernels exhibit a 3% decrease in throughput on the A6-3650 and a 1% decrease in throughput on the A8-3850 relative to the GPU-Only implementation. The CPU speedups are

\[\text{1}\text{The Fine-Grained Dynamic implementation requires that some work be assigned to each device. We therefore actually allocate 99\% of the workload to the GPU.}\]

\[\text{2}\text{The \textit{counters} and \textit{countersSum} buffers remain cached since the CPU carries out the rank operation.}\]

\[\text{3}\text{The Fine-Grained Dynamic implementation requires that some work be assigned to each device. We therefore actually allocate 1\% of the workload to the GPU.}\]
0.94 on the A6-3650 and 0.92 on the A8-3850. This means that the CPU kernels exhibit a 6% decrease in throughput on the A6-3650 and a 8% decrease in throughput on the A8-3850 relative to the CPU-Only implementation. These decreases in throughput are attributed to the additional algorithmic complexity that is present in the Fine-Grained Dynamic implementation. The impact of this is more prominent on the CPU than on the GPU.

We would now like to determine the extent to which memory allocation negatively affects performance in the Fine-Grained Dynamic implementation. We note that the decrease in throughput due to algorithmic complexity is less than the total 16% decrease in throughput relative to the Theoretical Optimum. By taking the difference of these, we determine that GPU accesses to cached memory result in a 13% decrease in throughput on the A6-3650 and a 15% decrease in throughput on the A8-3850. Likewise, CPU writes to uncached memory result in a 10% decrease in throughput on the A6-3650 and a 8% decrease in throughput on the A8-3850. Two conclusions can be drawn from these values. The first is that the performance penalty due to non-preferred memory accesses is non-trivial. The second is that non-preferred memory accesses have a larger impact on performance than the additional algorithmic complexity that is found in the Fine-Grained
Dynamic implementation.

While the overhead of non-preferred memory accesses does impact the performance of our Fine-Grained Dynamic implementation, we believe that we have carefully allocated memory a way such that this impact is minimized. To illustrate this, we compare our memory allocation strategy to two naive allocation strategies. We begin by measuring the sort time of the Fine-Grained Dynamic implementation using our proposed memory allocation strategy, which is described in Section 6.6. This sort time will be used as a baseline to measure the speedup of subsequent allocation strategies. We then modify the implementation such that all data is allocated in uncached host memory and calculate the speedup. Finally, we calculate the speedup of the implementation with all buffers completely allocated in cached host memory. This experiment was carried out on 128 Mi elements using three CPU worker threads. The optimal partition points in Table 7.2 were used for all allocation strategies. The results of this experiment are illustrated in Figure 7.29. Allocating all buffers in uncached host memory results in a speedup of 0.05

![Figure 7.29: Speedup resulting from alternate memory allocation strategies in the Fine-Grained Dynamic implementation.](image)

on both the A6-3650 and the A8-3850. Placing everything in cached host memory results in a speedup of 0.88 on the A6-3650 and 0.87 on the A8-3850.

We observe that allocating all buffers in uncached host memory has a very negative
impact on performance. This is expected since CPU reads from uncached memory are very slow, as described in Section 2.2.2. In contrast, our proposed allocation strategy ensures that the CPU only accesses uncached memory in the form of streaming writes. This makes efficient use of the on-chip write combining buffers and minimizes the impact of CPU accesses to non-preferred memory regions.

Allocating all buffers in cached host memory also negatively impacts performance, however to a lesser extent than allocating everything in uncached memory. Our proposed allocation strategy reduces this penalty by reducing the number of GPU accesses to cached memory. We conclude that one must carefully consider in which region to allocate memory when designing algorithms for the AMD Fusion APU.

7.12 Comparative Performance

We compare each of the aforementioned implementations to one another in order to assess their relative performance. We also compare them to the NVIDIA reference implementation and to the measured theoretical optimum implementation described in Section 6.7. We do this by calculating the throughput of these implementations based on their respective minimum sort times. For all implementations except for the NVIDIA reference, these results are based on an input dataset size of 128 Mi elements. The results of the NVIDIA reference implementation are based on an input dataset size of 4 Mi elements due to the limitations described in Section 7.5. The throughputs of all implementations are presented in Figure 7.30. These throughputs are not sensitive to the actual input values, a result of sorting from least to most significant digits in radix sort. From this figure we note that the NVIDIA reference and GPU-Only implementations have the lowest throughput across both platforms. When the CPU-Only implementation is run with three threads, it appears to perform similarly to the GPU-Only implementation on the

\footnote{This was confirmed by sorting on an already sorted input dataset.}
A8-3850. This is not true, however, for the A6-3650. This can once again be attributed to the difference in the relative performance of the CPU and GPU across APU models.

The Coarse-Grained implementation with three worker threads achieves a relatively high throughput of 31.7 Mi elements/s on the A6-3650 and 40.7 Mi elements/s on the A8-3850. This implementation has very few inter-device synchronization points. The CPU’s dataset and intermediate buffers are allocated in cached host memory, thereby allowing it to access this data at the highest possible rate. Similarly, the GPU’s dataset and intermediate buffers are allocated in host-visible device memory, which is the memory region that the GPU has the highest bandwidth to. These aspects all contribute to the high throughput of the Coarse-Grained implementation.

The Fine-Grained Static partitioning implementation with three threads has a throughput of 23.9 Mi elements/s on the A6-3650 and 27.3 Mi elements/s on the A8-3850, giving it the lowest throughput of the implementations that make use of both the CPU and the GPU. This throughput does increase in the Fine-Grained Static Split Scatter im-

Figure 7.30: Maximum sorting throughput of each implementation on the A6-3650 and the A8-3850.
plementation, thereby confirming the hypothesis that a significant amount of idle time was present during the scatter step in the Fine-Grained Static implementation. The Fine-Grained Dynamic implementation has the highest throughput of the implemented versions of radix sort. The Fine-Grained Dynamic implementation achieved a throughput of 32.8 Mi elements/s on the A6-3650 and 43.6 Mi elements/s on the A8-3850. This indicates that per-kernel partitioning is necessary to reduce idle time and lower overall sort time.

The throughput of the Fine-Grained Dynamic implementation is lower than that of the measured theoretical optimum, which is 39.0 Mi elements/s on the A6-3650 and 51.9 Mi elements/s on the A8-3850. This difference in performance is because the Fine-Grained Dynamic implementation contains additional algorithmic complexity and accesses to non-preferred memory regions, as discussed in Section 7.11.

In Figure 7.31 we present the speedup of each implementation with respect to the NVIDIA reference implementation. These speedups are relative to the NVIDIA reference.

![Figure 7.31: Speedup with respect to the NVIDIA reference implementation on the A6-3650 and the A8-3850.](image)
implementation on each respective platform. Note that the speedup of each implementation that utilizes the CPU is greater on the A6-3650 than the A8-3850. This is because the difference in performance between the CPU and GPU is greater on the A6-3650 than it is on the A8-3850. From this we conclude that the aforementioned multi-device implementations provide a larger benefit to the A6-3650 than the A8-3850.

Across both platforms, the Fine-Grained Dynamic implementation with three threads achieved the highest speedup of 2.40 on the A6-3650 and 1.88 on the A8-3850. These speedups were less than the measured theoretical optimum speedup of 2.86 on the A6-3650 and 2.24 on the A8-3850. With a speedup of 1.74 on the A6-3650 and 1.18 on the A8-3850, the Fine-Grained Static implementation provided the lowest speedup of the multi-device implementations. This was due to the idle time caused by the loss of parallelism between the CPU and GPU in the scatter step and the fact that per-kernel partitioning was not used in this implementation.
Chapter 8

Related Work

Parallel sorting has been a topic of study since at least the late 1960’s when Batcher presented his work on sorting networks [19]. This work describes odd-even merging networks and bitonic sorting networks, both of which are comparison sorts that carry out individual comparisons in parallel. Since then, there has been a large amount of work in adapting parallel sorting algorithms for evolving computer hardware. Nassimi and Sahni [34] have adapted Batcher’s work [19] for parallel computers that have mesh interconnects. Francis and Mathieson [26] have developed parallel merging techniques that are used to sort datasets on shared memory multiprocessors. Blelloch et al [21] have presented work on parallel sorting algorithms and implementations for the SIMD Connection Machine Supercomputer model CM-2. This work provides adaptations of several well known sorting algorithms, including bitonic sort, radix sort, and sample sort. These works are similar to ours in that they adapt sorting algorithms in order to make efficient use of modern hardware. They differ from our work, however, in that they target neither GPU nor heterogeneous systems.

GPUs have been used to carry out parallel sorting operations prior to the release of OpenCL in 2008 [1] and CUDA in 2007 [11]. Kipfer and Westermann [29] provided algorithms for sorting on GPUs in 2005 using a framework called pug. They describe
Chapter 8. Related Work

GPU-efficient versions of odd-even merge sorting networks and bitonic sorting networks that have a time complexity of $O(n \log^2(n) + \log(n))$. Greb and Zachmann [27] presented work on a bitonic sorting implementation for GPU devices that has a time complexity of $O(n \log(n))$. After the release of CUDA in 2007, Harris et al. [28] presented an algorithm for parallel radix sort that is based on their algorithm for a work-efficient parallel prefix sum operation. Harris et al. [36] later developed parallel radix sort and merge sort implementations that have been heavily optimized for execution on NVIDIA GPU devices. Based on their results, their radix sort implementation outperforms both their merge sort and the radix sort that was provided in the CUDA Data Parallel Primitives Library [12] at the time. Since then, Leischner et al. [32] have presented work on a parallel version of sample sort for GPU devices. Their results indicate that the radix sort implementation presented by Harris et al. [36] outperforms their parallel sample sort for 32-bit integer values. These works are similar to ours in that they aim to increase the performance of sorting algorithms on GPU devices. They do not, however, make use of the CPU in their algorithms. The CPU remains idle in these algorithms and is only responsible for queuing kernel operations to the GPU device. Our work aims to utilize the computational capability of both the CPU and the GPU in order to carry out an efficient sorting algorithm.

The AMD Fusion APU has been a research topic since its release. Its low-cost data sharing capabilities have made the platform an attractive one for general-purpose GPU computing. The first work to characterize the effectiveness of the AMD Fusion architecture was that of Data et al. [25]. This work identifies the PCI express bus as a bottleneck in many GPU applications. They also empirically demonstrate that the AMD Fusion architecture reduces the overhead of PCI express data transfers that that are associated with systems that contain discrete GPUs and CPUs. This work is further supported by Lee et al. [31] who have compared micro-benchmarks of data transfer performance between the CPU and GPU on both Fusion and discrete GPU systems. Yang et al. [37]
describe optimization techniques for a simulated fused CPU-GPU architecture similar to Fusion. They recommend using the CPU to access data before it is required by the GPU, thereby prefetching the data into the architecture’s shared L3 cache. They also simulate workload distribution between the GPU and CPU for several applications including bitonic sort. They conclude that workload distribution between the GPU and CPU result in a marginal improvement in performance and state that bitonic sort exhibits less than a 2% performance improvement. These works are similar to ours in that they explore the benefits of devices that contain both a GPU and CPU on a single chip. The works of Data et al. [25] and Lee et al. [31] differ from ours in that they do not explore sorting on these devices. While Yang et al. [37] do utilize bitonic sort in their benchmarks, they focus on using the CPU to prefetch data for the GPU and conclude that the benefits of workload partitioning are minimal. In contrast, we adopt the notion of workload partition and demonstrate that it can provide significant benefits in the context of sorting on the AMD Fusion APU.
Chapter 9

Conclusions and Future Work

In this thesis, we have presented several radix sort algorithms that are designed to utilize both the GPU and CPU components of the AMD Fusion APU. These algorithms were implemented and evaluated on two APU models. Our results demonstrate that both coarse-grained and fine-grained data sharing approaches outperform the current state of the art GPU radix sort from NVIDIA [36] when executed on the AMD Fusion APU. We therefore conclude that it is possible to efficiently use the CPU to speed up radix sort on the Fusion APU.

We have found that fine-grained data sharing models can result in higher performance than coarse-grained data sharing models on the AMD Fusion APU. This is only true, however, if we redistribute data between the GPU and CPU at each algorithmic step. This is due to the fact that different computing architectures are inherently better suited for certain types of tasks. Choosing a static partition point across all kernels results in workload imbalance between the CPU and GPU at the per-kernel level. Per-kernel data partitioning addresses this at the cost of increased algorithmic complexity and more frequent accesses to non-preferred memory regions.

We have demonstrated the importance of carefully choosing the memory region in which data is allocated on the Fusion APU. As discussed in Section 7.11, accessing data
in a non-preferred memory region can be detrimental performance. It is, however, often necessary to do so as a means of providing fine-grained data sharing between the GPU and CPU. We have provided memory allocation strategies for each of our algorithms that minimize this performance impact.

The assessed combination of hardware and software does not allow the programmer to change the memory region or caching designation of an allocated memory buffer. We believe that this feature has the potential to speed up applications by reducing the number of accesses that the GPU and CPU make to non-preferred memory regions. We therefore make the recommendation this feature be integrated into future releases of the hardware and software.

While the AMD Fusion APU hardware does allow for data buffers to be made available to the GPU and CPU simultaneously, the OpenCL specification does not. The OpenCL specification states that mapping a data buffer to the host and subsequently accessing it from both the host and device simultaneously results in undefined behaviour. However, the number of architectures that incorporate an on-chip GPU and CPU is increasing, and as a result we recommend that the OpenCL specification incorporate a means of querying whether data buffers can be safely accessed by the host and device simultaneously.

9.1 Future Work

The work presented in this thesis can be expanded by considering non-data parallel models. The work in this thesis extends the data parallel approach presented by Satish et al. [36] so that multiple devices may participate in the sort simultaneously. Instead, a task parallel approach could be explored in which individual kernel steps are assigned to certain devices.

The work in this thesis focused solely on the AMD Fusion APU. The scope of this work may be expanded to include other architectures such as the recently released Intel
Ivy Bridge processor [14] [16], which also combines a GPU and CPU onto a single die. Likewise, the research could be extended to include other sorting algorithms or even other applications.

This research could be extended to also explore the Coarse-Grained implementation of Fusion Sort on discrete graphics engines. The GPUs on such systems are commonly much more powerful than the ones that have been studied in this work. Running the Coarse-Grained implementation on such a system only changes our results by shifting the optimal partition point such that a larger percentage of work is allocated to the GPU for processing.\footnote{This was verified by running the Coarse-Grained implementation on a system with a discrete AMD HD5870 graphics card.}

It is also possible to extend our implementations of Fusion Sort by using SSE instructions. We expect that doing so will only cause the optimal partition points to shift such that more work is allocated to the CPU for processing. We do not believe that this will have an impact to any of the conclusions that were drawn in this study.

All variants of Fusion Sort are based upon a radix sort that operates from least to most significant digit. The reasons for this are twofold. The first reason for this is that implementing a least to most significant digit radix sort allows us to break the unsorted dataset into equally sized tiles that can be operated upon by individual CPU threads or GPU work-groups. The size of these tiles are not dependant on the distribution of the unsorted input data or the size of each radix bucket, which allows for load balancing to be done relatively easily. The second reason for using a least to most significant radix sort is because the reference NVIDIA GPU implementation of radix sort is done from least to most significant digit. Implementing Fusion Sort in the same manner allows us to draw fair comparisons between our implementation and the current state of the art GPU implementation from NVIDIA. Nonetheless, it would be interesting to explore a version of Fusion Sort that operates from most to least significant digit.
Finally, the work in this thesis could be extended to develop a method of determining the optimal GPU partition point p for each APU model. It may be possible to determine p theoretically using the hardware characteristics of the APU. It may also be possible to determine p using a training kernel that carries out one or more small micro-benchmarks either during program compilation or just prior to sort execution.
Bibliography

BIBLIOGRAPHY

[36] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for
