Dynamic Optimization Models for Ridesharing and Carsharing

by

Mehdi Nourinejad

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science

Department of Civil Engineering
University of Toronto

© Copyright by Mehdi Nourinejad 2014
Abstract

Collaborative consumption is the culture of sharing instead of ownership in consumer behaviours. Transportation services such as ridesharing, carsharing, and bikesharing have recently adopted collaborative business models. Such services require real-time management of the available fleets to increase revenues and reduce costs. This thesis proposes two dynamic models for real-time management of carsharing and ridesharing services. In ridesharing, an assignment problem is solved to match drivers with passengers. The model is expanded to include multi-passenger and multi-driver matches. In carsharing, vehicles are relocated between parking stations to service the users. Results of the two models are compared to benchmark models which provide lower-bound solutions.
Acknowledgments

It took me 17 emails, 2 phone calls, and 3 personal visits to get accepted at University of Toronto. For some time I had lost all hope because I was rejected at every other university. It was around April of 2012 that I was preparing myself to look for a job even though that was my last priority. When I received my acceptance letter I knew it was a chance that not a lot of people get. For that I would like to thank my supervisor Professor Matthew Roorda. Matt: Thanks for believing in me and taking a chance in me. To me you are both a mentor and a role model.
Table of Contents

Acknowledgments.. iii
Table of Contents .. iv
List of Tables .. vi
List of Figures .. vii

Chapter 1 Introduction ... 1
\hspace{1em} 1.1 Collaborative Consumption .. 1
\hspace{1em} 1.2 Dynamic Optimization ... 3
\hspace{1em} 1.3 Thesis Structure ... 5

Chapter 2 Ridesharing ... 6
\hspace{1em} 2.1 Introduction .. 6
\hspace{1em} 2.2 Literature Review .. 8
\hspace{1em} \hspace{1em} 2.2.1 Centralized System Optimization .. 8
\hspace{1em} \hspace{1em} 2.2.2 Decentralized Agent Based Optimization 9
\hspace{1em} 2.3 Dynamic Ridesharing Setting .. 10
\hspace{1em} \hspace{1em} 2.3.1 Time Feasibility .. 10
\hspace{1em} \hspace{1em} 2.3.2 Cost Feasibility ... 12
\hspace{1em} \hspace{1em} 2.3.3 Binary Integer Programming for the One Driver One Passenger Case .. 13
\hspace{1em} 2.4 Agent Based Model .. 14
\hspace{1em} \hspace{1em} 2.4.1 Auction Based Multi-Agent Optimization 15
\hspace{1em} 2.5 Model Evaluation and Case Study .. 19
\hspace{1em} \hspace{1em} 2.5.1 Single Driver, Single Passenger .. 19
\hspace{1em} \hspace{1em} 2.5.2 Single Driver, Multiple Passengers ... 22
\hspace{1em} \hspace{1em} 2.5.3 Multiple Drivers Single Passenger ... 25
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section/Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Cost-Revenue Analysis and Survival of Service Providers</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of Key Findings</td>
<td>32</td>
</tr>
<tr>
<td>Chapter 3 Carsharing</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A Dynamic Carsharing Decision Support System</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Literature Review</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Carsharing Problem Setting</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1</td>
<td>User Schedules</td>
<td>37</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Fleet Size and Vehicle Relocation</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Benchmark Model</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Dynamic Relocation Model</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Optimization: Vehicle Relocation and Parking Inventory</td>
<td>43</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Simulation</td>
<td>48</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Measures of Effectiveness (MOE)</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Example Problem: The Case of Autoshare</td>
<td>51</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Benchmark Model Analysis</td>
<td>51</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Dynamic Model Analysis</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary of Key Findings</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 4 Conclusion</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Collaborative Consumption</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>On Dynamic Ridesharing</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>On Dynamic Carsharing</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Recommendations for Future Work</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>
List of Tables

Table 2-1: Six different driving patterns when one driver is considering two passengers 24

Table 2-2: Reliability (first number in each cell), VKTS (in parenthesis), and number of transfers (last number in each cell) for 3 different market penetration values (0.2%, 0.5%, and 1%) and 3 potential hub scenarios ... 30

Table 3-1: Classification of previous work on operational models of carsharing 36

Table 3-2: Benchmark model fleet size for four demand scenarios ... 53

Table 3-3: Measures of effectiveness at various ratios of Pr to $Cr=1$ where demand is 200 users/day .. 55

Table 3-4: Relocation hours of the benchmark model (left) and the dynamic model with $Pr=3$, $Cr=1$ (right) .. 56

Table 4-1: Effectiveness of different modules for three different market penetration rates. Numbers outside parenthesis present the system reliability and number inside parenthesis present VKTS (Vehicle Kilometers) ... 58
List of Figures

Figure 2-1: Time feasibility for one driver and one passenger ... 11

Figure 2-2: Vicinity approach .. 15

Figure 2-3: Auction based optimization .. 16

Figure 2-4: (Left) Flowchart of the optimization setting, (Right) Flowchart of the auction 18

Figure 2-5: The Sioux Falls network ... 19

Figure 2-6: Reliability of the the agent based model (white) and the benchmark model (black) .. 20

Figure 2-7: VKTS of the the agent based model (white) and the benchmark model (black) 21

Figure 2-8: Calculation time in minutes for the agent based model and the benchmark model ... 21

Figure 2-9: Link notations when one driver is considering two distinct passengers 22

Figure 2-10: (a) driver d_1 bidding simultaneously bidding on two passenger p_1 and p_2 (b) driver d_1 bidding only on passenger p_1 ... 25

Figure 2-11: Original and new cost for members when multi-passenger matching is not enables (top) and enabled (bottom)... 26

Figure 2-12: Schematic of the case where one passenger transfers between two vehicles 27

Figure 2-13: Revenue ratio (obtained Revenue / maximum Revenue) with respect to the commission rate ... 31

Figure 2-14: System reliability with respect to commission rate .. 31

Figure 3-1: Time schedule of users ... 37
Figure 3-2: Relocation of the single vehicle in the fleet to serve both users (b) Provision of an additional vehicle to the fleet

Figure 3-3: Normal parking rate and increased parking rate when vehicles surpass capacity

Figure 3-4: Flowchart of the simulation model

Figure 3-5: Parking locations of Autoshare (Toronto, Ontario)

Figure 3-6: Benchmark model fleet size and relocation time for four demand scenarios (200 runs/scenario)

Figure 3-7: Benchmark model mean fleet size and relocation time for different reservation time policies with a demand of 200 users/day
Chapter 1
Introduction

1.1 Collaborative Consumption

The last decade has witnessed an emergence of a new culture called “What’s mine is yours”. Be it in an office, a school, or a social networking website, people are sharing more than ever with their communities. Websites such as Craigslist, eBay, Swaptree, and Ourswaps are marketing platforms where individuals buy, sell, and trade their belongings. Unwanted items are given away on Freecycle, and ReUseIt to friends and strangers. Zilok, E-loue, and good-lok are peer-to-peer sharing companies which connect lenders and borrowers to lease and lend any object online. The number of users in Community Supported Agriculture (CSA) is increasing where growers and consumers share the risks and benefits of food production. CouchSurfing, the most visited “hospitality service” on the Internet, connects locals and travelers in an attempt to give travelers a couch where they could “crash”. Cloud computing is extensively used for businesses to share computing power through servers. Finally, Airbnb, operating in 30,000 cities and 192 countries, introduces hosts to guests looking for renting unoccupied residences.

Examination of such collaborative trends in behaviors and business examples points to an emerging socioeconomic groundswell which is referred to as “Collaborative Consumption” by Rachel Botsman, the author of What’s Mine is Yours: The Rise of Collaborative Consumption. Collaborative consumption of the twenty-first century defines consumers by reputation, by community, and by what we can share (Botsman, 2010). This collaboration can be local (face-to-face), Internet-based, or many-to-many (peer-to-peer) and is often successful with critical mass and social networking. Critical mass is achieved when the service is able to attract enough participants to generate acceptable revenues. This is particularly important in sharing-based services where a high number of both lenders and borrower is crucial in the survival of the company. Social networking enhances communication between users and can be used to increase trust in the service through web-based platforms such as user rating systems. Application of collaborative consumption is not limited to product-based businesses and is becoming more ubiquitous in service-based businesses in various sectors including transportation.
Emerging transportation services, in the last decade, have also adopted collaborative consumption in their business models. Examples of such services are bikesharing, carsharing, ridesharing, personal vehicle sharing, carpooling, slugging, and taxi-sharing. Bikesharing and carsharing allow individuals to have access to a fleet of bikes and vehicles, respectively, without the costs and responsibilities of ownership. Personal vehicle sharing provides short-term access to privately-owned vehicles. Ridesharing allows commuters to share a ride on demand (through web-based systems) and split the costs. Carpooling is sharing a vehicle for specific daily commutes such as the work-home trip. Slugging, a variation of ridesharing and hitchhiking, is the practice of informal carpooling to benefit from HOV lanes and toll reductions. These services are effective on an individual basis but also have a positive impact on the environment by reducing our carbon footprint.

Collaborative consumption services have proven to be successful and are growing at a fast pace. The total number of bikesharing services has grown from 7 in 2002 to 497 in 2012 (Kurtzleben, 2013). In U.S., during the financial crisis when the federal government was bailing out the three major car companies, carsharing memberships increased by 51.5 percent (Pisani, 2009). Zipsters (Zipcar users) are estimated to grow up to 4.4 million in North America and 5.5 million in Europe by 2015 (Zhao, 2010). The impact of ridesharing providers is commonly mentioned in media; The New York Times reported that the Carticipate smartphone application had more than 10,000 downloads in the first two months of its release (Eisenberg, 2008).

Toronto, located in Ontario, Canada with a population of 2.6 million residents, has been home to some of collaborative consumption’s new transportation startups. Bixi, a bikesharing system operating in Toronto among other cities, is made up of bike stations. Each station has a pay booth, bikes, and bike docks. The bikes in the system are monitored by a real-time management system for billing and other purposes such as management of bike relocations between stations. ZipCar, Car2Go, and AuthoShare are the main three carsharing organizations (CSO) in Toronto. While AutoShare’s fleet is positioned only in Toronto, ZipCar and Car2Go have stations in many other North American cities. Ridesharing, despite expectations, has not yet boomed in Toronto but is becoming very popular in other North American Cities such as New York and San Francisco through companies such as SideCar, Avego, and ZimRide. A new carpooling program called Smart Commute, on the other hand, was recently initiated by Metrolinx which is a crown
agency integrating road and public transportation in the Greater Toronto Area and Hamilton (GTHA). Smart Commute helps employers and commuters explore carpooling opportunities with the aim of easing gridlock, improving air quality, and reducing greenhouse gas emission. More than 305 workplaces are now registered in the Smart Commute program. Such cases show Toronto’s potential for new collaborative services.

Collaborative consumption in transportation requires real time management of assets (be it vehicles, bikes, etc.) through GPS navigation devices, smartphones, and social networks. GPS navigation devices help track the location of company assets in an effort to better serve new user request in service. Smartphones are the common means through which customers (users) can request service from wherever they happen to be. Social networks help establish trust and accountability between the users and the service providers. Despite the importance of real-time management of such collaborative transportation services, little research is done.

1.2 Dynamic Optimization

In the last decade, ridesharing and carsharing services have gained much attention in metropolitan cities. Both services rely on a high number of users to increase service viability. Each day, users enter ridesharing services to request or offer a ride. In carsharing services, users enter the system with a request for a vehicle. Users of both services have trip preferences such as pickup and drop off time and location. Ridesharing services are responsible for matching drivers with passengers and carsharing services are responsible for matching a user to a vehicle in their fleet. In order to reduce costs and make the systems more attractive, both services seek matches which are optimal (or near-optimal if optimality is hard to reach). Optimization objectives can be defined as reduction in total costs of the service (reducing costs and increasing revenues) or reduction in the user fees (making the service more attractive).

There are two types of decision support systems for reaching optimality: static and dynamic. Static models hold one major assumption which makes them impractical in real life scenarios. They assume that the service has complete information of all user requests at the start of the each decision-making run. In a ridesharing company, for example, the static model takes the preferences of all the passengers and drivers and matches them accordingly. This defies reality where users of ridesharing services request/offer rides during the course of the day. Static models
are therefore more appropriate for services where user requests are known in advance. In that essence, one can compare ridesharing to carpooling and carsharing to car-renting. Carpooling is made of a number of users who share recurring trips with the similar preferences (on a daily basis) and car-renting, usually, requires users to book a vehicle one or a few days in advance. Therefore, both car-renting and carpooling services can obtain optimal results from static models because all (or most) of the requests are known during each day’s sole model run. Ridesharing can be referred to as carpooling on demand and carsharing can be referred to as car-renting on demand.

Dynamic models, on the other hand, are run multiple times during a day (or the planning period) instead of only once which was the case in static models. Each run considers only those users who have entered the system so far and are still waiting for a match. Unmatched users would eventually leave the system unsatisfied after a certain period of time. In a ridesharing service, for example, a driver may offer a ride and only be willing to wait 30 minutes to be matched with a passenger. After 30 minutes, the driver leaves the system. At every run of the dynamic model, therefore, there are new users who have entered the system and there are users who have left the system unsatisfied.

Comparison of static and dynamic models is insightful. Although static models are impractical in “on-demand” based systems, they could be used as a lower bound (if minimizing costs) model to assess the merits of proposed dynamic models.

The basic ridesharing problem where every driver can only be matched with one passenger and vice versa is an assignment problem which is described in Chapter 2. The carsharing problem where every vehicle is assigned to a list of drivers is a vehicle routing problem and is described in Chapter 3. Both the assignment problem and the vehicle routing problem are NP-hard and cannot be solved within acceptable computation time. Computation time in “on demand” services such as ridesharing and carsharing is critical because the models need to run multiple times in one day (e.g., every 10 minutes in the case of ridesharing). Acceptable computation time is therefore one which is shorter than model run interval duration. Another objective of this thesis is to build local search optimality algorithms to cut down computation times.
Although there is abundant literature on static models for the assignment (carpooling) and the vehicle routing problem (car-renting), little research is devoted to dynamic models. Dynamic models can be useful in practice to reach optimal matches and increase service viability. The objectives of this research are therefore as follows:

- Develop a dynamic model for both the carsharing and the ridesharing problem
- Develop a static model for carsharing and ridesharing to use as a lower bound in the assessment of the dynamic model
- Contradictory to static models, dynamic models are run consecutively at various run intervals. We therefore develop a simulation platform (continuous simulation for ridesharing and discrete event simulation for carsharing) where the dynamic models can run multiple times. A case study is presented for each problem.
- This thesis uses the dynamic and the static models to assess various policies for ridesharing and carsharing. For example, in ridesharing, what pricing strategy should the service provider use to increase profits and what are the implications of such polices.

1.3 Thesis Structure

This thesis is prepared to propose two real-time management models for the cases of ridesharing and carsharing and compare the results to the more common static models. In Chapter 2, a static and a dynamic model are proposed for the case of ridesharing. The static model is also used as a benchmark to evaluate the performance of the more practical dynamic model. The same procedure is followed in Chapter 3 for the case of carsharing. Conclusions and future research directions are provided in Chapter 4.
Chapter 2
Ridesharing

2 Agent Based Model for Dynamic Ridesharing

2.1 Introduction

Dynamic ridesharing is an automated process in which a service provider matches travelers with similar itineraries and time schedules allowing them to travel together and share the costs. These services are dynamic in nature since the users announce their participation at specific times requesting or offering a ride. Advantages of ridesharing for commuters, employers, and governments include travel time and cost savings, increased mode choice options, reduced parking costs, GHG emission reduction, lower traffic congestion (Amey, 2011), and lower fuel costs (Kocur, 1983).

Private vehicle occupancy rates are relatively low in North America. In the United States, the average number of vehicle occupants per vehicle mile was recorded as 1.67 in 2009 (Santos et al, 2011). In Canada, the average occupancy rate for light vehicles is 1.62 persons per trip; the average occupancy rate for the jurisdiction of Ontario is 1.6 (Canadian Vehicle Survey, 2009). The high travel demand of low occupancy vehicles during peak-hours contributes to severely congested network routes. While low occupancy commutes are neither economical nor ecological, the situation could be improved by increasing vehicle occupancy through effective ridesharing programs.

State of the art technological advancements such as GPS-enabled (location aware) smart phones, social networking, data repositories and the internet are key enablers in building successful ridesharing systems (Chan and Shaheen, 2011). Recent ridesharing service providers which bring together drivers and riders are Flinc [Germany, 2011], Avego [Ireland, United States, and China, 2007], Ville Fluide [France, 2011], Carticipate [United States, 2008], Car2gether [Germany, 2010], Carriva [Germany, 2009], and Nuride [United States, 2003]. Although similar in concept, these startups differ in details such as financial transaction methodologies, route generation and provision, social network connections (such as Facebook and Twitter), and subsidy plans. For
example, Avego provides monthly subsidies of $30 to both drivers and passengers whereas Nuride offers incentives such as gift cards, grand prizes and coupons.

Ridesharing has recently gained attention in multidisciplinary areas such as transportation, economics, and social sciences (Kleiner et al., 2011). Any system that aims to popularize ridesharing must provide flexibility, convenience, reliability, and motivation. Flexibility is the system’s ability to adapt to changes in itineraries and time schedules. Convenience is allowing users to state their preferences, such as choice of music and sex of driver/rider. Reliability is achieved through a system with a high matching rate. Finally, motivation can be provided through financial and environmental incentives such as parking discounts and gift certificates in addition to the cost savings by sharing a ride. With these characteristics, a ridesharing service has the potential to compete with the convenience of private door-to-door transportation and low travelling costs of public transportation.

Despite the available technology and numerous organized ridesharing project attempts, there are few successful programs. Although there are many factors involved in the success of ridesharing services, optimization of matches is at their heart. It is therefore critical to investigate shortcomings of former optimization methods and propose more robust systems of ride-matching. Agatz et al. (2012) present a systematic overview of the relevant optimization models that support online dynamic ridesharing. They note that centralized ridesharing optimization methods are not fast enough in realistic-size instances and lack flexibility in devising multi-passenger or multi-hop trips. They also emphasize the significance of introducing novel decentralized rideshare matching and effective decomposition approaches in terms of geographic partitioning based on origins/destinations of participants.

In this chapter, we propose a decentralized rideshare system in which driver/passenger agents evaluate potential pairing options compared to their cost to alone. The objectives of this chapter are as follows:

- Identify the strengths and weaknesses of centralized and agent-based ridesharing systems.
- Develop a mechanism that overcomes some of the shortcomings of the two systems. We compare our model’s performance with a centralized optimization binary integer program.
• Incorporate a multi passenger and a multi driver matching system in the model to increase users’ chances of pairing up.
• Investigate the efficiency of various service provider pricing schemes and the potential impact of each on system reliability and VKT savings.

The remainder of this chapter is structured as follows. In Section 2.2, we describe the literature review of centralized system based optimization and agent-based decentralized optimization mechanisms. In Section 2.3, we present model variables, introduce the various matching constraints, and propose a centralized binary integer program model as a benchmark to evaluate the efficiency of our proposed agent-based model. In Section 2.4, we present our approach to the dynamic ridesharing problem. In Section 2.5, we propose the multi-passenger multi-driver modules of the model. In Section 2.6, we analyze the impact of pricing schemes.

2.2 Literature Review

There are two distinct solution algorithms for the dynamic ridesharing problem – the centralized optimization approach and the de-centralized agent-based solution approach. The fundamental differentiating features of the two approaches lie within the level control in each method. The former uses a single system-wide objective function with all decisions made centrally. This objective function can maximize either the total VKT savings or the number of matched participants (Agatz et al., 2011, Ghoseiri et al., 2011, Amey, 2011). In comparison, the decentralized system is composed of autonomous agents optimizing individual objectives using the available local information perceived from the system.

While centralized optimization techniques provide better quality results they can be computationally infeasible in realistic-size instances of metropolitan areas where thousands of participants join the system hoping to be matched within minutes. Decentralized optimization agents (Kleiner et al., 2011, Winter and Nittel, 2006, Xing et al. 2009), on the other hand, are of interest because they reduce computation time extensively and provide near optimal results.

2.2.1 Centralized System Optimization

Among previous research on centralized system optimization mechanisms, Ghoseiri et al. (2011) propose a dynamic rideshare matching optimization model where multiple/single passengers are
matched with multiple/single drivers based on their proximity to the driver’s route and compatibility of preferences such as pet restrictions. A passenger is considered a valid match for a driver if within walking vicinity of one of the nodes in the driver’s route. The proposed binary integer programming model maximizes the total number of assignments (here referred to as reliability).

Agatz et al. (2011) develop a dynamic ridesharing optimization system where available (online) passengers and drivers are positioned at two sides of a bi-partite graph at every time-step. The weight of the edges that link each driver and passenger are computed based on the total VKT savings in case the match (between the driver and the passenger node). The bipartite graph is solved by binary integer programming in a rolling horizon format where confirmation of matches is delayed until the last minute and in a greedy format where matches are confirmed as soon as they are found. The authors analyze the optimization frequency and conclude that the greedy algorithm, which is less efficient than rolling horizon, should be optimized less often to allow for accumulation of potential participants.

Amey (2011) considers the case of matching one driver with one passenger but allows users to be either a driver or a passenger. The proposed solution algorithm for this problem is a CPLEX approach which solves a general network flow problem with side constraints. Furthermore, a heuristic solution is given by the author where feasible pairs are ranked based on potential VMT savings. The algorithm then selects the top best match, discards the two selected users from the rest of the list, and moves on to the next pair until the list is empty.

2.2.2 Decentralized Agent Based Optimization

Xing et al. (2009) introduce a spontaneous ridesharing system where passenger agents seek potential drivers in the network every two minutes in order to find a ride. The authors show that ridesharing can provide a lower travel time for one passenger in comparison to public transit when enough drivers are available. Winter and Nittel (2006) study the impact of short-range communication devices on disseminating users' information and propose heuristic routing to guide drivers. Similar to Xing et al. (2009), they conclude that increasing the number of “hosts” (drivers) can significantly decrease the average user travel times. However, one of the drawbacks of both models, emphasized by Xing et al. (2009), is that there is no attempt to optimize.
In an attempt to incorporate user utility (trip cost) Kleiner et al. (2011) present an auction-based dynamic ridesharing system where passengers bid on potential rides from available drivers. In this model, a driver values a passenger based on the difference between the cost of his original route and the detour he has to make plus the money he is compensated for by the passenger. The authors then simulate a bid for each passenger. This proposed environment promises a higher number of matches when passengers’ willingness to pay is higher than base costs. The research assumes complete information about time schedules of all users whereas in real life users enter the system at specific times.

In addition to the previous research on decentralized ridesharing, a few studies have utilized the power of nature-inspired meta-heuristic algorithms to solve the problem. In multi-hop ridesharing, Herbawi and Weber (2011) are the only researchers who propose an Ant Colony solution approach to the multi-objective (cost, time, and number of drivers) route planning. Furthermore, Teodorovic and Dell’Orco (2006) propose a meta-heuristic Bee Colony Optimization approach to match multiple passengers with one driver. However, there is a large dimension in the search space of such meta-heuristics due to the large number of routing combinations which may lead to local optima. The results are also not compared to the optimal solutions for small problem sets for better validation.

2.3 Dynamic Ridesharing Setting

To model the dynamic ridesharing problem, we present a set of drivers (denoted by D) and a set of passengers (denoted by P), each of whom have an origin (denoted by $M(.)$) and a destination (denoted by $N(.)$). The two imposed constraints are time and cost. A match is considered infeasible if it violates any constraints of the users.

2.3.1 Time Feasibility

Although there may be several passengers on a driver’s route, not all are feasible matches. One of the fundamental criteria for feasibility is time. We present time feasibility based on that trips have an earliest departure time (from origin) $E(.)$, latest arrival time (to destination) $L(.)$, and trip time flexibility. We assume that latest arrival time is equal to the sum of the earliest departure time, trip travel time, and time flexibility (Emmerink and VanBeek, 1997, Baldacci et al., 2004, Kleiner et al., 2011, Amey, 2011). Trip flexibility is the extra time that the users have to meet
their time constraints. For example, if a driver’s travel time is t minutes her trip flexibility would be $f_{d_1} = L(d_1) - E(d_1) - t$. Announcement time $A(.)$ is the point in time when drivers (passengers) post their ride offer (ride request) online (Agatz et al. 2011). Figure 2-1 illustrates the announcement time, earliest departure time, and lastest arrival time for two participants (passenger p_1 and driver d_1).

Figure 2-1: Time feasibility for one driver and one passenger

For the match to be feasible, certain constraints have to be met. We first introduce the assigned time of a trip as the time that the driver has to depart from his origin to pick up the passenger(s) and denote it by $H(S_i)$ where S_i is the set of participants in car i. To clarify $H(S_i)$, we consider a simple example where one driver d_1 is matched up with one passenger p_1. In this example driver d_1 drives from her origin $M(d_1)$ to passenger p_1’s origin $M(p_1)$, picks him up and drops him off at his destination $N(p_1)$, then drives to her destination $N(d_1)$. The assigned time is set so that neither the driver nor the passenger arrive to their destination after their latest arrival time. We assume that users who still have not found a match stay in the system until they reach their flexibility threshold. As an example, passenger p_1, who is still not paired, leaves the system at $E(p_1) + f_{p_1}$ (f_{p_1} denotes flexibility time of passenger p_1) to reach his destination at his latest arrival time $L(p_1)$. Unmatched users are assumed to reach their destinations through their private vehicles or public transportation.

By denoting the travel time between zones a and b as $T(a,b)$, the assigned departure time for the simple example is:

$$H(S_i) = \min[L(p_1) - T(M(p_1), N(p_1)) - T(M(d_1), M(p_1)), L(d_1) - T(N(p_1), N(d_1)) - T(M(p_1), N(p_1)) - T(M(d_1), M(p_1))] \tag{1}$$

To ensure feasibility, the assigned time also needs to be higher than the earliest departure time of both users ((1a) and (1b)). Furthermore, in (1c) the assigned time has to be higher than the clock
time denoted by \(t \). In Section 2.5.2, \(H(S_i) \) is extended to check time feasibility for multiple passengers.

\[
H(S_i) \geq E(d_1) \quad (1a)
\]
\[
H(S_i) + T(M(d_1), M(p_1)) \geq E(p_1) \quad (1b)
\]
\[
H(S_i) \geq t \quad (1c)
\]

2.3.2 Cost Feasibility

In this proposed dynamic ridesharing setting, a cost is incurred by both the driver(s) and the passenger(s) who are matched. This cost is based on the notion that each participant pays based on the proportion of his initial cost to the total cost of the trip. A simpler version of this cost function is proposed by Agatz et al. (2012). We extend the cost function to include more than one passenger and one driver. We measure trip cost as the total kilometers travelled which could be transformed to monetary units by multiplying the cost by a dollars per kilometer conversion rate. Here, we denote the shortest path distance between zones \(a \) and \(b \) by \(Le(a,b) \) and present the cost of \(j^{th} \) participant in vehicle \(i \) as:

\[
C(s_{ij}) = \left(\frac{Le(M(s_{ij}),N(s_{ij}))}{\sum_j Le(M(s_{ij}),N(s_{ij}))} \times [Total \ Cost] \right) + c(ServiceProvider) \quad \forall \ s_{ij} \in S_i \quad (2)
\]

where \(s_{ij} \) is the \(j^{th} \) participant in the match \(S_i \), and \(c \) is the cost that the service provider charges the participants based on a certain pricing policy for using the service. The total cost is the new cost of the trip which is the total distance travelled by the driver. This total cost can in some instances also include parking cost. To clarify Equation (2), we consider the simple example of one driver and one passenger from Section 2.3.1. The total cost in this example is the summation of three distinct distances presented in the second term of Equation (3). Equation (3) is the cost for the driver. The passenger’s cost is obtained by replacing the numerator by of the first term by \(Le(M(p_1),N(p_1)) \). Hence, assuming that the service provider isn’t charging the participants, the summation of the two costs (for \(d_1 \) and \(p_1 \)) is equal to the total cost shown in brackets.

\[
C(d_1) = \frac{Le(M(d_1),N(d_1))}{Le(M(d_1),N(d_1)) + Le(M(p_1),N(p_1)) + Le(N(p_1), N(d_1))} \times [Le(M(d_1), M(p_1)) + Le(M(p_1), N(p_1)) + Le(N(p_1), N(d_1))] \quad (3)
\]
It is clear from Equation (2) that increasing the number of passengers in a vehicle can divide the cost between more members, potentially resulting in lower cost for each member if the total cost of the trip does not increase too much. We assume that service users will only accept a match if the new cost of their trip is lower than their original trips cost \(C(s_{ij}) \leq Le(M(s_{ij}), N(s_{ij}))\).

2.3.3 Binary Integer Programming for the One Driver One Passenger Case

We present a simple binary integer programming model which can be used as a benchmark solution to evaluate the performance of the proposed agent based model presented in Section 2.4. In this model the first objective is to maximize the total VKT savings (VKTS, presented in Equation 4). However, another important objective to be considered is the matching success rate of the service which is referred to as reliability (Rel, presented in Equation 5). Reliability is the ratio of the matched users to total users. To solve this problem we use the bipartite graph approach similar to the models proposed by Kleiner et al. (2011) and Agatz et al. (2011) where \(x_{ij}\) is a binary variable specifying whether driver \(i\) is matched with passenger \(j\); \(x_{ij}\) is 1 if a match is made. The following problem can be solved by a modified version of the Hungarian algorithm (Kuhn, 1955).

\[
\begin{align*}
\text{Max } VKTS & = \sum_{i,j} x_{ij} C_{ij} \quad \text{(4)} \\
\text{Max } Rel & = \sum_{i,j} x_{ij} \quad \text{(5)} \\
C_{ij} & = Le \left(M(d_i, M(p_j)) + Le \left(M(p_j), N(p_j)\right) + Le \left(N(p_j), N(d_i)\right) - Le \left(M(d_i, N(d_i)) - Le \left(M(p_j), N(p_j)\right)\right) \right) \\
H(S_k) & \geq E(d_i) \quad \forall k \in K \quad \text{(7)} \\
H(S_k) + T(M(d_i, M(p_j)) & \geq E(p_j) \quad \forall k \in K \quad \text{(8)} \\
x_{ij}, (A(d_i) - E(p_j) - f_j) & \leq 0 \quad \forall j \in P \quad \text{(9)} \\
x_{ij}, (A(p_j) - E(d_i) - f_i) & \leq 0 \quad \forall i \in D \quad \text{(10)} \\
\sum_i x_{ij} & \leq 1 \quad \forall j \in P \quad \text{(11)} \\
\sum_j x_{ij} & \leq 1 \quad \forall i \in D \quad \text{(12)} \\
x_{ij} & = 1,0 \quad \text{(13)}
\end{align*}
\]

In Equation (4), the total VKTS is for all matched drivers \(i\) and passengers \(j\). This is captured by the difference between the sum of the original route distances of the two users and the distance of the newly assigned route (Equation 6). Constraints (7) and (8) are set to ensure that neither of the matched users leave their origin before their designated earliest departure time. Constraints (9)
and (10) confirm that both ride offer/request windows of the passenger and the driver overlap. A match is infeasible if, for example, the driver announces a ride offer after the passenger has left the system. Constraints (11) and (12) ensure that every driver/passenger is matched with no more than one passenger (driver). Finally constraint (13) ensures a binary decision variable.

Despite the presence of two objective functions ((4) and (5)), we solve the benchmark problem for VKTS since the agents consider trip cost as the objective to accept a match. For a thorough review of the difference between the two objectives we refer the readers to Agatz et al. (2012) who evaluate the efficiency and importance of each of each objective function.

2.4 Agent Based Model

In the proposed agent based model, a decomposition strategy is deployed to partition participants based on their geographic positions. In Tsao and Lin (1999), and Sarraino et al. (2008) participants were chosen to share a ride only if they lived within two miles, or three kilometers of each other, respectively. Although this assumption omits the geographically infeasible matches, it limits the pairing possibility of the passengers who could be picked up on the route of the driver (Amey, 2011). To reduce the loss of potential driver/passenger matches, an efficient geographic partitioning system is introduced which allows passengers to be matched with drivers who could pick them up en-route. In this research drivers consider passengers whose zone of origin or destination is in the vicinity of one of the zones on the driver’s route. To illustrate this notion, Figure 2-2 depicts a driver d_1 who takes the shortest route from origin $M(d_1)$ to destination $N(d_1)$ and a passenger p_1 who plans to commute from origin $M(p_1)$ to destination $N(p_1)$. The origin and the destination of the passenger, $M(p_1)$ and $N(p_1)$, are in the vicinity of certain zones. This vicinity is defined based on a threshold of distance between zone centroids and is presented in the figure by solid arrows. Driver d_1 considers passenger p_1 as a potential match because p_1’s destination is in the vicinity of the driver’s route; the solid arrow points to a zone in d_1’s path. For the convenience of passengers, it is assumed that drivers deviate from their shortest path to pick up passengers from their origins and drop them off at their destination.
Decentralized optimization allows agents to independently select the lowest cost alternative in order to obtain near optimal system objectives. Based on users’ itineraries, roles (passenger/driver), and the vicinity approach, the system introduces potential passengers who are good candidates for every driver. The driver agents then decide how much they would ask from each passenger and how much their own costs would be reduced by matching with that passenger. Rational drivers and passengers each seek a match that would minimize their costs. This interaction between passenger and driver agents is presented as follows in an auction based setting.

2.4.1 Auction Based Multi-Agent Optimization

Having found the potential passengers for every driver based on the vicinity approach, drivers bid a price (calculated from Section 2.3.2) on each potential passenger. This price is implemented through a single-shot first-price (a.k.a Vickrey) auction (Hoen and Poutre, 2003). This auction is suitable for this problem because a single cost (single-shot) is calculated from the given cost function and the lowest cost is accepted by the passenger.

The auction has three distinct phases: bid, accept, and confirm. Figure 2-3 illustrates the concept of the auction where every driver agent possesses a list of potential passengers (obtained from the vicinity approach) which is sorted from the lowest to the highest cost borne by the driver (as per Equation 2). In the bidding phase, driver agents place a bid on the first passenger agent on their list. Then, a list is created for passenger agents composed of all the driver agents who
placed a bid on them. Passenger agents accept the bid with the lowest passenger cost (as per Equation 2). Following the acceptance phase, drivers review the feedback from passengers and confirm the match. The confirmation phase is critical in multi-passenger cases where the driver bids a price on a ride offered to more than one passenger to lower the total cost by dividing it between more members. Clearly, the driver can only confirm a two passenger ride if both passengers accept the offer. Similarly, the acceptance phase is critical when more than two drivers are involved in offering a ride where the passenger has to transfer between cars. The passenger can then only accept a transfer ride if two drivers bid on the two separate legs of the ride. Finally, confirmed matches are terminated from the auction and the remaining drivers place a bid on the second passenger on their list.

One important factor in the agent based model is the presence of Price Of Anarchy (POA) (Roughgarden, 2005) which happens due to the selfish behavior of individual agents which degrades the efficiency of the system. In the first iteration of the example in Figure 2-3 D₁, D₂, and D₃ place a bid on the first passengers on their list; this is presented by the black arrows in the Figure. While D₁ and D₂ place a bid on the same passenger (P₁), D₁ fails to find a match because D₂ offers a lower cost to P₁. Hence, in the second iteration D₁ has to find the next best passenger. In doing so, D₁ cannot choose P₃ (the second item on D₁’s list) because P₃ was already matched with D₃ in the first iteration. Therefore D₁ has to move to the third item on her list to place her second bid. It is clear that prohibiting D₁ from choosing P₃ may degrade the system performance and introduce price of anarchy in certain circumstances.

Figure 2-3: Auction based optimization

In the dynamic ridesharing problem, users announce their participation at different times. Therefore finalizing matches in the auction may not be optimal since better options may become
available with the arrival of more users. In other words, a match is not permanently terminated from the system and no commitment is made unless time reaches a value close to the assigned departure time of the matched driver. The use of a rolling horizon approach can be used to address this, resulting in the dynamic ridesharing problem (Kleiner et al. (2011); Agatz et al. (2011)) to delay commitment as much as possible in order to find better matches. The flowchart in Figure 2-4 illustrates the concept of the rolling horizon approach along with the auction based optimization mechanism. In this flow chart a fixed-increment time advance approach is used instead of a next-event time advance approach to avoid processing exhaustion when multiple users enter the system in small time intervals. The flowchart is interpreted in the following steps:

1- The proposed algorithm in the flowchart is initiated by setting time t to t^0 which is the start of the run time.
2- At time t, new users enter the system with announcement time of $A(p)$ and $A(d)$, for passengers and drivers, respectively.
3- The new users enter a user pool where every driver agent selects its potential passenger agents based on the vicinity approach. The user pool includes new users, matched and unmatched users who still have not reached their departure time.
4- The driver and passenger agents enter the auction where some users are matched and the rest are unmatched.
5- Matched users who would reach their assigned time in the next time interval are terminated from the system. They are then notified of the match to prepare for the ride. The unmatched users who reach their latest arrival time (plus flexibility time) are also terminated because staying any longer would violate their latest arrival time.
6- The matched and unmatched users who still have time are sent back to the user pool (step 3). This allows for better matches in the next time interval, considering that new users will be joining the pool.
7- Time is advanced by Δt and the new users who have requested/offered a ride are identified and presented to the user pool.

The auction flowchart presented in Figure 2-4 is comprised of the following steps:
1- The algorithm is initiated by setting k to 1, where k is the next best item on every driver’s list. Setting k to 1 means every driver looks at the first (best) item on his list of potential passengers.

2- Drivers bid on the k^{th} best item on their list.

3- Passengers accept the best offered ride based on driver bids. As mentioned earlier, the acceptance phase is important where there is more than one driver for a ride. The accepted bids are then passed back to drivers for confirmation. If an offer is not accepted, it is rejected and no commitment is made. Hence, rejected drivers move on to bid on the $k^{th}+1$ item on their list in the iteration.

4- Drivers confirm the accepted rides by the passengers. This step is critical where there is more than one passenger for one driver. Matched users exit the auction if the requested ride is accepted and confirmed.

5- Auction progresses to the $k^{th}+1$ iteration.

6- Rejected drivers with no more passengers on their list to bid on exit the auction.

7- The auction terminates if no other driver is available to offer a ride. The remaining passengers, then, leave the auction.

Figure 2-4: (Left) Flowchart of the optimization setting, (Right) Flowchart of the auction
2.5 Model Evaluation and Case Study

The case study uses the Sioux Falls network which is composed of 24 nodes, 76 transportation links and 1.96 million individuals (Figure 2-5). We consider only the work trips where earliest departure time of individuals is obtained from a normal distribution function with an average of 7:00 AM and a variance of 1 hour. The travel time flexibilities are assumed to be 20 minutes and the simulation time increment is 5 minutes.

![Figure 2-5: The Sioux Falls network](Image)

2.5.1 Single Driver, Single Passenger

The simplest form of a ridesharing matches one driver with one passenger. In order to assess the efficiency of the agent based model we compare it with the optimal binary integer programming model presented in Section 2.3.3.

We define market penetration as the ratio of the number of ridesharing members over the total number of commuters. For the given example, we select 19 market penetration values ranging from 0 (no active users) to 0.002 (193 active users). Higher market penetration values increase computation time of the benchmark model (above 3 hours) and make comparison with the
dynamic model harder. We execute 10 runs of the proposed agent based model by varying users’ time preferences randomly for every market penetration value. We then compare the obtained reliability and VKTS measures with those of the optimal benchmark. Figures 2-6 and 2-7 present system reliability and VKTS for the centralized benchmark and the agent based model.

The numbers on top of each bar in Figure 2-6 are the ratio of the reliability of the agent-based model over the reliability of the benchmark model (Equation 14). The POA values given in (14) are similar in concept to price of anarchy in non-cooperative game theory.

\[
POA = \frac{Rel^{Agent Based Model}}{Rel^{Benchmark Model}}
\]

(14)

Our analysis confirms that the agent based model gives close to optimal solutions and shows much lower computation times for market penetration values of above 0.0012 (Figure 2-8). The proposed model is able to run for higher market penetration values whereas the benchmark model fails to do so. The computation times given in Figure 2-8 are obtained from the solution algorithm which is coded in Matlab 7.12 running on a dual-core 2.40 GHz desktop computer with 6 GB RAM.

![Figure 2-6: Reliability of the the agent based model (white) and the benchmark model (black)](image-url)
Figure 2-7: VKTS of the agent based model (white) and the benchmark model (black)

Figure 2-8: Calculation time in minutes for the agent based model and the benchmark model
2.5.2 Single Driver, Multiple Passengers

If time limits do not constraint drivers, they may be able provide rides to several passengers on a single trip. The main incentive for accommodating multiple passengers is to distribute the total cost of the trip between more participants. However, increasing the number of participants only makes economic sense when the new trip cost of each entity is lower than their original trip costs. We only consider the case where a driver can offer a ride to a maximum of two passengers. The same principles can be used in cases with more passengers.

Figure 2-9 presents a simple case where one driver is considering two separate passengers. The links between every two nodes in the figure are labeled with the number on the associated edge of the graph. Clearly there are multiple configurations that can be adopted to pick up and drop off passengers. For example, the driver can pick up the passengers consecutively or simultaneously. Table 2.1 presents all the possible driving configurations where x_i denotes travel time and y_i denotes distance of route i. The dashed arrows in the table present original routes and the black solid arrows present the assigned routes. For the case of two passengers, the associated driver cost is $C(d)$ and the passenger costs are $C(p_1)$ and $C(p_2)$ for the first and the second passenger, respectively. These costs are computed as the product of the total cost (TC) and the cost ratio (r_d, r_{p1}, and r_{p2}) obtained from the first term in Equation 2. The trip initiation time is also provided in the table to meet the latest arrival constraints of all users in the vehicle. Intuitively, a match is possible only when every user in the vehicle is set to be picked up at a time after their earliest arrival time.

![Figure 2-9: Link notations when one driver is considering two distinct passengers](image-url)
One of the advantages of the proposed agent-based model is its flexibility in expansion. The model is able to incorporate multi-passerenger settings by adding a module to the auction stage. In this module, drivers bid on both individual passengers and pairs of passengers. Figure 2-10a presents an example of the first stage of an auction of Section 2.4.1 where driver d_1 calculates the costs of offering a ride to passengers p_1 and p_2 simultaneously and individually. The driver first places a bid on both passengers simultaneously because this strategy incurs a lower cost on him. However, the ride can only be finalized if both passengers accept the offer. After acceptance, the driver can confirm the match and finalize his request. On the other hand, considering the scenario where one passenger (p_2) rejects the offer (Figure 2-10b), the driver moves on to the next item in its list (p_1).

One of the objectives of ridesharing users is to cut down their commuting costs. An analysis of the ratio of the new cost to the original cost can indicate how well the system performs in satisfying customers’ needs. To evaluate the performance of the multi-passerenger module, we compare it with the original (single driver, single passenger) model when market penetration is 1%. Figure 2-11a is a scatter plot of original costs (for commuting alone) against the assigned costs (for using the ridesharing system) for the single driver single passenger arrangement. It is clear that no participant uses the system if he has to pay more than the cost of commuting alone. This is presented by the upper boundary line shown in the Figure. Similarly, the minimum cost that a user can be charged in the system is half of its original cost. This happens when both paired participants (the driver and the passenger) commute from the same origin to the same destination.

Figure 2-11b presents the original and new user costs when multi-passerenger matching is enabled. In this Figure, users that were grouped in a vehicle of three members (1 driver, 2 passengers) are presented by gray stars. Similar to Figure 2-11a, an upper boundary also exists for this arrangement by the same logic. However, the lower cost limit here is one third of the original user cost. This means, in the best case scenario, two passengers are matched with a driver all of whom commute from the same origin to the same destination. Hence, the total trip cost is divided between the three users. In general, the maximum price saving ratio when a maximum of m members can be grouped together is equal to $1/m$ of the total trip cost. To elaborate, the flexibility of considering multiple passenger matches opens new matching opportunities with
lower costs for the users. Addition of the multi-passenger module also changes the desired objective function values. The single model (one driver, one passenger) has a reliability of 0.71 and VKTS of 0.29 whereas the multi-passenger model has a reliability of 0.77 and VKTS of 0.36.

Table 2-1: Six different driving patterns when one driver is considering two passengers

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Type</th>
<th>Configuration</th>
<th>Trip Initiation Time (H(S))</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>(H(S) = \min[L(d) - x6 - x5 - x9 - x2 - x1, L(p1) - x5 - x9 - x2 - x1, L(p2) - x2 - x1])</td>
<td>(TC = y6 + y5 + y2 + y1)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>(H(s) = \min[L(d) - x3 - x2 - x10 - x5 - x4, L(p2) - x2 - x10 - x5 - x4, L(p1) - x5 - x4])</td>
<td>(TC = y3 + y2 + y10 + y5 + y4)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>(H(s) = \min[L(d) - x3 - x8 - x5 - x7 - x1, L(p2) - x8 - x5 - x7 - x1, L(p1) - x5 - x7 - x1])</td>
<td>(TC = y3 + y8 + y5 + y7 + y1)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>(H(s) = \min[L(d) - x6 - x8 - x2 - x7 - x4, L(p1) - x8 - x2 - x7 - x4, L(p1) - x2 - x7 - x4])</td>
<td>(TC = y6 + y8 + y2 + y7 + y4)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>(H(s) = \min[L(d) - x6 - x8 - x9 - x7 - x1, L(p1) - x8 - x9 - x7 - x1, L(p2) - x9 - x7 - x1])</td>
<td>(TC = y6 + y8 + y9 + y7 + y1)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>(H(s) = \min[L(d) - x3 - x8 - x10 - x7 - x4, L(p2) - x8 - x10 - x7 - x4, L(p1) - x10 - x7 - x4])</td>
<td>(TC = y3 + y8 + y10 + y7 + y4)</td>
</tr>
</tbody>
</table>
Figure 2-10: (a) driver d_1 bidding simultaneously bidding on two passenger p_1 and p_2 (b) driver d_1 bidding only on passenger p_1

2.5.3 Multiple Drivers Single Passenger

The arrangement where a passenger is able to transfer between potential driver vehicles that make up portions of its path is called the multi-hop rideshare setting. Passengers who do not find single rides can move closer to their destination one hop at a time. Incorporating such system into the ridesharing company policy has been emphasized by researchers (Gruebele, 2008, Agatz et al., 2012), yet seldom explored. Cortes et al. (2010) are among the few who present a generalized classic pickup and delivery problem that encompasses the flexibility of allowing passengers to transfer between vehicles at specific locations called transfer points. One major component in Cortes’s model and in all transfer related research is the presence of hubs where objects (passengers, goods, etc.) can relocate to another unit of transportation. Shahin and Nickel (2011) provide a thorough review of the hub location problem in transportation networks and propose a heuristic model which cuts down the computation time of the conventional MIP models when solving the hub location problem. In this section, we propose a simple fixed hub location methodology and present the details of how passenger agents can use such hubs to request two individual rides instead of one.

We assume that the location of the hub(s) is exogenous to the model and is set at the zone(s) with highest volume of traffic which enhances connectivity between vehicles. Figure 2-12 presents a simple case where one passenger transfers between two distinct drivers to reach his destination. In this situation, the passenger first hops off the first driver’s vehicle to reach the designated hub. Then he transfers to another vehicle to reach his destination. In order for this match to be successful both cost and time constraints need to be met. The passenger (p) accepts this match
only if it costs him less money than taking the original direct route to his destination. Moreover, the passenger will not leave his origin before his earliest departure time and cannot get to his destination after his latest arrival time. Similarly, the two drivers \((d_1, d_2)\) would confirm to offer segments of this ride if their individual costs are cut down.

Figure 2-11: Original and new cost for members when multi-passenger matching is not enables (top) and enabled (bottom)
For better presentation of the required constraints, we define time and distance of path i by y_i and x_i, respectively. We use the route identification numbers given in Figure 2-12 where the hub in Figure 2-12 is denoted by h.

![Figure 2-12: Schematic of the case where one passenger transfers between two vehicles](image)

2.5.3.1 Cost Constraints

The passenger accepts to make a transfer if its total ridesharing cost is lower than its original cost. The cost of the passenger, however, is divided between the two drivers who are offering the ride. We denote the fee that the passenger pays to drivers d_1 and d_2 by c_1 and c_2, respectively. These costs are computed from Equation 2:

\[c_1 = \frac{x_2}{x_2 + x_7} (x_1 + x_2 + x_3) \] \hspace{1cm} (15-1)

\[c_2 = \frac{x_5}{x_5 + x_9} (x_4 + x_5 + x_6) \] \hspace{1cm} (15-2)

The sum of these two individual costs ($c_1 + c_2$) must therefore be lower than the passenger’s original cost (x_B).

Similarly, the cost borne by the two drivers must be lower than their original cost. This can be easily calculated from Equation 2.

2.5.3.2 Time Constraints

In order for the multi-hop ride to be accepted, time constraints of all individuals in a car must be met. Hence, the two drivers and the passenger must leave their destination at some time after
their earliest departure time and reach their destination before their latest arrival time. To obtain such constraints we begin from the end of the second trip where driver d_2 drops off the passenger at his destination. We present the trip initiation time of the second leg of the trip as:

$$H(S_2) = \min(L(d_2) - y_6 - y_5 - y_4, L(p) - y_5 - y_4) \quad (16-1)$$

where $H(S_2)$ denotes the departure time of the second driver from her origin (initiation time). The calculated $H(S_2)$ ensures that neither the second driver nor the passenger reach their destination after their latest arrival time. From the given departure time of the second driver, we compute the initiation time of the first leg of the trip as:

$$H(S_1) = \min(L(d_1) - y_3 - y_2 - y_1, H(S_2) + y_4 - y_2 - y_1) \quad (16-2)$$

Equation (16-2) confirms that the first driver reaches her destination before her latest arrival time and that the passenger reaches the hub before the designated time to transfer to the second vehicle ($H(S_2) + y_4$). In other words, if the second driver leaves her origin at $H(S_2)$, she would be at the hub at $H(S_2) + y_4$. Hence the passenger needs to find a ride to the hub before this time. Furthermore, passengers are not inclined to wait at the hub for long times. Hence, the following constraint confirms that the waiting time of the passenger at the hub is lower than a maximum predefined waiting time (W_{max}) which we, for this study, set to 10 minutes.

$$(H(S_2) + y_4) - (H(S_1) + y_1 + y_2) \leq W_{max} \quad (16-3)$$

The final time constraints that need to be checked are that the initiation time is after the earliest departure time of both drivers and that the passenger is picked up by the first driver after his earliest departure time.

Similar to Section 2.5.2 a new module is added to the core of the algorithm to accommodate multi driver matching. The main input to this module is the index of the hub zones. The algorithm then starts by finding potential passengers who could use each hub as a transfer point to relocate to another vehicle. This is done by considering the best transferring scenarios at each hub with the following features:

- The passenger and the first driver’s origin is the same zone ($x_1=0$)
• The first driver’s destination and the second driver’s origin are both located at the hub zone \((x_3=0, x_4=0) \). This condition makes the original path of the first driver and the passenger the same \((x_2=x_7) \)

• The second driver and the passenger’s destination are located in the same zone \((x_6=0, x_5=x_9) \).

Choosing such scenarios makes the passengers consider the furthest hubs as a transfer point. In other words, passengers choose hubs far enough from their origin and destination as long as

\[
\frac{x_2+x_5}{2} \leq x_8
\]

which is obtained from the cost constraint.

The passengers, hence, request two more rides from their origin to the hub and the hub to their destination in addition to their original request which asked for a straight ride from their origin to their destination. The transfer rides are accepted only if two drivers bid on the two legs of the trip and the constraints (time and cost) are met.

Table 2-2 presents the two system outcomes (Reliability and VKTS) and the number of transfers made for 3 different hub scenarios and 3 market penetration rates. It is clear that as the market penetration rate increases there are more opportunities to transfer between drivers. This is shown in the table for the case of 1 hub where increasing market penetration raises the number of transfers from 0 to 196.

The second important conclusion of Table 2-2 is that increasing the number of hubs for higher market penetration rates has a more significant impact. For example, increasing the number of hubs from 1 to 3 for 0.2% market penetration raises the number of transfers by only 1, whereas for a 1% market penetration rate, the number of transfers is increased by 106. This happens because in higher market penetration rates there are more passengers scattered in the network which could benefit from more hubs.
Table 2-2: Reliability (first number in each cell), VKTS (in parenthesis), and number of transfers (last number in each cell) for 3 different market penetration values (0.2%, 0.5%, and 1%) and 3 potential hub scenarios

<table>
<thead>
<tr>
<th>Hub Scenario</th>
<th>Market Penetration Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.20%</td>
</tr>
<tr>
<td>1 Hub</td>
<td>0.56 (0.19)</td>
</tr>
<tr>
<td>2 Hubs</td>
<td>0.56 (0.19)</td>
</tr>
<tr>
<td>3 Hubs</td>
<td>0.56 (0.19)</td>
</tr>
</tbody>
</table>

* 1% penetration rate is equivalent to 19,600 agents

2.6 Cost-Revenue Analysis and Survival of Service Providers

A variety of pricing schemes can be administered by rideshare service providers to produce profits. Prices should be low enough to attract potential users and high enough to compensate the costs of the provider. The viability of a rideshare service depends on what price to charge the service users.

Figure 2-13 presents the collected revenue by the service provider when different pricing schemes are administered. The paired users in the system are charged (by the system provider) a certain ratio of the total cost of their entire trip called the commission rate. Assuming that the provider incurs no expenses, the revenue increases with the compensation rate until it reaches its maximum value at the compensation rate of 0.5, then it drops. This drop in revenue happens because higher commission rates increase the last term in Equation (2) making the trip more expensive for the users than travelling alone. The second peak in the revenue is for those users sharing the same origin and destination where each user pays half of the total cost. These users accept their assigned matches to the point where they have to pay the service provider the cost of their entire trip (commission rate of 1).

The increasing revenue in Figure 2-13 does not necessarily indicate that service providers can increase their commission rates to 50% to maximize their revenue. Although this may work for one day, it leads to lower reliability for the upcoming days because users who were denied
service due to high costs may not return. Figure 2-14 illustrates the reliability measure for different commission rates. It is clear in the Figure 2-14 that system reliability decreases as the service provider decides to charge more.

Figure 2-13: Revenue ratio (obtained Revenue / maximum Revenue) with respect to the commission rate

Figure 2-14: System reliability with respect to commission rate
2.7 Summary of Key Findings

A new agent based model is introduced in this chapter for the dynamic ridesharing problem. This agent based model uses a vicinity approach which reduces the choice set made of the passengers that could be matched with each driver. Drivers and their choice sets (composed of passenger) are engaged in an auction algorithm where drivers bid based on costs, passengers accept bids, and finally drivers confirm the bids.

The results of the agent based model are compared to a static centralized assignment model. Two measures of effectiveness are introduced to assess the performance of the agent based model when compared to the static model. The measures (Reliability and vehicle kilometers travelled) are very close in the two models.

The agent based model is then expanded to allow for multi-passenger single-driver and multi-driver single passenger matches. Results show higher VKT savings for the multi-passenger single driver case compared to other cases.

It is assumed in this chapter that the ridesharing company charges each matched driver and passenger a percentage the new cost of their trip. A sensitivity analysis is performed on the revenue of the ridesharing company with respect to the charged percentage. Initially, as this percentage increases, the company obtains higher revenues. However, as this percentage further increases, less users are willing to use the system due to increased costs (paid to the service provider). Results show that revenue is maximized when this percentage is set at 50%. However, system reliability is always reduced when this percentage is increased.
Chapter 3
Carsharing

3 A Dynamic Carsharing Decision Support System

3.1 Introduction

Urban carsharing services provide individuals with access to a fleet of shared-use vehicles without the costs and responsibilities of private vehicle ownership. Members of these services typically pay for subscription-access plans and are charged through hourly rates. Further benefits of carsharing are reduced parking costs, mitigated environmental impact, and availability of an alternative transportation mode (Katzev, 2003). City Carshare in San Francisco, the largest non-profit carsharing organization in North America, released an environmental report in 2013 outlining its role in reducing a total of 25 million vehicle miles, 85 million pounds of CO$_2$ emissions, and 4.3 million gallons of gasoline (City Carshare 2013).

CarSharing organizations (CSO) are commonly classified based on configuration into one-way and two-way systems. Two-way systems (e.g., Zipcar and Autoshare) restrict vehicles to be picked up from and returned to the same station. One-way carsharing systems (e.g., ICVS and Praxitele), on the other hand, permit users to return the vehicle to a location of choice as long as the drop-off station and time is indicated in advance. While two-way systems are far more common and account for 94% of all North American carsharing memberships (Shaheen et al., 2006), one-way systems are less adopted. This is mainly due to the issue of vehicle imbalance which happens when cars shift towards certain destinations in the network. Some CSOs such as Car2Go address vehicle imbalance by employing drivers to relocate the vehicles to high demand locations. Such relocation operations increase costs for the CSOs.

Despite high relocation costs, the number of one-way systems is rising. Communauto, a privately owned carsharing organization founded in city of Québec in 1994, has inaugurated the first electric one-way carsharing service in Canada (Communauto, 2013). This pilot project aimed to evaluate the benefits of one-way systems and was initiated due to public consultations that showed the demand for such systems. To complement such pilot projects, better dynamic vehicle relocation decision support tools need to be designed which consider dynamically the location of
all vehicles in the fleet and locations of new user requests. Accounting for these two, the objective is to minimize total vehicle relocation costs. This tactical model differs from higher level decision making models which mainly focus on where to locate carsharing parking stations and what fleet size to use based on aggregate demand values.

The main objectives of this chapter are as follows:

- Present a benchmark that considers simultaneously the complete set of all user requests received in a particular day assuming user requests are known in advance
- Propose a dynamic integrated simulation-optimization model which takes online user requests and acts as a decision support tool for CSOs to maximize system profit
- Perform sensitivity analysis on the fleet size of each system configuration and highlight the important factors and policies which impact both the fleet size and vehicle relocation costs

This chapter is structured as follows. In Section 3.2, we describe the literature review of previous operational models on carsharing systems. In Section 3.3, we explain the user preferences, constraints, and problem assumptions. Sections 3.4 and 3.5 present the benchmark model and the dynamic model, respectively. In Section 3.6, we analyze both models for the case of Autoshare in Toronto. Finally, in Section 3.7, we highlight the major findings of the article.

3.2 Literature Review

Previous research on carsharing mainly focuses on its environmental impacts (Steininger et al., 1996, Cervero et al., 2007, Firnkorn and Muller, 2011), market dynamics (Shaheen and Cohen, 2007, Shaheen et al., 2006, Vine et al., 2013), users’ behavior (Celsor and Millar-ball, 2007, Morency et al. 2010, Habib et al., 2009, Habib et al., 2012), and relationship with public transit (Stillwater et al., 2009). The core of CSO operations, however, has received less attention. Table 3-1 presents previous operations models of CSOs.

Barth and Todd (1999) develop a simulation model of carshare operations with inputs and measures of effectiveness that allow for scenario analysis. They conclude that a sufficient fleet size for satisfying customers is 3-6 vehicles for every 100 trips but that 18-24 vehicles per 100 trips are required to minimize relocation costs. Fan et al. (2008) propose a multi-stage stochastic
linear integer model which attempts to capture system uncertainties such as carsharing demand variation. The objective function of their model maximizes the revenue obtained from servicing customers while minimizing the cost of vehicle relocation.

More recently, Kek et al. (2009) and Correia and Antunes (2012) propose two distinct mixed integer programming models (MIP) that aim at optimizing specific features of CSO operations. Kek et al. design a novel three phase optimization-trend-simulation (OTS) decision support system for CSOs to indicate a set of near-optimal manpower and operating parameters for the vehicle relocation problem. For a carsharing company in Singapore, they conclude that optimization of manpower can reduce staff expenses by up to 50% and zero vehicle time (duration of vehicle shortage at parking facilities) by up to 13%.

Correia and Antunes (2012), on the other hand, focus on the fleet size, number of vehicle relocations, depot size, and location of potential parking facilities. Considering all these decision variables, the authors present a mixed integer optimization MIP approach to maximize CSO revenues while minimizing costs such as vehicle maintenance, parking provision, vehicle depreciation, and vehicle relocation. The study concludes that a vehicle to trip ratio of 22.7 per 100 trips is the optimal fleet composition which confirms the finding of Barth and Todd (1999).

Correia and Antunes and Kek et al. both verify the importance of system optimization in reducing the expenses of one-way carsharing systems. Both, however, consider temporally aggregated demands which result in static models. The results can therefore be biased since trip specifications such as user request time are neglected. Realizing this drawback, Jorge et al. (2012) apply the Correia and Antunes model in a simulation platform to capture the impact of demand variability on model results. They use the traditional minimum cost flow algorithm to setup the relocation problem and set the fleet size to the maximum number of required vehicles during the simulation. The model, while acknowledging the importance of user request patterns, does not capture trade-offs between CSO features such as fleet size and vehicle relocations.

More recently, El Fassi et al. (2012) propose a more holistic discrete event simulation that assists decision makers in selecting the best system improvement strategies. The model considers the demand growth of the system while maximizing members’ satisfaction and minimizing the fleet size.
<table>
<thead>
<tr>
<th>Authors (year)</th>
<th>Objective Function</th>
<th>Main Decision Variables</th>
<th>Solution Methodology</th>
<th>System Configuration</th>
<th>Study area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barth and Todd (1999)</td>
<td>Minimize average wait time, number of customers waiting, number of relocations</td>
<td>Effective fleet size</td>
<td>Simulation</td>
<td>One-way</td>
<td>Coachella Valley</td>
</tr>
<tr>
<td>Fan et al. (2008)</td>
<td>Maximize revenue, minimize vehicle relocations</td>
<td>Vehicle usage, fleet size</td>
<td>Stochastic programming</td>
<td>One-way</td>
<td>_</td>
</tr>
<tr>
<td>Kek et al. (2009)</td>
<td>Minimize vehicle relocation, minimize staff utilization cost, minimize demand rejection penalty</td>
<td>Crew size, staff waiting time, vehicle relocation</td>
<td>Mixed Integer Programming (MIP)</td>
<td>One-way</td>
<td>Singapore</td>
</tr>
<tr>
<td>El Fassi et al. (2012)</td>
<td>Maximize member satisfaction, minimize fleet size</td>
<td>Parking capacity, station locations</td>
<td>Discrete event simulation</td>
<td>_</td>
<td>Montreal</td>
</tr>
<tr>
<td>Correia and Antunes (2012)</td>
<td>Maximize revenue, minimize vehicle maintenance, relocation, and depreciation</td>
<td>Depot size, depot location, fleet size, vehicle relocations</td>
<td>Mixed Integer Programming (MIP)</td>
<td>One-way</td>
<td>Lisbon</td>
</tr>
<tr>
<td>Jorge et al. (2012)</td>
<td>Maximize revenue, minimize vehicle maintenance, relocation, and depreciation</td>
<td>Depot size, depot location, fleet size, vehicle relocations</td>
<td>Simulation – Mixed Integer Programming (MIP)</td>
<td>One-way</td>
<td>Lisbon</td>
</tr>
</tbody>
</table>
3.3 Carsharing Problem Setting

3.3.1 User Schedules

Carsharing members’ needs can be accommodated if certain constraints are observed. Time is one important concern. Users who wish to leave their origin and arrive at their destination at a specific time commonly provide information on their time schedule preferences. We assume that trips have certain attributes such as a desired departure time (from origin parking facility), arrival time (to destination parking facility), and reservation time. Trip reservation time is defined here as the time between the user’s announcement time and the departure time, where the announcement time is the time when a user requests a vehicle. A minimum reservation time can be imposed by CSOs. Figure 3-1 shows a generic illustration of user time schedules.

![Figure 3-1: Time schedule of users](image)

3.3.2 Fleet Size and Vehicle Relocation

CSOs make decisions about fleet size and vehicle relocation policy. A CSO can reduce its fleet size by increasing vehicle relocations. Furthermore, increasing the required reservation time in the system allows more time to relocate the vehicles. Figure 3-2 illustrates the trade-off between fleet size and vehicle relocation where user u_2 can be serviced by either relocating a vehicle from user u_1’s destination to u_2’s origin (Figure 3-2a, dotted arrow) or positioning an extra vehicle at u_2’s origin (Figure 3-2b). Vehicle relocation requires that the time between u_1’s arrival and u_2’s departure is longer than the travel time between u_1’s destination and u_2’s origin. The relocation travel time must also be less than the reservation time for passenger u_2.
3.4 Benchmark Model

The objective of the benchmark model is twofold. First, the model is a tool to assess policies assuming that the CSO has advance information about users’ itineraries. Second, the benchmark is designed to be compared to a more realistic dynamic model where users enter the system at their announcement times. The benchmark model, therefore, has advantages over reality since the announcement times of the users are known in advance. The solutions obtained from this benchmark act as a lower bound for the dynamic model presented in Section 3.5.

The following assumptions are made for the benchmark model:

1- Total demand is satisfied. This assumption is presented as one of the constraints in the problem formulation but can be relaxed in the dynamic model.

2- The capital cost of purchasing a vehicle for the system is much higher than any value of vehicle-km relocation. A new vehicle is added to the fleet only if a user cannot be serviced by any of the existing available vehicles. Similarly, the cost of vehicle relocation is much higher than parking costs.

3- Parking facility locations are known in advance and parking spaces are abundant in all the designated facilities. However, the variable cost for parking (measured in dollars per hour) in each facility can vary.

4- Vehicles can be relocated between parking lots.
5- Reservation time is a policy imposed by the CSO which all users follow exactly. We assume that all user announcement times are their departure times less reservation time. Setting reservation time to zero implies that all users request a car with no prior notice.

6- We consider only trips where the vehicle is booked and returned on the same day.

7- CSOs charge users by minutes travelled.

The following are the notations of the sets, decision variables, and parameters used to represent the one-way system configurations. These definitions introduce the preferences of users, CSO features, and the transportation network characteristics:

Users:

- $U = \{u_1, ..., u_i, ..., u_m\}$: set of members who wish to use the service during study time
- M_i: origin parking lot of u_i
- N_i: destination parking lot of u_i
- D_i: departure time of user u_i from his/her origin
- A_i: arrival time of user u_i at his/her destination
- V_i: trip announcement time of user u_i
- W_i: activity duration time of user u_i

CSO operations:

- K: set of all vehicles
- P: set of all reserved parking facilities of the CSO
- γ_p: unit cost of parking at parking facility p [dollars per minute] paid by the CSO
- $s_{t_{ij}}$: time when a vehicle leaves the destination of user i to relocate to the origin of user j
- Pr: price rate based on minutes travelled by users [dollars per minute]
- Cr: unit cost of relocation based on time [dollars per minute]
- F: system reservation time [minutes]
- n_k: initial location of vehicle k. This initial location can change in each iteration of the dynamic model.
- Av_k: availability time of vehicle k; time when vehicle k becomes available. Availability time of each vehicle can change in each iteration of the dynamic model.
• $x_{ij} = 1,0: 1$ if a vehicle is relocated from the destination of user i to the origin of user j

• $y_{kj} = 1,0: 1$ if a vehicle is relocated from n_k the origin of user j

• n_0: a hypothetical depot

Transportation network:

- $tr(a,b)$: travel time of a trip originating at parking facility a and terminating at parking facility b [minutes]

Using the above notations, the one-way system configuration model is formulated similar to the multiple travelling salesman problems (mTSP) with differences in time window constraints and sub-tour elimination constraints (Kara and Bektas, 2005). The formulation is presented as follows:

\[
\begin{align*}
\text{Min } \Pi &= [Z \times |K|] + \sum_i \sum_j [x_{ij} \times tr(N_i,M_j)] \times Cr + \sum_i \sum_j \gamma_{N_i} \times (s_{ij} - A_i) + \gamma_{M_j} \times (D_j - s_{ij} - tr(N_i,M_j))] \\
\sum_{i \in \{n_0,1,2,...,r\}} x_{ij} &= 1 \quad \forall j \in U \quad (1a) \\
\sum_{i \in \{n_0,1,2,...,r\}} x_{ij} - \sum_{i \in \{n_0,1,2,...,r\}} x_{ji} &= 0 \quad \forall j \in U \quad (1b) \\
q_{ij} &= \max(V_j,A_i) \quad \forall i,j \in U \quad (1c) \\
x_{ij} \times (D_j - tr(N_i,M_j) - q_{ij}) &\geq 0 \quad \forall i,j \in U \quad (1d) \\
st_{ij} &\leq (D_j - tr(N_i,M_j)) \times x_{ij} \quad \forall i,j \in U \quad (1e) \\
st_{ij} &\geq A_i \times x_{ij} \quad \forall i,j \in U \quad (1f) \\
x_{ij} \times tr(N_i,M_j) &\leq F \quad \forall i,j \in U \quad (1g) \\
\sum_{j \in \{1,2,...,r\}} x_{n_0j} &= |K| \quad (1h) \\
x_{ij} &\in \{0,1\} \quad \forall i,j \in U \quad (1i)
\end{align*}
\]

The objective function (1a) is composed of three terms that minimize the fleet size, relocation operations, and parking costs, respectively. The first term is the product of a large number Z and the fleet size which complies with Assumption 2. The second term is self-explanatory and the
third term is composed of two different costs which are the costs of parking at user i’s destination $(\gamma_{N_i} \times \left(st_{ij} - A_i\right))$ and user’s j’s origin $(\gamma_{M_j} \times \left(D_j - tr\left(N_i, M_j\right) - st_{ij}\right))$, respectively. Once the constants in the third term of (1a) are eliminated, it can be converted to $(\gamma_{N_i} - \gamma_{M_j}) \times st_{ij}$.

This objective function is designed in a way such that $Z \gg Cr \gg \gamma$ which implies that the marginal rates of substitution between the three components can be neglected. In (1a), we neglect the price rate (Pr) of the system because all demand is served which makes the monetary revenue of the system constant and equal to $\sum_i t(M_i, N_i) \times Pr$.

Constraints (1b) ensure that every user is served. Constraints (1c) are flow balancing constraints. In (1b) and (1c), n_0 is a hypothetical depot that is common in the conventional mTSP. The cost of travelling from n_0 to every user’s origin is equal to Z and the cost of travelling from every user’s destination to n_0 is zero. The high Z value ensures that vehicles are not added to the fleet unless they are needed. The zero cost of every user destination to n_0 ensures tour continuity.

Constraints (1d) and (1e) act as sub-tour elimination constraints (Proposition 1). The purpose of (1e) is to ensure time feasibility between user i and j’s itineraries. Constraints (1f) and (1g) ensure that the relocation time between users i and j is within the allowable time threshold. This threshold is between A_i and $(D_j - tr\left(N_i, M_j\right))$. In (1f), a vehicle travels $tr\left(N_i, M_j\right)$ minutes and has to arrive to M_j before D_j to serve user j. In (1g), a vehicle can leave N_i for M_j only after user i arrives which is at A_i. These constraints along with the third term in the objective function $(\left(\gamma_{N_i} - \gamma_{M_j}\right) \times st_{ij})$ indicate three different possibilities for st_{ij}:

1- st_{ij} is equal to 0 whenever x_{ij} is 0
2- st_{ij} is equal to A_i whenever x_{ij} is 1 and $(\gamma_{N_i} - \gamma_{M_j}) > 0$
3- st_{ij} is equal to $(D_j - tr\left(N_i, M_j\right))$ whenever x_{ij} is 1 and $(\gamma_{N_i} - \gamma_{M_j}) < 0$

Constraints (1h) ensures that relocating a vehicle between N_i and M_j is only possible when the travel time $tr\left(N_i, M_j\right)$ is below the reservation time. Constraints (1i) and (1j) are self-explanatory.

Proposition 1. Constraints (1e) act as Sub-tour Elimination Constraints (SEC).
Proof. We define relation R for which the domain is the 2-dimensional set of all i's and j's and the range is $\{0,1\}$ depending on whether a match between users i and j is possible. Therefore if x_{ij} has the potential to be 1, then $iRj = 1$. Conversely, if x_{ij} does not have the potential to be 1, then $iRj = 0$.

By showing that relation R is asymmetric, we prove that no sub-tour can be made between two users. Similarly, by showing that relation R is intransitive, we prove that no tour can be made between three or more users.

Asymmetric Relation: According to (1e) x_{ij} can be equal to 1 ($iRj=1$) if $A_i \leq D_j$ (I). Given the continuous and unidirectional nature of the time continuum, we know $D_j \leq A_j$ (II) and $D_i \leq A_i$ (III). Considering (I), (II), and (III) we conclude that $A_j \leq D_i$ which contradicts constraint (1e) and leads to $jRi=0$.

Intransitivity Relation: We show the intransitivity relation for the case of 3 users i, j, k which can be easily extended to any higher number of users. Assuming that $iRj=1$ and $jRk=1$, we show that $kRi=0$. From $iRj=1$ we know $D_i \leq A_i \leq D_j$ (I'), and from $jRk=1$ we know $A_j \leq D_k \leq A_k$ (II'). Given (I') and (II'), we conclude that $D_i \leq A_k$ which contradicts constraint (1e) and leads to $kRi=0$.

This completes the proof. □

Given the asymmetric relation presented in Proposition 1, the maximum number of solutions that can be considered for the benchmark is the number of edges in a complete graph with r (number of users) nodes which is $r \times (r - 1)$. Many of these potential matches are not feasible due to constraint (1e). We identify such infeasible matches to reduce computation time before running the model to decrease variables and computational burden.

3.5 Dynamic Relocation Model

In reality, carsharing companies have a fixed fleet size which is not subject to immediate changes. The dynamic relocation model takes the fleet size as an input and relocates the available vehicles between the users. Contrary to the benchmark model, the constant fleet size in the dynamic model implies that not all users will necessarily be serviced unless the maximum
number of needed vehicles (calculated from the benchmark model) is obtained. In other words, any fleet size lower than the maximum fleet size calculated in the benchmark model leads to some unserviced demand. This motivates CSOs to relocate their vehicles with the incentive of maximizing profit. Profit is commonly generated through either travel time or travel distance of the users. Therefore vehicles are most beneficial when assigned to users who travel longer and require less relocation to be accommodated.

We present the the dynamic relocation model through an integrated optimization-simulation platform. The optimization stage is composed of two phases: Vehicle Relocation Optimization (VRO) and Parking Inventory Optimization (PIO). In Section 3.5.1, we present the the two optimization phases and explain the simulation platform in Section 3.5.2.

3.5.1 Optimization: Vehicle Relocation and Parking Inventory

3.5.1.1 Vehicle Relocation Optimization (VRO)

The VRO phase functions similar to the benchmark with the following exceptions:

1- The price rate is added to the objective function
2- The fleet size is constant and initial vehicle locations are inputs to the model
3- Time of relocation (third term of (1a)) is eliminated from the objective function
4- Some demand is left unserviced

The VRO problem is formulated as follows:

\[
\begin{align*}
\text{Max } \omega &= \sum_i \left[\sum_j x_{ij} \times \left[tr(M_j, N_j) \times Pr - tr(N_b, M_j) \times Cr \right] - \sum_k \left[\sum_j \left(\left(tr(M_j, N_j) \times Pr - tr(n_k, M_j) \times Cr \right) - \sum_{i=1,2,...,r} x_{ij} + \sum_{k=1,...,|K|} y_{kj} \right) \right] \right] \\
\sum_{i=1,2,...,r} x_{ij} + \sum_{k=1,...,|K|} y_{kj} &\leq 1 \quad \forall j \in U \quad (2a) \\
\sum_{i=1,2,...,r} x_{ij} + \sum_{k=1,...,|K|} y_{kj} - \sum_{i=1,2,...,r} x_{ji} &= 0 \quad \forall j \in U \quad (2b) \\
\sum_j y_{kj} &\leq 1 \quad \forall k \in K \quad (2c) \\
y_{kj} \times (Av_k + tr(n_k, M_j) - D_j) &\leq 0 \quad \forall i, j \in U \quad (2d)
\end{align*}
\]
\[x_{ij} \times (D_j - tr(N_i, M_j) - A_i) \geq 0 \quad \forall i, j \in U \quad (2f) \]

\[x_{ij} \in \{0, 1\} \quad \forall i, j \in U \quad (2g) \]

\[y_{kj} \in \{0, 1\} \quad \forall i, j \in U \quad (2h) \]

The objective function \(\omega \) in (2a) maximizes the total profit of the system by considering the generated revenue from user \(j \) \(t(M_j, N_j) \times Pr \) when he/she travels from \(M_j \) to \(N_j \) and the cost of relocation when a vehicle is transferred from user \(i \)'s destination to user \(j \)'s origin or when vehicle \(k \) is transferred from its initial location \(n_k \) to user \(j \)'s origin. Constraints (2b) ensure that no user is served more than once. Constraints (2c) are flow balancing constraints with \(n_0 \) as a dummy node where the cost of relocating a vehicle from every user's destination to \(n_0 \) is zero. \(n_0 \) is added to ensure constraints (2c). Constraints (2d) ensure that no vehicle is assigned to two users. Constraints (2e) guarantee that there is enough time between the availability time of vehicle \(k \) and the departure time of user \(j \) if the vehicle is to be assigned to that user. Availability time of vehicle \(k \) \((Av_k) \) is the point in time when vehicle \(k \) is free to be assigned to any user. Availability of vehicles changes every time the model is run and depends on which users are confirmed. This is further elaborated in Section 3.5.2. Constraints (2f) are similar to (1e) except that \(q_{ij} \) is replaced with \(A_i \). This happens because the dynamic model has no a priori knowledge of all users and only considers users who have already announced their requests. Constraints (2g) and (2h) are self-explanatory.

3.5.1.2 Parking Inventory Optimization (PIO)

The objective of Parking Inventory Optimization (PIO) is to take \(x_{ij} \) and \(y_{kj} \) values of the VRO phase as an input and find the optimal relocation times \((st_{ij}, st_{kj}) \). In this section, we relax the simplified assumption of Section 3.4 that parking facilities do not have capacities and present a more realistic assumption. Carsharing organizations, in reality, have a predefined number of reserved parking spots at designated parking facilities. There is a higher incurred cost of storing any additional number of vehicles that surpasses the original number of reserved spots (Figure 3-3). The normal parking rate \(\gamma^1 \) increases to \(\gamma^2 \) when the number of occupied spots are beyond reserved capacity.
Figure 3-3: Normal parking rate and increased parking rate when vehicles surpass capacity

The following constants and sets are used to formulate the PIO problem:

- W_p: set of every user where a vehicle is relocated from that user’s destination to parking facility p
- L_p: set of every user where a vehicle is relocated from parking facility p to that user’s origin
- S_p: set of all vehicles that are relocated from parking facility p
- H_p: set of all vehicles that are relocated to parking facility p
- I_p: total initial number of vehicles located at p
- Ar_t^p: the number of users who arrive to parking facility p before time t
- De_t^p: the number of users who depart from parking facility p before time t
- cap_p: reserved capacity of parking facility p

Both Ar_t^p and De_t^p are easily obtained from the accepted set of users from the VRO phase. We denote total occupancy of parking facility p at time t by $q_{pt} = q_{pt}^1 + q_{pt}^2$ where q_{pt}^1 is occupancy below capacity cap_p (allowable capacity of parking facility p) and q_{pt}^2 is any additional parking volume that violates the reserved capacity. Hence, q_{pt}^2 can only be above zero when $q_{pt}^1 = cap_p$.

To formulate the PIO problem, we discretize time and transform x_{ij} and y_{kj} of the VRO phase into $z_{ijt}^{p_1p_2}$ and $z_{kjt}^{p_1p_2}$ where $p_1 = \{N_i, n_k\}$ and $p_2 = M_j$. Decision variable $z_{ijt}^{p_1p_2}$ is a binary
variable and is equal to 1 when a vehicle is relocated from $p_1(N_i)$ to $p_2(M_j)$ at time t. Decision variable $z_{kjt}^{p_1,p_2}$ is a binary variable and is equal to 1 when a vehicle is relocated from $p_1(n_k)$ to $p_2(M_j)$ at time t.

We discretize time into T different segments of size μ where μT is the simulation duration and formulate the problem using the concept of time-space networks as:

\[
\begin{align*}
&\text{Min } \sum_{t \in T} \sum_{p \in P} \left(q_{pt}^1 \cdot y_{pt}^1 + q_{pt}^2 \cdot y_{pt}^2 \right) \\
&0 \leq q_{pt}^1 \leq \text{cap}_p \\
&0 \leq q_{pt}^2 \\
&\sum_{k \in H_p} \sum_{t' = 1:t-tr(n_k, M_j)} [z_{kjt}^{p_1,p}] - \sum_{k \in S_p} \sum_{t' = 1:t} [z_{kjt}^{p_2,p}] + \sum_{l \in W_p} \sum_{t' = 1:t-tr(N_i, M_j)} [z_{ijt}^{p_1,p}] - \\
&\sum_{j \in S_p} \sum_{t' = 1:t} [z_{ijt}^{p_2,p}] + A_{t}^p - D_{t}^p + I_{p} \leq q_{pt}^1 + q_{pt}^2 \\
&\forall p \in P, t \in T \\
&\sum_{t = 1:A_t} z_{ijt}^{p_1, p_2} = 0 \\
&\forall i \in U \\
&\sum_{t = D_{e_j} - tr(n_k, M_j):t} z_{ijt}^{p_1, p_2} = 0 \\
&\forall j \in U \\
&\sum_{t = 1:A_{v_k}} z_{kjt}^{p_1, p_2} = 0 \\
&\forall k \in K \\
&\sum_{t = D_{e_j} - tr(n_k, M_j):t} z_{kjt}^{p_1, p_2} = 0 \\
&\forall j \in U \\
&\sum_{t} z_{ijt}^{p_1, p_2} = 1 \\
&\forall i \in U \\
&\sum_{t} z_{kjt}^{p_1, p_2} = 1 \\
&\forall k \in K \\
&z_{kjt}^{p_1, p_2} = 0, 1 \\
&\forall k \in K, t \in T \\
&z_{ijt}^{p_1, p_2} = 0, 1 \\
&\forall i, j \in U, t \in T
\end{align*}
\]
The presented model is a binary integer programming model with a piecewise convex objective function (with the marginal costs shown in Figure 3-3) which attempts to minimize the total cost of parking. Constraints (3b) and (3c) ensure that q_{pt} values are within the correct boundaries.

Constraints (3d) have seven terms on their left side. The first two terms present initial vehicle movements between a vehicle depot and a user and the second two terms present vehicle relocation movements between users. The first term is the total number of vehicles that are located from their initial location (p_i) to p, and the second term is the total number of vehicles that are relocated from their original location p to any other location (p_j). The third term is the total number of vehicles relocated from user i's destination (N_i) to parking p to serve user j ($p=M_j$) and the fourth term is the number of vehicles relocated from parking p where $p=N_i$ to user j's origin (N_j). The first and the third term in (3d) sum over the first to the $(t-tr(n_k,M_j))^{th}$ and $(t-tr(N_i,M_j))^{th}$ time increments, respectively, because that is how long it takes a vehicle to reach M_j. The next three terms in (3d) are self-explanatory. Constraints (3e) to (3h) check for relocation time boundary violations which correspond to constraints (1f) and (1g). Constraints (3i) and (3j) ensure that every relocation process is initiated only once and constraints (3k) and (3l) are binary variable declarations.

One major factor in the discretization of the PIO model is the value of μ. A low value of μ would increase the number of nodes in the time-space diagram which leads to high computation times. On the other hand, high values of μ can make the problem infeasible in cases where μ is higher than the relocation time window of at least one relocation process ($\mu > De_j - tr(N_i,M_j) - Ar_j$). In such a case, no suitable time can be obtained for relocating a vehicle from N_i to M_j. High μ values can also lead to inefficient answers since some potential relocation start times will be neglected. We, therefore, present a meta-heuristic Particle Swarm Optimization (PSO) algorithm which treats relocation start times as continuous variables within allowable constraints ((3e) to (3h)), calculates q_{pt}^1 and q_{pt}^2 for different time segments, and obtains the objective function in (3a). The st values are then altered in future iterations of PSO to find better values of (3a).

Particle Swarm Optimization (PSO), a population based stochastic optimization technique, shares many similarities with evolutionary computation techniques such as Genetic Algorithm (Eberhart and Kennedy, 1995). Analogous to GA, PSO initiates with a population of random
solutions and evolves the position of the particles based on the location of current optimal particles, until a desirable one is found. Considering a N_x-dimensional problem (N_x vehicles are awaiting their relocation operation), the position of the τ^{th} particle is represented by $L_\tau = (l_{\tau 1}, l_{\tau 2}, ..., l_{\tau N_x})$, where $l_{\tau \sigma}$ is the σ^{th} dimension of the τ^{th} particle. In other words, every particle is made of relocation times (st). In every iteration, each particle seeks solutions by moving in the problem space with a velocity vector presented as $V_{el} = (v_{\tau 1}, v_{\tau 2}, ..., v_{\tau N_x})$, where $v_{\tau \sigma}$ is the velocity of the τ^{th} particle in the σ^{th} dimension. In the search process, each particle keeps track of its own best solution G_{local} along with its location $G_{local} = (g_{\tau \sigma})_{\sigma=1:N_x}$, and the best solution of the entire swarm G_{global} accompanied by its location $G = (G_{\sigma})_{\sigma=1:N_x}$. The velocity of every particle is updated in iteration $z+1$, (where z denotes the iteration counter) based on G_{local} and G_{global}:

$$v_{\tau \sigma}(z + 1) = w \times v_{\tau \sigma}(z) + c_1 r_1 (g_{\tau \sigma}(z) - l_{\tau \sigma}(z)) + c_2 r_2 (G_{\sigma}(z) - l_{\tau \sigma}(z))$$ (4)

where w is the inertia weight, c_1 and c_2 are constant values set to 2 (Eberhart and Kennedy, 1995), while r_1 and r_2 are random numbers uniformly distributed in the interval $[0,1]$ (Abraham et al., 2006). For the purpose of guiding the particles effectively, the velocity in any iteration must be held within the interval $[-V_{max}, V_{max}]$ (Abraham et al., 2006). The inertia weight, developed to better balance explorations and exploitation, affects the convergence speed of the PSO through controlling the impact of the history of velocities on the current velocity (Abraham et al., 2006). Eberhart and Shi (2000) emphasize that initially setting the inertia weight to a large value and linearly decreasing it with time has a better performance than using a fixed value.

After updating the velocity values, the new particle locations are computed as:

$$l_{\tau \sigma}(z + 1) = l_{\tau \sigma}(z) + v_{\tau \sigma}(z + 1)$$ (5)

which need to be within the constraints ((3e) to (3h)).

3.5.2 Simulation

The two presented optimization models run consecutively in a discrete event simulation environment where an event is defined as the arrival of a user. We choose a discrete event model instead of a continuous simulation model because the user announcements are situated fairly apart. Therefore a continuous simulation model would lead to extra unnecessary runs. However, the
optimization formulations (VRO and PIO) can be easily embedded in a continuous simulation framework as well.

At every event (user arrival), the VRO and PIO models are executed which determine the accepted users, vehicle relocations, and start time of vehicle relocation operations to serve those users. A greedy approach would be to finalize requests (accept or reject them) as soon as they are placed. Therefore, those rejected will not be reconsidered even if later on they become beneficial. The appointed vehicles to accepted users would become unavailable until they reach the end of their tours. The presented simulation model, however, follows a rolling horizon approach which does not finalize any requests until the simulation time passes each assigned vehicle’s relocation time (st). This strategy keeps the vehicles unassigned in case a more profitable user request arrives. The flowchart in Figure 3-4 illustrates the rolling horizon approach and is interpreted in the following steps:

1- The algorithm is initiated by setting time t to V_1 which is the request time of the first user. Set availability time of every vehicle k (Av_k) to V_1.

2- A pool of the user requests is passed on to the VRO model and the PIO model. At the first iteration, V_1 is the only user in the pool.

3- The VRO finds the most beneficial user requests and relocates the vehicles to serve them.

4- The PIO model takes the results of the VRO and finds the optimal starting time for each relocation operation to minimize parking costs.

5- The next event is defined at the arrival time of the next user q ($t = V_q$).

6- Every user j for whom st_{ij} is smaller than t is eliminated from the user pool and the corresponding vehicle for that user is relocated to its origin location M_j. This is presented in Figure 3-4 at the “Exit Users” step. The users who reach their departure time before t ($D_j < t$) and have not been assigned a vehicle are also terminated from the model and are considered unanswered demand.

7- Availability and location of relocated vehicles is updated. Available vehicles are then passed on to the vehicle pool along with their information such as location (n_k) and availability time (Av_k). To find the new the Av_k and n_k, the tour itinerary of vehicle k is checked to find the last user g where $st_{ig} < t$. Then, $Av_k = A_g$ and $n_k = N_g$ so that vehicle k
is available once user g arrives at his/her destination (N_g) at his/ her arrival time (A_g).
The updating processing passes $A v_k$ and n_k values to the VRO and I_p values to the PIO.
8- The termination condition checks if all the waiting users have announced their requests.
If yes, the model terminates. If no, the user of that event (q) is passed on to the user pool.

![Flowchart of the simulation model](image)

Figure 3-4: Flowchart of the simulation model

3.5.3 Measures of Effectiveness (MOE)

We propose various Measures of Effectiveness (MOE) to evaluate the performance of the
dynamic model. These MOEs are total revenue, total cost of relocation, fleet utilization, and
system reliability. Total revenue and cost of relocation are the revenue obtained from users and
the required relocation costs to generate those revenues, respectively. Fleet utilization is the ratio
of the number of vehicles used over the available number of vehicles over the course of the entire
day. A high number of available vehicles with a low demand lead to a low fleet utilization index.
System reliability is the total number of accepted users over total demand. This index is between 0 (no user is served) and 1 (all users are served).

3.6 Example Problem: The Case of Autoshare

Autoshare, founded in 1998, is a Toronto based carsharing company with 209 parking locations across the city (Figure 3-5), more than 10,000 users, and an average of 200 vehicle requests a day (Costain et al. 2012). Autoshare has a flexible policy on vehicle reservation where users can book a vehicle on the spur-of-the-moment or up to a year in advance. The service has no restrictions on how far a vehicle can be driven from the origin parking facility but requires that the users return the vehicle to its original location. In this section, we use the case of Autoshare to evaluate the performance of the benchmark model presented in Section 3.3. Autoshare is a potential candidate for a one-way system since its parking facilities are fairly closely spaced with a mean distance of 5.48 km which we expect would lead to reasonable vehicle relocation cost.

![Figure 3-5: Parking locations of Autoshare (Toronto, Ontario)](image)

3.6.1 Benchmark Model Analysis

To evaluate the benchmark model we execute it 200 times for each of four different demand scenarios (50, 100, 150, and 200 users/day). Every model run is executed using a different set of
user departure times obtained randomly from a curve fit to the observed data within the range of 12:00 PM to 9:00 PM (peak hours of the service) for a typical weekday. The origin/destination of the users is obtained randomly from choice probabilities calculated from the observed data. The probability of a parking facility p being chosen as an origin (destination) is the number of times it was chosen as an origin (destination) over the total number of requests in a day. The arrival time at the destination is calculated as departure time plus the travel time from origin to destination. Travel times are computed by dividing an average velocity of 20 km/h by Manhattan distances between the parking facilities. We assume a request time threshold (reservation time) of 30 minutes. Figure 3-6 illustrates the results of the simulation showing a trade-off between the hours of relocation and fleet size. The model runs with a lower fleet size are accompanied with higher hours of vehicle relocation and vice versa. Both fleet size and relocation hours increase with higher demands.

![Benchmark model fleet size and relocation time for four demand scenarios (200 runs/scenario)](image)

Figure 3-6: Benchmark model fleet size and relocation time for four demand scenarios (200 runs/scenario)

A common notion in the carsharing literature, which stems from static and aggregate treatment of demand, is that a specific fleet size is needed to answer all or a portion of the demand (Kek et al. 2009, Correia and Antunes, 2012). Figure 3-6 and Table 3-2 show that the required fleet size is a
function of demand. Larger fleets are generally needed in cases of higher demand, where user announcements are more closely spaced and vehicle relocation is challenging. On the contrary, in cases of lower demand the system can relocate a smaller fleet to serve all users. Suitable fleet size for every scenario, therefore, varies depending on the announcement patterns of the users. The decreasing ratio of vehicles per user in the last row of Table 3-2 shows increasing economies of scale as the demand increases.

Table 3-2: Benchmark model fleet size for four demand scenarios

<table>
<thead>
<tr>
<th>Demand (users/day)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum fleet size</td>
<td>18</td>
<td>29</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>Mean fleet size</td>
<td>12.08</td>
<td>20.24</td>
<td>26.79</td>
<td>33.36</td>
</tr>
<tr>
<td>Minimum fleet size</td>
<td>9</td>
<td>15</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>Variance of fleet size</td>
<td>2.97</td>
<td>4.95</td>
<td>5.42</td>
<td>8.41</td>
</tr>
<tr>
<td>Mean fleet size / Demand</td>
<td>0.24</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Longer reservation time policies give CSOs more time to relocate the vehicles between the parking facilities but make the system inconvenient for users who need immediate access. To assess the importance of this component, we run the benchmark model 30 times for different reservation time policies with the demand of 200 users/day. Figure 3-7 depicts the impact of reservation time on the average fleet size size and total relocation time where the fleet size decreases and relocation time increase with higher reservation time values. The figure illustrates that fleet size stays roughly the same above 30 minutes of reservation time. This is dependent on the proximity and locations of the parking facilities. In 30 minutes of reservation time, vehicles can be easily transferred between any two parking facilities.
3.6.2 Dynamic Model Analysis

In this section, we assess the dynamic model and emphasize the importance of the price rate for users (Pr) and the cost rate for relocations (Cr) parameters. The dynamic model is set up using the same parameters from the benchmark model with the following exceptions and additions. The initial location of each vehicle is randomly chosen from the 209 parking facilities. No two vehicles are initially located at the same parking facility. The parking capacity of each parking facility is set to 1 with $\gamma^2 = 2\gamma^1$. The population size of the PSO for solving the PIO is set to 10, the number of iterations to 8, the initial inertia weight to 1.2, the final inertia weight to 0.4, and C_1 and C_2 values to 2.

Pr and Cr highly impact the results of the dynamic model. If Cr is noticeably higher than Pr, the CSO is not willing to relocate its vehicles. Conversely, with low Cr values, the CSO is indifferent to any number of relocation operations. Table 3-3 presents various measures of effectiveness at different Pr values with a demand of 200 users/day when $Cr=1$. We only consider the ratio of Pr to Cr in the analysis because in objective function (2a) the least common multiples can be removed. Each scenario is run 30 times. Results show that hours of relocation,
revenue, and reliability increase with higher Pr values. Revenue hours in Table 3-3 is the sum of total travel time of the users without multiplying by Pr. All three mentioned measures of effectiveness grow faster at lower Pr values and reach relatively constant values at higher Pr values. This shows that higher Pr values lead to serving users who require high relocation costs but offer less revenue to the system. The fairly constant Fleet Utilization index shows that all vehicles are used at every Pr Scenario.

Table 3-3: Measures of effectiveness at various ratios of Pr to $Cr=1$ where demand is 200 users/day

<table>
<thead>
<tr>
<th>Pr/Cr</th>
<th>Relocation hours</th>
<th>Revenue hours</th>
<th>Reliability</th>
<th>Fleet Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.42</td>
<td>9.46</td>
<td>0.80</td>
<td>0.94</td>
</tr>
<tr>
<td>1.0</td>
<td>7.53</td>
<td>11.29</td>
<td>0.86</td>
<td>0.98</td>
</tr>
<tr>
<td>1.5</td>
<td>9.89</td>
<td>14.04</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>11.34</td>
<td>15.49</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>2.5</td>
<td>12.57</td>
<td>16.23</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>3.0</td>
<td>13.39</td>
<td>16.75</td>
<td>0.97</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 3-4 compares the relocation hours in the benchmark model and the dynamic model for a Pr value of 3 and a demand of 200 users/day. We choose this ratio because the dynamic model becomes more like the benchmark model at higher Pr to Cr ratios where Fleet Utilization becomes 1 and Reliability gets closer to 1. The number of vehicles in the dynamic model is set to the average number of vehicles in the benchmark model shown in Table 3-2 for each demand scenario. Table 3-4 shows that the relocation hours for the benchmark model are lower than those of the dynamic model for all levels of user demand. The better performance of the benchmark model is expected due to the availability of complete information in the model. However, the differences are not significantly different with 90% confidence.
The dynamic model has higher variances because many relocation decisions are made iteratively whereas the benchmark model makes relocation decisions in only one iteration. The larger number of iterations makes the dynamic model more dependent on the user request patterns. Finally, Table 3-4 shows a lower percentage difference in the mean of the hours of relocation as demand increases because there are better relocation opportunities within higher demands.

Table 3-4: Relocation hours of the benchmark model (left) and the dynamic model with $Pr=3$, $Cr=1$ (right)

<table>
<thead>
<tr>
<th>Demand (users/day)</th>
<th>Benchmark model</th>
<th>Dynamic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>6.89</td>
<td>7.21</td>
</tr>
<tr>
<td>Mean</td>
<td>4.45</td>
<td>4.78</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.58</td>
<td>2.82</td>
</tr>
<tr>
<td>Variance</td>
<td>0.70</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Test of hypothesis do not imply that benchmark and the dynamic models are significantly different with 90% level of confidence.

The benchmark and the dynamic model can easily be operationalized with low computation times. The models were coded in CPLEX using Matlab 7.12 running on a dual core 2.40 GHz laptop computer with 8 GB RAM. The benchmark model with a demand of 200 users/day runs in 12 seconds. The dynamic model, with the same demand, runs in 34 seconds. The dynamic one-way system with 400 users, however, runs in 3.41 minutes. Therefore, although the model performs efficiently for the proposed case study, meta-heuristics can be used to reduce the computational burden for larger problems.

3.7 Summary of Key Findings

In this chapter, a dynamic vehicle relocation and parking management model is proposed for CSOs. The model is run in a discrete event simulation where at every event one user requests a
vehicle with specific preferences such as pick up time, drop off time, pick up location, and drop off location.

The dynamic model is compared to a static model which assumes perfect information of all users. The static model is run only once compared to the dynamic model which is run at every event. Results of the two models are very close which validates the performance of the dynamic model.

Analysis of the static benchmark of this chapter shows variability in the required fleet size which is dependent on the user request patterns. This shows that unless the CSO acquires a fleet size equal to or larger than the maximum number of vehicles calculated in the model, there will be some unanswered demand in certain days (with certain user request patterns). Therefore choosing an appropriate fleet size is a critical decision of the CSO.

This chapter also assesses the impact of various policies such as the required reservation time. Results show that higher reservation times allow the CSO to relocate vehicles between parking stations and therefore reduce the required fleet size. This impact diminishes when the reservation time is further increased when there is no more potential for vehicle relocation.
Chapter 4
Conclusion

4 Collaborative Consumption

Collaborative consumption in transportation has been emerging in some of the new startups in the last decade. Examples of such services include ridesharing, bikesharing, and carsharing. Ridesharing and carsharing are the focus of this thesis. Dynamic models are proposed for both services which are applicable in real life. Results of the dynamic models were satisfactorily compared to static models for both services.

4.1 On Dynamic Ridesharing

Chapter 2 introduces an agent based model to solve the dynamic ridesharing problem. The model is flexible to solve ridesharing schemes that allow single or multiple drivers to be matched with single or multiple passengers. The new modules, in some cases, promise better system outcomes. For example, the multi-passenger matching approach offers much lower costs to the users of the system because it allows the trip cost to be distributed between a greater number of users. The proposed agent based model is also much faster than the conventional centralized optimization methods while providing the similar system objectives. We summarize the findings of Chapter 2 in Table 4-1:

Table 4-1: Effectiveness of different modules for three different market penetration rates. Numbers outside parenthesis present the system reliability and number inside parenthesis present VKTS (Vehicle Kilometers)

<table>
<thead>
<tr>
<th>Market Penetration Rate</th>
<th>0.20%</th>
<th>0.50%</th>
<th>1.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single driver, single passenger</td>
<td>0.56 (0.19)</td>
<td>0.67 (0.26)</td>
<td>0.71 (0.29)</td>
</tr>
<tr>
<td>Single driver, two passengers</td>
<td>0.59 (0.27)</td>
<td>0.71 (0.33)</td>
<td>0.77 (0.36)</td>
</tr>
<tr>
<td>Two drivers, single passenger</td>
<td>0.56 (0.19)</td>
<td>0.68 (0.26)</td>
<td>0.72 (0.30)</td>
</tr>
</tbody>
</table>
The agent based model exhibits the necessary features of successful dynamic ridesharing systems such as flexibility, convenience, reliability, and motivation. The system is flexible in that it allows users to announce their trip at any time up to the latest departure time. It also allows matches to be updated as new users enter the system. The system is convenient because it can limit the choice sets of users in the vicinity approach based on preferences specified in the subscription process. For example, a driver bids only on passengers who are in the vicinity of the driver’s path. The method could easily be extended to constrain matches on the basis of user preferences (gender, non-smoking, etc.) Reliability is achieved with higher market penetrations and is increased through the multi-passenger single driver composition. Finally, motivation can be achieved by lowering the service provider’s charging rate to create incentives for the users. Of course motivation can be reduced if the commission rates of the service provider are too high. Other forms of motivation can be introduced by public sector subsidization which would reduce user costs even more.

4.2 On Dynamic Carsharing

Chapter 3 presents a benchmark and a dynamic model for the carsharing operations problem and evaluates the performance of the one-way system through various measures of effectiveness. The benchmark model is set up with complete knowledge of user requests whereas the more realistic dynamic model receives user information only when they make a request. The dynamic model performs satisfactorily when compared to the benchmark model. The presented dynamic model can benefit CSOs in building robust decision support systems and can lead to more successful one-way carsharing systems. Furthermore, the dynamic model is more practical than the conventional static models in the literature because it is flexible with different demand scenarios (request patterns) and it can adapt to daily circumstances such as absence of a vehicle due to maintenance.

This study also shows the importance of various policies such as extension of the required reservation time on reducing the fleet size of the one-way carsharing systems. Increasing the reservation time from zero (open-ended system) to 30 minutes can reduce the fleet size by 86%.

Results show a tradeoff between vehicle relocation hours and fleet size. A higher fleet size requires less total relocation hours and vice versa. Both relocation hours and fleet size, however,
increase with higher demands. In addition to the value of demand, both the fleet size and relocation hours also depend on the schedules of the users (request patterns). Fleet size decreases when requests are spread out in time.

The benefit of the dynamic model depends on the ratio of price charged per unit time \((Pr)\) and cost of relocation per unit time \((Cr)\). In cases where \(Pr\) is relatively higher than \(Cr\), it is more beneficial to service more customers. This leads to higher reliability of the system which leads to customer satisfaction. Therefore, it is critical to cut down unit relocation costs as much as possible.

4.3 Recommendations for Future Work

The following are some areas which require further research:

1- Chan and Shaheen (2012) consider multimodal integration as the future of ridesharing. To provide this service, Zimride and Zipcar have launched an integrated partnership in 2009 to link their program with public transportation systems (Reidy, 2009). Unfortunately, however, this idea has not been studied in the academic literature. The proposed model in Chapter 2 can be extended to accommodate multimodal integration where the connections are allowed to be made with other transportation modes such as public transit and Carsharing. A simple methodology for this is to set hub locations at intermodal transfer nodes. The new cost function for users would then include the additional cost of the alternatives modes of transportation.

2- There is no research available in the ridesharing literature that studies the differences between en-route matching (where a driver can still pick up a passenger even though he has departed from his origin) and pre-planned matching (studied in Chapter 2). This comparison can be done by adding a module to the algorithm that would order drivers to leave their origin before reaching their flexibility time. The module would then set a new earliest departure time and origin zone for the driver depending on new locations of the driver in the network. The auction mechanism would then treat en-route drivers as normal drivers by with updated characteristics.
3- Some users enter the ridesharing system with no preference in being a driver or a passenger. This can be incorporated in the model by a module that changes the role of a user after a few iterations to see if a lower cost is found. Our research showed that maximum network reliability occurs with the ratio of drivers to passengers is 0.5. Hence, the module would be more efficient if it produces this ratio.

4- The hub location problem is an entirely new research area. The proposed ridesharing agent based model can be extended to include dynamic hub locations instead of fixed ones as was the assumption in Chapter 2. The location of the hubs can therefore change dynamically at each time step.

5- There are two types of users in CSOs: one-way and two-way users. One-way users require only one trip whereas two-way users require a return trip. Similarly, there are two types of CSOs: one-way and two-way organizations. Two-way CSO require users to return the vehicle to its original location whereas one-way systems have no such restrictions. The models in Chapter 3 can be modified to presents both types of CSOs to capture the impact of various market segmentations (selection of one-way and two-way users) on the system as a whole.

6- A major assumption made in Chapter 3 is that staff members are always available to relocate vehicles from each parking facility to every other parking facility. In reality, however, this is not the case. There are limited staff members who are available at specific times and locations. Staff members change their locations as they relocate vehicles between parking facilities. This leads to the imbalance of staff members in addition to the imbalance of cars between stations. A next step in CSO decision support systems is to build a dynamic model which also considers flow of staff between parking facilities.
References

Communauto (2013). Communauto launches Auto-mobile : first 100% electric one-way carsharing pilot project in Canada.

model. Presented at 12th International Association of Travel Behaviour Research (IATBR) Conference, Jaipur, India.

