MODELING AND DESIGN OF SPIN TORQUE TRANSFER MAGNETORESISTIVE RANDOM ACCESS MEMORY

by

Safeen Huda

A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto

Copyright © 2012 by Safeen Huda
Abstract

This thesis presents the modeling and design of memory cells for Spin Torque Transfer Magnetoresistive Random Access Memory (STT-MRAM). The theory of operation of STT-MRAM cells is explored, and a model to predict the transient behaviour of STT-MRAM cells is presented. A novel three-terminal Magnetic Tunneling Junction (MTJ) and its associated cell structure is also presented. The proposed cell is shown to have guaranteed read-disturbance immunity, as during a read operation the net torque acting on the storage cell always acts to refresh the stored data in the cell. A simulation study is conducted to compare the merits of the proposed device against a conventional 1 Transistor, 1 MTJ (1T1MTJ) cell, as well as a differential 2 Transistors, 2 MTJs (2T2MTJ) cell. Simulation results confirm that the proposed device offers disturbance-free read operation while still offering performance advantages over conventional cells.
To my parents, whose unbounded sacrifices have brought me this far.
Acknowledgements

I am truly astonished when I think of how much I have learned and all of the rich experiences I have been blessed with over the course of my Master's degree. For this, I am grateful to all those that not only helped me in my pursuit of my MASc, but have made the past few years so very memorable.

I first must thank God for, among many other things, allowing me to come to this point of my life and for giving me the strength to overcome the adversities I have faced along the way.

I would like to thank my supervisor, Professor Ali Sheikholeslami, for his guidance and support over the past few years. Professor Sheikholeslami was supportive of very ambitious research targets, and I am grateful that he gave me the freedom to explore a very interesting research area. I would also like to thank the members of my thesis committee: Professor Roman Genov, Professor Glenn Gulak, and Professor Aleksandar Prodic for taking time to review my thesis and for their very helpful comments and suggestions.

Part of the research conducted as part of my thesis was with the help of Fujitsu Laboratories, and I would like to extend my gratitude to the members at the Atsugi labs for their help over the course of my degree. Special mention to Koji Tsunoda-san for his help in understanding how to optimally characterize MTJs.

One of the highlights of my experiences in grad school has been the fact that I’ve been able to meet and befriend so many truly fantastic people. I would specifically like to acknowledge: Yunzhi (Rocky) Dong, Dustin Dunwell, Sadegh Jalali, Neno Ko-
vacevic, Mario Milicevic, Alain Rousson, Mayukh Roy, Shayan Shahramian (we got on the elite list of individuals who got banned from Saratoga!), Alireza Sharif-Bakhtiar, Ravi Shivnaraine, Clifford Ting, Colin Tse, Aynaz Vatankhahghadim, Hemesh Yasotharan, Meysam Zargham, and Guangzhao (Andy) Zhang. From our juvenile hijinks to philosophical discussions on life to fierce debates on circuit design - the wide variety of experiences I have shared with you guys have added colour to my time as a Master’s student.

I must also thank all those “grad school veterans” who have acted as mentors or role models during my time as a grad student. Special mention goes to Dave Halupka, who advised me and mentored me when I first started my degree, Kentaro Yamamoto for being such a helpful manager of the High Speed Lab, and Ameer Youssef who has been giving me beneficial advice and encouragement since I was an undergraduate student.

I’ve also had a solid group of friends who have helped remind me of life outside of grad school; an appropriate work-life balance has been essential in my pursuit of this degree, and I am grateful to all of you for your support over the years. Special mention goes to: Ahmad Abu-Abed, Aladdin Abu Jarad, Albiston Braz, Xander Chan, Kwun Yin Choy, Ibrahim Esmat, Shakeeb Hasan, Hu Hong, Upal Hossain, Yusuf Iqbal, Salman Kabir, Arbab Khan, Muntasir Mallick, Raihan Masroor, Imran Mohammed, Shahzad Raza, Neeraj Sood, Jeeva Tharmakulasingam, and Farid Zare Seisan.

Last, but by no means least, I thank my parents, Shahedul and Rafaat Huda. My parents have been my support and the source of my motivation from elementary school and all the way through grad school. I will never be able to repay the tremendous sacrifices they have made for me, but I hope that they may in some way feel rewarded in any of the pursuits in which I am remotely successful in. This thesis is dedicated to them.
Contents

1 Introduction .. 1
 1.1 Motivation .. 1
 1.2 Thesis Objectives 2
 1.3 Thesis Outline ... 2

2 Background .. 4
 2.1 MRAM Basics .. 4
 2.1.1 MRAM Write Operation 5
 2.2 Device Physics .. 8
 2.2.1 Introduction to Electron Spin 8
 2.2.2 Spin Torque Transfer Effect 11
 2.3 Spin Torque Transfer in MTJs 14
 2.3.1 Magnetodynamics 18
 2.4 STT-MRAM Design 20
 2.4.1 Device Types 20
 2.4.2 Conventional STT-MRAM Cell and Operation 22
 2.4.3 Basic Chip Architecture 23
 2.4.4 Write Circuitry 24
 2.4.5 Read Circuitry 24
 2.4.5.1 Current-Based Read Scheme 27
 2.4.5.2 Voltage-Based Read Scheme 28
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison of previous models</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameters for tunnel model</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Parameters for tunnel model</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters for tunnel model</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Estimated I_{C0} reduction through minimization of H_K</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimal oxide thicknesses</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Chosen transistor widths</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Results summary</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Figures

2.1 A Magnetic Tunneling Junction ... 4
2.2 A FIMS MRAM cell. Figure taken from [12] 6
2.3 Switching mechanisms in STT-MRAM 7
2.4 Spin dependent transport of itinerant electrons from Region I to Region II ... 11
2.5 Torques arising from current i flowing from Layer I to Layer II .. 14
2.6 Spin-dependent conductances from Layer I to Layer II 16
2.7 Graphical representation of terms in LLGS equation 20
2.8 Conventional Device Types .. 21
2.9 Conventional 1 Transistor, 1 Magnetic Tunneling Junction (1T1MTJ) cell ... 22
2.10 Top level chip architecture ... 23
2.11 Write circuitry .. 25
2.12 Top level chip architecture with exposed read circuits 26
2.13 Current based read scheme ... 27
2.14 Voltage based read scheme ... 29
2.15 Read disturb rate versus I_{READ}/I_{CG} 31

3.1 Previously proposed dynamic model 35
3.2 Verilog-A model flowchart ... 41
3.3 Experimental setup .. 42
3.4 Circuitry used to characterize MTJs 42
3.5 Test waveform applied to MTJs ... 43
3.6 MTJ Resistance versus Voltage characteristic

3.7 Switching time versus applied voltage

3.8 Comparison of tunnel model to measured R-V characteristic of MTJ

3.9 Comparison of model to measured Switching Time versus Applied Voltage

3.10 Pulses used to validate accuracy of transient response in proposed model

4.1 Previously proposed multi V_{DD} driver. Figure taken from [25]

4.2 Previously proposed 2T1MTJ cell. Figure taken from [42]

4.3 Previously proposed 3-terminal device. Figure taken from [44]

4.4 Proposed Device

4.5 Proposed Device Symbols

4.6 Proposed cell shown with an IPA version of proposed device

4.7 Top level chip diagram

4.8 Proposed Cell Write Operation

4.9 Timing diagrams for write operations for proposed cell

4.10 Proposed read scheme

4.11 Timing diagrams for read operations for proposed cell

4.12 Transient current waveforms during a “Read-0” operation

4.13 Transient currents and voltages during a “Read-1” operation

4.14 2T2MTJ Cell

4.15 Conventional MTJ with annotated dimensions

4.16 Proposed MTJ with annotated dimensions

4.17 IPA device oxide thickness optimization

4.18 PPA device oxide thickness optimization

4.19 IPA transistor width optimization

4.20 PPA transistor width optimization

4.21 Cell layouts

4.22 Comparison of write performance for IPA cells
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23 Comparison of write performance for PPA cells</td>
<td>91</td>
</tr>
<tr>
<td>4.24 Comparison of read performance for IPA cells</td>
<td>92</td>
</tr>
<tr>
<td>4.25 Comparison of read performance for PPA cells</td>
<td>93</td>
</tr>
<tr>
<td>4.26 FL Torques</td>
<td>94</td>
</tr>
</tbody>
</table>
List of Acronyms

1T1MTJ 1 Transistor, 1 Magnetic Tunneling Junction

2T1MTJ 2 Transistor, 1 Magnetic Tunneling Junction

2T2MTJ 2 Transistors, 2 Magnetic Tunneling Junctions

AP Antiparallel

BL Bit Line

BPL Bottom Pinned Layer

FIMS Field-Induced Magnetization Switching

FL Free Layer

GMR Giant Magneto Resistance

IPA In-Plane Anisotropy

LLG Landau-Lifshitz-Gilbert Equation

LLGS Landau-Lifshitz-Gilbert-Slonczewski Equation

MRAM Magnetoresistive Random Access Memory

MTJ Magnetic Tunneling Junction

P Parallel
PL Pinned Layer

PPA Perpendicular-to-Plane Anisotropy

RSM Read Sense Margin

SL Select Line

STT Spin Torque Transfer

STT-MRAM Spin Torque Transfer Magnetoresistive Random Access Memory

TMR Tunneling Magnetoresistance Ratio

TPL Top Pinned Layer

TSP Tunneling Spin Polarization

WL Word Line
1

Introduction

1.1. Motivation

Recent years have seen considerable research interest in Spin Torque Transfer Magnetoresistive Random Access Memory (STT-MRAM). This technology has been presented as a universal memory [1], as it combines several of the desired characteristics of the different memory technologies currently available in the marketplace. Specifically, STT-MRAM offers non-volatility, high density, and high-speed access [1]. A number of papers have recently been published [2–4] that have presented STT-MRAM test chips with both high speed access and high density. In [2], the authors demonstrated a high-speed STT-MRAM chip fabricated in 0.13 \(\mu \text{m} \) CMOS with a read access time of 8ns and write access time of 12ns. In [3], the authors presented a 64 Mb STT-MRAM test chip with a 30ns cycle time. Furthermore, in [4], the authors presented an analysis showing how a 1Gb STT-MRAM chip with 10ns read/write access is achievable in todays technology. All of these works have made use of the standard 1 Transistor, 1 Magnetic Tunneling Junction (1T1MTJ) cell. However, several hurdles exist before STT-MRAM can truly become commercialized and compete with existing memory technologies. One of the most fundamental requirements currently is the need to develop models which can accurately predict the behaviour of the cells to arbitrary input stimuli; this is needed for not only the optimization of circuitry at the cell level, but also for large-scale system-level verification. Another hurdle
which is inherent to STT-MRAM is the read disturbance problem. To alleviate concerns of read disturbance in the 1T1MTJ cell, the read sense current must be restricted, which results in reduced sense margin. On the other hand, to ensure disturbance-free read operation and large sense margin, the critical current of the MTJ must be increased, which results in the need for larger access transistors (and thus larger cell area), increased write access power, and potentially increased write access times. As such, the 1T1MTJ cell has an inherent tradeoff between disturbance-free read operation and the read/write performance.

1.2. Thesis Objectives

In this thesis, we explore the physics behind the operation of STT-MRAM cells, and accordingly propose a model to predict the transient response of STT-MRAM cells. On a separate front, we also propose a novel memory cell for STT-MRAM, which offers guaranteed immunity to read disturbance. The contributions of this thesis are the following:

- Provide a background on STT-MRAM and explore the physics behind operation of Magnetic Tunnel Junctions (MTJs) and STT-MRAM

- Characterization and modeling of the transient behaviour of Magnetic Tunneling Junction (MTJs)

- Proposal for a novel MTJ and STT-MRAM cell

1.3. Thesis Outline

The remaining chapters of this thesis are organized as follows:

- Chapter 2 provides background

- Chapter 3 describes the model developed and compares to measurement results
• Chapter 4 presents the proposed cell which offers guaranteed immunity to read disturbance

• Chapter 5 concludes the thesis and provides the future directions for this work
2.1. MRAM Basics

Magnetoresistive Random Access Memory (MRAM) is an emerging non-volatile memory technology which has seen significant research interest over the past two decades \[5\]–\[9\]. At the core of any incarnation of MRAM is the MTJ shown in Figure 2.1. An MTJ is comprised of two ferromagnetic thin film layers, the Free Layer (FL) and the Pinned Layer (PL), with an oxide-tunneling barrier in between the two magnetic layers. As the names suggest, the magnetization vector of the PL is pinned and thus cannot be changed, while the magnetization vector of the FL is free to possibly assume one of two directions; in conventional MTJs, the magnetization vector of the FL is free to assume either a direction parallel or antiparallel to the PL magnetization vector. From a data storage point of view an MTJ can therefore store 1 bit of data as the cell has two states: the Parallel (P) state and the Antiparallel (AP) state. Therefore in MRAM data is
stored in magnets, which are naturally non-volatile. An interesting property of an MTJ is the dependence of the tunneling resistance between the FL and the PL on the state of the cell; denoting the tunneling resistance from FL to PL when the FL magnetization vector is oriented parallel and antiparallel to the PL magnetization vector as R_P and R_{AP}, respectively, for MTJs $R_{AP} > R_P$. This means that the two states of the MTJ, the P and AP states, are electrically distinguishable. A common figure-of-merit for MTJs is the Tunneling Magnetoresistance Ratio (TMR) ratio:

$$TMR = \frac{R_{AP} - R_P}{R_P}$$ \hspace{1cm} (2.1)$$

Since a large TMR ratio indicates a large difference between the P and AP state resistances, the TMR ratio provides a measure of how easily the two states of an MTJ can be distinguished.

All of the different types of MRAM that have been proposed have very similar read schemes. Given that the state of an MTJ can be inferred by measuring its resistance, the data stored in an MTJ can be read by applying a current through the MTJ and measuring the resulting voltage or by applying a voltage across the MTJ and measuring the current. The resulting currents/voltages that are sensed can then be compared to a reference value to determine the state of the cell. The main difference between the different types of MRAM is in their write operations. These are described in detail in the following sections.

2.1.1. MRAM Write Operation

Fundamentally, there are two types of MRAM: Field-Induced Magnetization Switching (FIMS) MRAM and Spin Torque Transfer (STT) MRAM. FIMS MRAM was the first incarnation of MRAM [10–12], and in this technology cells were written to by the application of magnetic fields. Figure 2.2 depicts a FIMS MRAM cell. The cell shown employs two lines which generate magnetic fields (Write Line 1 and Write Line 2) when
currents are passed through them, and the two magnetic fields act constructively to switch the FL magnetization. Note that this technology requires that every row and column of a chip to have separate write lines.

However, there were two major problems with this approach: since it is difficult to contain a magnetic field and focus the field on one spot only, it is possible that when a cell in a memory array is being written, the magnetic fields being used to write to that cell inadvertently disturb the states of neighboring cells. More fundamental than this however is the fact that FIMS-MRAM has been shown to offer poor scalability; the current required to switch FIMS-MRAM cell does not decrease as the technology is scaled to smaller process nodes. This fact has made the use of MRAM prohibitive in smaller process technologies, and has led to the development of STT-MRAM.

The spin torque transfer effect, first proposed by [14], is a technique which makes use of the spin-dependent transport properties of MTJs to switch an MTJ’s state. We discuss the spin transfer torque effect in detail in a following section, and in this section provide an intuitive explanation of how it is employed to write data to an MTJ. Figure 2.3(a) shows a Write-0 operation, which aligns the FL magnetization in parallel to the

![Figure 2.2: A FIMS MRAM cell. Figure taken from [12]](image-url)
PL magnetization (antiparallel-to-parallel switching). Figure 2.3(b) shows a Write-1 operation, where the FL magnetization is switched to become antiparallel to the PL magnetization (parallel-to-antiparallel switching).

![Figure 2.3: Switching mechanisms in STT-MRAM](image)

In antiparallel-to-parallel switching, a positive current is passed from the FL to the PL. This causes electrons, which have become spin polarized to the magnetization of the PL, to tunnel to the FL and exert a torque on the FL magnetization vector, thus causing switching. In parallel-to-antiparallel switching, a current is passed from the PL to the FL as electrons tunnel from the FL to the PL the minority spin electrons, which are of opposite spin to the PL magnetization, are reflected back to the FL and subsequently exert a torque on the FL magnetization, causing it to switch. In either case, it is only when the torque exceeds some critical value (governed by the magnetization parameters, geometry, and spin polarization properties of the device), that the FL magnetization switches. It is immediately obvious that STT-MRAM has numerous advantages over FIMs/MRAM, since no external magnetic fields are required to switch the state of an MTJ the problem of inadvertently writing to neighboring cells is solved. The spin torque transfer effect allows for the generation of torques to switch the state of the cell which are highly localized to the layers which have currents applied to them; the neighboring cells will not to be affected by this torque. Also, this allows for greater area density as
STT-MRAM does not require additional write wires. More importantly however, it has been shown [13] that the current required to switch STT-MRAM cells scales favourably (i.e. decreases for smaller process nodes). As such, STT-MRAM is currently seen as a path towards the large scale commercialization of MRAM as it has overcome the hurdles previous generations of MRAM have faced.

2.2. Device Physics

2.2.1. Introduction to Electron Spin

In this section, we provide a brief overview of the quantum mechanical description of angular momenta of particles. In classical physics, there are two components of the angular momentum of a body: the angular momentum resulting from the rotation of the body about some fixed axis, and the rotation of the body about its centre of mass. From the viewpoint of quantum mechanics, the angular momentum of a particle can similarly be described using the same notions as in classical physics; a particle which moves about some fixed axis (for example an electron which moves about a nucleus as it is confined to an orbital of an atom) has what is known as orbital angular momentum, and in addition, the particle may have its own intrinsic angular momentum, which is known as spin angular momentum. In this section, we concern ourselves only with the spin angular momentum of electrons.

In quantum mechanics, the angular momentum of a particle is quantized. What this means is that there are only a finite number of discrete values for the measured angular momentum of a particle along a given axis. As an example, electrons are spin-1/2 particles; as such, the measured spin angular momentum of an electron along a given axis can either be $+\hbar/2$ or $-\hbar/2$, where \hbar is the reduced or normalized Planck constant. The probabilities associated with the measurement of the angular momentum of $+\hbar/2$ and $-\hbar/2$ are associated with the spin-state of the electron, with respect to a given axis.
An electron whose angular momentum along a given axis is always measured to be $+\hbar/2$ (i.e. the probability of measuring $+\hbar/2$ is 1) is said to be in a spin-up state, and this is denoted in bra-ket notation as $|\uparrow\rangle$. Similarly, an electron whose angular momentum is measured to be $-\hbar/2$ with absolute certainty is said to be in a spin-down state, denoted as $|\downarrow\rangle$. In general, the spin-state of an electron is:

$$|\psi_S\rangle = a|\uparrow\rangle + b|\downarrow\rangle \quad (2.2)$$

Where $|a|^2 + |b|^2 = 1$. In other words, an electron can be in a superposition of the two spin states (up-spin and down-spin), and all this means is that the measurement of the angular momentum with respect to a given axis will not yield a result with absolute certainty; the probability in this case of measuring $+\hbar/2$ is $|a|^2$, while the probability of measuring $-\hbar/2$ is $|b|^2$. Finally, we discuss the transformation of spin-state from one reference axis to another; that is to say, given the spin state of an electron, $|\psi^z_S\rangle = a|\uparrow\rangle + b|\downarrow\rangle$, which is with respect to some axis z, how do we transform $|\psi^z_S\rangle$ to $|\psi^{z'}_S\rangle$, i.e. so that the probability amplitudes are now with respect to some other axis, z'? In quantum mechanics, the expected value of a quantity can be obtained by using linear operators. With regard to spin angular momentum, we may define linear operators S_i, which can be used to find the expected value of the angular momentum measured along an axis i for a particle in a given state. The operators, which are represented as matrices, for the measurement of the spin angular momentum along the x, y and z axes, are $(\hbar/2)\sigma_x,$
\[(\hbar/2) \sigma_y, \text{ and } (\hbar/2) \sigma_z, \text{ respectively, where:} \]

\[
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{2.3}
\]

\[
\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \tag{2.4}
\]

\[
\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{2.5}
\]

\[
\sigma_x, \sigma_y \text{ and } \sigma_z \text{ are known as the Pauli spin matrices, and the above matrices are for a spin state which is given with respect to the } z\text{-axis, } |\psi^z_S\rangle. \text{ To find the expected value of the angular momentum along an axis } i, \text{ we simply take the inner product of the spin state with the product of the corresponding operator and the spin state as follows:}
\]

\[
\langle S_i \rangle = \langle \psi^z_S * |S_i| \psi^z_S \rangle \tag{2.7}
\]

For an arbitrary axis \(z' \), we may make use of the Pauli spin matrices; first, we find a unit vector \(\hat{z}' = c_x \hat{x} + c_y \hat{y} + c_z \hat{z} \), and then form the operator \(S_{z'} = c_x S_x + c_y S_y + c_z S_z \). We can then use \(S_{z'} \) to find the expected value of the angular momentum along the \(z' \) axis for a state initially defined with respect to the \(z \) axis by making use of Equation \(2.7 \). It can be shown \[15\] that given the initial state \(|\psi^z_S\rangle = \left(\begin{array}{c} a \\ b \end{array} \right) \),

\[
|\psi^{z'}_S\rangle = \begin{pmatrix} a \cos(\theta/2) - b \sin(\theta/2) \\ a \sin(\theta/2) + b \cos(\theta/2) \end{pmatrix} \tag{2.8}
\]
where θ is the angle between the z and z' axes. $|\psi_S^z'\rangle$ can also be written as:

$$
|\psi_S^z'\rangle = \begin{pmatrix}
\cos(\theta/2) & -\sin(\theta/2) \\
\sin(\theta/2) & \cos(\theta/2)
\end{pmatrix}
|\psi_S^z\rangle
$$

2.2.2. Spin Torque Transfer Effect

In this section, we describe the spin torque transfer effect. Consider the example of the spin-dependent transmission and reflection of a stream of electrons as they travel from one region to another, as shown in Figure 2.4. Here, we have a stream of incident electrons flowing from Region I to Region II; as these electrons impinge on Region II, they are either transmitted or reflected, based on the spin of the electrons at the moment.

![Figure 2.4: Spin dependent transport of itinerant electrons from Region I to Region II](image-url)
they are at the interface between Region I and Region II. In the example, Region II is comprised of a material where all itinerant electrons are either in a spin-up state or a spin-down state with respect to the z-axis, while Region I allows itinerant electrons to be in any arbitrary state. The incident electrons are shown to be in a spin state, $| \psi_{Si}^z \rangle = (\cos(\theta/2) \sin(\theta/2))^T$, with respect to the z-axis, since the spin state is shown to be aligned to an axis which is at an angle θ to the z-axis. The terms t_\uparrow, t_\downarrow, r_\uparrow and r_\downarrow are coefficients which relate the transmitted and reflected wavefunctions (the functions describing the time varying spatial distribution of transmitted and reflected particles, respectively) to the incident wavefunction. Therefore, the probability of transmission and reflection for up-spin and down-spin electrons can be derived; at the interface of Region I and Region II, electrons with up-spin are transmitted with probability $|t_\uparrow|^2$ and reflected with a probability $|r_\uparrow|^2$, while electrons with down-spin are transmitted with probability $|t_\downarrow|^2$ and reflected with a probability $|r_\downarrow|^2$. For this example, we set $t_\downarrow = r_\uparrow = 0$ and $t_\uparrow = r_\downarrow = 1$; as such, Region II acts as a spin filter, as electrons with up-spin are always transmitted, while electrons with down-spin are always reflected. It is useful to measure the expected values for the spin-angular momentum along the x-axis for the incident, transmitted, and reflected wavefunctions. Recall from Equation 2.7, we can do this by using the spin-angular momentum operator for the x-axis. Denoting $\langle S_{xi} \rangle$, $\langle S_{xt} \rangle$, and $\langle S_{xt} \rangle$ as the expected values for the angular momentum along the x-axis.
for the incident, reflected and transmitted wavefunctions respectively, we have:

\[
\langle S_{xi} \rangle = \left(\begin{array}{cc} \cos(\theta/2) & \sin(\theta/2) \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} \cos(\theta/2) \\ \sin(\theta/2) \end{array} \right) \\
= \left(\begin{array}{cc} \cos(\theta/2) & \sin(\theta/2) \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{c} \sin(\theta/2) \\ \cos(\theta/2) \end{array} \right) \\
= \sin(\theta) \frac{\hbar}{2}
\]

(2.10)

\[
\langle S_{xt} \rangle = \cos^2(\theta/2) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \\
= \cos^2(\theta/2) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \\
= 0
\]

(2.11)

\[
\langle S_{xr} \rangle = \sin^2(\theta/2) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \\
= \sin^2(\theta/2) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \frac{\hbar}{2} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \\
= 0
\]

(2.12)

The above shows a very interesting result: while the incident electrons can have a non-zero expected value for the spin angular momentum along the \(x\)-axis (equal to \(\sin(\theta)\hbar/2\)), the transmitted and reflected wavefunctions for this example clearly have an expected value of zero for the spin angular momentum along the \(x\)-axis. Since angular momentum must be conserved, it becomes evident that the angular momentum along the \(x\)-axis for the incident wavefunction which is “lost” is actually absorbed at the interface between Region I and Region II - this is the only place where the angular momentum can be absorbed, as it is here where the incident wavefunction is split into a transmitted and
Chapter 2. Background

reflected component, and thus, it is here where there is a net flux of angular momentum. The above example illustrates the spin torque transfer effect: whenever a system has the spin-dependent transport properties highlighted in this example, there is a possibility that the angular momentum of all the individual wavefunctions which are involved in the transport process is not conserved; in this case, any “lost” angular momentum is absorbed by the materials.

2.3. Spin Torque Transfer in MTJs

In this section, we reproduce the derivation of a quantitative model to predict the torque generated in MTJs resulting from the spin torque transfer effect, as shown in [16–18]. We start with Figure 2.5 which shows two magnetic layers, Layer I and Layer II, with magnetization vectors \(\vec{M}_1 \) and \(\vec{M}_2 \) respectively (these are unit-vectors), and with a current \(i \) flowing from Layer I to Layer II. Note the presence of an oxide in between the two layers, and that this is composed of a non-magnetic material. \(\vec{T}_1 \) and \(\vec{T}_2 \) are the torques arising from the spin torque transfer effect, which are acting on \(\vec{M}_1 \) and \(\vec{M}_2 \) respectively. We begin by analyzing the flow of angular momentum resulting from the

![Figure 2.5](image_url)

Figure 2.5: Torques arising from current \(i \) flowing from Layer I to Layer II
current flow between the layers. The flow of angular momentum from Layer I into the Oxide region, denoted \tilde{S}_{IN}, is:

$$
\tilde{S}_{\text{IN}} = \tilde{M}_1 \frac{\hbar (-i_{1\uparrow} + i_{1\downarrow})}{2e} \quad (2.13)
$$

Equation 2.13 can be explained as follows: the current flowing from Layer I into the Oxide region can be broken down into two components, $i_{1\uparrow}$ which represents the current of the spin-up electrons (where spin-up is defined with respect to direction of the magnetization vector of Layer I), and $i_{1\downarrow}$ represents the current of the spin-down electrons. By doing this, we can attribute angular momentum to the currents separately: by multiplying each current by $-\hbar/2e$, we convert electric current, which is the flow of electric charge, into momentum current, as we now have a flow of angular momentum. We need to subtract $i_{1\uparrow}$ from $i_{1\downarrow}$, as the angular momentum carried by $i_{1\uparrow}$ is of opposite sense as that carried by $i_{1\downarrow}$, and finally we multiply by \tilde{M}_1, as that gives the actual direction of the angular momentum being transferred into the Oxide region. Similarly, the current through Layer II effectively extracts angular momentum from the Oxide region. The flow of angular momentum from the Oxide region into Layer II, denoted \tilde{S}_{OUT}, is given by:

$$
\tilde{S}_{\text{OUT}} = \tilde{M}_2 \frac{\hbar (-i_{2\uparrow} + i_{2\downarrow})}{2e} \quad (2.14)
$$

Now, by conservation of angular momentum,

$$
\tilde{T}_1 + \tilde{T}_2 = \tilde{S}_{\text{IN}} - \tilde{S}_{\text{OUT}} \quad (2.15)
$$

Since $\tilde{M}_1 \cdot \tilde{T}_1 = \tilde{M}_2 \cdot \tilde{T}_2 = 0$ (the torque must act perpendicular to the the magnetization vectors, as any component parallel to the magnetization vectors would cause the magnetization to increase, but the saturation magnetization of a material is constant, and so this is not a possibility), we can take the dot product of Equation 2.15 with \tilde{M}_1
and \tilde{M}_2 to yield separate equations for \tilde{T}_1 and \tilde{T}_2:

\begin{align*}
\tilde{T}_1 &= \frac{\hbar[(-i_{1\uparrow} + i_{1\downarrow})\cos\theta + i_{2\uparrow} - i_{2\downarrow}]}{2esin\theta} \\
\tilde{T}_2 &= \frac{\hbar[(-i_{2\uparrow} + i_{2\downarrow})\cos\theta + i_{1\uparrow} - i_{1\downarrow}]}{2esin\theta}
\end{align*}

(2.16) (2.17)

Note that under the assumption that $i_{1\uparrow} - i_{1\downarrow} = i_{2\uparrow} - i_{2\downarrow}$, i.e. the two layers are equally biased towards the up-spin electrons, the two torques \tilde{T}_1 and \tilde{T}_2 are equal. We use this assumption, and for the remainder of this section $\tilde{T}_1 = \tilde{T}_2 = T_\parallel$. While the above equations show how torque is generated given the presence of spin-polarized currents (i.e. when $i_{n\uparrow} \neq i_{n\downarrow}$ for any n), we would like to be able to calculate torque from the applied voltage across an MTJ and measurable parameters of the MTJ (such as parallel and antiparallel resistances). We start with the following model for the tunneling characteristics of an MTJ as shown in Figure 2.6. In the figure, we see that we have

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2_6}
\caption{Spin-dependent conductances from Layer I to Layer II}
\end{figure}

a set of conductances between Layer I and Layer II: G_{++}, G_{+-}, G_{-+}, and G_{--}. These conductances give the conduction properties for the four possible types of transport between the two layers: tunneling from a spin-up state in Layer I to a spin-up state
in Layer II, tunneling from a spin-up state in Layer I to a spin-down state in Layer II, tunneling from a spin-down state in Layer I to a spin-up state in Layer II, and tunneling from a spin-down state in Layer I to a spin-down state in Layer II. When the magnetizations of the two layers are parallel to one another, the spin-up states of the two layers and the spin-down states of the two layers are the same; as such, the conductance in this state is simply $G_{++} + G_{--}$ which we denote as G_P. When the two layers are relatively antiparallel to one another, the down-spin states of Layer I are equal to the up-spin states of Layer II, and the the up-spin states of Layer I are equal to the down-state states of Layer II; the conductance between these two layers in this case is $G_{+-} + G_{-+}$ which we denote as G_{AP}. In general however, if the magnetizations of the two layers are not parallel or antiparallel to one another, we need to make use of all four conductances ($G_{++}, G_{+-}, G_{-+},$ and G_{--}), as well as the probability of an electron in the up-state or down-state in one layer to be “measured” to be in the up-state or down-state of the other layer. For instance, if there is an angle of θ between the magnetization vectors of the two layers, we can use Equation 2.8 to find these probabilities; specifically, the probability that an up-state electron in Layer I can tunnel into an up-state in Layer II is $\cos^2 \theta$, the probability that an up-state electron in Layer I can tunnel into a down-state in Layer II is $\sin^2 \theta$, the probability that a down-state electron in Layer I can tunnel into an up-state in Layer II is $\sin^2 \theta$, and finally the probability that a down-state electron in Layer I can tunnel into a down-state in Layer II is $\cos^2 \theta$. We now have expressions for the terms $i_{1\uparrow}, i_{1\downarrow}, i_{2\uparrow},$ and $i_{2\downarrow}$ as follows:

$$i_{1\uparrow} = V \left(\cos^2 \left(\frac{\theta}{2} \right) G_{++} + \sin^2 \left(\frac{\theta}{2} \right) G_{+-} \right) \quad (2.18)$$

$$i_{1\downarrow} = V \left(\sin^2 \left(\frac{\theta}{2} \right) G_{-+} + \cos^2 \left(\frac{\theta}{2} \right) G_{--} \right) \quad (2.19)$$

$$i_{2\uparrow} = V \left(\cos^2 \left(\frac{\theta}{2} \right) G_{++} + \sin^2 \left(\frac{\theta}{2} \right) G_{-+} \right) \quad (2.20)$$

$$i_{2\downarrow} = V \left(\sin^2 \left(\frac{\theta}{2} \right) G_{+-} + \cos^2 \left(\frac{\theta}{2} \right) G_{--} \right) \quad (2.21)$$
We can substitute the above equations into the torque equation given in Equation 2.17 and using the trigonometric identities $\cos^2(\frac{\theta}{2})(1-\cos\theta) = \sin^2\theta/2$ and $\sin^2(\frac{\theta}{2})(1+\cos\theta) = \sin^2\theta/2$ to yield:

$$T|| = \frac{\hbar}{4e} (G_{++} + G_{+-} - G_{-+} - G_{--})V \sin\theta \quad (2.22)$$

While this now gives us an equation based on applied voltage, V, and device characteristics (the conductances), this equation is not particularly convenient as it is difficult to characterize the spin channel conductances (i.e. G_{++}, G_{+-}, G_{-+} and G_{--}). What is particularly straightforward to characterize however are the conductances of an MTJ when in parallel (G_P) or antiparallel (G_{AP}) states. We first observe that $G_P = G_{++} + G_{--}$ and $G_{AP} = G_{+-} + G_{-+}$. Next, we make the assumption that the each of the spin channel conductances are separable and can be expressed in terms of factors specific to each layer; this is to say that $G_{++} = g_L g_{R+}$, $G_{+-} = g_L g_{R-}$, $G_{-+} = g_L g_{R+}$, and $G_{--} = g_L g_{R-}$, which is what is referred to in Equation 16 in [17]. Finally, by assuming that the two layers are identical and so $g_L = g_{R+}$ and $g_L = g_{R-}$, we come to the following equation for torque:

$$T|| = \frac{\hbar}{4e} \frac{2P_S}{1 + P_S^2} \sin(\theta) G_P V \quad (2.23)$$

where P_S is the Tunneling Spin Polarization (TSP) and is equal to $\sqrt{(G_P - G_{AP})/(G_P + G_{AP})}$ which is also equivalent to $\sqrt{TMR/(TMR + 2)}$, G_P is the parallel state conductance, and V is the applied voltage across the MTJ (between the PL and FL).

2.3.1. Magnetodynamics

While Equation 2.23 gives us the magnitude of the spin transfer torque acting on a layer, we would like to express the same torque in vector form. By considering the direction of the torque acting on a layer, and the $\sin(\theta)$ term in the equation, the vector form of the
torque equation is straightforward:

$$T|| = \frac{\hbar}{4e(1 + P_S)}G_PV\mathbf{m}_{FL} \times (\mathbf{m}_{FL} \times \mathbf{m}_{PL})$$

(2.24)

where \mathbf{m}_{FL} and \mathbf{m}_{PL} are the normalized magnetization vectors of the FL and PL respectively. We can now include this torque in the Landau-Lifshitz-Gilbert Equation (LLG) equation [19], which we describe next.

The LLG equation is a phenomenological equation used to predict the time evolution of a magnetization vector subject to external magnetic fields as well as device anisotropies. By including the spin transfer torque term into the LLG equation, we form the Landau-Lifshitz-Gilbert-Slonczewski Equation (LLGS) equation, which governs the dynamics of the FL magnetization vector:

$$\frac{d\mathbf{m}}{dt} = -\frac{\gamma}{1 + \alpha^2}\mathbf{m} \times \mathbf{H}_{\text{EFF}} - \frac{\gamma\alpha}{1 + \alpha^2}\mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{EFF}}) - \frac{\gamma}{(1 + \alpha^2)M_SVol}T||$$

(2.25)

Where α is the Gilbert damping parameter, γ is the gyromagnetic ratio, \mathbf{H}_{EFF} is the effective field within the magnetic film, M_S is the saturation magnetization, Vol is the volume of the FL, \mathbf{m} is a unit vector describing the magnetization of the FL and \mathbf{m}_{PL} is a unit vector describing the magnetization of the PL. Since the magnetic layers comprising MTJs are typically too small to support more than one magnetic domain, they are modeled using the macrospin approximation [20], and so the effective field in Equation 2.25, \mathbf{H}_{EFF} is primarily comprised of the external field H_{EXT} and the anisotropy field H_{ANI}. Furthermore, since external fields are not required for switching in STT-MRAM, $H_{\text{EX}} = 0$, and as such we are concerned only with anisotropy. The anisotropy term dictates a preferred direction for the FL magnetization vector, which is called the easy axis; when \mathbf{m}_{PL} is aligned along this axis, it is in equilibrium, while when it is not aligned with this axis, H_{EFF} exerts a torque on the magnetization vector to bring it back in-line.
with this axis. The LLGS equation is shown graphically in Figure 2.7. Here we have the magnetization vector \(\mathbf{m} \), at an angle \(\theta \) to the easy axis (the z-axis in the figure), and the components of the \(d\mathbf{m}/dt \) vector separated into the precession, dampening, and spin torque transfer terms. These three terms are loosely referred to as torque terms, even though they do not have the units of torque (the units are \(\text{magnetization/time} \) instead of strictly \(\text{angular momentum/time} \)). Note that the magnetization vector is confined to the sphere of radius \(M_S \), the precession term causes \(\mathbf{m} \) to precess around the easy axis (\(\phi \) is continuously varying monotonically), the spin torque term causes \(\theta \) to increase (and thus switch the state of the MTJ), while the dampening term counteracts the spin torque transfer term. In the absence of an applied spin transfer torque, the dampening term is responsible for aligning the magnetization vector with the easy axis whenever the magnetization vector is out of equilibrium.

2.4. STT-MRAM Design

2.4.1. Device Types

It is worth noting at this point that, broadly, MTJs can be grouped into two classes based on the orientation of the easy axis with respect to the major axes of the layers.
comprising the MTJ. The easy axis of the PL/FL can be either parallel to the plane of the layer, these are In-Plane Anisotropy (IPA) devices, or perpendicular to the plane of the layer, these are Perpendicular-to-Plane Anisotropy (PPA) devices; the two device types are shown in Figures 2.8(a) and 2.8(b).

![Conventional device types](image)

It is also important to note at this point that the sources of anisotropy for IPA and PPA devices are different; while the anisotropy of IPA devices originates from the shape and geometry of the device, for PPA devices, the source of anisotropy is from magnetocrystalline effects [21]. Because of the geometry of the devices, while IPA devices necessarily have large out-of-plane demagnetizing fields, PPA devices have virtually no out-of-plane demagnetizing field. As such, the critical current for an IPA device is generally much larger than a PPA device of similar dimensions. The critical current for an IPA device is [22]:

$$I_{C0} = \frac{2e\alpha M_S V (H_K + 2\pi M_S)}{\hbar \eta} \quad (2.26)$$

and for PPA devices [23]:

$$I_{C0} = \frac{2e\alpha M_S V H_K}{\hbar \eta} \quad (2.27)$$

The ratio between the critical current of an IPA device to a PPA device is $(H_K + 2\pi M_S)/H_K$, which is typically much larger than unity, since typically $M_S \gg H_K$. The drastically reduced critical current for PPA devices make them an attractive candidate for STT-MRAM; however because these devices typically have lower TMR (which leads to degradation in read performance) than IPA devices [4], recent STT-MRAM chips have
continued to see the use of IPA devices \[24, 25\].

2.4.2. Conventional STT-MRAM Cell and Operation

Figure 2.9 shows a conventional [1T1MTJ] cell; the cell consists of an NMOS transistor (the *access transistor*) in series with an [MTJ]. The gate of the access transistor is connected to a Word Line (WL), while a Select Line (SL) is connected to the drain of the access transistor, and a Bit Line (BL) is connected to the bottom electrode of the [MTJ].

![Figure 2.9: Conventional 1T1MTJ cell](image)

As described in Section [2.1], in STT-MRAM, MTJs are written to by passing currents between the ferromagnetic layers; these currents transfer torque to the FL and the direction of the currents (i.e., whether electrons tunnel from FL to PL or from PL to FL) determine the direction of the applied torque on the magnetization vector of the FL. Write operations therefore entail selecting a cell using the WL and then using the SL and BL to drive current through the cell in the appropriate direction. Read operations involve either applying a current through the cell and measuring the voltage, or applying a voltage across the cell and measuring the resulting current. The following sections describe the top level architecture, write circuitry, and read circuitry in more detail.
2.4.3. Basic Chip Architecture

Figure 2.10 shows the top level organization of a typical STT-MRAM chip: the [1T1MTJ] cells are organized in rows and columns, and sets of [WL], [SL], and [BL] span the array of cells throughout the chip, and are connected to peripheral circuitry. The address decoders

![Figure 2.10: Top level chip architecture](image)

are used to map an address (represented in binary), to a particular row in the array of cells; the output of the address decoders are inputs to the [WL] Drivers; these are circuits which set the [WL] to \(V_{DD} \) (or higher if word-line boosting or bootstrapping techniques are employed) when access to a particular row is desired; the [WL] is otherwise tied to \(GND \). The column circuitry use the [SL]s and [BL]s to read from and write to a cell in a particular row in the array. The read and write circuitry are described in the following sections.
2.4.4. Write Circuitry

Figures 2.11(b) and 2.11(c) show Write-0 and Write-1 operations respectively. One may note that during a write operation, there are effectively three transistors and the MTJ being written to itself all in series; this may raise questions about transistor sizing and the ability to provide the relatively large currents required to switch the state of the MTJ (which for current state-of-the-art IPA MTJs is between 100µA - 500µA [26]). While the access transistor width is minimized for the sake of minimizing the overall chip area, since the write drivers (transistors M1-M4) are shared by all the cells in a given column, the cost of using large sizes for M1-M4 is amortized over the large number of cells comprising a column in the memory array, as such the overall degradation in area is minimal. This is indeed true for most circuits at the periphery of a memory chip.

2.4.5. Read Circuitry

We begin by first exposing the circuits comprising the Read Sensing Circuits block in Figure 2.10 to analyze the underlying connectivity of reference cells, memory cells, and the read circuits; this is shown in Figure 2.12. There are two important points to note from this figure. The first is that the BL of all columns (including the reference column) are connected to GND during a read operation. The reason for this is that since a read operation inevitably requires the application of a current through the MTJ, read operations can disturb and indeed even destroy the existing data in a cell. Read disturbance will be discussed in a following section, but given the fact that read operations can act as write operations, it becomes obvious that since P → AP switching requires more current that AP → P switching, we may reduce the probability of read disturbance by ensuring that the read operations would only generate a P → AP switching torque, and not an AP → P switching torque. This is done by ensuring that current flows from the FL to PL, and thus the BLs are grounded during a read operation. The second point to note is
Chapter 2. Background

Figure 2.11: Circuitry for write operations
Figure 2.12: Top level chip architecture with exposed read circuits

that the signal (voltage or current) sensed on the SL of the reference column is shared by the read circuits for all the other columns. This may bring about concerns of variation, since the reference cells are in general not in close proximity to the data cells being read. As such, any spatially correlated variation in MTJ resistance may cause cells which are located further away from the reference cells (for example in this case the cells residing in the column on the other end of the chip) to be read incorrectly (at least at a higher bit-error-rate than those cells residing close to the reference cells). One solution would be to move the reference cells to a location such that the expected value of the distance from the reference cells to the data cells is minimized, which was the approach taken in [27]. For instance, given a row based reference scheme as shown in Figure 2.12, the expected value of the distance to a data cell is:

\[E[d] \approx \frac{l}{2} \] \hspace{1cm} (2.28)
where l is the width of the memory subarray. On the other hand, a simple improvement can be achieved by moving the column to the middle of the array. Now the expected value of the distance to a data cell is:

$$E[d] \approx \frac{l}{4}$$ \hspace{1cm} (2.29)

which shows a two-fold improvement in the expected distance to a cell being read. If MTJ resistance variation is spatially correlated, such an improvement in the expected distance to a cell would similarly reduce the variation in resistance of the reference cell and the cell being read, thereby improving yield. Connectivity and architectural details aside, we now delve into the actual read schemes used in STT-MRAM and the circuits employed to implement these schemes in the following sections.

2.4.5.1. Current-Based Read Scheme

A current-based read scheme is shown in Figure 2.13. The principle behind the current-based read scheme is that a current, I_{READ}, is applied to both the reference and data cells; the resulting voltage difference between the two signals, V_{CELL} and V_{REF}, allows for the data stored in the cell to be inferred and thus detected. A current based read scheme is favourable because of its relatively simple implementation, and as such has seen wide spread use in implemented STT-MRAM chips \[1, 24, 25\]; from a design perspective, all that is desired is that the voltage difference between V_{CELL} and V_{REF}, the Read Sense
Margin RSM, is sufficiently large such that it can be detected correctly by the voltage sense amplifier at a low error rate. The RSM for this scheme is:

$$RSM = I_{\text{READ}}(\min \{R_{\text{AP}} - R_{\text{REF}}, R_{\text{REF}} - R_{\text{P}}\}) \quad (2.30)$$

By setting $R_{\text{REF}} = (R_{\text{AP}} + R_{\text{P}})/2$, Equation (2.30) reduces to:

$$RSM_l = I_{\text{READ}} \frac{R_{\text{AP}} - R_{\text{P}}}{2} = I_{\text{READ}} \frac{R_{\text{P}} TMR}{2} \quad (2.31)$$

While one may argue that given a certain R_{P} and TMR, a sufficiently large RSM can be guaranteed by increasing the current I_{READ}, it should again be noted that this is not the case because of constraints placed upon I_{READ} due to read disturbance; as is described in a following section, to minimize the read disturbance rate to acceptable levels, I_{READ} must be below a threshold value. As such, to ensure the accurate detection of the data stored in a cell given this constraint can lead to difficult design of the sense amplifier, especially if devices with low switching currents are employed, and this problem can be further aggravated if the devices also have low tunneling resistance.

2.4.5.2. Voltage-Based Read Scheme

A voltage-based read scheme, such as the one implemented in [28], is shown in Figure 2.14. In a voltage based read scheme, a voltage, V_{READ}, is applied across the two terminals of both the data and reference cells. In Figure 2.14, we see that this is accomplished by utilizing two amplifiers, A_1 and A_2, which are configured to use negative feedback to force the voltage across the data and reference cells to be equal to V_{READ}. The resulting currents drawn by the data and reference cells, I_{CELL} and I_{REF} respectively, are then sensed by a current sense amplifier (such as a transimpedance amplifier) and used to detect the data stored in the cell. The advantage of a voltage based read scheme
Chapter 2. Background

Figure 2.14: Voltage based read scheme

over a current based read scheme, is that a voltage-based read scheme uses current-mode signaling, which in principle was shown to offer higher speed access [29]. However in reality, implementation of a voltage-based read scheme comes at a greater cost in terms of complexity compared to a current-based read scheme; for the circuit shown in Figure 2.14, note that the difficulty in designing amplifiers (A_1 and A_2) that offer stable operation while allowing for high speed read access may be prohibitive from an implementation point of view. Furthermore, the area overhead incurred by having an opamp for every column may potentially outweigh any improvement in performance that this scheme offers. Finally we shown the RSM in this scheme as a function of device parameters:

$$RSM_V = V_{\text{READ}}(\min\{G_P - G_{\text{REF}}, G_{\text{REF}} - G_{\text{AP}}\})$$

$$= V_{\text{READ}} \frac{G_P - G_{\text{AP}}}{2}$$

$$= V_{\text{READ}} \frac{G_{\text{AP}}TMR}{2}$$

(2.32)

where $G_{\text{REF}} = (G_P + G_{\text{AP}})/2$. Again, the RSM in this case is constrained as V_{READ} must be below some threshold to minimize read disturbance.
2.4.5.3. Read Disturbance Issues

During a read operation, the current drawn by an STT-MRAM cell - resulting either from the current due to the application of a fixed voltage across the cell, or from the application of a fixed current to the cell - can potentially disturb the data stored in the cell. As such a read operation can effectively act as a weak write operation, thus potentially destroying the contents of the cell. In order to ensure that a read operation is nondestructive, the current applied through the MTJ during a read operation is limited to be significantly less than the write critical current. Note that even if the applied current is less than the critical current, the data in the cell may still be destroyed as a consequence of thermal noise processes. A stochastic model for predicting the likelihood of switching the state of an MTJ was presented in [30]; the probability, P_{WRITE}, of switching an MTJ given a read current, I_{read}, which is less than the MTJ’s critical current, I_{C0} is given by:

$$P_{\text{write}} = 1 - e^{\frac{-t_P}{\tau_{P\rightarrow AP}}}$$ \hspace{1cm} (2.33)

Where t_P is the duration in time when I_{read} is applied to the MTJ, while $\tau_{P\rightarrow AP}$ is given by:

$$\tau_{P\rightarrow AP} = \tau_0 e^{K_U V \left(1 - \frac{I_{\text{read}}}{I_{C0}}\right) \frac{k_B T}{k_B}}$$ \hspace{1cm} (2.34)

Where τ_0 is the nominal switching time when a current of magnitude equal to I_{C0} is applied to the cell, K_U is the anisotropy constant, V is the volume of the MTJ’s FL, k_B is the Boltzmann constant, and T is the temperature given in Kelvin. The term $\frac{K_U V}{k_B T}$ is also known at the thermal stability factor, Δ, and is the ratio between the magnetic energy stored in the cell ($K_U V$) and the thermal energy ($k_B T$). Equation 2.33 indicates that at some finite temperature T, and for some read current $I_{\text{read}} < I_{C0}$, there exists a finite probability for the cell to be switched, or in other words, for the data to be destroyed. For the remainder of this thesis, we rely on Equations 2.33 and 2.34 as a means to estimate read disturbance rate.
Read disturbance is the source of the fundamental tradeoff between read stability and read/write performance. Figure 2.15 illustrates this tradeoff, where we see that the read disturb rate (calculated using Equations 2.33 and 2.34) is an exponentially increasing function of the ratio between the read sense current, I_{READ}, and the cell critical current, I_{C0} (the figure shows the relationship for multiple values of the thermal stability factor, Δ).

![Figure 2.15: Read disturb rate versus I_{READ}/I_{C0}](image)

If a high performance read operation is desired, the read sense margin must be increased, which requires an increase in the read sense current. In order to maintain a certain desired read disturb rate, I_{C0} then also must be increased (which can be achieved by altering the FL size and/or geometry), such that the ratio I_{READ}/I_{C0} is kept constant. As such, improving read performance inevitably results in increasing the critical current, and thus increasing write power and potentially write time as well. On the other hand, one may choose to increase read performance (by increasing I_{READ}) and write performance (by reducing I_{C0}), but this will result in an increased read disturb rate. This tradeoff couples read and write performance, and places a tight constraint on the overall performance and level of robustness that can be achieved in STT MRAM. In Chapter 4 we review existing approaches (both circuit and device level) to deal with read distur-
bance, and present a proposed device and cell to overcome the tradeoffs which plague current STT-MRAM cells.

2.5. Summary

In this chapter, we presented a brief overview of MRAM technology, and discussed some of the challenges faced by previous generations of MRAM, and discussed how STT-MRAM overcomes many of these challenges. We then provided a background in the fundamental physics behind the write mechanism in STT-MRAM, the spin torque transfer effect. We then discussed the cell and chip architecture of current STT-MRAM as well as the read and write operations currently employed. Finally we highlighted the problem of read disturbance in STT-MRAM and how this detrimentally effects both read and write performance.
This chapter presents an investigation into modeling the transient behaviour of Magnetic Tunneling Junctions. First, we provide an overview of previous modeling approaches and the shortcomings of prior work. Next we discuss the structure of the proposed modeling approach taken in this work. We then present an experimental study where test chips containing MTJs are characterized. Unfortunately, due to a limited access to MTJs and poor reliability of the limited number of MTJs we had access to, we were unable to completely characterize a single MTJ as described in detail in Section 3.6. Our measurement results are actually an aggregate of different measurements done on different MTJs, and on different dies. As such, the comparison between our measurement results and those predicted by our proposed model are not completely conclusive, although we may compare some of the overall trends that were observed during measurement and those predicted by our model. Nonetheless, in the final part of this chapter we compare measured results to those predicted by our model.

3.1. Prior Work

Previous work can be divided loosely into two categories: Static Models and Dynamic Models. Static models seek to predict the static resistance versus applied voltage hysteresis characteristics of MTJs - that is to say they provide an estimate of the steady state current expected to be drawn by the MTJ given an applied voltage and the state of
Chapter 3. MTJ Modeling

The MTJ models provide no information on the switching behaviour of the MTJ. Dynamic models on the other hand seek to predict the general dynamic response of the MTJ given an input stimulus. Examples of each modeling approach are provided in the following sections.

3.1.1. Static Models

An example of a static model proposed recently is the work done by Zhao [31]. The model is implemented in Verilog-A, and is able to replicate the resistance versus voltage characteristic of MTJs. The model comprises two components: a model for the tunneling resistance of the MTJ and a model to predict the critical current of the cell. The tunneling model comprises of an equation derived from the Brinkman model [32] to predict the tunneling resistance as a function of device parameters and the applied voltage bias. The tunneling resistance is given as:

\[R(V) = \frac{t_{OX}}{k\phi^{-1/2}A} \frac{\exp[1.025t_{OX}\phi^{-1/2}]}{1 + \frac{t_{OX}^2e^{m\phi}}{4h\phi}V^2} \] (3.1)

Where \(t_{OX} \) is the oxide thickness, \(\phi \) is the barrier height of the tunnel, \(A \) is the area of the MTJ, \(k \) is a parameter which depends on the barrier composition (must be determined empirically), and \(V \) is the applied voltage to the MTJ. In addition to Equation 3.1, the tunneling model also captures the dependence of the TMR ratio on applied voltage:

\[TMR(V) = \frac{TMR_0}{1 + (\frac{V}{V_H})^2} \] (3.2)

The critical current is calculated using the following equation:

\[J_C = J_{Ca0} \left[1 - \frac{k_B T}{K_U V} \ln(\tau/\tau_0) \right] \] (3.3)
Where J_{C0} is the nominal critical current. This equation allows for the calculation of switching currents for pulses longer than the nominal pulsewidth τ_0. This means the model is able to estimate switching times, but this is only for currents less than the nominal critical current J_{C0} and for pulsewidths greater than the nominal switching time τ_0; this model is unable to predict switching times for currents greater than J_{C0}.

3.1.2. Dynamic Models

Numerous dynamic models for MTJs have been proposed, but they have notably lacked rigor in their correlation to measured results. In [33], the authors propose to model the FL using the LLGS equation which is solved to determine the switching time of the magnetization vector of the FL. In this model, the tunneling resistance is set to either R_P (the parallel state resistance) or R_{AP} (the antiparallel state resistance). While this model proposes to predict the switching time of the MTJ for an arbitrary input stimulus, this model remains to be validated experimentally.

![Figure 3.1: Previously proposed dynamic model [33].](image)
provide a model which builds on their previously proposed static model [31]. The dynamic model implemented in this work is shown graphically in Figure 3.1. In the model, for applied currents less than the critical current, Equation 3.3 is used to predict if the applied current for a given duration in time is sufficient to switch the state of the cell. For a current applied for a given time duration, t_{pulse}, and whose magnitude, I_{pulse}, exceeds that of the critical current, the state of the cell is predicted to switch if $t_{pulse} \geq \tau_{switch}$, where τ_{switch} is given by:

$$
\tau_{switch}(I) = \frac{1}{\alpha \gamma M_S} \frac{I_{C0}}{I - I_{C0}} \ln \left(\frac{\pi}{2\theta_0} \right)
$$

While this model does overcome some of the weaknesses of the authors’ previous work (31), Equation 3.4 is restricted only to ideal constant pulses; this implies that this model cannot be used to predict the response of an MTJ to arbitrary input stimuli.

3.1.3. Summary of Previous Work

Table 3.1 summarizes some of the key features of previously proposed models. In the table, the details of how the MTJ tunneling resistance and magnetodynamics are modelled are compared. To accurately predict the tunnelling current of an MTJ under the influence of a stimulus, it is imperative to model both the bias-dependence of the tunnelling resistance as well as the dependence of MTJ resistance on the relative alignment between the FL and PL magnetization vectors (given by the angle, θ between the two vectors). In the table, we compare whether or not these key features are present in previous work; one point to note is that in the context of Table 3.1, “θ Dependence” indicates that a model is able to encapsulate the dependence of tunnelling resistance on arbitrary values of θ. This is to say that a previous work which models the resistance as either R_P or R_{AP} depending on the MTJ state (i.e. only models resistance dependence on θ for $\theta = 0$ and $\theta = \pi$) would not be classified as a model which encapsulates θ dependence.

For magnetodynamics modelling, the previous work is classified as either incorporating
the LLGS equation to model the motion of the FL magnetization vector or utilizing an equation (such as Equation 3.3 or Equation 3.4) to estimate switching time/current.

Table 3.1: Comparison of previous models

<table>
<thead>
<tr>
<th>Model</th>
<th>Resistance Model</th>
<th>Magnetodynamics Model</th>
<th>Correlated to Measurements?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias Dependence</td>
<td>θ Dependence</td>
<td>Switching Time Equation Based</td>
</tr>
<tr>
<td>[31]</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[33]</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[34]</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3.2. Proposed Model

3.2.1. Motivation

Currently, there is a lack of adequate circuit-level models which fully describe the behaviour of MTJs. An ideal model would need to be able to predict the response of MTJs to a wide range of stimuli for the sake of the design optimization of STT-MRAM at both cell and system level, as well as for the sake of functional verification of the cell under the influence of non-idealities - for instance, how is the write-time of a cell effected by \(V_{DD} \) noise? As described in the preceding section, there is a void between what is desired in terms of a model for MTJs and the models which exist currently. In this work, we present a model for MTJs which attempts to predict their transient behaviour to meet the aforementioned needs, and we correlate the results predicted by the model to measurement results.

3.2.2. Proposed Model Structure

The proposed model has two components: a tunnel model to describe the resistance of the MTJ as a function of the applied voltage and the relative orientation of the PL and FL magnetization vectors, and a magnetodynamics model to estimate the movement of
the FL magnetization vector caused by spin transfer torques. These are discussed in detail in the following sections. The model proposed in this work does not model any of the dependencies of MTJ switching or tunnelling resistance on temperature. However, this model can be extended to include temperature effects by relating the dependence of key model parameters, such as R_P, TMR_0, α, and β (these parameters will be discussed in the following sections), on temperature.

3.2.2.1. Tunnel Model

One common attribute of MTJs is the fact that while the tunneling resistance shows negligible dependence on applied voltage across the barrier when the MTJ is in parallel state (the resistance in this state is equal to R_P), the resistance of the MTJ when in antiparallel state (equal to R_{AP}) shows considerable variation over applied bias voltage. In modeling the tunneling resistances in this work, we assume that R_P is constant and does not vary with applied voltage, while TMR is a function of applied voltage. In doing so, we model not only the voltage dependence of R_{AP}, but also the variation of spin torque efficiency factors (which will be discussed in the following subsection) with applied voltage. A simple model for the variation of TMR over applied bias which has been previously proposed \[31\] \[35\] is:

$$TMR(V) = \frac{TMR_0}{1 + \left(\frac{V}{V_H}\right)^2}$$ \hspace{1cm} (3.5)

Where TMR_0 is the nominal TMR at zero applied bias, V_H is the voltage at which the TMR ratio drops to half the value of TMR_0, and V is the applied voltage across the barrier. The dependence of the tunneling resistance on the relative orientation of the magnetization vectors of the ferromagnetic layers on either side of the tunneling barrier is given by the Julliere model \[36\] :

$$R(\theta) = \frac{2R_P||R_{AP}}{1 + P_S^2\cos(\theta)}$$ \hspace{1cm} (3.6)
Where P_S is the tunneling polarization factor \[37\] and is equal to $[\frac{(R_{AP} - R_P)}{(R_{AP} + R_P)}]^{1/2}$ or equivalently,

$$P_S = \sqrt{\frac{TMR}{TMR + 2}}$$ \hspace{1cm} (3.7)

Note that as per the model for TMR (Equation 3.5), P_S is dependent on applied voltage.

We are now in a position to form an equation for $R(\theta, V)$ given Equations 3.5 and 3.6 and the fact that $R_{AP} = R_P[TMR(v) + 1]$, as per Equation 2.1:

$$R_{MTJ}(\theta, V) = \frac{2R_P(TMR_0 + 1 + \left(\frac{V}{V_{HP}}\right)^2)}{2(1 + \left(\frac{V}{V_{HP}}\right)^2) + TMR_0(1 + \cos(\theta))}, V \geq 0 \hspace{1cm} (3.8)$$

$$R_{MTJ}(\theta, V) = \frac{2R_P(TMR_0 + 1 + \left(\frac{V}{V_{HN}}\right)^2)}{2(1 + \left(\frac{V}{V_{HN}}\right)^2) + TMR_0(1 + \cos(\theta))}, V < 0 \hspace{1cm} (3.9)$$

3.2.2.2 Magnetodynamics Model

The magnetodynamics of the FL, and its interaction with spin transfer torque is modeled using the LLGS equation \[18\]:

$$\frac{d\tilde{m}}{dt} = -\frac{\gamma}{1 + \alpha^2}\tilde{m} \times \tilde{H}_{EFF} - \frac{\gamma\alpha}{1 + \alpha^2}\tilde{m} \times (\tilde{m} \times \tilde{H}_{EFF}) - \tilde{T}_{SPIN}$$ \hspace{1cm} (3.10)

Where γ is the gyromagnetic ratio (taken to be equal to $1.7608 \times 10^{11}s^{-1}T^{-1}$, as per \[38\]), α is Gilbert dampening parameter, M_S is the saturation magnetization of the layer, and \tilde{m} is a unit vector representing the magnetization of the FL. For this work, we assume the FL behaves as a single magnetic domain, and as such we use the macrospin approximation for the FL \[20\]. As described in Section 2.3.1 under this approximation \tilde{H}_{EFF}, the effective field in the layer, is principally comprised of \tilde{H}_{ANI} and \tilde{H}_D, the anisotropy and demagnetizing fields, respectively. Assuming a coordinate system where the easy axis of FL is along the z-axis, the y-z plane is the easy plane of the FL, and the
x-axis is the hard axis, simple models for H_{ANI} and H_{D} are [39]:

$$H_{\text{ANI}} = H_K \cos(\theta) \hat{z}$$ (3.11)

$$H_{\text{D}} = -M_S \sin(\theta) \cos(\phi) \hat{x}$$ (3.12)

Where H_K is the strength of the anisotropy field (induced either by shape or magnetocrystalline properties [39]), θ is the angle between the magnetization of the FL and the easy axis, ϕ is the azimuthal angle between the projection of the magnetization vector of the FL on the x-y plane and the x-axis, and \hat{x} and \hat{z} are unit vectors along the x and z axes respectively. It should be noted that the H_{EFF} for FLs of IPA devices is comprised of both H_{ANI} and H_{D}, while the H_{EFF} for FLs of PPA devices comprises only of H_{ANI} and thus H_{D} is excluded when modeling PPA devices. Finally T_{SPIN} is given by Equation 3.13:

$$T_{\text{SPIN}} = \frac{\gamma \eta(\theta)}{(1 + \alpha^2)2eM_SVol}i(t)\mathbf{m} \times (\mathbf{m} \times \mathbf{m}_{\text{PL}})$$ (3.13)

Where $i(t)$ is the current flowing from PL to FL, while the other parameters were discussed in Section 2.3.1. For our model, we encapsulated some of the material dependent parameters (η, M_S, Vol) and other physical constants with a single constant, β. The constants, α and β, are optimized to match model predicted switching results to experimental data. As such the simplified expression for T_{SPIN}, as coded in our model, is shown below in Equation 3.14:

$$T_{\text{SPIN}} = \frac{\gamma \beta}{1 + \alpha^2}i(t)\mathbf{m} \times (\mathbf{m} \times \mathbf{m}_{\text{PL}})$$ (3.14)
3.2.2.3. Verilog-A Description

The overall structure of the Verilog-A model is described in the flowchart shown in Figure 3.2. The model works by computing the change in the magnetization vector (by solving the LLGS equation) at each timestep, and then computing new values for θ (the azimuthal angle of the magnetization vector), and then the tunnel resistance, based on the tunnel model previously described. As shown, these three steps are repeated at each timestep until the completion of the simulation.

![Figure 3.2: Verilog-A model flowchart](image)

3.3. Device Characterization and Experimental Setup

One of the important goals of this study was to assess how closely our model matched experimental data. As such, we performed a set of experiments on a set of IPA MTJs fabricated in Fujitsu’s 130nm process, to first correlate our model to measured data, and then to validate the efficacy of our proposed model. Figure 3.3 shows the experimental setup used to characterize the MTJs in this study.

We used an Agilent ParBERT 81250 to generate the voltage waveforms which were applied to the MTJs. For the sake of our measurements, custom circuitry was required specifically to measure the impedance of the MTJs. This circuitry was fabricated on a
Chapter 3. MTJ Modeling

PCB, which is shown in Figure 3.4. The PCB contains a summing stage which sums the two outputs of the ParBERT, and this effectively applies the desired voltage waveform across the MTJ. The current through the MTJ is measured by connecting the negative terminal of the MTJ to what is effectively a Sawyer-Tower circuit [40]. The output of the Sawyer-Tower circuit is then taken to a scope, from which the current through the MTJ is determined.

As our model had two components - one relating to the tunneling resistance of the device and the other relating to the magnetodynamics of the device - we required two sets of experiments to obtain the necessary data. The test waveforms applied to the MTJs for these tests are shown in Figure 3.5.

In characterizing the tunnel model, we first apply a write pulse to set the state of the
MTJ by applying a positive pulse we can set the MTJ to be in the antiparallel state, while a negative pulse sets the MTJ in the parallel state. The amplitude of the pulse in this case is $+/- 500mV$, and this is applied for a duration T_{WRITE} of 20ns. Following the write operation, read pulses are applied to measure the current through the MTJ and thus measure the resistance of the MTJ. The read pulses are also of a duration of 20ns, but the read pulse amplitude is varied to characterize the voltage dependent resistance of the MTJ.

To characterize the magnetodynamics model, we initially use a write pulse to set the state of the MTJ. We then apply several test write cycles followed by read cycles, where the read pulses are maintained at a constant amplitude (75 mV), while the write pulse amplitude is increased cycle after cycle. This allows us to determine the critical switching voltage for a given write pulse width. By performing these experiments over a wide range of write pulse widths, we are able to characterize the critical switching voltage of the MTJ as a function of pulse width. This data is then used for our magnetodynamics model.
3.4. Measurement Data

Figure 3.6 shows the measured resistance-voltage hysteresis characteristic for the MTJs characterized in this study.

![MTJ Voltage vs Resistance Characteristic](image)

Figure 3.6: MTJ Resistance versus Voltage characteristic

As is typical of MTJs, in the AP-state, the resistance decreases as the magnitude of the applied voltage across the MTJ increases, and it should also be noted that there is some asymmetry of the resistance versus voltage characteristic about the origin. In P-state however, it can be seen that the overall trend is that the resistance shows very little variation over applied voltage.

Figure 3.7 shows the measured switching time versus applied voltage characteristic of the MTJs characterized in this study. As can be seen in the figure, at low applied voltages, the switching time varies linearly with applied voltage, while the switching time follows an approximately inverse characteristic at large applied voltages. This is an expected result; at low applied voltages (less than the critical switching voltage of the MTJ), the switching characteristic is dominated by thermal noise processes, while at high applied voltages, the characteristic is dominated by the spin torque transfer effect [41].
We can use a simplification of the LLGS equation to estimate the applied voltage versus switching time characteristic. We start with the LLGS equation, and then make the simplifying approximation that the azimuthal angle of the FL magnetization vector, θ, is not affected by the precession term in the LLGS equation; while this is an approximation for IPA devices, whose out-of-plane demagnetizing field causes fluctuations in θ as the magnetization vector precesses about the easy axis, this assumption is true for PPA devices, as PPA devices do not have an out-of-plane demagnetizing field. We can therefore use this approximation of the LLGS equation to form an equation which describes the time evolution of θ:

$$
\frac{d\theta}{dt} = k_1 \mathbf{m}_{FL} \times (\mathbf{m}_{FL} \times \mathbf{h}_{EFF}) - k_2 v_{MTJ} \mathbf{m}_{FL} \times (\mathbf{m}_{FL} \times \mathbf{m}_{PL})
$$

$$
= (k_1 - k_2 v_{MTJ}) \sin(\theta)
$$

(3.15)

where k_1 and k_2 are given by:

$$
k_1 = -\frac{\gamma \alpha H_{EFF}(\theta)}{M_S(1 + \alpha^2)}
$$

(3.16)

$$
k_2 = -\frac{\gamma \eta(\theta)}{2e M_S V}
$$

(3.17)
Using these simplifications, Equation 3.15 can be solved analytically to yield:

$$\theta(t) = 2\cot^{-1}\left[\cot\left(\frac{\theta(0)}{2}\right) e^{\exp\left[-k_1 + k_2 v_{MTJ} \frac{t^2}{2}\right]}\right]$$

(3.18)

It is now straightforward to find the relationship between switching time and applied voltage, v_{MTJ}. If we say the MTJ has switched states when $\theta = \theta_{\text{switch}}$, where typically $\theta_{\text{switch}} = \pi/2 + \epsilon$, we can solve Equation 3.18 for the time, t_{switch}, at which point the MTJ switches states:

$$t_{\text{switch}} = \sqrt{-\frac{2\ln\left(\frac{\cot\left(\frac{\theta_{\text{switch}}}{2}\right)}{\cot\left(\frac{\theta(0)}{2}\right)}\right)}{k_2 v_{MTJ} - k_2}}$$

(3.19)

Equation 3.18 reveals that $t_{\text{switch}} \propto 1/\sqrt{v_{MTJ}}$, which agrees with the trend shown by experimental results for large applied voltages.

3.5. Model Correlation

In this section, we describe the process of correlating our tunnel and magnetodynamics models to measured results, and compare our model to measured results.

3.5.1. Tunnel Model Correlation

In correlating our tunnel model to measured data, we optimized the parameters in Equation 3.9 in a bid to minimize the sum of the squared error between our model and measured results. It should be noted that we set R_P as the average of the measured P-state resistances. The parameters for our tunnel model are presented in Table 3.2 while Figure 3.8 compares the tunnel model to measured results.

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HP}</td>
<td>144.38 mV</td>
</tr>
<tr>
<td>V_{HN}</td>
<td>320.95 mV</td>
</tr>
<tr>
<td>R_P</td>
<td>673.35 Ω</td>
</tr>
<tr>
<td>TMR_{R_0}</td>
<td>0.836</td>
</tr>
</tbody>
</table>
3.5.2. Magnetodynamics Model Correlation

In correlating our magnetodynamics model, we used our model to predict the switching time versus applied voltage characteristic, and then optimized coefficients in the LLGS equation to match measured results. We biased our optimization to match the data corresponding to switching at high applied biases (shorter switching times). This is because at lower applied biases (i.e. at larger switching times), thermal agitation effects play an important part in switching [41]. At high-applied biases, precessional-switching (i.e. the switching causes by the spin torque transfer effect) dominates, and so since our model does not account for the effects of thermal agitation, it is only in this regime where we expect our model to offer valid results. There were effectively two parameters in the LLGS equation which needed to be optimized: the Gilbert damping parameter, α, and the coefficient of the torque term, β (in Equation 3.14). The values of these parameters after optimization are shown in Table 3.3.

Figure 3.9 compares the predicted switching time versus applied voltage characteristic versus measurement results.
Table 3.3: Parameters for tunnel model

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.02</td>
</tr>
<tr>
<td>β</td>
<td>7.3×10^9</td>
</tr>
</tbody>
</table>

![Graph showing Switching Time versus Applied Voltage](image)

Figure 3.9: Comparison of model to measured Switching Time versus Applied Voltage

3.6. Model Validation

One of the main goals for our model was to accurately predict the transient behaviour of MTJs. While we were able to correlate the applied voltage versus switching characteristics of our models to measurement results, we devised an additional experiment to validate the accuracy of our model in predicting transient response. In this experiment, we applied pulses of the form shown in Figure 3.10.

As shown in this figure, a pulse of duration T_{PULSE} and amplitude V_{PULSE} is applied, followed by a duration of T_{BREAK} where the applied voltage across the MTJ is zero, followed again by a pulse of duration T_{PULSE} and amplitude V_{PULSE}. This experiment tests the relaxation time of the MTJs, which is the time taken for an MTJ which is disturbed by some stimulus to return to a stable state. If T_{BREAK} is much shorter than the relaxation time of the MTJ, the MTJ may still switch even if V_{PULSE} is smaller than the minimum voltage needed to switch the MTJ for a lone pulse of duration T_{PULSE}.
Unfortunately however, due to limited access to MTJs, and a degraded reliability of these MTJs (due to suspected oxidation of the passivation layer), we were unable to perform a large number of these experiments as we observed breakdown of MTJs within a few cycles for large (> 500 mV) applied biases. Given that we could not perform all of these measurements on a single MTJ, these experiments were spread over multiple dies. What we present in Table 3.4 are the measurement results obtained in this way and the results predicted by our model (note that the measurement results were rounded up to the nearest 10 mV). Here we compare the measured minimum switching voltage, V_{meas}, obtained for a set of different values for T_{PULSE} and T_{BREAK}, and accordingly compare to the minimum predicted switching voltage for our model, V_{mod}. As can be seen, the overall

<table>
<thead>
<tr>
<th>T_{PULSE}</th>
<th>T_{BREAK}</th>
<th>V_{meas}</th>
<th>V_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ns</td>
<td>1 ns</td>
<td>530 mV</td>
<td>584 mV</td>
</tr>
<tr>
<td>3 ns</td>
<td>1.5 ns</td>
<td>530 mV</td>
<td>596 mV</td>
</tr>
<tr>
<td>4 ns</td>
<td>1 ns</td>
<td>450 mV</td>
<td>533 mV</td>
</tr>
<tr>
<td>4 ns</td>
<td>1.5 ns</td>
<td>480 mV</td>
<td>543 mV</td>
</tr>
<tr>
<td>4.5 ns</td>
<td>1 ns</td>
<td>420 mV</td>
<td>523 mV</td>
</tr>
<tr>
<td>4.5 ns</td>
<td>1.5 ns</td>
<td>460 mV</td>
<td>530 mV</td>
</tr>
</tbody>
</table>

Figure 3.10: Pulses used to validate accuracy of transient response in proposed model
results are somewhat larger than those measured. Given the model parameters were optimized for MTJs on a separate die from those measured, it is hard to draw too many conclusions at this point. Future measurement opportunities will need to be pursued to complete the validation of the proposed model.

3.7. Summary

In this chapter, we presented an overview of previously proposed models for MTJs. We proposed a model which we believe will overcome the shortcomings of previous work. We then described an experimental study where MTJs were characterized, and the measured dynamic behaviour of MTJs was compared to that predicted by our proposed model in order to validate its efficacy.
This chapter presents a proposal for a novel MTJ and the associated memory cell, which offers a guarantee of read-disturbance immunity. As mentioned in Chapter 2, Section 2.4.5.3, the problem of read disturbance is the source of the fundamental tradeoffs between read and write performance in STT-MRAM. Techniques to mitigate read disturbance are necessary to ensure error-free operation of STT-MRAM chips, and in addition, may help in breaking the tradeoff between read and write performance, thereby potentially leading to overall improved performance of an STT-MRAM chip. In the following, we begin with a brief overview of prior MTJ structures and cell architectures that have been proposed to address the problems of read disturbance in STT-MRAM. We then present the proposed MTJ structure, cell architecture, and the read and write schemes for the proposed cell, while also discussing device and transistor level optimization of the proposed cell. Finally, we present a simulation study comparing the proposed cell with conventional cells.

4.1. Previous Work

4.1.1. Circuit Level Solutions

Circuit level approaches to solving the problem of read disturbance revolve around limiting the current applied to the cell during a read operation. Using Equation 2.33 and given a target read disturb rate, the maximum current that can be applied to the cell
during a read operation to meet that targeted read disturb rate can be determined. For example, for a targeted read disturb rate of 10^{-15}, and given that t_P is approximately 10% of the nominal switching time τ_0, the read current must be limited to 45% of the critical current I_{C0}.

In [25] the authors propose a multi-V_{DD} word line driver, as shown in Figure 4.1, which minimizes read disturbance without compromising write performance. The advantage of this approach is that the word line voltage can be used to control the current through the cell; for a read operation, the word line voltage is set to a low voltage which reduces the current through the MTJ, thus minimizing read disturbance rate, while for a write operation, the word line voltage is set to a high voltage.

In [42], the authors propose a novel 2 Transistor, 1 Magnetic Tunneling Junction (2T1MTJ) STT-MRAM cell, as shown in Figure 4.2. Again, the strategy employed in this cell is to limit the current through the MTJ during a read operation, while maximizing the current through the MTJ during a write operation. The cell is operated as follows. During a write operation, Read-Wordline and Write-Wordline are both raised to V_{DD}; this turns both Read-NMOS and Write-NMOS on, and the total current supplied by the parallel combination of these two transistors is used to switch the state of the MTJ. During a read operation on the other hand, Read-Wordline is raised to V_{DD} while Write-
Figure 4.2: Previously proposed 2T1MTJ cell. Figure taken from [42].

Wordline is held low; this ensures that only *Read-NMOS* is activated during a read operation, thus limiting the total amount of current applied to the MTJ, and as such reducing the probability of read disturbance. This approach therefore is able to limit the current driven through the MTJ during a read operation without having to rely on additional circuitry to control the word-line voltage, as is the case in [25].

The existing circuit level solutions, such as the two examples highlighted above, only attempt to mitigate the possibility of read disturbance during a read operation; these techniques specifically restrict the current through a cell during a read operation, and so such an approach inevitably leads to degraded read performance. These techniques make no effort to improve read performance while maintaining disturbance-free read operation. Furthermore, techniques to tackle the problem of read disturbance at the circuit level are still bound by choices of device parameters, which are themselves selected as a compromise between read and write performance (this will be explained in the following section and in greater detail in Section 4.2.4). As such, existing circuit level techniques to deal with read disturbance are presently limited in their scope.

4.1.2. Device Level Solutions

While circuit level solutions have centered on separating read and write operations at the circuit level, recently novel devices have been proposed which separate read and write
operations at the device level [43] [44]; by separating these operations, device parameters can be independently optimized for read and write access. The device proposed in [44] is shown in Figure 4.3.

![Figure 4.3: Previously proposed 3-terminal device. Figure taken from [44].](image)

As shown in the figure, the device has two PinnedLayer\textsubscript{1}, PinnedLayer\textsubscript{1} and PinnedLayer\textsubscript{2} and one FL: Oxide\textsubscript{1} and Oxide\textsubscript{2} are the names of the oxide barriers between PinnedLayer\textsubscript{1} and the FL and PinnedLayer\textsubscript{2} and the FL respectively. Note that as indicated in the figure, the FL-Oxide\textsubscript{1}-PinnedLayer\textsubscript{1} combination is used for write operations, while the FL-Oxide\textsubscript{2}-PinnedLayer\textsubscript{2} combination is used for read operations; as such the device effectively has separate read and write ports, with Port 2 being used for write operations, Port 3 being used for read operations, and Port 1 acting as a common port for both operations. The implication of separating the read and write operations at the device level is that now, the different tunnel barriers which connect the read and write ports to the FL namely Oxide\textsubscript{2} and Oxide\textsubscript{1} respectively, can be independently optimized. By choosing an oxide thickness for the Oxide\textsubscript{1} which is thinner than a conventional MTJ, the switching speed of the proposed device can be enhanced, as a thinner oxide results in reduced resistance between the FL and the write port, thus allowing for the access transistor to supply more current to the cell during a write operation. On the other hand, Oxide\textsubscript{2} can be made to be thicker than that of a conventional MTJ with similar
device parameters. Note that a thick oxide allows for larger RSM since:

\[
RSM = I_{READ} \frac{(R_{AP} - R_P)}{2} = I_{READ}R_P \frac{(TMR)}{2}
\]

(4.1)

Where R_P is the parallel state resistance of an MTJ, R_{AP} is the antiparallel state resistance, and I_{READ} is the read sense current. Since a thicker oxide results in an increase in R_P, it also results in a larger RSM for a given read sense current; this allows for the current during a read operation to be smaller than that of a conventional MTJ for a given targeted RSM (and thus without sacrificing performance). As previously described, reducing the current during a read operation inevitably results in further reduction in read disturb rate.

4.2. Proposed Cell

4.2.1. Device and Cell Structure

The structure of the proposed device is shown in Figures 4.4(a) and 4.4(b) which illustrate the IPA and PPA versions of the device, respectively. As shown in the figure, the MTJ is comprised of two PLs: Top Pinned Layer (TPL) and Bottom Pinned Layer (BPL). These layers are stacked vertically above and below the FL, respectively, with a tunneling barrier in between each PL and the shared FL. This device is envisioned to make use of the same processing steps described in [43,44] to allow for the fabrication of the metallic contact attached to the FL. The fixed magnetizations of the two PLs are antiparallel to one another. In contrast to the device presented in [30], this device also requires metal contacts to all three ferromagnetic layers. Note that when the FL magnetization is parallel to TPL, the resistance between TPL and FL is low, while the resistance between BPL and FL is high. The opposite is true when the FL magnetization is parallel to BPL.
In this work, we assign a state of logical “1” when the FL magnetization is parallel to TPL, and a state of logical “0” when the FL magnetization is parallel to BPL. Circuit level symbols for the IPA and PPA devices are shown in Figures 4.5(a) and 4.5(b), respectively.

Figure 4.4: Structure of proposed device

Figure 4.5: Circuit symbols for proposed device

Figure 4.6 shows the proposed cell. The cell consists of two transistors, M_1 and M_2, which are connected to the TPL and BPL of the proposed device, respectively. Note that the FL of the proposed device is connected to the SL, and the two transistors are connected to the same word line. Finally, Figure 4.7 shows the top level organization of a hypothetical memory chip comprising of the proposed cells.

4.2.2. Cell Write Operation

The proposed cell’s write operation is illustrated in Figures 4.8(a) and 4.8(b). During a write operation, current is passed from the FL to either TPL or BPL, as is shown in
Figures 4.8(a) and 4.8(b), this write operation allows us to *always* perform a parallelizing write operation in switching the state of the cell. By selecting which path to carry current during a write operation, the FL magnetization is switched to be parallel to either TPL or BPL.

Since a parallelizing write operation requires less current than an antiparallelizing write operation \[18\], this scheme will allow for reduced critical current on average. This statement may be quantified by examining the *spin torque efficiency gain*, \(G_\eta \), which we define here as being the ratio between the *spin torque transfer efficiency factor*, \(\eta \), for a antiparallel to parallel write operation, over the spin torque efficiency factor for an parallel to antiparallel write operation. The spin torque efficiency gain is therefore:

\[
G_\eta = \frac{\eta_{AP \rightarrow P}}{\eta_{P \rightarrow AP}} = \frac{P_S}{1 - P_S} = \frac{1 + P_S^2}{1 - P_S^2} \tag{4.2}
\]

Since \(0 < P_S \leq 1 \), \(G_\eta \geq 1 \), implying that the worst case current required to switch the magnetization vector in the proposed device is always less than that of a conventional MTJ. For a typical MTJ with a \(TMR \approx 150\% \), \(P_S \approx 0.65 \), and so \(G_\eta \approx 2.46 \); this implies a reduction in worst-case critical current over a conventional MTJ of almost
60%. Timing diagrams for a “Write-0” and a “Write-1” operation are shown in Figures 4.9(a) and 4.9(b) respectively. During a “Write-0” operation, since current must pass from FL to BPL, SL is raised to VDD while BL2 is grounded; note that since M1 and M2 share the same wordline, BL1 must be raised to VDD also to prevent current passing from FL to TPL as this would cause a current induced spin transfer torque which opposes the torque resulting from the current which passes from FL to BPL. Due to the symmetry of the cell, a “Write-1” operation is similar, except now BL1 is grounded while BL2 is raised to VDD. Also note that for both cases, the WL signal is intentionally delayed until after the SL, BL1, and BL2 signals, have settled, as this prevents the case where a current from the FL flows to the wrong PL during the write operation. We believe that in an actually implemented memory chip using the proposed cells, this delay does not represent any additional timing overhead, since the WL signal is naturally delayed with respect to other signals due to delays incurred during wordline decoding.
4.2.3. Cell Read Operation

During a read operation, both M_1 and M_2 are turned on, FL is connected to GND (through SL), and a sense amplifier is used to compare the TPL-to-FL resistance to the BPL-to-FL resistance. In this way, the cell behaves much like a differential memory element. Figure 4.8 shows a current-based read operation for the proposed cell. Here (in steady state) identical currents are applied from TPL to FL and from BPL to FL. By comparing the resulting voltages at TPL and BPL (or the drains of M_1 and M_2), the resistance difference between the two paths can be detected, and thus the state of the
FL magnetization can be inferred.

Timing diagrams for a read operation are shown in Figures 4.11(a) and 4.11(b). As shown in the timing diagram, the BL voltages are precharged to V_{DD}; when the WL is raised to V_{DD}, the nodes BL_1 and BL_2 are discharged through the the TPL-to-FL and BPL-to-FL paths, respectively - the different resistances of these two paths also give rise to different time constants for these nodes. The steady state voltages of these two nodes are given by the product of the current source magnitude, I_{READ}, and the different path resistances between BL_1 and GND and BL_2 and GND. As such we see that in steady state, when a logical “0” is stored in the cell, the steady state voltage of BL_1 is larger than BL_2, and when a logical “1” is stored in the cell, the steady state voltage of BL_2 is larger than BL_1. Also note that as shown in the timing diagrams, due to the fact that the time constants for the nodes BL_1 and BL_2 are different, the transient current waveforms for I_{TPL}, the current flowing from TPL to FL, are different from the current waveforms for I_{BPL}, the current flowing from BPL to FL. However in steady state, during a read
Figure 4.10: Proposed read scheme

(a) Timing diagram for a “Read-0” operation
(b) Timing diagram for a “Read-1” operation

Figure 4.11: Timing diagrams for read operations for proposed cell
There are two key advantages to the proposed read scheme presented here. First, since the read scheme is differential in nature, it inherently provides a two-fold improvement in sense margin as compared to a conventional 1T1MTJ given the same read current and the same ratio between R_P and R_{AP}. Second, the cell has the advantages of an improvement to process variation and guaranteed immunity to read disturbance. We show these benefits in the next two subsections.

4.2.3.1. Increased Tolerance to Process Variation

In a conventional 1T1MTJ based STT-MRAM, when a voltage/current stimulus is applied to the cell to measure the cell’s resistance, the resulting current/voltage which is sensed is compared to that of a reference cell, which is typically not in close proximity to the cell being read. As a result of inherent process variation, there could be a degradation in read sense margin. In cases of excessive process variation, the cell may be incorrectly read. A simple analysis may be used to illustrate this point; first we consider the worst-case RSM for a conventional 1T1MTJ cell, which was shown in Section 2.4.5 to be equal to:

$$RSM_{CONV} = I_{READ} \frac{R_{AP} - R_P}{2} = I_{READ} \frac{TMR}{2} \quad (4.3)$$

Equation 4.3 shows the RSM when there is no variation in the MTJ resistances between the cell being read and the reference cell. In general however, within-die variation will effect the RSM and in the following we attempt to quantify this effect. Below, we denote the random offset to the MTJ resistances of the cell being read as r_{CELL}, while r_{REF} is the random offset to the resistance of the MTJ comprising the reference cell. The RSM
for a conventional cell under the effects of variation in MTJ resistance is then given by:

\[RSM_{CONV} = RSM_{CONV0} - I_{READ} |r_{CELL} - r_{REF}| \] (4.4)

If we denote \(RSM_{DIFF0} \) to be the nominal read sense margin for a differential cell under zero variation, and \(r_{CELL1} \) and \(r_{CELL2} \) to be the random offsets to the tunnel resistance of the two tunnel junctions comprising the differential cell, we can write:

\[RSM_{DIFF} = RSM_{DIFF0} + I_{READ} |r_{CELL1} - r_{CELL2}| \] (4.5)

If we assume that the variation in tunnel resistance is spatially correlated, then in the worst case for the conventional cell, \(r_{CELL} \) and \(r_{REF} \) are uncorrelated - this would correspond to the case when the reference cell and the cell being read are distant from one another. For the differential cell however, \(r_{CELL1} \approx r_{CELL2} \), since the two tunnel junctions comprising the cell are in close proximity to one another. As such, Equation 4.4 in the worst case, reduces to:

\[RSM_{CONV} = RSM_{CONV0} - I_{READ} (|r_{CELL}| + |R_{REF}|) \] (4.6)

While Equation 4.5 reduces to:

\[RSM_{DIFF} = RSM_{DIFF0} \] (4.7)

As such, under the assumption that variation in tunneling resistance is spatially correlated, the read operation for the proposed cell is expected to show immunity to variation - owing to the fact that the proposed cell is differential in its structure and is self-referenced
- while in the worst case, the conventional cell is expected to have degraded RSM as a result of variation between the tunneling resistances of the cell being read and the reference cell.

4.2.3.2. Read-Disturbance Immunity

The advantages of improved RSM and greater tolerance to process variation are inherent to the fact that the cell is differential in nature. Indeed, a differential 2 Transistors, 2 Magnetic Tunneling Junctions (2T2MTJ) cell, which effectively comprises two 1T1MTJ cells which store complimentary data, would have the same advantages listed above. However, perhaps the most significant advantage of the proposed cell which would not be offered in a 2T2MTJ cell is the possibility of absolute immunity to read disturbance, regardless of applied read sense current. To show this immunity, let us consider the net torque acting on the FL during a read operation. If we consider the current waveforms during a read operation for I_{TPL} and I_{BPL}, as depicted in Figure 4.12, we observe that we may divide the waveforms generally into two phases: the transient phase, where I_{TPL} and I_{BPL} are both increasing with time and $I_{TPL} \neq I_{BPL}$, and the steady state phase, where I_{TPL} and I_{BPL} have reached (or for all practical purposes are near) their steady state values, and $I_{TPL} = I_{BPL} = I_{READ}$. Thus, for our analysis, we begin by considering the net torque acting on the FL during the transient phase of the read operation where I_{TPL} and I_{BPL} are not equal, and then we consider the net torque acting on the FL in the steady state phase during a read operation. Figure 4.13 shows the transient voltages and currents of relevant nodes and branches during a read operation for a cell storing a logical “1”, i.e. the TPL magnetization vector is parallel to the FL magnetization vector. In the figure, V_{INT1} is the voltage between TPL and FL, V_{INT2} is the voltage between BPL and FL, V_1 is the voltage of BL_1, V_2 is the voltage of BL_2, I_1 is the current through M_1, I_2 is the current through M_2, and as before, I_{TPL} is the current from TPL to FL while I_{BPL} is the current from BPL to FL. During the transient phase of a read operation, given that the initial precharge voltages of BL_1 and BL_2 (i.e. $V_1(0)$ and $V_2(0)$) are equal,
it can be shown that $V_2(t) \geq V_1(t)$ for $t > 0$. It can further be shown that this implies that $V_{INT2}(t) \geq V_{INT1}(t)$. Intuitively, this is true because the path resistance from BL_2 to SL is larger than the resistance from BL_1 to SL, because the cell is storing a logical “1” and the BPL-to-FL resistance is larger than the TPL-to-FL resistance. We are now in a position to comment on the net torque on the FL during the transient phase of a read operation. We recall from Section 2.3 that the torque acting on a magnetic body subjected to a current induced spin transfer torque is given by:

$$\frac{d\tau_{||}}{dV} = \frac{\hbar}{4e} \frac{2P_S}{1 + P_S^2} \sin(\theta)G_P$$ \hspace{1cm} (4.8)$$

Where $\tau_{||}$ is the component of the torque acting on the magnetic body which is in the same plane as the magnetization vectors of the magnetic body and STT source, P_S is the TSP, G_P is the conductance of the parallel state MTJ, θ is the angle between the magnetization vector of the magnetic body and the source of the spin transfer torque, while V is the voltage applied across the FL and PL of an MTJ. Equation 4.8 indicates that the torque applied by a layer is a monotonically increasing function of applied voltage; this is supported by experimental results which show the dependence of spin transfer torque on voltage [45, 46], as well as measurements of the hysteresis characteristics of MTJs.
which show that \(P \rightarrow AP \) and \(AP \rightarrow P \) switching occur at approximately the same applied voltage \([24, 47, 48]\). Therefore, since the applied voltage across the BPL to FL path, \(V_{INT2} \) is larger than the voltage across the TPL to FL path, \(V_{INT1} \), the net torque on the FL must be in the same direction as the torque transferred by the BPL. Because of the polarity of the currents applied to the FL, this torque must act in a direction which is antiparallel to the BPL magnetization vector, which in turn would mean that the torque acts to refresh the data in the cell. It follows that because of the symmetry of the proposed cell, if a “0” was initially stored in the cell, the torque acting on the FL from the TPL would be larger than the BPL, thus acting to “refresh” the existing data in the cell.

After the currents \(I_{TPL} \) and \(I_{BPL} \) have settled to their steady state values (both equal to \(I_{READ} \)), the net torque acting on the FL continues to serve to refresh the existing data in the cell in the steady state phase of a read operation. In fact, in the steady state phase
we can find a simple closed form expression for the net torque acting on the FL. First, we rewrite Equation 4.8 in terms of the applied current between the magnetic layers of an MTJ. Using the Julliere model [36], and under the assumption that the parallel state conductance is approximately constant with applied bias (as is consistent with experimental results [1]), Equation 4.8 can be rearranged to give a torque term which is only a function of the reduced magnetization vectors of the magnetic body, \(\tilde{m}_B \), and the STT source, \(\tilde{m}_S \), as well as the applied current, \(I_B \), which flows from the magnetic body to the spin torque transfer source, to yield the following equation:

\[
\tau_{||} = \frac{\hbar}{4e} \eta(\theta) I_B [\tilde{m}_B \times (\tilde{m}_B \times \tilde{m}_S)]
\]

(4.9)

Where \(\eta(\theta) \) is equal to \(P_S/(1+P_S^2\cos(\theta)) \). Now, given Equation 4.9, we can determine the net torque acting on the FL during the steady state phase of a read operation, given that the net torque acting on the FL is simply the sum of the individual torques contributed by the TPL and BPL:

\[
\tau_{\text{total}} = \tau_{\text{TPL TO FL}} + \tau_{\text{BPL TO FL}}
\]

\[
= -\frac{\hbar}{4e} \eta(\theta_1) I_{\text{TPL}} [\tilde{m}_{\text{FL}} \times (\tilde{m}_{\text{FL}} \times \tilde{m}_{\text{TPL}})]
\]

\[
-\frac{\hbar}{4e} \eta(\theta_2) I_{\text{BPL}} [\tilde{m}_{\text{FL}} \times (\tilde{m}_{\text{FL}} \times \tilde{m}_{\text{BPL}})]
\]

\[
= \frac{\hbar}{4e} [\eta(\pi - \theta_1) - \eta(\theta_1)] I_{\text{READ}} [\tilde{m}_{\text{FL}} \times (\tilde{m}_{\text{FL}} \times \tilde{m}_{\text{TPL}})]
\]

(4.10)

In the above \(\theta_1 \) represents the angle between the magnetization vectors of TPL and FL and \(\theta_2 \) represent the angle between the magnetization vectors of BPL and FL. Note that the following relations were used in reaching Equation 4.10: \(\tilde{m}_{\text{BPL}} = -\tilde{m}_{\text{TPL}}, \theta_2 = \pi - \theta_1 \), and \(I_{\text{TPL}} = I_{\text{BPL}} = I_{\text{READ}} \).

For our analysis, we must consider the net effective torque on the FL for both states of the FL. First we consider when the FL magnetization is parallel to the TPL mag-
netization, $\theta_1 \approx 0$. Given that the $\eta(\theta)$ is an increasing function of θ (over the range $0 \leq \theta \leq \pi$), clearly $\eta(\pi - \theta_1) - \eta(\theta_1)$ must be greater than zero. As such, it becomes evident that the net torque acting on the FL during read, τ_{TOTAL}, must be in a direction which pulls the FL magnetization towards TPL. Next, we consider when the FL magnetization is parallel to the BPL magnetization, $\theta_1 \approx \pi$. Now, $\eta(\pi - \theta_1) - \eta(\theta_1)$ must be less than zero. As such, the net torque acting on the FL is in the direction of $-m_{\text{TPL}}$, or equivalently, in the direction of m_{BPL}; thus the net torque would pull the FL magnetization towards BPL. Therefore, as was the case in the transient phase of the read operation, in the steady state phase of the read operation the net torque acting on the FL will always be in a direction which reinforces the data stored in the cell, and so the proposed read operation for this cell offers guaranteed immunity to read disturbance.

4.2.4. Device Parameter Optimization

In conventional [TIMITJ] cells, due to problems of read disturbance, there is an inherent trade off between read stability, read performance, and the critical write current. To ensure read stability, the read current is restricted to be less than the critical write current. The trade off here is that high speed read access which is still stable requires large sense currents, which in turn necessitates a large critical current; on the other hand, high speed access for a given constrained write current and/or low power write access is achieved through a low critical write current. With the proposed cell offering guaranteed immunity to read disturbance, there is no trade off between the read access and write access currents. Indeed, the read access current can even exceed the cell’s critical current. We are therefore in a position to optimize certain device parameters, namely the oxide thickness and the strength of the anisotropy field.

4.2.4.1. Oxide Thickness Optimization

The oxide thickness plays a crucial role in the read/write trade off for an MTJ, as the oxide thickness sets the parallel and antiparallel state resistances of the MTJ, in addition
to the TMR value. A thicker oxide results in not only a larger MTJ resistance, but also for a range of oxide thicknesses, a larger TMR [49] [50]. Recall from Equation 4.3 that RSM is proportional to both the tunneling resistance and TMR values; therefore, for conventional cells, a larger oxide thickness is favoured, as this allows for high speed read access. On the other hand, the increased resistance resulting from a thicker oxide results in difficulty during a write operation. For a given critical current, the increased resistance resulting from a thicker oxide causes the potential difference between the two terminals of the MTJ to increase during a write operation, thereby potentially necessitating a larger access transistor and/or a higher supply voltage. Since the proposed cell offers disturb free read operation for any applied read sense current, the degradation to sense margin by using a thinner oxide may be offset by using larger read sense currents. This allows us to optimize the oxide thickness for write access, and we compensate the detrimental effects to the RSM by using a larger read sense current during a read operation. We highlight the choice of oxide thicknesses for the devices considered in this study in Section 4.3.2.

4.2.4.2. Magnetization Parameter Optimization

The thermal stability factor of a cell governs the data retention capabilities of the cell in both salient operation as well as during a read operation. As explained in Section 2.4.5.3 even for currents smaller than the critical current, it is possible during a read operation that the cell’s contents will be disturbed. The probability of cell flip for a current less than the critical current is given by Equation 2.33. To ensure a low read disturb rate (on the order of 10^{-15}), \(\Delta = (K_U V)/(k_B T) \) is set to be greater than 55 [30], where \(K_U = M_S H_K / 2 \). However, for our proposed device, we are able to reduce \(\Delta \) since read disturbance is no longer a concern. The only constraint on \(\Delta \) which remains is the 10 year data retention requirement [30]; using Equation 2.33, \(\Delta \) of 43 results in a probability of greater than 99% that the data will be retained in a cell after 10 years. A smaller value for \(\Delta \) results in a decrease in the cell’s critical current; this is intuitively obvious because a large value for \(\Delta \) indicates a large magnetostatic potential energy, as
such, a larger torque must be applied to switch the state of the cell. We can estimate the potential reduction in critical current that can be brought about by a reduction in the value of \(\Delta \) by a common approximation for critical current for [IPA] devices [22]:

\[
I_{C0} = \frac{2e\alpha M_S V (H_K + 2\pi M_S)}{\hbar \eta}
\]

(4.11)

and for [PPA] devices [23]:

\[
I_{C0} = \frac{2e\alpha M_S V H_K}{\hbar \eta}
\]

(4.12)

Reducing the value of \(\Delta \) for a fixed volume entails either reducing \(H_K \) or \(M_S \). Since Equation 4.11 shows an approximate linear relationship between critical current and \(M_S \), we would estimate that reducing \(M_S \) by 22\% (from a value of 55 to a value of 43) would result in a corresponding 22\% reduction in critical current. However, much of the materials optimization of conventional MTJs has targeted a reduction in \(M_S \) already, and therefore it may be difficult to further reduce this value. Therefore, it is more probable that a reduction in \(\Delta \) will be achieved through a reduction in \(H_K \). For [IPA] devices, since \(I_{C0} \) is linearly related to \(H_K \), a 22\% reduction in \(H_K \) would result in a 22\% reduction in \(I_{C0} \), however for [PPA] devices, this is not the case, since \(I_{C0} \) is a linear function of \((H_K + 2\pi M_S)\) and not just \(H_K \). For large device volumes the term \((H_K + 2\pi M_S)\) is dominated by the \(2\pi M_S\) term, and so reductions in \(H_K \) have negligible impact to \(I_{C0} \). However, since \(H_K \) increases for small device volumes (to maintain a given targeted value for \(\Delta \)), the gains in current reduction for [IPA] devices from reduction in \(H_K \) become more prominent. Estimated reductions in \(I_{C0} \) for various [F1] volumes are shown in Table 4.1.

4.3. Comparative Study

In order to assess the merits of the proposed cell, we performed a simulation study to compare the proposed cell against a conventional [T1T1MTJ] cell and against a [2T2MTJ] cell. The circuit diagram for the [2T2MTJ] cell is shown in 4.14. The MTJs in both
<table>
<thead>
<tr>
<th>FL Dimensions (nm×nm×nm)</th>
<th>Conv. H_K (Oe)</th>
<th>Prop. H_K (Oe)</th>
<th>IPA I_{C0} Reduction</th>
<th>PPA I_{C0} Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>90×90×1</td>
<td>535</td>
<td>419</td>
<td>1.6%</td>
<td>21.8%</td>
</tr>
<tr>
<td>65×65×1</td>
<td>1027</td>
<td>803</td>
<td>2.9%</td>
<td>21.8%</td>
</tr>
<tr>
<td>45×45×1</td>
<td>2142</td>
<td>1674</td>
<td>5.3%</td>
<td>21.8%</td>
</tr>
<tr>
<td>32×32×1</td>
<td>4235</td>
<td>3311</td>
<td>8.5%</td>
<td>21.8%</td>
</tr>
<tr>
<td>22×22×1</td>
<td>8961</td>
<td>7006</td>
<td>12.6%</td>
<td>21.8%</td>
</tr>
<tr>
<td>16×16×1</td>
<td>16942</td>
<td>13246</td>
<td>15.7%</td>
<td>21.8%</td>
</tr>
</tbody>
</table>

Table 4.1: Estimated I_{C0} reduction through minimization of H_K

The 1T1MTJ and 2T2MTJ cells are modeled as top-pinned devices [51]. The simulation study made use of STM’s 65nm process kit. In the following sections, we describe the details of the simulations study: how the devices in each of our cells were modelled, what simulation parameters were used, how the devices were all individually optimized, and finally present results of the simulation study.

![2T2MTJ Cell](image)

Figure 4.14: 2T2MTJ Cell

4.3.1. Device Modeling

For the present study, models for the conventional and proposed devices were developed and written in Verilog-A. This has allowed for the co-simulation of MTJs with transistors, thus allowing transient analysis at both device and transistor level. For the devices studied in this work, the device models can be divided into two components; one component models the tunnel conductance as a function of various device parameters and the relative orientation of the FL and PL magnetization vectors, while the second component models the magnetodynamics of the magnetic layers. The details of the general modeling
approaches are discussed below.

4.3.1.1. Tunnel Model

As discussed in the previous chapter, we used Equation 3.9 to model the MTJ resistance as a function of θ - the relative angle between the magnetization vector of two adjacent layers - and the applied bias, V. However, in addition to modelling the θ and bias voltage dependence on the MTJ resistance, for the purpose of device optimization it is also imperative to model the effect of the oxide barrier thickness on tunneling resistance and TMR. The tunnel resistance is a function of the dimensions of the oxide barrier - namely the area of the barrier and the thickness of the barrier. The tunnel resistance is inversely proportional to the cross sectional area of the barrier (as is typically the case for most resistive materials), and is an exponential function of oxide thickness, as confirmed by several experiments discussed in the literature comparing MTJ resistance to the dimensions of the oxide barrier [49] [50]. The exponential relationship between tunneling oxide thickness and tunneling resistance was also theoretically predicted by the Brinkmann model [32], which provides an estimate of the tunneling resistance based on the material parameters of the tunneling barrier. However, in addition to the tunneling resistance, TMR is also a function of oxide thickness. TMR has been qualitatively predicted to be an increasing function of oxide thickness [18]; while this trend is somewhat confirmed by experimental data [49] [50], TMR has been shown to decrease for large oxide thicknesses [50], and can even display oscillatory behavior over a range of oxide thicknesses [49]. In lieu of a quantitative model relating oxide thickness to TMR, for this work we used recent experimental data which presents both tunneling resistance and TMR data over a range of oxide thicknesses [52]. In modeling resistance versus oxide thickness, we fit an exponential model of the form $R(t_{OX}) = R_0e^{t_{OX}}$ to the experimental data, while for modeling TMR versus oxide thickness, we built a simple piece-wise linear model directly from the experimental data, instead of attempting to find a functional relationship between TMR and oxide thickness.
4.3.1.2. Magnetodynamics Model

The modeling of the magnetodynamics of the devices considered in this study follows the
modeling approach described in Section 3.2.2.2, except we use Equation 3.13 to model
the torque acting on the FL where $\eta(\theta)$ is again equal to $P_S/(1 + P_S^2 \cos(\theta))$.

4.3.1.3. Device Dimensions

For the conventional MTJs considered in this study (found in both the conventional
1T1MTJ cell and the differential cell), we chose the FL dimensions to be: 60nm (length),
60nm (width), and 1nm (thickness). These dimensions are annotated on the conventional
MTJ shown in Figure 4.15.

![Figure 4.15: Conventional MTJ with annotated dimensions](image)

For the proposed device however, due to the fact that an additional metallic contact is
required adjacent to the tunneling barriers, the FL for the proposed device must be larger
than that of a conventional MTJ. This is similar to the case of a previously proposed 3-
terminal MTJ [44]. We use the same lambda design rule based analysis used in previous
work [44] to estimate the volume for the FL in the proposed device, given identical process
node as the conventional MTJ. Since the spacing between the additional metallic contact
and the tunneling barriers is half the width of the contact/oxide area, adding a contact
adjacent to the oxide area results in increasing the FL area by 250%. This is shown in
the following figure.
Thus the total FL area for the proposed device is $10\lambda \times 4\lambda$, thus confirming the 250% volume increase. Therefore, the dimensions of the FL for the proposed device are: 150nm (length), 60nm (width), and 1nm (thickness).

An important point to note is that, as shown in the figure, the FL can be divided into two regions: an STT region and an extended region. The STT region refers to the region of the FL that overlaps with the tunneling barriers; this region corresponds to the region where electrons tunneling to/from either the TPL or BPL transfer torque to the FL. The extended region on the other hand is there to accommodate the metallic contact. As such, angular momentum is transferred from either the TPL or BPL to the FL at the STT region, but then this transferred angular momentum must be shared with the rest of the FL, resulting in effectively a diminished torque per unit magnetic moment. As such, a simple method to increase the torque per unit current for the proposed device is to reduce the volume of the extended region. One possibility is to reduce the thickness of the FL in the extended region compared to the thickness in the STT regions. Another possibility is to explore fabrication techniques that would allow for the extended region to comprise of a non-magnetic material, while the STT region is of course still magnetic. Therefore, there exists much future work that could potentially reduce the penalty to the torque per unit current the proposed device incurs as a result of increased FL volume.
4.3.1.4. Material Parameters

Material parameters for the devices were chosen to match the parameters and characteristics of existing MTJs. The main material parameters to be set are the FL’s saturation magnetization, \(M_S \), thermal stability factor, \(\Delta \), and the Gilbert damping constant, \(\alpha \), of the FL. For this study, \(M_S \) was chosen to be 1050 \(\text{emu/cm}^3 \), this is in line with the saturation magnetization of CoFeB alloys [41]. For \(\Delta \), we chose a value of 55 for the conventional and differential devices, as this allows for a read disturb rate of less than \(10^{-15} \) given a read sense current equal to 40\% of the critical current, while for the proposed device we chose a value of 43 to ensure 10 year data retention, as previously discussed. As for the Gilbert damping constant, \(\alpha \), this was tuned to yield critical current densities similar to recent experimental results. For IPA devices \(\alpha \) was set to 0.001 and for PPA devices \(\alpha \) was set to 0.002, yielding critical current density of 2-3 \(MA/cm^3 \) and 2.1 \(MA/cm^3 \), respectively, which are consistent with experimental results presented in [53] and [23].

4.3.2. Device Optimization

For all versions of the proposed and conventional devices, oxide thickness and access transistor sizes were optimized for the sake of optimal performance and area efficiency. We targeted these devices for two classes of applications: read-write applications which on average would have an equal number of read and write operations and read-mostly applications which on average have more read operations than write operations. To quantify the two classes of applications, we say that in the former class of applications, read operations occur 50\% of the time while write operations occur 50\% of the time. Thus the average access time - which is a weighted average of the read and write access times - for a read-write application is:

\[
T_{AV_E}^{50-50} = 0.5T_{READ} + 0.5T_{WRITE}
\] (4.13)
For a read-mostly application, we choose to set the average number of read operations to be 90%. Thus for the read-mostly applications targeted in this work, the average operation time is:

\[T_{\text{AVE}}^{90-10} = 0.9T_{\text{READ}} + 0.1T_{\text{WRITE}} \]

(4.14)

We begin with device optimization in choosing the optimal oxide thickness for all the devices for the two target application classes mentioned. It is prudent at this point to discuss the tradeoff in performance presented by the oxide thickness. As discussed in the Section 4.3.1.1, the resistance of tunneling barriers is exponentially related to the oxide thickness, therefore, increasing oxide thickness reduces the amount of current an access transistor can provide to the device, thus increasing switching time. On the other hand, increasing oxide thickness results in increased \[\text{RSM} \] (for the same read sense current), thus improving read access time. By taking weighted sums of these read and write access times for all the devices studied in this work, we were able to find optimal values of oxide thickness for the two different application classes targeted here. In other words, we found values of oxide thickness which minimized \(T_{\text{AVE}}^{50-50} \) and \(T_{\text{AVE}}^{90-10} \) for the proposed, conventional, and differential devices, for both in-plane and out-of-plane anisotropy embodiments of each device. The plots for the average operation time versus oxide thicknesses are shown in Figures 4.17(a) - 4.18(b). Note that the conventional and differential cells have different curves because the differential cell offers superior read access performance; this is because its differential read access gives it a natural two-fold improvement in \[\text{RSM} \] over the conventional cell.

The four plots show the same overall trend: while the proposed device average operation time is monotonically increasing as a function of oxide thickness over the range shown in the figures, the average operation time for the conventional and differential devices is non-monotonic over oxide thicknesses. This is because for the conventional and differential devices, since the read current is limited to 40% of the critical current, to achieve a minimum \[\text{RSM} \] (chosen to be 50mV in this study) there is a lower limit on
the minimum resistance of the tunneling oxide (and thus a minimum value for the oxide thickness). For the proposed device however, as previously mentioned, we are free to increase the read sense current as the tunneling oxide thickness is decreased (to compensate for the decreased tunneling resistance), and thus a desired RSM can be maintained as oxide thickness is reduced. This explains why the average operation time continues to decrease as oxide thickness decreases for the proposed device; the read access time does not degrade as oxide thickness is reduced (again because RSM does not degrade as oxide thickness is reduced), while the write access time improves, and as such the overall average operation time improves. The plot also shows that the proposed cell shows inferior performance compared to the conventional and differential cells as the oxide thickness is increased; this is because given identical oxide thicknesses, the proposed device has

![Figure 4.17: Average operation time versus oxide thickness for IPA devices](image-url)
inferior write performance compared to the conventional and differential cells (as will be discussed in Section 4.3.3). For large oxide thicknesses, due to the limited output swing of the read circuitry, the read sense current for the proposed cell cannot be increased to improve read performance; as such the cell’s degraded write performance cannot be compensated for by improving read performance. This is why the overall performance (i.e. average access time) of the proposed cell is inferior to the conventional cells for larger oxide thicknesses.

In addition to optimizing oxide thickness, we need to optimize access transistor size for each cell. The access transistor width affects the read and write access times in different ways: as transistor width is increased write access time improves (since a larger current can be applied to the cell during a write operation), however read access time
is degraded due to the increased loading on the BLs. Figures 4.19(a) - 4.20(b) show the average operation time versus transistor sizes.

![Graph](image)

(a) Read-Write Application

![Graph](image)

(b) Read-Mostly Application

Figure 4.19: Average operation time versus transistor width for IPA cells

Again, these four plots show similar trends. For the case of read-write applications, the differential and conventional cells show a non-monotonic characteristic over access transistor width, while the proposed cell shows a monotonically decreasing average access time as access transistor width is increased (over the range shown in the plot). This is because for the differential and conventional cells, as the access transistor width is increased past a certain width (twice the minimum width for both cases for the plot shown), the degradation in read access time cannot be overcome by the improvement in write access time, and as such the overall average access time is degraded. However,
Chapter 4. Device and Cell Proposal

Figure 4.20: Average operation time versus transistor width for PPA cells

For the proposed cell, the effects of degraded read access time from the increased BL loading can be somewhat compensated for by increasing RSM which is accomplished by increasing the read sense current; again, this was not a viable option for the conventional and differential cells due to the necessary restriction on read sense current for these two cells.

For the plots showing optimization of cells for read-mostly applications, we see that the conventional and differential cells show a trend of increasing average access time over access transistor width, while the proposed cell shows a non-monotonic characteristic where average operation time initially decreases as transistor width is increased, and
then slowly increases as access transistor width is further increased. Since in read-mostly applications the average operation time is primarily comprised of the read access time, any degradation in read access time will degrade the overall operation time (i.e. it is unlikely that the improvement in write access time will compensate for the loss in read access time). For the conventional and differential cells, the improvement in write access time cannot cover the losses to read access time, and as such the average operation time is bound to increase as transistor width is increased. For the proposed cell, while the read sense current can be increased as transistor width is increased to improve RSM and thus reduce the penalty to read access time, the limitations on output swing of the sense node (the swing is dictated by V_{DD} and the overdrive voltage of the current source providing the read sense current) limits the extent to which the read sense current can be increased; as such for the proposed cell the penalty to read access time can only be compensated for to a certain extent. This is why for the proposed cell, after a certain transistor width, the degradation to read access time begins to result in a degradation to the overall average operation time.

For this study, we chose to normalize cell areas between the three cells considered in this study; we chose to first optimize the access transistor size of the conventional cells, and then we chose access transistor sizes for the differential and proposed cells that would minimize the difference in cell areas between all three cells. Tables 4.2 and 4.3 show the optimal oxide thicknesses and the transistor widths chosen for the simulation study.

Table 4.2: Optimal oxide thicknesses

<table>
<thead>
<tr>
<th></th>
<th>Read-Write Applications</th>
<th>Read-Mostly Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional IPA</td>
<td>0.95nm</td>
<td>0.97nm</td>
</tr>
<tr>
<td>Conventional PPA</td>
<td>1.01nm</td>
<td>1.05nm</td>
</tr>
<tr>
<td>Differential IPA</td>
<td>0.875nm</td>
<td>0.925nm</td>
</tr>
<tr>
<td>Differential PPA</td>
<td>0.9nm</td>
<td>0.95nm</td>
</tr>
<tr>
<td>Proposed IPA</td>
<td>0.7nm</td>
<td>0.76nm</td>
</tr>
<tr>
<td>Proposed PPA</td>
<td>0.7nm</td>
<td>0.78nm</td>
</tr>
</tbody>
</table>

Finally, Figures 4.21(a)-4.21(d) show layouts of the cells in this study; all WLs are
Table 4.3: Chosen transistor widths

<table>
<thead>
<tr>
<th></th>
<th>Read-Write Applications</th>
<th>Read-Mostly Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional IPA</td>
<td>240nm</td>
<td>120nm</td>
</tr>
<tr>
<td>Conventional PPA</td>
<td>240nm</td>
<td>120nm</td>
</tr>
<tr>
<td>Differential IPA</td>
<td>120nm</td>
<td>120nm</td>
</tr>
<tr>
<td>Differential PPA</td>
<td>120nm</td>
<td>120nm</td>
</tr>
<tr>
<td>Proposed IPA</td>
<td>120nm</td>
<td>120nm</td>
</tr>
<tr>
<td>Proposed PPA</td>
<td>120nm</td>
<td>120nm</td>
</tr>
</tbody>
</table>

routed on Metal-1/Poly, while SLs and BLs are routed on Metal-2.

(a) Conventional Cell, 120nm transistor width

(b) Conventional Cell, 240nm transistor width

(c) Differential Cell

(d) Proposed Cell

Figure 4.21: Cell layouts
4.3.3. Simulation Results: Write Performance

Figures 4.22(a)-4.23(b) show comparisons of the write performance between the different cells considered in this study; the plots show the time evolution of the z-component of the FL magnetization vectors during an antiparallelizing write operation (as this is the worst case) for the devices being compared. We measure the switching time as the time taken for the z-component of the FL magnetization vector to equal the switching threshold, which we define to be equal to zero.

In Figures 4.22(a) and 4.22(b), we compare the write performance of cells comprising IPA devices. Figure 4.22(a) shows the results for cells optimized for read-write applications; here we see that the switching times for the conventional, differential, and proposed cells are 7.07ns, 8.65ns, and 8.39ns respectively. The conventional cell in this case allows for a faster write access time because its access transistor width is twice that of the differential and proposed cells, thus allowing for increased current during a write operation.

Figure 4.22(b) shows a comparison of write performance for cells optimized for read-mostly applications, and the switching times for the conventional, differential, and proposed cells are now 10.69ns, 9.15ns, and 9.20ns respectively. The switching times have all increased compared to the IPA cells optimized for read-write applications because in read-mostly applications, the cell oxide thicknesses are increased (to allow for faster read access), which degrades the write access performance.

In Figures 4.23(a) and 4.23(b), we compare the write performance of cells comprising PPA devices. Figure 4.23(a) shows the results for cells optimized for read-write applications where the switching times for the conventional, differential, and proposed cells are 8.72ns, 6.50ns, and 7.45ns respectively. Figure 4.23(b) shows that switching times for the conventional, differential, and proposed cells optimized for read-mostly applications are 13.62ns, 6.96ns, and 8.03ns respectively. Compared to the IPA devices, the differential
and proposed cells show an improvement in switching time, while the conventional cell shows degradation - this is because [PPA] devices have lower critical current than the [IPA] devices. A reduced critical current requires larger oxide thicknesses in both the conventional and differential cells in order to obtain similar read sense margin compared to the [IPA] devices. Since the differential cell naturally has larger read sense margin than the conventional cell (by virtue of the differential nature of the read operation), the increase in oxide thickness between the [IPA] and [PPA] embodiments of the differential cell was not as large as compared to the conventional cell (an increase of 0.025nm for the differential cell versus an increase of 0.05nm for the conventional cell). While the increase in oxide thickness for the differential cell offsets the gains of reduced critical current, we still observe an improvement in switching time over the [IPA] version of the cell; however this is not the case for the conventional cell. For the proposed cell however, since the read sense margin is completely unrelated to the cell’s critical current, the oxide thickness does not have to increase compared to the [IPA] version of the cell to maintain similar levels of read performance.

In comparison to the differential cell, the proposed cell offers very similar switching times for the case where the devices have [IPA]. When the devices have [PPA] however, the proposed cell shows an increase over the differential cell of 14% and 11% in switching time for the cases when the cells are optimized for read-write applications and read-mostly applications, respectively. Compared to the conventional cell, the proposed cell shows an increase in switching time of approximately 19% for the case where the cells are comprised of [IPA] devices optimized for read-write applications. However, for all other cases, the proposed cell shows an improvement in write access time: the proposed cell shows decreases of 14%, 15%, and 41% for the cases of [IPA] devices optimized for read-mostly applications, [PPA] devices optimized for read-write applications, and [PPA] devices optimized for read-mostly applications, respectively. While the proposed device offers various means to reduce switching time - such as reduced thermal stability and optimized
oxide thickness, in addition to ensuring the current driven torque always originates from a PL whose magnetization vector is always antiparallel to the magnetization vector of the FL - the simulation results show that in certain cases, the conventional and differential cells offer faster switching. This is mainly due to the fact that despite the measures employed to reduce the switching time of the proposed cell, the degradation in spin transfer torque due to the fact that the FL of the proposed cell is 250% the size of the FLs in the conventional and differential cells can, in some cases, result in larger switching times.

4.3.4. Simulation Results: Read Performance

The main advantage of the proposed cell is in its read performance, as will be shown in this section. In Figures 4.24(a)-4.25(b), we monitor the read sense signal developed across relevant nodes during a read operation for the conventional, differential, and proposed cells. In memories, these signals are typically sensed and latched by a sense amplifier circuit - these circuits typically require some minimum voltage to develop across their input terminals to overcome effects of input offset, variation, and noise, so that the state of the memory cells can be detected with a low error rate. For this study, we set the required threshold to be 50 mV, and so our definition of read sense time is the time it takes for the read sense signals to reach this 50 mV threshold. In Figures 4.24(a) and 4.24(b), we compare the read performance for cells comprising IPA devices. Figure 4.24(a) shows the results for cells that have been optimized for read-write applications, and the read access times for the conventional, differential, and proposed cells are 3.58ns, 1.46ns, and 1.08ns respectively. Figure 4.24(b) shows the results for cells that have been optimized for read-mostly applications, and the read access times for the conventional, differential, and proposed cells are 2.40ns, 1.20ns, and 0.76ns respectively.

In Figures 4.25(a) and 4.25(b), we compare the read performance for cells comprising PPA devices. Figure 4.25(a) shows the results for cells that have been optimized for
read-write applications, and the read access times for the conventional, differential, and proposed cells are of 4.65ns, 1.61ns, and 1.08ns respectively. Figure 4.25(b) shows the results for cells that have been optimized for read-mostly applications, and the read access times for the conventional, differential, and proposed cells are 2.96ns, 1.33ns, and 0.6ns respectively. Since PPA devices have lower critical currents than their IPA counterparts, the conventional and differential cells require reduced read sense currents to ensure a low read disturbance rate, however this comes at the cost of increased read access times; this is reflected in the results when comparing the simulations in Figures 4.25(a) and 4.25(b) to Figures 4.24(a) and 4.24(b). However, this is not the case for the proposed cell since the critical current does not limit how much current can be supplied to the cell during a read operation.

Overall, we see that the proposed cell offers improvements in read access times over the conventional and differential cell for all cases. Compared to a differential cell, the proposed cell is able to achieve reductions of 26%, 37%, 33%, and 53% for the cases of IPA devices optimized for read-write applications, IPA devices optimized for read-mostly applications, PPA devices optimized for read-write applications, and PPA devices optimized for read-mostly applications, respectively. Compared to a conventional cell, the reductions in read access time are 70%, 68%, 77%, and 74% for the cases of IPA devices optimized for read-write applications, IPA devices optimized for read-mostly applications, PPA devices optimized for read-write applications, and PPA devices optimized for read-mostly applications, respectively. The substantially reduced read access time for the proposed cell is attributed to an increased read sense current which allows for larger read sense margin (larger than the targeted 50mV sense margin for the conventional cell), and also, the reduced oxide resistances allow for faster overall time constants for the sensing operation.

As a verification of the immunity to read disturbance, we also plot the simulated normalized net torque applied to the FL during a read operation for the different versions
of the proposed device studied in this work, shown in Figure 4.26. The plot shows the value of $I_{TPL} \eta(\theta_{TPL}) - I_{BPL} \eta(\theta_{BPL})$, which is equal to the total spin transfer torque acting on the FL normalized by the term $\frac{-\gamma h_m(\theta)}{(1+\alpha^2)2eM_sV_{ol}} \mathbf{m}_{FL} \times (\mathbf{m}_{FL} \times \mathbf{m}_{TPL})$, during the course of a read operation. The net torque acts to pull \mathbf{m}_{FL} towards \mathbf{m}_{BPL} when the normalized spin transfer torque term is positive, and pulls \mathbf{m}_{FL} towards \mathbf{m}_{TPL} when this term is negative. Thus these plots give insight into the direction of the net torque during a read operation. In the figure, it is clear that for all versions of the proposed device, during a read operation, when a “1” is stored in the cell (i.e. the FL magnetization vector is parallel to the TPL magnetization vector), the net spin transfer torque pulls \mathbf{m}_{FL} towards \mathbf{m}_{TPL}. Similarly, when a “0” is stored in the cell, the net spin transfer torque pulls \mathbf{m}_{FL} towards \mathbf{m}_{BPL}. As such, these simulations show that the net spin transfer torque acting on the FL during a read operation serves to refresh the existing data in the cell, thus guaranteeing disturbance-free read operation.

4.3.5. Results Summary and Discussion

Table 4.4 summarizes the performance achieved (comparing average access times), energy per operation, energy delay product (EDP) per operation, and cells sizes of the different variants of the conventional, differential, and proposed cells considered in this study. As can be seen in the table, by measure of average access time, the proposed device offers the greatest performance in three of the four cases presented in this study, and shows clear superiority for read-mostly applications (as is expected given its superior read performance). One point to note is that the read operation energy for the proposed device is larger in all cases than the conventional and differential cells; this is primarily because the proposed cell makes use of a larger read sense current during a read operation, and the higher read sense current results in increased power dissipation during a read operation. However, note that as part of the design philosophy employed in optimizing this device, a larger read sense current enables us to reduce oxide thickness, and this leads to optimized
write performance. The write operation energy of the proposed device is competitive against the conventional and differential cells. As such, this design methodology enables us to tradeoff write operation energy for read operation energy. Since write operation energy is approximately an order of magnitude larger than read operation energy (over all cases as shown in the table), it is favourable from the point of view of overall energy consumption to sacrifice the energy efficiency of a read operation in a bid to improve write operation energy.

From the point of view of EDP, we can see that for [IPA] devices, the proposed cell is very close to the conventional cell, and the differential cell offers very poor overall EDP. For [PPA] cells, we see the proposed cell offers the best overall EDP. In addition to these benefits, it should again be stated that the cell offers guaranteed read disturbance immunity and improved tolerance to process variation (over the conventional [1T1MTJ] cell, while the [2T2MTJ] cell is anticipated to also have improved tolerance to variation), although the proposed cell does incur the cost of increased cell area over the conventional [1T1MTJ] cell. We believe that over a conventional [1T1MTJ] cell, the improvement in performance and efficiency - particularly for [PPA] devices, which are envisioned to become the dominant [MTJ] technology in the future [26] - make the proposed cell ideally suited for applications which allow sacrificing density for high performance, such as in emerging embedded applications for which STT-MRAM have recently been targeted [54].

4.4. Summary

In this chapter, we presented an overview of circuit and device level techniques which were previously proposed to tackle the challenges presented by read-disturbance in STT-MRAM. We then presented a proposed device and cell structure which we believe will guarantee disturbance-free read operation, and then discussed the read and write operations for the proposed cell. We then presented a comparative study to assess the merits of the proposed cell over the conventional [1T1MTJ] as well as a differential [2T2MTJ] cell, and
showed that the proposed cell offers considerable performance benefits over the conventional cell in addition to (and by virtue of) its disturbance-free read operation.
Figure 4.22: Write operation comparison for IPA cells

(a) Cells optimized for Read-Write application

(b) Cells optimized for Read-Mostly application
Figure 4.23: Write operation comparison for PPA cells
Figure 4.24: Read operation comparison for IPA cells
Figure 4.25: Read operation comparison for PPA cells
Figure 4.26: Simulated normalized net torque acting on FLs of all version of proposed device during a read operation
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ITPA</td>
<td>Read</td>
<td>5.32ns</td>
<td>5.06ns</td>
<td>4.74ns</td>
<td>3.23 ns</td>
<td>2ns</td>
<td>1.6ns</td>
<td>6.69ns</td>
<td>4.06ns</td>
<td>4.03 ns</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>0.19 pJ</td>
<td>0.15 pJ</td>
<td>0.3 pJ</td>
<td>0.13 pJ</td>
<td>0.12 pJ</td>
<td>0.2 pJ</td>
<td>0.18 pJ</td>
<td>0.12 pJ</td>
<td>0.12 pJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.67 pJ-ns</td>
<td>0.22 pJ-ns</td>
<td>0.32 pJ-ns</td>
<td>0.3 pJ-ns</td>
<td>0.15 pJ-ns</td>
<td>0.15 pJ-ns</td>
<td>0.83 pJ-ns</td>
<td>0.2 pJ-ns</td>
<td>0.34 pJ-ns</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PPA</td>
<td>Read</td>
<td>1.89ns</td>
<td>4.03 ns</td>
<td>4.05 ns</td>
<td>1.89 ns</td>
<td>1.49 ns</td>
<td>1.49 ns</td>
<td>1.88 ns</td>
<td>1.88 ns</td>
<td>1.88 ns</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>0.11 pJ</td>
<td>0.12 pJ</td>
<td>0.12 pJ</td>
<td>0.11 pJ</td>
<td>0.16 pJ</td>
<td>0.16 pJ</td>
<td>0.14 pJ</td>
<td>0.14 pJ</td>
<td>0.14 pJ</td>
</tr>
</tbody>
</table>

Table 4.4: Results summary
5.1. Contributions

This thesis provided a background to the physics behind STT-MRAM and provided an overview of the current state of the art. A model to accurately predict the transient response of MTJs was proposed and the model was compared to measurements conducted on a set of MTJs. Due to the fact that the MTJs available to us had poor reliability, we were unable to complete a single set of experiments on a single die. As such, some of our measurement results did not fully correlate with the measured data. In addition, this thesis proposed a novel STT-MRAM cell, both at the device and transistor level. To the best of our knowledge, this cell is the first to offer true immunity to read-disturbance. The cell has shown to offer overall superior performance (combining both read and write performance) over the conventional $1T1MTJ$ cell. A summary of the contributions are:

- Background study for STT-MRAM

- Development of a model to predict transient response of MTJs

- Proposal for a novel STT-MRAM cell (A TCAS-I paper is submitted \[55\])
5.2. Future Work

This thesis provides a foundation for much future work in the areas of modeling and design of STT-MRAM cells. For modeling, the results in this thesis are inconclusive, and so more measurement results must be obtained to validate the efficacy of the proposed model. Alternatively, further measurement results may be used to guide other directions for a model to predict the transient response of STT-MRAM cells. Another important modeling goal is to encapsulate the effects of thermal agitation; these effects play a fairly dominant role when applied pulses are longer in duration (greater than 10ns), and so these effects need to be modeled.

With regards to the proposed device, as explained in Chapter 4, the geometry of the proposed device is very simplistic, and further optimizations to the geometry may yield improvements to the overall switching performance. Specifically, reducing the thickness of the FL in the contact area or fabricating the contact area out of a non-magnetic material would enable a reduction in the critical current. Alternative read and write techniques not discussed in this thesis can also be explored. Finally, fabrication of a test chip comprising the proposed device and testing the read disturb immunity theorized in this work would be necessary.
References

[25] Jung Pill Kim, Taehyun Kim, Wuyang Hao, Hari M Rao, Kangho Lee, Xiaochun Zhu, Xia Li, Wah Hsu, Seung H Kang, Nowak Matt, Nick Yu, Qualcomm Incor-
References

References

