APPENDIX 3.2

PROCESSED LABORATORY DATA

3.2.1 – CNS 6.5 QA-QC, Consolidation, and Permeability Results
3.2.2 – CS 6.5 QA-QC, Consolidation, and Permeability Results
3.2.3 – CS 8.5 QA-QC, Consolidation, and Permeability Results
3.2.4 – WILL 3 QA-QC, Consolidation, and Permeability Results
3.2.5 – WILL 5 QA-QC, Consolidation, and Permeability Results
3.2.6 – KIDD 2.5 QA-QC, Consolidation, and Permeability Results
3.2.7 – KIDD 4.5 QA-QC, Consolidation, and Permeability Results
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.1

CAYELI 6.5% NON-SPEC PASTE - INITIAL PASTE PROPERTY HISTOGRAMS

Figure 1
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CAYELI 6.5% NON-SPEC PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CAVELI 6.5% NON-SPEC PASTE - INITIAL VOID RATIO VERSES PEAK SHEAR STRESS

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CAYELI 6.5\% NON-SPEC PASTE - CONSOLIDATION PLOTS
(4 Hours, 12 Hours, 24 Hours)

Figure 4
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CAYELI 6.5% NON-SPEC PASTE - PERMIABILITY PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 6
Figure 7

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CAYELI 6.5% NON-SPEC PASTE - CONSOLIDATION PLOTS
(48 Hours, 96 Hours, 168 Hours)

Figure 7
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.1

CALEYI 6.5% NON-SPEC PASTE - AVERAGE PERMIABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 8
Appendix 3.2.2

Figure 1: Histograms for CAYELI 6.5% SPEC PASTE - INITIAL PASTE PROPERTY

- **Initial Void Ratio**
 - Mean = 1.53
 - St. Dev. = 0.08
 - Coeff. Var. = 5%

- **Initial Density (g/cm³)**
 - Mean = 2.18
 - St. Dev. = 0.06
 - Coeff. Var. = 3%

- **Average Initial Water Content (%)**
 - Mean = 26
 - St. Dev. = 0.9
 - Coeff. Var. = 3%
Figure 2: Comparison of initial paste properties for CAYELI 6.5% Non-Spec Paste.

- Average Initial Density (g/cm³)
 - Average: 2.00 - 2.50
 - Initial: 2.00 - 2.45

- Average Void Ratio
 - Average: 0.00 - 2.00
 - Initial: 0.00 - 2.00

- Average Initial Mining Water Content (%)
 - Average: 23 - 29
 - Initial: 23 - 29

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% NON-SPEC PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% SPEC PASTE - INITIAL VOID RATIO VERSES PEAK SHEAR STRESS

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% SPEC PASTE - CONSOLIDATION PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 4
Figure 5: A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% SPEC PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 5
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5%SPEC PASTE - PERMIABIITY PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 6
Figure 7

CAYELI 6.5% SPEC PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% SPEC PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 7
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.2

CAYELI 6.5% SPEC PASTE - AVERAGE PERMABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 8
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% SPEC PASTE - INITIAL PASTE PROPERTY HISTOGRAMS

Figure 1
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% NON-SPEC PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% SPEC PASTE - INITIAL VOID RATIO VERSES PEAK SHEAR STRESS

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% SPEC PASTE - CONSOLIDATION PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 4
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% SPEC PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours)

Figure 5
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Backfill

Appendix 3.2.3

CAYELI 8.5% NON-SPEC PASTE - CONSOLIDATION PLOTS
(48 Hours, 96 Hours)

Figure 7
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% - INITIAL PASTE PROPERTY HISTOGRAMS

Figure 1
WILLIAMS 3\% PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3\% PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3%- INITIAL VOID RATIO VERSUS PEAK SHEAR STRESS (4hr to 96hr)

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3%- INITIAL VOID RATIO VERSES PEAK SHEAR STRESS (168hr to 1344hr)

Figure 4
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE- CONSOLIDATION PLOTS
Hours, 12 Hours, 24 Hours

Figure 5
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE- CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 6
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE- CONSOLIDATION PLOTS (384 Hours, 1344 Hours)

Figure 7
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE - PERMIAIBILITY PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 8
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 9
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE - CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 10
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Appendix 3.2.4

WILLIAMS 3% PASTE - AVERAGE PERMIABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 11
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.5

WILLIAMS 5% PASTE- CONSOLIDATION PLOTS (4 Hours, 24 Hours)

Figure 1
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.5

WILLIAMS 5% PASTE-CONSOLIDATION PLOTS

(48 Hours, 96 Hours)

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.5

WILLIAMS 3% PASTE - PERMIABILITY PLOTS

Hours, 24 Hours

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.5

WILLIAMS 3% PASTE - CONSOLIDATION PLOTS

96 Hours (48 Hours, 96 Hours)

Figure 4
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.5

WILLIAMS 5% PASTE - AVERAGE PERMABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 5
A Design Procedure for Determining the In Situ Stresses

APPENDIX 3.2.6

KIDD 2.5% - INITIAL PASTE PROPERTY HISTOGRAMS

Figure 1
A Design Procedure for Determining the In Situ Stresses

APPENDIX 3.2.6

WILLIAMS 3% PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5%- INITIAL VOID RATIO VERSES PEAK SHEAR STRESS (4hr to 96hr)

Figure 3
A Design Procedure for Determining the In Situ

APPENDIX 3.2.6

KIDD 2.5% - INITIAL VOID RATIO VERSES PEAK SHEAR STRESS (168hr to 544hr)

Figure 4
APPENDIX 3.2.6

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

KIDD 2.5% PASTE-CONSOLIDATION PLOTS
4 Hours, 12 Hours, 24 Hours

Figure 5
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5\% PASTE- CONSOLIDATION PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 6
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5% PASTE- CONSOLIDATION PLOTS (360 Hours, 544 Hours)

Figure 7
<table>
<thead>
<tr>
<th>Date</th>
<th>Normal Stress (kPa)</th>
<th>Permeability (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-Feb-10</td>
<td>50</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>03-Feb-10</td>
<td>100</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>03-Feb-10</td>
<td>400</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>03-Apr-10</td>
<td>250</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>06-Apr-10</td>
<td>100</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>06-Apr-10</td>
<td>400</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>14-Apr-10</td>
<td>100</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>24-Oct-10</td>
<td>50A</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>24-Oct-10</td>
<td>50B</td>
<td>1.00E-03</td>
</tr>
</tbody>
</table>

A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5% PASTE - PERMEABILITY PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 8
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5% PASTE - PERMEABILITY PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 9
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5% PASTE - PERMEABILITY PLOTS (48 Hours, 96 Hours, 168 Hours)

Figure 10
Figure 11: A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.6

KIDD 2.5% PASTE - AVERAGE PERMIABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 11
A Design Procedure for Determining the In Situ Stresses

APPENDIX 3.2.7

KIDD 4.5% PASTE - COMPARISON OF INITIAL PASTE PROPERTIES

Figure 2
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% - INITIAL VOID RATIO VERSES PEAK SHEAR STRESS (4hr to 96hr)

Figure 3
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% - INITIAL PASTE PROPERTY HISTOGRAMS

Figure 1
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

Figure 4

KIDD 4.5% - INITIAL VOID RATIO VERSUS PEAK SHEAR STRESS (168hr to 585hr)

Initial Peak Shear Stress (kPa)

Initial Void Ratio

585 Hr

1200 1000 800 600 400 200 0

1000 800 600 400 200 0

168 Hr

700 600 500 400 300 200 100 0

0.5 0.6 0.7 0.8 0.9 1
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE-CONSOLIDATION PLOTS

<table>
<thead>
<tr>
<th></th>
<th>4 Hours</th>
<th>12 Hours</th>
<th>24 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Jun-10 250</td>
<td>0.99</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>10-Jun-10 400</td>
<td>0.98</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>11-Jun-10 100</td>
<td>0.97</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>11-Jun-10 250</td>
<td>0.96</td>
<td>0.94</td>
<td>0.92</td>
</tr>
<tr>
<td>06-Oct-10 100</td>
<td>0.95</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>06-Oct-10 250</td>
<td>0.94</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>06-Oct-10 400</td>
<td>0.93</td>
<td>0.91</td>
<td>0.89</td>
</tr>
<tr>
<td>07-Jul-10 50</td>
<td>0.92</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>07-Jul-10 100</td>
<td>0.91</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>07-Jul-10 250</td>
<td>0.90</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>07-Jul-10 400</td>
<td>0.89</td>
<td>0.87</td>
<td>0.85</td>
</tr>
<tr>
<td>09-Jul-10 50</td>
<td>0.88</td>
<td>0.86</td>
<td>0.84</td>
</tr>
<tr>
<td>09-Jul-10 100</td>
<td>0.87</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td>09-Jul-10 250</td>
<td>0.86</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>09-Jul-10 400</td>
<td>0.85</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td>14-Jul-10 50</td>
<td>0.84</td>
<td>0.82</td>
<td>0.80</td>
</tr>
<tr>
<td>14-Jul-10 100</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>14-Jul-10 250</td>
<td>0.82</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>14-Jul-10 400</td>
<td>0.81</td>
<td>0.79</td>
<td>0.77</td>
</tr>
<tr>
<td>21-Jul-10 50</td>
<td>0.80</td>
<td>0.78</td>
<td>0.76</td>
</tr>
<tr>
<td>21-Jul-10 100</td>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>21-Jul-10 250</td>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>21-Jul-10 400</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>20-Oct-10 50A</td>
<td>0.76</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>20-Oct-10 50B</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>20-Oct-10 100</td>
<td>0.74</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>20-Oct-10 250</td>
<td>0.73</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>20-Oct-10 400</td>
<td>0.72</td>
<td>0.70</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Figure 5
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE-CONSOLIDATION PLOTS (48 Hours, 96 Hours)

Figure 6
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE- CONSOLIDATION PLOTS (168 Hours, 585 Hours)

Figure 7
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE - PERMEABILITY PLOTS (4 Hours, 12 Hours, 24 Hours)

Figure 8
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE - PERMEABILITY PLOTS

96 Hours

Figure 9
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 4.5% PASTE - PERMEABILITY PLOTS (168 Hours, 585 Hours)

Figure 10
A Design Procedure for Determining the In Situ Stresses of Early Age Cemented Paste Backfill

APPENDIX 3.2.7

KIDD 2.5% PASTE - AVERAGE PERMIABILITY CHANGE BY NORMAL STRESS AND AGE

Figure 11