Short Communication

Missense mutation G296S in GATA4 is not responsible for cardiac septal defects

Human Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore - 570 006, *Molecular Reproduction and Developmental Genetics, Indian Institute of Science, Bangalore, **Department of Pediatrics, Cheluvamba Hospital, Mysore, Karnataka, ***Department of Pediatrics, JSS Hospital, Mysore, Karnataka, India

BACKGROUND: The most common type of congenital heart disease is the cardiac septal defects, which has reported to be caused by a missense mutation (G296S) in exon 3 of the GATA4 gene.

AIMS: The present study was undertaken to find out whether GATA4 gene is the prime cause of the septal defects in Mysore population.

MATERIALS AND METHODS: GATA4 gene analyses were undertaken on 21 confirmed CHD cases by PCR and DNA sequencing.

RESULTS AND CONCLUSION: Analysis of this particular mutation in 21 septal defect patients revealed that none of the patients had the mutation, indicating that this mutation is population specific or septal defect in Mysore population is caused due to mutations in other regions of the GATA4 gene.

Key words: Cardiac septal defects, congenital heart disease, GATA4, missense mutation

Introduction

Division of a common atrium and ventricle into right and left sided chambers represents an essential evolutionary milestone in the development of a four-chambered heart and is necessary for the separation of oxygenated and deoxygenated blood.\(^1\) However, this process of separation fails to occur resulting in septal defects, which accounts for about 50% of all the congenital heart disease (CHD). Recently, molecular and developmental biologists have elucidated the molecular pathways that regulate cardiac development.\(^1\) One of the important genes, which have an active role during the process of heart development is GATA4 located on chromosome 8p23.1-p22 with six exons. It codes for a 3372 bp long transcript with 443 amino acid residues. This gene is a member of the GATA family of zinc-finger transcription factors, which are a group of structurally related transcription factors that control gene expression and differentiation in a variety of cell types. Members of this family of DNA-binding proteins recognize a consensus sequence known as the ‘GATA’ motif, which is an important cis-element in the promoters of GATA genes.\(^2\) Garg et al \(^3\) have reported a missense mutation (G296S) in exon 3 of the GATA4 gene as a prime cause of cardiac septal defect in a large family with 16 individuals having atrial septal defect, of which, eight had additional types of defect like ventricular septal defect (VSD), atrioventricular septal defect (AVSD) and pulmonary valve thickening. Studies in 3000 unrelated individuals without any septal defect of diverse ethnicity did not have this mutation. This heterozygous missense mutation was found to cause a G to A transition at nucleotide 886 which results in a glycine to serine substitution at codon 296 (G296S) disrupting a highly conserved glycine residue adjacent to the second zinc finger of GATA4, which is critical for protein-protein interactions. This mutation results in diminished DNA binding affinity and transcriptional activity of GATA4. Furthermore, the G296S mutation abrogated a physical interaction between GATA4 and TBX5, T-box protein responsible for a subset of syndromic cardiac Septal Defects.\(^3\)

In view of this, in the present investigation this GATA4 mutation was screened in 21 septal defect patients from Mysore (South India) to know whether it is the prime cause of the septal defects in our population.

Address for Correspondence: N. B. Ramachandra, Human Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore - 570 006, India. E-mail: nallurbr@gmail.com

Indian Journal of Human Genetics January-April 2007 Volume 13 Issue 1
Materials and Methods

The present investigation was conducted in Mysore city (Karnataka state), South India from September 2003 to August 2005 in three major hospitals: K. R. Hospital, CSI Holdsworth Memorial Hospital and J.S.S Hospital. The suspected CHD patients had been subjected by the pediatricians for extensive X-ray analysis, electrocardiogram and echocardiography examination for confirmation of the defect. A total of 21 confirmed CHD cases were considered for the present study, which included ostium secundum type of atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA) and total anomalous pulmonary venous connection (TAPVC) [Table 1]. After informed consent was obtained, DNA was extracted from peripheral blood leukocytes of 21 patients using standard procedure of Lahiri et al. with suitable modifications. A pair of intronic primers (Forward primer-CGGAGTTGGCGCTTCTTGTCG; Reverse primer-CTACTTTGCTGCGCTTCCGCTCT) were designed for the complete exon 3 of GATA4 (GenBank accession number NM_002052) which amplified a 276bp fragment. PCR products were purified using the Gel Extraction Kit (Sigma, St Louis, USA) and the purified products were sequenced on an automated DNA sequencer (Applied Biosystems, Foster City, USA).

Results and Discussion

In the present study, the sequence analysis of 276bp fragments from all the 21 patients showed the absence of G296S missense mutation. Similarly, Okubo et al. in Japan have screened GATA4 gene, for the missense mutation (G296S), in a large family of 22 members with 11 ASD patients. But they did not find this mutation in any of the patients. However, they found a novel 1bp deletion (c.1074delC) in exon 6 in nine individuals with ASD. In another study, Hirayama-Yamada et al. again in Japan have screened 16 ASD patients and found a frameshift mutation (E359del) in exon 5 in one patient with ASD as reported by Garg et al. In another patient, a novel missense mutation (c.155C>T) was found in exon 1. However, both the groups failed to find the G296S missense mutation. On the contrary, Sarkozy et al. have found G296S missense mutation in 5 of 29 ASD from Italy.

The present investigation suggests that, the G296S missense mutation does not cause septal defect in patients from Mysore city. This indicates that the G296S missense mutation may be a population specific. Hence, the mutations in other regions of the GATA4 gene may be responsible for the formation of septal defect in Mysore population. However, this possibility needs to be further investigated.

Acknowledgments

We thank all the family members who have taken part in the study, the Department of Pediatrics, Cheluvamba Hospital, CSI Holdsworth Memorial Hospital and J.S.S. Hospital; Doctors and PG students who have provided with the necessary information to conduct the present study; University of Mysore for giving us (SR) an opportunity to carry out our research activities; Dr. Vidu Garg, USA, Mr. Harshvardhan M. Gawde, Ms. Pushpa Saviour, Ms. Shoma, Dr. Mikhil M. Bamne and Dr. Nagaraj for their help during the study. We also thank Prof. H. A. Ranganath; Chairman, DOS in Zoology for their help and encouragement.

<table>
<thead>
<tr>
<th>No. of cases</th>
<th>Types of congenital heart disease</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Atrial septal defect (ostium secundum)</td>
<td>Female</td>
</tr>
<tr>
<td>05</td>
<td>Atrial septal defect (ostium secundum)</td>
<td>Male</td>
</tr>
<tr>
<td>02</td>
<td>Atrial septal defect (ostium secundum) + patent ductus arteriosus + ventricular septal defect (perimembranous)</td>
<td>Male</td>
</tr>
<tr>
<td>01</td>
<td>Atrial septal defect (ostium secundum) + patent ductus arteriosus</td>
<td>Male</td>
</tr>
<tr>
<td>01</td>
<td>Atrial septal defect (ostium secundum) + patent ductus arteriosus</td>
<td>Female</td>
</tr>
<tr>
<td>01</td>
<td>Atrial septal defect (ostium secundum) + ventricular septal defect (muscular)</td>
<td>Male</td>
</tr>
<tr>
<td>01</td>
<td>Multiple atrial septal defect (ostium secundum)</td>
<td>Male</td>
</tr>
<tr>
<td>01</td>
<td>Atrial septal defect (ostium secundum) + ventricular septal defect (sub aortic)</td>
<td>Male</td>
</tr>
<tr>
<td>01</td>
<td>Atrial septal defect (ostium secundum) + total anomalous pulmonary venous connection + patent ductus arteriosus</td>
<td>Male</td>
</tr>
</tbody>
</table>
Ramegowda, et al.: GATA4 and Isolated congenital heart defects

References

Source of Support: Nil, Conflict of Interest: None declared.

Announcements

Dr. J. C. Patel Birth Centenary Celebration Committee

The year 2008 is the Birth Centenary Year of Dr. J. C. Patel. Some of his students/admirers felt that it would be a good idea to celebrate this Centenary Year by organizing CMEs, Orations/Lectures, Conferences, etc. during the year. He was associated with many professional bodies, which meet regularly every year; during these annual meetings/conferences, a lecture/symposium, etc can be organized as a part of Centenary celebrations. We would like to form a Dr. J. C. Patel Birth Centenary Celebrations Committee. All his past students/admirers are invited to join the committee (without any financial commitment). Kindly communicate your name, designation, postal address, telephone number and E-mail ID to Dr. B. C. Mehta at Flat 504, Prachi Society, Juhu-Versevo Link Road, Andheri (W0, Mumbai 400 053 (dmehta.bc@gmail.com).

Free access to the Cochrane Library for everyone in India

Anyone in India with access to the Internet now has complementary access to reliable, up-to-date evidence on health care interventions from The Cochrane Library, thanks to sponsorship provided by the Indian Council of Medical Research (ICMR) that recently signed a three-year contract for a national subscription with the publishers, John Wiley & Sons.

The Cochrane Library (available at www.thecochranelibrary.com) is considered by many to be the single most reliable source for evidence on the effects of health care interventions. It includes seven databases that are updated quarterly, four of which are the efforts of the 15,000 international contributors of the Cochrane Collaboration (www.cochrane.org).

The Cochrane Database of Systematic Reviews currently contains 4655 regularly-updated systematic reviews and protocolsof reviews in preparation.

The Cochrane Controlled Trials Register currently contains references, mostly with abstracts, of more than 48,900 controlled clinical trials-easily the largest collection of such trials in the world.

The Cochrane Database of Methodology Reviews contains 22 systematic reviews of the science of reviewing evidence.

The Cochrane Methodology Register contains the bibliography of 9048 articles that could be relevant to anyone preparing systematic reviews.

The three other databases in The Cochrane Library include the:

• Database of Abstracts of Reviews of Effectiveness, summaries of 5931 systematic reviews published elsewhere and quality appraised by the UK National Health Service (NHS) Centre for Reviews and Dissemination.

• Health Technology Assessment Database that contains details of 6358 completed and ongoing health technology assessments.

• NHS Economic Evaluation Database that contains 20,292 abstracts of quality assessed economic evaluations from around the world.

Also available is information about the Cochrane Collaboration. One can search for interventions or health conditions across all these databases using free text terms or medical subject headings (MeSH).

From 29 January 2007 the Cochrane Library is freely available to all residents of India with Internet access thanks to funding from the Indian Council of Medical Research (ICMR) (www.ICMR.nic.in), and work of the South Asia Cochrane Network (www.cochrane-sacn.org).