Nose and throat complications associated with passive smoking among Congolese school children

1. Department of Specialties/ENT, University of Kinshasa, DR Congo
2. Research Champion Professor, Walter Sisulu University, Faculty of Health Sciences, Mthatha, Eastern Cape, South Africa
3. Biostatistics Unit, LOMO Medical Center and Heart of Africa Center of Cardiology, Kinshasa, DR Congo
4. Head – Health promotion Unit. Medical Research Council of South Africa. South Africa
5. Head – Department of Community Medicine, Walter Sisulu University, Faculty of Health Sciences, Mthatha, Eastern Cape, South Africa

Abstract
Objective: To assess associations between nose-throat (NT) diseases and passive smoking prevalence among school children.

Methods: A cross-sectional survey was carried out on a randomized multistage sample of 381 school children (50.9% males, aged 9.8 ± 3.5 years) from Kinshasa town. Parents and children were asked to fill in a questionnaire detailing their smoking habits. The NT symptoms and diseases were assessed by the survey NT specialist.

Results The prevalence of passive smoking was 38.6% (n=147). Residence in peripheral areas, catholic school system, elementary level, exposure of family to passive smoking, history of NT surgery, medicines and menthol inhaling, headache, nasal pain, dysphagia, odynophagia, dysosmia, dysphonia, pharyngeal irritation, dry throat, snore., and chronic pharyngitis were more reported by passive smokers. After adjusting for confounding factors, passive smoking (OR=16.7; 95%CI 3.3-83.3), catholic system(OR=2; 95%CI 1.2-3.2), and elementary degree(OR=1.4; 95% CI 1.1-2.1) were identified as independent determinants of chronic pharyngitis.

Conclusion: Parents should not smoke in the same room used by their children.

Keywords: Passive smoking, children, nose, throat, chronic pharyngitis

Introduction
Epidemiological studies have shown that passive smoking may have particularly more deleterious effects in children than in adults, because of immature respiratory and immune systems in children1-4. Furthermore, the longer and intense exposure, smoke renders children more vulnerable to undergo nose and throat (NT) procedures5. Indeed, tobacco contains many substances that often result in irritations and inflammation of NT mucosa. However, the association between passive smoking and NT diseases remains controversial6. Passive smoking is associated with NT symptoms, upper respiratory tract infections, chronic pharyngitis, and chronic rhinitis7-15. On the contrary, other studies do not support the relationship between passive smoking and NT diseases16-18.

In sub-Saharan Africa, the prevalence of passive smoking is very high and estimated at 44%19. However, there is no data on the relationship between prevalence of passive smoking and NT problems among African children. This study was therefore, initiated to address this gap.

Methods
This cross-sectional survey was conducted between January 10th and November 20th, 2005. Kinshasa town, the capital of the Democratic Republic of Congo (DRC) has 10 million inhabitants and enjoys a tropical climate in Central Africa and comprises of 6 strata including 24 districts.

A statistical multistage and stratified random sample model was used at districts, sub-districts and schools of Kinshasa town. The survey was specifically and extensively designed to select representatives from a list at each level. The sample size (ni) of children was calculated as follows: ni = (K x (Z)² x P x Q/D²) P= prevalence of passive smoking in Kinshasa (Longo-Mbenza) according to,
unpublished data) equals 17% or 0.17, Q= 1 – 0.17, Z parameter related to error risk of 5% = 1.96, K= cluster factor =2, and D= accuracy level of 0.05. Thus, 433 children were eligible for the study. Permission to conduct the study was obtained from the Ministry of Public Health, the Ministry of Education, the school principal and the parents. Ethical approval was obtained from the institutional review board of Kinshasa University Medical School, DRC. Eligible school children were invited to participate in the survey at study centres on specified dates. They were free to enrol and gave informed consent according to the Helsinki Declaration II. Incentives (transport and a soft drink) were available for all participants.

The survey workers were trained to avoid duplicates (school after school and classroom after classroom) and to ensure quality control and validity of the study. The protocol and procedures were identically self-administered with anonymity and confidentiality ensured. All adult household members completed the questionnaire containing questions on residence (peripheral areas including rural, semi-urban/slums vs. urban inner areas), their past exposure to passive smoking and their current smoking behaviour. School children completed the self-administered questionnaire about their smoking habits, school system (catholic, protestant, and private), school degree (elementary, primary, secondary), age, gender, and passive history of NT treatment (menthol inhaling, surgery and medicines). Passive smoking was defined as living in the household with at least one adult who smoked for at least one year.

The survey NT specialist (SGJ) examined the children to collect NT symptoms and diseases including rhinorrhoea, headache, nasal algia, dysphagia, odynophagia, dysosmia, dysphonia, pharyngeal irritation, and chronic pharyngitis.

Statistical analysis

Age was expressed as mean+- standard deviation and grouped into <8 years vs. >8 years. Categorical variables were presented as proportions (%) and numbers. Proportions were compared using the chi-square test. After adjusting for confounding factors, a logistic regression model was used to identify the independent determinants of the presence of chronic pharyngitis (dependent variable). Association between NT diseases and passive smoking was defined by the odds ratio (OR) and its corresponding 95% confidence intervals (CI). All analyses were performed using SPSS for windows, version 18.0 (SPSS Inc, Chicago, Il, USA).

Results

A total of 381 (50.9% n=194 males) school children (response rate of 88%), aged 9.8 ± (SD 3.5) years accepted to participate in this study. The prevalence of passive smoking among the children was 38.6% (n=147).

The passive smoking rate in males (38.7% n=75) was similar (OR=1.01 95% CI 0.8-1.3) while that in females (38.5% n=72). Passive smoking was commoner in peripheral areas (100% n=43) than in inner areas (60.1% n=104). Passive smoking was more frequent in the catholic system (97.1%, n=33) than in the protestant (69.6% n=71), and private (17.6% n=43) systems. Passive smoking was also more prevalent at the elementary degree (55.6% n=20) than in the primary (34.8% n=100) and secondary (46.6% n=27) degrees. There was also a significant association between history of NT surgery (OR=2.5 95% CI 2.1 – 3.1), family exposure to passive smoking (OR=12 95% CI 8.3 -19.3), history of NT medicines (OR=3.1 95% CI 2.7 -3.7), and children passive smoking. Table 1 shows that headache, pharyngeal irritation, dry throat, dysphagia, odynophagia, dysosmia, dysphonia, pharyngeal irritation, and chronic pharyngitis were more reported by children exposed to passive smoking than children not exposed to it.

Table 1: Comparisons and Risks/Odds ratio (OR) of ENT symptoms as functions of presence and absence of Passive smoking

<table>
<thead>
<tr>
<th>Variables of interest</th>
<th>Exposed to passive smoking n (%)</th>
<th>Not exposed to passive smoking n (%)</th>
<th>OR (95% CI) of ENT symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>59(54.3)</td>
<td>16(6.3)</td>
<td>18.0(10.0-33.0)</td>
</tr>
<tr>
<td>Pharyngeal irritation</td>
<td>52(40.9)</td>
<td>46(18.1)</td>
<td>3.1(2.0-5.1)</td>
</tr>
<tr>
<td>Dry throat</td>
<td>25(19.7)</td>
<td>7(2.8)</td>
<td>8.7(3.6-21.0)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>24(18.9)</td>
<td>23(9.1)</td>
<td>2.3(1.3-4.3)</td>
</tr>
</tbody>
</table>
Continuation of table 1

<table>
<thead>
<tr>
<th>Variables of interest</th>
<th>Exposed to passive smoking n (%)</th>
<th>Non exposed to passive smoking n (%)</th>
<th>OR (95%CI) of ENT symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odynophagia</td>
<td>21(16.5)</td>
<td>18(7.1)</td>
<td>2.6(1.3-5.1)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>21(16.5)</td>
<td>18(7.1)</td>
<td>2.6(1.3-5.1)</td>
</tr>
<tr>
<td>Nasal algia</td>
<td>20(15.7)</td>
<td>18(7.1)</td>
<td>2.5(1.3-5.1)</td>
</tr>
<tr>
<td>Snooze</td>
<td>21(16.5)</td>
<td>18(7.1)</td>
<td>2.6(1.3-5.1)</td>
</tr>
<tr>
<td>Dysosmia</td>
<td>9(7.1)</td>
<td>8(3.1)</td>
<td>2.4(0.9-6.2)</td>
</tr>
<tr>
<td>Chronic pharyngitis</td>
<td>72(56.7)</td>
<td>17(6.7%)</td>
<td>18.3(10-33.4)</td>
</tr>
</tbody>
</table>

After adjusting for confounding factors (gender, age, residence, family history to passive smoking, history of NT medicines and surgery), only children's passive smoking (OR=16.7 95% CI 3.3 – 83.3), catholic system(OR = 2.95% CI 1.2 -3.2), and the elementary degree(OR =1.4 95% CI 1.1 -2.1) were identified as the independent determinants of chronic pharyngitis.

Discussion

This study estimated the magnitude of passive smoking among school children from Kinshasa, DRC and it demonstrated the harmful association with NT diseases.

Nose and throat diseases in general and chronic pharyngitis in particular, may be determined by irritant substances in smoke such as acrolein, aldehyde, cetone and nitrosamines. Respiratory tract symptoms (dry throat, nasal algia, allergic rhinitis and snooze) were reported by the present study and other researchers in the literature. Cellular infiltrates in the nasal mucosa containing increased numbers of IgE+ cells and eosinophils but not of IgE+ mast cells, are associated with passive smoking. A marked and statistically significant association exists between the incidence of tonsillectomy in children and parental smoking in the home environment. There is a higher frequency of attacks of tonsillitis requiring antibiotics in those children whose parents smoke in front of them. This effect may be mediated by altered orophangal flora, mucociliary dysfunction, increased cross-infection or a combination of these.

Willatt observed a significant association between children’s sore throats and maternal smoking. However, Capper and Canter did not observe any significant association between passive smoking and the number of sore throat episodes.

The proportion of pharyngitis in children exposed to passive smoking in this study was similar with the 59% of children reported by Mania et al.

Clinical implications and public health perspectives

These finding have major public health policy and clinical practice implications. Parents must be educated about the dangers of passive smoking and the need to prevent of smoking in their own homes. It is urgent that the Congolese government develops and implements an efficient policy and legislative action against smoking in homes and public areas.

It is recommended that parents, general practitioners and otolaryngologists work together to accurately diagnose NT diseases. Otolaryngologists are requested to adequately treat chronic pharyngitis, chronic rhinitis, and allergic rhinitis.

Children are unable to remove themselves from the passive smoking. It is better to reduce the proportion of family members who smoke at home than to isolate smokers or increase ventilation.

Limitations of the study

The present study was limited to some degree. Its cross-sectional design was not able to demonstrate a causal association which would require prospective studies. The reliability of the declaration of the parents in the estimation of passive smoking could be lower than it is in reality. It was not possible to measure urinary cotinin in children.

Conclusion

An urgent programme for prevention and control of the epidemic of passive smoking is needed for
schoolchildren in Kinshasa, DRC. This programme may reduce chronic NT diseases.

References
25. Vinked JG, Klein Jan, Severijne I.W, Fokker WJ. Passive smoking causes an allergic all infiltrate in

