Indian Journal of Dermatology, Venereology & Leprology

Journal indexed with SCI-E, PubMed, and EMBASE

Vol 74 | Issue 2 | Mar-Apr 2008

CONTENTS

EDITORIAL

Management of autoimmune urticaria
Arun C. Inamadar, Aparna Palit .. 89

VIEWPOINT

Cosmetic dermatology versus cosmetology: A misnomer in need of urgent correction
Shyam B. Verma, Zoe D. Draelos .. 92

REVIEW ARTICLE

Psoriasiform dermatoses
Virendra N. Sehgal, Sunil Dogra, Govind Srivastava, Ashok K. Aggarwal .. 94

ORIGINAL ARTICLES

A study of allergen-specific IgE antibodies in Indian patients of atopic dermatitis
V. K. Somani .. 100

Chronic idiopathic urticaria: Comparison of clinical features with positive autologous serum skin test
George Mamatha, C. Balachandran, Prabhu Smitha .. 105

Autologous serum therapy in chronic urticaria: Old wine in a new bottle
A. K. Bajaj, Abir Saraswat, Amitabh Upadhyay, Rajetha Damisetty, Sandipan Dhar .. 109

Use of patch testing for identifying allergen causing chronic urticaria
Ashimav Deb Sharma .. 114

Vitiligoid lichen sclerosus: A reappraisal
Venkat Ratnam Attili, Sasi Kiran Attili .. 118
BRIEF REPORTS

Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders
Arun Chakravarthi, C. R. Srinivas, Anil C. Mathew .. 122

Nevus of Ota: A series of 15 cases
Shanmuga Sekar, Maria Kuruvila, Harsha S. Pai .. 125

Premature ovarian failure due to cyclophosphamide: A report of four cases in dermatology practice
Vikrant A. Saoji ... 128

CASE REPORTS

Hand, foot and mouth disease in Nagpur
Vikrant A. Saoji ... 133

Non-familial multiple keratoacanthomas in a 70 year-old long-term non-progressor HIV-seropositive man
Hemanta Kumar Kar, Sunil T. Sabhnani, R. K. Gautam, P. K. Sharma, Kalpana Solanki, Meenakshi Bhardwaj .. 136

Late onset isotretinoin resistant acne conglobata in a patient with acromegaly
Kapil Jain, V. K. Jain, Kamal Aggarwal, Anu Bansal .. 139

Familial dyskeratotic comedones
M. Sendhil Kumaran, Divya Appachu, Elizabeth Jayaseelan 142
CONTENTS (Contd.)

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal NK/T cell lymphoma presenting as a lethal midline granuloma</td>
<td>Vandana Mehta, C. Balachandran, Sudha Bhat, V. Geetha, Donald Fernandes</td>
<td>145</td>
</tr>
<tr>
<td>Childhood sclerodermatomyositis with generalized morphea</td>
<td>Girishkumar R. Ambade, Rachita S. Dhurat, Nitin Lade, Hemangi R. Jerajani</td>
<td>148</td>
</tr>
<tr>
<td>Subcutaneous panniculitis-like T-cell cutaneous lymphoma</td>
<td>Avninder Singh, Joginder Kumar, Sujala Kapur, V. Ramesh</td>
<td>151</td>
</tr>
</tbody>
</table>

LETTERS TO EDITOR

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a submersible pump to clean large areas of the body with antiseptics</td>
<td>C. R. Srinivas</td>
<td>154</td>
</tr>
<tr>
<td>Stratum corneum findings as clues to histological diagnosis of pityriasis lichenoides chronica</td>
<td>Rajiv Joshi</td>
<td>156</td>
</tr>
<tr>
<td>Author’s reply</td>
<td>S. Pradeep Nair</td>
<td>157</td>
</tr>
<tr>
<td>Omalizumab in severe chronic urticaria</td>
<td>K. V. Godse</td>
<td>157</td>
</tr>
<tr>
<td>Hypothesis: The potential utility of topical efornithine against cutaneous leishmaniasis</td>
<td>M. R. Namazi</td>
<td>158</td>
</tr>
<tr>
<td>Nodular melanoma in a skin graft site scar</td>
<td>A. Gnaneshwar Rao, Kamal K. Jhamnani, Chandana Konda</td>
<td>159</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Palatal involvement in lepromatous leprosy</td>
<td>A. Gnaneshwar Rao, Chandana Konda, Kamal Jhamnani</td>
<td>161</td>
</tr>
<tr>
<td>Unilateral nevoid telangiectasia with no estrogen and progesterone receptors in a pediatric patient</td>
<td>F. Sule Afsar, Ragip Ortac, Gulden Diniz</td>
<td>163</td>
</tr>
<tr>
<td>Eruptive lichen planus in a child with celiac disease</td>
<td>Dipankar De, Amrinder J. Kanwar</td>
<td>164</td>
</tr>
<tr>
<td>Xerosis and pityriasis alba-like changes associated with zonisamide</td>
<td>Feroze Kaliyadan, Jayasree Manoj, S. Venkitakrishnan</td>
<td>165</td>
</tr>
<tr>
<td>Treatment of actinomycetoma with combination of rifampicin and co-trimoxazole</td>
<td>Rajiv Joshi</td>
<td>166</td>
</tr>
<tr>
<td>Vitiligo, psoriasis and imiquimod: Fitting all into the same pathway</td>
<td>Bell Raj Eapen</td>
<td>169</td>
</tr>
<tr>
<td>Author's reply</td>
<td>Engin Şenel, Deniz Seçkin</td>
<td>169</td>
</tr>
<tr>
<td>Multiple dermatofibromas on face treated with carbon dioxide laser: The importance of laser parameters</td>
<td>Kabir Sardana, Vijay K. Garg</td>
<td>170</td>
</tr>
<tr>
<td>Author's reply</td>
<td>D. S. Krupa Shankar, A. Kushalappa, K. S. Uma, Anjay A. Pai</td>
<td>170</td>
</tr>
<tr>
<td>Alopecia areata progressing to totalis/universalis in non-insulin dependent diabetes mellitus (type II): Failure of dexamethasone-cyclophosphamide pulse therapy</td>
<td>Virendra N. Sehgal, Sambit N. Bhattacharya, Sonal Sharma, Govind Srivastava, Ashok K. Aggarwal</td>
<td>171</td>
</tr>
<tr>
<td>Subungual exostosis</td>
<td>Kamal Aggarwal, Sanjeev Gupta, Vijay Kumar Jain, Amit Mital, Sunita Gupta</td>
<td>173</td>
</tr>
</tbody>
</table>
The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal’s publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or library use.
Mycophenolate mofetil

Amar Surjushe, D. G. Saple
Department of Dermatology, Venereology, and Leprology, Grant Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India.

Address for correspondence: Dr. Amar Surjushe, Department of Dermatology, Venereology and Leprology, Grant Medical College and Sir JJ Group of Hospitals, Mumbai - 400 008, Maharashtra, India. E-mail: dramarsurjushe@rediffmail.com

INTRODUCTION

Mycophenolate mofetil (MMF) is a novel immunosuppressant in the armamentarium of dermatologists, which is used for the treatment of immune-mediated skin disease. It is a prodrug of the active compound, mycophenolic acid (MPA). Originally isolated from cultures of *Penicillium stoloniferum* as a fermentation product, MPA was first recognized as a lipid-soluble, weak organic acid.[4] Currently approved for the prevention of organ rejection, its “off-label” indications in various dermatological disorders are increasing, although controlled trials are needed to know its real efficacy.

MECHANISM OF ACTION

Mycophenolate mofetil is a semisynthetic 2-morpholinoethyl ester. It is a prodrug, which is rapidly converted *in vivo* to the active metabolite, MPA by plasma esterase. MPA is a potent immunosuppressive agent and acts as a selective, uncompetitive and reversible inhibitor of the enzyme, inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the *de novo* purine biosynthesis pathway. IMPDH is an enzyme required for the conversion of inosine monophosphate (IMP) and xanthine monophosphate (XMP) to guanosine monophosphate, which is an important substrate for the synthesis of DNA and RNA [Figure 1].[2,3]

There are two isoforms of IMPDH: Type I and type II. The IMPDH type I isoform is used by nonreplicating cells while the IMPDH type II isoform is predominantly used by proliferating lymphocytes. MPA has five times higher binding affinity for the IMPDH type II isoform and therefore, causes depletion of guanosine nucleotides, inhibition of DNA synthesis and the arrest of replicating lymphocytes in the S phase.[4] Thus, MMF is more cytotoxic to proliferating T and B-lymphocytes.

T and B lymphocytes depend upon *de novo* synthesis of purines for their proliferation, whereas other cell types can utilize the salvage pathway, i.e., hypoxanthine-guanine phosphoribosyl transferase pathway for their proliferation.[5] MPA thus, has more potent cytostatic effects on T and B lymphocytes and causes decreases in the levels of immunoglobulins and delayed type hypersensitivity responses.[6] MMF also prevents the glycosylation of lymphocyte and monocyte glycoproteins.

How to cite this article: Surjushe A, Saple DG. Mycophenolate mofetil. Indian J Dermatol Venereol Leprol 2008;74:180-4.

that are involved in adhesion to endothelial cells. Thus, it inhibits chemotaxis, impairs antigen presentation and induces immune tolerance.[7]

PHARMACOKINETICS

MMF is well absorbed orally with a mean bioavailability of 94% and is predominantly bound to albumin. Food intake decreases the C_{max} level due to which MMF should be taken on an empty stomach. In the liver, it is rapidly conjugated to form the pharmacologically inactive mycophenolic acid glucuronide (MPAG).[8,9]

After absorptoin, MPA shows two peak levels in plasma. The first peak occurs approximately one hour after intake and the secondary peak is seen six to eight hours later. The first peak is due to the distribution of the drug and the second peak is due to enterohepatic recirculation of MPAG which is hydrolyzed back to MPA in the gastrointestinal tract by beta-glucuronidase. The elimination half-life of MPA is approximately 18 h and approximately 87% of the oral dose is excreted as MPAG in the urine and 6% is eliminated in feces.[9,10]

DOSAGES

MMF is available as 250 mg capsules, 500 mg tablets and a powder for oral suspension (200 mg/ml). It is available as a lyophilized, sterile powder in a vial, which contains the equivalent of 500 mg MMF as the hydrochloride salt for intravenous administration.

In adults, the usual dose of MMF ranges from 1.25 to 2 g day. The dose can be tapered to 1 g daily in divided doses with improvement in skin conditions. In pediatric patients, it is administered as a 600-mg/m² dose every 12 h up to a maximum daily dose of 2 g. Dose reduction should be considered in patients with severe renal impairment.[11,12]

Enteric-coated mycophenolate sodium (ECMS) is available as delayed-release tablets containing either 180 or 360 mg of MPA. It can be used as an alternative in the patients with adverse MMF-induced gastrointestinal effects.[13]

INDICATIONS

The only FDA-approved indication of MMF is for the prophylaxis of organ transplant rejection in conjunction with cyclosporine and corticosteroids.[14] It was first used in psoriasis in 1975 and since then, case reports and clinical trials document its use in various dermatological conditions as “off-label” indications [Table 1]. MMF has been successfully used either as monotherapy or in combination with systemic steroids or as a steroid-sparing agent. MMF is best suited for individuals in whom other systemic immunotherapies are contraindicated because of hypertension, impaired renal function or liver disease.[15]

Although early reports have shown good efficacy and tolerability of MMF, randomized clinical trials with long surveillance periods are needed to document the efficacy and long-term safety of the drug in various skin diseases.

Psoriasis

In 1975-76, early open and placebo-controlled studies reported that MPA was effective in patients with moderate-to-severe psoriasis, including those with severe refractory disease or intolerance to conventional therapy.[16] Recent studies also showed the benefit of MMF in psoriasis. MMF was reported to be effective in widespread plaque psoriasis,[17] moderate-to-severe psoriasis,[18] erythrodermic

<table>
<thead>
<tr>
<th>Table 1: “Off-label” dermatological indications of Mycophenolate mofetil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Psoriasis</td>
</tr>
<tr>
<td>• Pemphigus vulgaris</td>
</tr>
<tr>
<td>• Pemphigus foliaceus</td>
</tr>
<tr>
<td>• Paraneoplastic pemphigus</td>
</tr>
<tr>
<td>• Bullous pemphigoid</td>
</tr>
<tr>
<td>• Cicatricial pemphigoid</td>
</tr>
<tr>
<td>• Linear IgA disease</td>
</tr>
<tr>
<td>• Epidermolysis bullosa acquisita</td>
</tr>
<tr>
<td>2. Vesiculobullous disorders</td>
</tr>
<tr>
<td>• Systemic lupus erythematosus</td>
</tr>
<tr>
<td>• Subacute cutaneous lupus erythematosus</td>
</tr>
<tr>
<td>• Discoid lupus erythematosus</td>
</tr>
<tr>
<td>• Dermatomyositis</td>
</tr>
<tr>
<td>• Scleroderma</td>
</tr>
<tr>
<td>3. Connective tissue disease</td>
</tr>
<tr>
<td>• Urticarial vasculitis</td>
</tr>
<tr>
<td>• Takayasu’s arteritis</td>
</tr>
<tr>
<td>• Microscopic polyangiitis</td>
</tr>
<tr>
<td>• Polyarteritis nodosa</td>
</tr>
<tr>
<td>• Wegener’s granulomatosis</td>
</tr>
<tr>
<td>4. Dermatitis</td>
</tr>
<tr>
<td>• Atopic dermatitis</td>
</tr>
<tr>
<td>• Dyshidrotic dermatitis</td>
</tr>
<tr>
<td>• Chronic actinic dermatitis</td>
</tr>
<tr>
<td>5. Vasculitis</td>
</tr>
<tr>
<td>• Lichen planus, pyoderma gangrenosum, recurrent erythema multiforme, sarcoidosis, Weber-Christian disease and chronic idiopathic urticaria</td>
</tr>
</tbody>
</table>

Indian J Dermatol Venereol Leprol | March-April 2008 | Vol 74 | Issue 2

Surjushe, et al.: Mycophenolate mofetil

[14]

[15]

[16]

[17]

[18]
psoriasis,[19] refractory psoriasis and psoriatic arthritis at the dose of 2 g daily in these studies.[20]

Vesiculobullous disorders
MMF is mainly used as a steroid-sparing agent in blistering disorders. Mimouni et al. demonstrated complete remission of pemphigus in 22 out of 31 patients of pemphigus vulgaris (71%) and 5 out of 11 patients of pemphigus foliaceus (45%), who were recalcitrant to standard therapies with an average duration of 22 months.[21] Other studies have also demonstrated the effective use of MMF in other blistering disorders such as bullous pemphigoid,[22] paraneoplastic pemphigus,[23] cicatricial pemphigoid,[24] linear IgA disease[25] and epidermolysis bullosa acquisita.[26]

Dermatitis
Atopic dermatitis, chronic actinic dermatitis and dyshidrotic eczema have been treated successfully with MMF.[27,28]

Connective tissue diseases
Multiple studies have proved the efficacy of MMF in systemic lupus erythematosus (SLE). It has been used effectively in diffuse proliferative lupus nephritis,[29] SLE-associated immune thrombocytopenia,[30] SLE with neuropsychiatric symptoms[31] and also in the prevention of clinical relapse of SLE.[32] Subacute cutaneous lupus erythematosus not responding to steroids, immunosuppressants or antimalarials and resistant cases of discoid lupus erythematosus of palms and soles were treated successfully with MMF.[33,34]

In dermatomyositis, MMF alone or in combination with intravenous immunoglobulins (IVIG) can not only induce long-lasting remission but can also avoid adverse effects of long-term steroids.[35] In patients with diffuse scleroderma with recent, clinically apparent alveolitis, early treatment with MMF and corticosteroids may represent an effective, well-tolerated and safe alternative therapy.[36]

Vasculitis
MMF has been used in both small and large vessel vasculitis (Takayasu’s arteritis).[37,38] It has been used with success for induction and maintenance therapy either alone or in combination with oral steroids.

Other skin diseases
Various studies and case reports have documented MMF to be effective in a variety of skin disorders like lichen planus (hypertrophic, bullous, ulcerative variety and lichen planopilaris),[39,40] pyoderma gangrenosum,[41] Weber-Christian disease,[42] recurrent erythema multiforme,[43] sarcoidosis[44] and chronic idiopathic urticaria.[45]

ADVERSE EFFECTS
The most common dose-related side effects are gastrointestinal and genitourinary. Gastrointestinal (GI) symptoms include nausea, diarrhea, abdominal cramps, constipation, vomiting and anorexia while genitourinary symptoms include urgency, frequency, dysuria, hematuria and sterile pyuria.[11] GI symptoms are usually managed either by dose reduction or by splitting the total dose into three or four doses per day.

Being an immunosuppressant, MMF increases the risk of bacterial, fungal and viral infections and has a long-term risk of carcinogenicity like lymphomas and skin malignancies.[2,9]

Other reported adverse events include hematological (i.e., anemia, neutropenia, thrombocytopenia), neurologic (i.e., headache, tinnitus, insomnia), cutaneous (i.e., exanthematous eruptions, onycholysis), cardiorespiratory (i.e., dyspnea, chest pain, palpitations) and metabolic (i.e., hypercholesterolemia, hyperglycemia, hypophosphatemia and hypo/hyperkalemia).[2,9]

CONTRAINDICATIONS
MMF is absolutely contraindicated in patients with known hypersensitivity to any component of the drug and is included in pregnancy category C.[11,15] Peptic ulcer disease, renal disease, hepatic disease, lactation and cardiopulmonary disease are the relative contraindications.[9]

DRUG INTERACTIONS
Drugs such as acyclovir, ganciclovir and probenecid inhibit the tubular secretion of MMF and hence, increase its level while drugs like antacids (containing aluminum and magnesium), ferrous sulphate, metronidazole and fluoroquinolones decrease the absorption and bioavailability of MMF and decrease its blood level. Cholestyramine inhibits enterohepatic recirculation of MMF and decreases its level. Salicylates and furosemide compete with MMF for plasma albumin binding and hence, increase the elimination of MMF. Mycophenolic mofetil does not seem to interact with other immunosuppressive agents except azathioprine. A combination of MMF and azathioprine should not be used as both block purine synthesis by the same pathway.[2,9,11,15]
MONITORING

Complete physical examination should be carried out at each visit or at least every 6-12 months to look for any opportunistic infections and malignancies. Complete blood counts should be performed at baseline and biweekly during the first 2-3 months and then, monthly through the first year. Liver function and renal function tests should be performed at baseline and serum transaminases should be repeated after one month and then, quarterly. During follow-up, treatment should be discontinued if the leukocyte count is less than 3500-4000 cells/mm³.[3-11]

REFERENCES

