The Importance of Perceived Helplessness and Emotional Health in Understanding the Relationship among Pain, Function, and Satisfaction Following Revision Knee Replacement Surgery

V Venkataramanan¹, MA Gignac², M Dunbar³, D Garbuz⁴, J Gollish⁵, A Gross⁶, D Hedden⁷, SJ MacDonald⁸, NN Mahomed⁹, E Schemitsch¹⁰, AM Davis¹¹

1. Division of Health Care and Outcomes Research, Toronto Western Research Institute, University Health Network, Toronto, Canada. viji.venkataramanan@uhnresearch.ca
2. Division of Health Care and Outcomes Research, Toronto Western Research Institute, University Health Network and Dalla Lana School of Public Health, University of Toronto, Toronto, Canada. gignac@uhnresearch.ca
3. Department of Surgery, Dalhousie University and Division of Orthopaedics, Queen Elizabeth II Health Science Centre, Halifax, Canada. michael.dunbar@dal.ca
4. Department of Orthopaedics, University of British Columbia, Vancouver, Canada. donald.garbuz@vch.ca
5. Division of Orthopaedics, Sunnybrook Health Sciences Centre Holland Orthopaedic & Arthritic Centre, Toronto, Canada. jeffrey.gollish@sunnybrook.ca
6. Division of Orthopaedics, Mount Sinai Hospital, Toronto, Canada. allan.gross@utoronto.ca
7. Orthopaedic Surgery, Concordia Hip & Knee Institute and University of Manitoba, Winnipeg, Canada. DHEDDEN@cjrg.ca
8. Division of Orthopaedic Surgery, London Health Science Centre, University of Western Ontario and Canada. steven.macdonald@lhsc.on.ca

9. Division of Orthopaedic Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada. nizar.mahomed@uhn.on.ca

10. Division of Orthopaedic Surgery, St. Michael’s Hospital, Toronto, schemitsche@smh.ca

11. Division of Health Care and Outcomes Research, Toronto Western Research Institute, University Health Network and Departments of Physical Therapy, Rehabilitation Science and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada. adavis@uhnresearch.ca

Corresponding author: Aileen M. Davis, PhD

MP11-322, 399 Bathurst Street
Toronto, ON, Canada M5T 2S8
Tel: 416 603-5543
Fax: 416 603-6288
Email: adavis@uhnresearch.ca
Abstract

Objective: Little is known about the relationships among pain, function, psychological variables like perceived helplessness and emotional health, and patient satisfaction in people with revision knee replacement surgery. We hypothesized that pain and function would have a direct association with satisfaction as well as an indirect association through patient perceptions of helplessness and emotional health.

Design: This longitudinal study included 145 participants undergoing revision knee replacement surgery. Demographic data and expectation of benefit from surgery were recorded prior to surgery. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Arthritis Helplessness Scale (AHS) and the Mental Component Scale (MCS) of the SF-36 (emotional health) were collected prior to and two years post-surgery. Satisfaction was recorded two years post-surgery. Regression analyses were conducted to test for mediation effects of helplessness and MCS.

Results: Participants were on average 69 years old and 54% were women. Participants were satisfied with the results of the surgery (mean±sd=70.42±31.46). Less pain and functional disability were associated with increased patient satisfaction and, the effect of pain or function was also mediated through helplessness whereby more pain and disability were associated with perceptions of helplessness and helplessness was associated with lower satisfaction. MCS did not mediate the relationship of pain and function with satisfaction.

Conclusion: Helplessness plays an important role in understanding patient satisfaction. Interventions aimed at improving patient outcome should target not only pain and function but also should address strategies to support people in managing following knee revision surgery to maximize satisfaction with outcome.
Key words: revision knee replacement, satisfaction, pain, function, psychological factors, mediation
Introduction

Patient-reported outcomes are well accepted as measures of benefit and it has been argued that the ultimate goal of orthopaedic surgery is patient satisfaction1-5. Clinicians, clinical programs, administrators, and policy makers use satisfaction as a measure of success of treatment and care, and to make decisions about care delivery and reimbursement6, 7. The Ministry of Health and Long-term Care in Ontario, Canada is implementing a health-based funding model where reimbursement will be linked to quality indicators. Additionally, while not yet implemented, funders such as the National Health System in the United Kingdom have indicated their intention to link reimbursement to patient outcomes8.

While there has been significant focus on primary hip and knee replacement outcomes in the literature, our understanding of the outcomes of revision total knee replacement (TKR) is more limited, particularly in understanding factors that are associated with outcome. This is concerning for a number of reasons: data indicate that while 80-90\% of people with primary knee replacement are satisfied with the results of surgery, fewer people with revision TKR are satisfied (69\% to 88\%), despite similar improvements in pain and function; increasing volumes of primary joint replacements are being performed in the developed world; and, there is limited longevity of primary joint replacement with ultimate need for revision surgery1, 3, 4, 9-13. In 2007, 550,161 TKRs were performed in the United States (US) representing 100\% increase over 199714. In 2008–2009, 47,429 knee replacements were performed across Canada (excluding Quebec), representing a 139\% 10-year increase in TKR15. Approximately 6.2\% of all knee replacements were revisions in 2009/10 in Canada16. Given this increase in primary TKR, the number of revision total knee replacements are expected to rise. This increased volume as well as the increased technical demand and longer operating time for revision surgery will impact the
resources of the health system17. Consequently, it is critical that we understand patient outcome after revision TKR.

Pre-operative pain and function, obesity and the number of comorbidities, are reported predictors of pain and function outcomes following revision TKR18-21. However, there has been little evaluation of psychological variables in revision TKR, other than reporting pre- post-surgery scores of measures such as the mental component score (MCS) of the Shortform-3612,22. Additionally, Singh et al. reported no significant relationship between pain or function and the personality trait of optimism/pessimism23. In people with primary TKR, depression, anxiety, and helplessness in managing one’s arthritis were associated with increased pain and reduced function, and decreased satisfaction. Depressive symptoms and anxiety were associated with pain and function five years after Total Knee Arthroplasty (TKA)24. Scott et al found the Mental and Physical Component Scores of the Shortform-12 and pain to be independent predictors of satisfaction25. Having positive expectations of a good outcome as well as decreased pain and improved function have been shown to be the most consistently related to satisfaction1,2. There is also evidence that feelings of helplessness affect pain and function. Helplessness refers to a belief that nothing can be done to resolve a problem, characterized by emotional, motivational, and cognitive deficits26. It is a belief that one’s outcomes are independent of one’s actions27. In a study looking at brain imaging of patients with osteoarthritis (OA), helplessness was found to play an important role in the perception of pain. A painful stimuli elicited considerable cognitive and emotional activity in the brain compared to control subjects28. Additionally, the literature shows that helplessness impacts pain in people with arthritis and greater helplessness predicted lower WOMAC change scores at one year after primary joint replacement surgery29-32.
Given this literature and that people experienced failure of their primary joint replacement, we were interested in evaluating if psychological variables like perceived helplessness and emotional health would explain the relationships between pain or function and satisfaction in people with revision TKR. We hypothesized that the relationship of pain and function with satisfaction occurred through a mediated model whereby pain and function affect helplessness and emotional health, which in turn affect satisfaction (Figure 1). If mediation occurs, the following relationships would exist: 1) pain and function would be associated with satisfaction whereby less pain and higher function are associated with more satisfaction; 2) pain and function would be associated with helplessness and emotional health such that less pain and higher function are associated with less helplessness and improved emotional health; and, 3) statistically controlling for helplessness and emotional health should reduce the magnitude of the relationship between pain and function with satisfaction. That is, pain and function either become non-significant (i.e., a fully mediated model) or their effect is reduced (i.e., a partially mediated model). If a meditated relationship is present, interventions that address perceived helplessness and or emotional health may improve patients’ perception of their outcome.

Methods

This research was part of a longitudinal study evaluating patient-reported outcomes of people with revision TKR. The longitudinal study recruited patients from five academic Canadian centers (Halifax, London, Toronto, Vancouver, and Winnipeg) between 2002 and 2005 and followed them over two years. The cohort included people who underwent revision knee replacement for aseptic failure of a primary knee replacement initially for osteoarthritis. Exclusion criteria included revision for infection, periprosthetic fracture, patellar revision only,
or polyethylene liner exchanged only. Fluency in English was required for questionnaire completion. Participants, identified through the participating surgeon’s rosters, who consented to participate completed questionnaires within two weeks prior to surgery at the pre-surgery admission clinic and by mail at two years post-surgery. The study was approved by the research ethics board at each of the participating institutions and all participants provided informed, written consent.

Data Collection

All data were collected via questionnaire.

Outcome

Satisfaction at two years following surgery: Patients reported their satisfaction using a reliable and valid four-item scale that evaluates patient satisfaction with relief of pain, improvement in activities of daily living, improvement in recreational activities, and overall satisfaction following joint replacement. Each item has a four-point response ranging from very satisfied to very dissatisfied. The scores were summed and converted to a scale ranging from 0-100 with higher scores representing greater satisfaction\(^\text{34}\).

Independent variables

Pain and Function: The independent variables of interest were pain and function as measured by the Western Ontario and McMaster Universities’ Osteoarthritis Index (WOMAC, Likert version 3.0). The WOMAC is a valid and reliable measure of symptoms and function for persons with osteoarthritis of the hip and/or knee\(^\text{35-37}\). The pain subscale includes five items and the function subscale includes 17 activities reported on a 0 to 4 scale. The scores were converted to a scale ranging from 0 to 100 with higher scores depicting no pain or functional limitation.
Potential Mediators

The *Arthritis Helplessness Scale* (AHS) is a five-item questionnaire measuring the individual’s perception of their helplessness in managing their arthritis (e.g. ‘My condition is controlling my life’; ‘I would feel helpless if I couldn’t rely on other people for help with my condition’). Items are scored on a five-point scale with scores ranging from 1=strongly disagree to 5=strongly agree, with one reverse-coded item. Aggregate scores were converted to a scale ranging from 0-100 with high scores indicating lesser helplessness in managing arthritis38-40.

Emotional health was measured by the Mental Component Summary Score (MCS) of the 36-item Short-Form Health Survey (SF-36). The SF-36 includes 36 questions, summarized into eight scales: physical function, role functioning or limitations due to physical problems, bodily pain, general health perception, vitality or energy level, social functioning, role functioning or limitations due to personal or emotional problems and mental health41. An algorithm is used to calculate the Mental Component Summary (MCS) score; scores range from 0 to 100 with higher scores indicating better emotional health.

Covariates

In addition to completing demographic information (age, sex, marital status, and education), participants rated the expected benefit of their knee replacement surgery prior to surgery. The responses ranged from 1=not at all beneficial to 5=extremely beneficial. Due to the low frequency for some response options, expectation of benefit from surgery was dichotomized as extremely beneficial versus other.
Statistical analysis

Descriptive statistics were calculated for all variables including means, standard deviations and proportions as appropriate to the data. Paired t-tests were used to evaluate change in each of WOMAC pain and function over time. The mediation effect of helplessness and emotional health at two years follow-up were tested separately for each of pain and function in relation to satisfaction using regression analysis and according to the steps outlined by Baron and Kenny. In the first step, pain or function was entered into the regression equation as an independent variable and satisfaction as the dependent variable. In the second step pain or function was entered into the model with helplessness or emotional health as the dependent variable. In the final step, pain or function, helplessness or emotional health were entered into the regression as independent variables and satisfaction as the dependent variable. A mediation effect is demonstrated when the magnitude of the coefficients for pain or function decreases from step one to step three. The Sobel test was also performed to test whether the indirect effect of pain and function on satisfaction via the mediator, helplessness or emotional health, was significantly different from zero.

All the models controlled for age as a continuous variable, sex and pre-surgery expectation of benefit (grouped as extremely beneficial versus other), and the pain and function models also controlled for the baseline (pre-surgery) pain or function score respectively as prior research, mainly in primary TKR, has shown that these variables are associated with satisfaction.

Finally, as a sensitivity analysis, we evaluated whether pre-operative helplessness and emotional health mediated the relationship of pain and function with satisfaction at two years post-surgery. If no mediation effect was found using pre-operative AHS and MCS scores,
demonstration of mediation at two years would support potential modification of the pain, function and satisfaction relationship through an intervention that addressed these psychological factors (i.e., helplessness or emotional health would not be ‘fixed’ concepts but rather potentially modifiable).

Regression diagnostics including normality of residuals, Cook’s D and variance inflation, were checked to ensure underlying model assumptions were met. Statistical significance was accepted at a p < 0.05 level. Data analyses were carried out using SAS version 9.2 software (SAS Institute Inc., Cary, NC, USA).

Sample size for this study was based on considering whether the available sample from the original study would allow sufficient power given the number of independent variables to be modeled such that we were not over-fitting the model. Given our final models included a maximum of 6 variables, 145 participants was sufficiently large45,46.

Results

Of the 184 patients recruited to the cohort, 145 (79\%) were included in the current study (four died, two withdrew, six were lost to follow-up and 27 had insufficient data for analysis). No statistically significant differences or clinically meaningful differences were observed between analyzable (n=145) and non-analyzable (n=39) participants in the study with respect to age, sex, pre-surgery WOMAC pain and function, MCS, and AHS scores (data not shown). The participants (n=145) were on average 69 years old (range 32 to 89 years) at the time of surgery and 54\% (n=78) were women. As anticipated, participants experienced significant pain and disability pre-operatively. About 73\% (n=106) used an ambulatory aid prior to surgery and 55\% (n=80) expected their revision surgery to be extremely beneficial (Table 1). Pain and function improved significantly from pre-surgery to two year follow-up with pain scores improved from a mean of 46.5 to 71.3
(p<.0001) and functional ability scores improved from a mean of 45.5 to 65.8 (p<.0001).

Improvement also occurred in emotional health with the MCS increasing from 51.9 to 54.6
(p=0.01). Participants also perceived less feelings of helplessness in dealing with their disease at
two years post-surgery compared to prior to surgery, mean 41.4 and 50.7 (p<.0001) respectively.
The mean (± sd) satisfaction score at two years post-surgery was 70.4±31.5 (minimum and
maximum score: 16, 100; quartiles: 75%= 100; 50%=83.3; 25%=50).

Table 3 shows the results of the three equations testing the mediation effect^42 of
perceived helplessness. We found that perceived helplessness partially mediated the relationship
between pain or function at two years and satisfaction. While those with less pain were more
satisfied with their outcome, there was also an indirect relationship in that those with less pain
also had less feelings of helplessness in managing their arthritis which led to improved
satisfaction with outcome as hypothesized (Figure 1). Similarly for function, those with better
self-reported function were more satisfied but better function also was associated with less
feelings of helplessness which in turn was associated with higher satisfaction. While the pre-
surgery and post-surgery AHS were moderately correlated (Spearman’s rho=0.41), sensitivity
analyses demonstrated that the pre-surgery AHS did not mediate either the pain or function
relationship with satisfaction (data not shown).

Emotional health as measured by the MCS did not mediate the effect of pain or function
with satisfaction. As shown in Table 4, regression of the MCS on satisfaction did not result in a
decrease in the magnitude of the regression coefficient for either pain or function compared to
pain/function alone regressed on satisfaction. Rather there was a significant direct effect of
emotional health with satisfaction in that higher MCS scores were associated with satisfaction,
although the additional explanatory value of adding the MCS to the model was only 2%.
Discussion

This study contributes to the limited body of knowledge related to satisfaction with outcome of revision knee replacement surgery. It particularly highlights the relationship of psychological variables, perceived helplessness and emotional health, with pain and function and satisfaction. We found that although there was a direct relationship of pain and function at two years with satisfaction, there was also an indirect relationship through perceived helplessness in managing arthritis. While less pain was associated with higher satisfaction, less pain also resulted in less feelings of helplessness and hence, better satisfaction. Similarly, satisfaction was higher in those with higher function but, in part, this was because higher function was associated with less helplessness, and hence higher satisfaction. Given our findings that pre-operative AHS scores did not mediate the pain/function and satisfaction relationships but two year AHS scores were mediators, perceived arthritis helplessness does not seem to be fixed and may be a target for treatment in the context of people’s recovery from revision TKR. Interdisciplinary management including interventions such as cognitive behavioral approaches in the context of surgical and arthritis self-management may reduce perceived helplessness and improve patient outcome following revision TKR. Helplessness as a modifiable factor is further supported by a study in which Zautra et al found that controlled release of oxycodone in patients with osteoarthritis with persistent moderate to severe pain not only lead to clinically significant reductions in pain but also less feelings of helplessness.

Somewhat to our surprise, while emotional health, as measured by the MCS, did not mediate the relationship with pain or function with satisfaction, it also added minimal additional explanatory value in understanding satisfaction. These findings are in contrast to data from
primary TKR where Scott reported that emotional health as measured by the MCS was significantly associated with satisfaction such that those with better emotional health reported better satisfaction. We are not sure of the reason for this although we note that the post-surgery MCS scores were on average 54 points with a standard deviation of 9.7 which is slightly above the Canadian normative value for the MCS of 51.7 (sd= 9.1)49, indicating that few people had scores below the population mean. The pre-surgery scores were similar to the population mean (51.9, sd=11.5). Kasmire et al22 reported a statistically significant pre-post change of 10 points, while Hartley et al12 reported a change of 0.1 points. The variability of these results indicate that further research is required to understand emotional health as measured by the MCS in people undergoing revision TKR.

Although not in people with revision TKR, still other studies in people with arthritis have shown that psychological variables such as helplessness, depression and stress are important in understanding differences in how people respond to their disease and treatment50. In a study of knee OA patients, Creamer et al found pain severity, obesity and helplessness were the most important determinants of disability with 60\% of the variance in the model accounted for by these variables51. A recent study found greater helplessness independently predicted less functional improvement one year following primary TKR32. In the current study, we found helplessness not only associated with but partially mediating the relationship between pain and function with satisfaction.

While it is difficult to place our findings related to satisfaction following revision TKR in the context of the literature as most of the work related to psychological factors and outcomes has been done in patients with osteoarthritis or primary hip or knee replacement, there are some informative data. We found the level of satisfaction experienced by the participants of this study
was similar to that of patients in other studies. Our mean (± SD) satisfaction score was 70.42 (± 31.5) which is comparable to the findings of Meek et al, in their study with patients who underwent revision TKR for infection (71.7 ± 33.1)52. Similarly, Greidanus et al. compared satisfaction outcomes of patients undergoing primary and revision TKA and reported a mean satisfaction score of 72.9 (±36.3) for revision TKA patients13. The mean (± SD) pre and post-surgery MCS score in the present study are 51.90 (± 11.5) and 54.63 (±9.7) respectively. The Canadian normative value for the MCS is 51.7 (± 9.1), comparable to our sample, suggesting similar emotional health49. Similar scores were reported for primary knee replacement patients with severe knee osteoarthritis by Heck et al. The means were 52.5 (standard error= 0.7) and 54.4 (standard error=0.6) for pre and post-surgery respectively, and showed patients with lower MCS scores (i.e., poorer emotional health) were less likely to report improvements in physical function53.

While studies have looked at how pain and function are related to satisfaction or how psychological variables are related to pain and function1,2,54, this is the first study to our knowledge that has looked at the mechanism of how pain and function are related to satisfaction especially among patients having revision knee replacement patients. While the psychological variables such as helplessness have been linked to outcomes of joint replacement surgery, depression and poor mental health have been linked to dis-satisfaction25,32. The literature shows a link between alleviation of pain and positive emotional health in people with arthritis55-57. The present study found higher MCS scores or better emotional health associated with greater satisfaction (although the explanatory value was limited in multi-variable modeling). The corollary to this finding can be found in the work by Gandhi et al. where they found poor mental
health predicted less satisfaction58. Further research is needed to generalize these and our findings.

A strength of our work is that our analyses adjusted for a number of covariates or potential confounders that have been shown to be related to satisfaction with outcome following joint replacement. Participants undergoing revision TKR in this study reported significant improvement in pain and physical function at two years post-surgery and the magnitude was similar to that typically reported in the literature. Additionally, the proportion who reported they were satisfied with their outcome was also within the range reported in the literature. The sample was recruited from multiple tertiary care institutions in Canada and given that revision knee replacement is usually performed in specialty centers, our sample likely represents the patients undergoing revision TKR for aseptic loosening in our country. However, a limitation of this study is that our sample did not include those who had revision knee replacement for infection or who had only polyethylene liner exchange. Hence, our results cannot be generalized to people having revision for these indications. Additionally, our sample was limited to those who had English competency such that they could consent and complete the questionnaires.

While we did not specifically collect data on race or ethnicity, we anticipate that this language requirement limits the generalizability of our results. Finally, we were able to capture descriptive data only for those who consented to participate such that we do not know if or how our sample differed from those who were eligible but declined to participate.

Conclusion

In summary, the majority of people undergoing revision knee replacement surgery were satisfied with the results of surgery. Patient satisfaction is not only important from a patient’s or
surgeon’s perspective, it is also gaining importance from an economic perspective. The National Health Services (NHS) in the United Kingdom is linking reimbursement to patient satisfaction, indicating that up to ten percent of hospital income will be dependent on patient experience and satisfaction. So, not only is it important to understand factors associated with patient satisfaction, it becomes imperative to comprehend the mechanisms involved. In conclusion, pain and function are associated with patient satisfaction after revision knee replacement surgery. However, this study demonstrated that there is also an indirect relationship between pain and function and satisfaction, the mechanism of which is through perceived helplessness which may be modifiable through intervention.

Contributions

Conception and design: Davis, Gross, Gignac, Schemitsch, Mahomed

Analysis and interpretation of the data: Davis, Gignac, Venkataramanan

Drafting of the article: Davis, Gignac, Venkataramanan

Critical revision of the article for important intellectual content: Venkataramanan, Gignac, Dunbar, Garbuz, Gollish, Gross, Hedden, MacDonald, Mahomed, Schemitsch, Davis

Final approval of the article: Venkataramanan, Gignac, Dunbar, Garbuz, Gollish, Gross, Hedden, MacDonald, Mahomed, Schemitsch, Davis

Provision of study materials or patients: Dunbar, Garbuz, Gollish, Gross, Hedden, MacDonald, Mahomed, Schemitsch

Statistical expertise: Davis, Gignac, Venkataramanan

Obtaining of funding: Davis

Administrative, technical, or logistic support: Venkataramanan
Collection and assembly of data: Venkataramanan, Davis, Dunbar, Garbuz, Gollish, Gross, Hedden, MacDonald, Mahomed, Schemitsch

Role of the funding source

This study was funded by an unrestricted operating grant from the Canadian Institutes of Health Research, grant number 49616. The funder had no role related to the conduct of the study or interpretation of the results.

Competing interest statement

None of the authors had competing interests in relation to the work.
References:

Accessed 14 August 2012.

<table>
<thead>
<tr>
<th>n=145</th>
<th>Pre-surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, Mean ± SD</td>
<td>69.3 ± 9.8</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>78 (54%)</td>
</tr>
<tr>
<td>Male</td>
<td>67 (46%)</td>
</tr>
<tr>
<td>Married or with partner, n (%)</td>
<td>92 (65%)</td>
</tr>
<tr>
<td>Having help around the house, n (%)</td>
<td>100 (69%)</td>
</tr>
<tr>
<td>Education higher than high school, n (%)</td>
<td>78 (54%)</td>
</tr>
<tr>
<td>Living alone, n (%)</td>
<td>38 (26%)</td>
</tr>
<tr>
<td>Use walking aid, n (%)</td>
<td>106 (73%)</td>
</tr>
<tr>
<td>Expect surgery to be extremely beneficial, n (%)</td>
<td>80 (55%)</td>
</tr>
</tbody>
</table>
Table 2: Outcomes at pre- and two years post-surgery

<table>
<thead>
<tr>
<th>Measure</th>
<th>Pre-surgery</th>
<th>post-surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF-36 MCS Score (100=no emotional health problems)</td>
<td>51.90 ± 11.5</td>
<td>54.63 ± 9.7**</td>
</tr>
<tr>
<td>WOMAC (100=no pain/functional disability)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain score</td>
<td>46.5 ± 19.8</td>
<td>71.3 ± 24.4*</td>
</tr>
<tr>
<td>Function Score</td>
<td>45.5 ± 20.0</td>
<td>65.8 ± 22.3*</td>
</tr>
<tr>
<td>Arthritis Helplessness Scale (100=no helplessness)</td>
<td>41.4 ± 16.6</td>
<td>50.7 ± 19.3*</td>
</tr>
<tr>
<td>Satisfaction Scale (100=completely satisfied)</td>
<td></td>
<td>70.4 ± 31.5</td>
</tr>
</tbody>
</table>

* p<.0001; ** p=0.01
Table 3: Models demonstrating the partial mediation of the relationship of WOMAC pain and function with Satisfaction by Helplessness at two years post-surgery

<table>
<thead>
<tr>
<th>Eq.</th>
<th>DV</th>
<th>IV</th>
<th>Unstd. regression coefficient</th>
<th>Std error</th>
<th>95% CI</th>
<th>p-value</th>
<th>R² value</th>
<th>Sobel test z-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Satisfaction</td>
<td>Pain</td>
<td>1.0</td>
<td>0.1</td>
<td>0.9 to 1.2</td>
<td><.0001</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AHS</td>
<td>Pain</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5 to 0.7</td>
<td><.0001</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Satisfaction</td>
<td>AHS</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4 to 0.9</td>
<td><.0001</td>
<td>0.67</td>
<td>4.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pain</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4 to 0.9</td>
<td><.0001</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Satisfaction</td>
<td>Function</td>
<td>1.1</td>
<td>0.1</td>
<td>0.9 to 1.3</td>
<td><.0001</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AHS</td>
<td>Function</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5 to 0.7</td>
<td><.0001</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Satisfaction</td>
<td>AHS</td>
<td>0.7</td>
<td>0.1</td>
<td>0.4 to 1.0</td>
<td><.0001</td>
<td>0.64</td>
<td>4.7*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Function</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4 to 0.9</td>
<td><.0001</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Eq. = Equation; DV = Dependent Variable; IV = Independent Variable; Unstd. Regression coefficient = Unstandardized regression equation; Std. error = Standard Error; 95% CI = 95% Confidence Interval; AHS = Arthritis Helplessness Scale; * p-value < 0.0001; All the above models are adjusted for age, sex, expectation of benefit and baseline pain or function.
Table 4: Models evaluating the mediation of the relationships of WOMAC pain and function with Satisfaction by Emotional health at two years post-surgery

<table>
<thead>
<tr>
<th>Eq.</th>
<th>DV</th>
<th>IV</th>
<th>Unstd. regression coefficient</th>
<th>Std. Error</th>
<th>95% CI</th>
<th>p-value</th>
<th>Sobel test z-value</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Satisfaction</td>
<td>Pain</td>
<td>1.0</td>
<td>0.1</td>
<td>0.9 to 1.2</td>
<td><.0001</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MCS</td>
<td>Pain</td>
<td>0.1</td>
<td>0.04</td>
<td>0.0 to 0.2</td>
<td>0.002</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Satisfaction</td>
<td>MCS</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3 to 1.1</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pain</td>
<td>0.9</td>
<td>0.8 to 1.1</td>
<td><.0001</td>
<td>0.62</td>
<td>2.3*</td>
</tr>
<tr>
<td>1</td>
<td>Satisfaction</td>
<td>Function</td>
<td>1.1</td>
<td>0.1</td>
<td>0.9 to 1.3</td>
<td><.0001</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MCS</td>
<td>Function</td>
<td>0.2</td>
<td>0.04</td>
<td>0.1 to 0.2</td>
<td><.0001</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Satisfaction</td>
<td>MCS</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2 to 1.1</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Function</td>
<td>1.0</td>
<td>0.8 to 1.2</td>
<td><.0001</td>
<td>0.59</td>
<td>2.3**</td>
</tr>
</tbody>
</table>

Eq. = Equation; DV = Dependent Variable; IV = Independent Variable; Unstd. regression coefficient = Unstandardized regression coefficient; Std. error = Standard Error; 95% CI = 95% Confidence Interval; MCS = SF-36 Mental Component Score; * p-value<0.0001; ** p-value =0.02; All the above models are adjusted for age, sex, expectation of benefit and baseline pain or function.
Figure 1: Mediation Model

- **Pain / Function**
- **Helplessness / Emotional Health**
- **Satisfaction**
Figure Captions:

Figure 1 shows the hypothesized relationship of pain (or function) directly associated with satisfaction and the indirect relationship through helplessness (i.e., partially mediated through helplessness).