INDIAN JOURNAL OF MEDICAL MICROBIOLOGY
(Official publication of Indian Association of Medical Microbiologists,
Published quarterly in January, April, July and October)
Indexed in Index Medicus/MEDLINE/PubMed, ‘Elsevier Science - EMBASE’, ‘IndMED’

EDITORIAL BOARD

EDITOR
Dr. SAVITRI SHARMA
L V Prasad Eye Institute
Bhubaneswar - 751 024, India

ASSOCIATE EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam, Puducherry - 605 009, India

ASSISTANT EDITOR
Dr. P Sugandhi Rao
Professor
Department of Microbiology
Kasturba Medical College
Manipal - 576 119, India

ASSISTANT EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam, Puducherry - 605 009, India

ASSISTANT EDITOR
Dr. P Sugandhi Rao
Professor
Department of Microbiology
Kasturba Medical College
Manipal - 576 119, India

MEMBERS

National

Dr. Arora DR (Rohtak)
Dr. Arunaloke Chakrabarthisi (Chandigarh)
Dr. Camilla Rodrigues (Mumbai)
Dr. Chaturvedi UC (Lucknow)
Dr. Hemashettar BM (Belgaum)
Dr. Katoch VM (Agra)
Dr. Madhavan HN (Chennai)
Dr. Mahajan RC (Chandigarh)
Dr. Mary Jesudasen (Thriissur)
Dr. Meenakshi Mathur (Mumbai)
Dr. Nancy Malla (Chandigarh)
Dr. Philip A Thomas (Tiruchirapally)
Dr. Ragini Macaden (Bangalore)
Dr. Ramesh K Aggarwal (Hyderabad)
Dr. Renu Bhardwaj (Pune)
Dr. Sarman Singh (New Delhi)
Dr. Seyed E Hasnain (Hyderabad)
Dr. Sitaram Kumar M (Hyderabad)
Dr. Sridharan G (Vellore)
Dr. Sritharan V (Hyderabad)
Dr. Subhas C Parija (Pondicherry)

International

Dr. Arseelegeratne SN (Srilanka)
Dr. Arvind A Padhye (USA)
Dr. Chinnaswamy Jagannathan (USA)
Dr. Christian L Coles (USA)
Dr. David WG Brown (UK)
Dr. Diane G Schwartz (USA)
Dr. Govinda S Visveswara (USA)
Dr. Kailash C Chadha (USA)
Dr. Madhavan Nair P (USA)
Dr. Madhukar Pai (Canada)
Dr. Mohan Sopori (USA)
Dr. Paul R Klatser (Netherlands)
Dr. Vishwanath P Kurup (USA)

ADVISORY BOARD

Dr. KB Sharma (New Delhi), Dr. NK Ganguly (New Delhi), Dr. SP Thyagarajan (Chennai),
Dr. R Sambasiva Rao (New Delhi), Dr. MK Lalitha (Chennai), Dr. PG Shivananda (Manipal)

Annual Subscription Rs 2,000/-
Single Copy Rs 600/-

Ph: (+91)-0674-3987 209, 099370 37298
Fax: (+91)-0674-3987 130, E-mail: ijmm@bei-lvpei.org, Website: www.ijmm.org

Published by MEDKNOW PUBLICATIONS
A-109, Kanara Business Center, Off Link Rd, Ghatkopar (E), Mumbai - 400075, INDIA
Phone: 91-22-6649 1818/1816, Fax: 91-22-6649 1817 • E-mail: publishing@medknow.com, Web: www.medknow.com

The journal is printed on acid free paper.
CONTENTS

Guest Editorial
The Need for Control of Viral Illnesses in India: A Call for Action
C Lahariya, UK Baveja

Page No. 309

Review Article
Immunobiology of Human Immunodeficiency Virus Infection
P Tripathi, S Agrawal

Page No. 311

Special Articles
Serum Levels of Bel-2 and Cellular Oxidative Stress in Patients with Viral Hepatitis
HG Osman, OM Gabr, S Lotfy, S Gabr

Page No. 323

Rapid Identification of Non-sporing Anaerobes using Nuclear Magnetic Resonance Spectroscopy and an Identification Strategy
S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande

Page No. 330

Original Articles
Species Distribution and Physiological Characterization of Acinetobacter Genospecies from Healthy Human Skin of Tribal Population in India
SP Yavankar, KR Pardesi, BA Chopade

Page No. 336

Extended-spectrum Beta-lactamases in Ceftazidime-resistant Escherichia coli and Klebsiella pneumoniae Isolates in Turkish Hospitals
S Hosoglu, S Gundes, F Kolayli, A Karadenizli, K Demirdag, M Gunaydin, M Altindis, R Caylan, H Ucmak

Page No. 346

Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate
M Mirsadraee, A Shirdel, F Roknee

Page No. 351

Correlation Between in Vitro Susceptibility and Treatment Outcome with Azithromycin in Gonorrhoea: A Prospective Study
P Khaki, P Bhalla, A Sharma, V Kumar

Page No. 354

Comparison of Radiorespirometric Buddemeyer Assay with ATP Assay and Mouse Foot Pad Test in Detecting Viable Mycobacterium leprae from Clinical Samples
VP Agrawal, VP Shetty

Page No. 358

Detection of Mycoplasma Species in Cell Culture by PCR And RFLP Based Method: Effect of BM-cyclin to Cure Infections
V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil

Page No. 364
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections

* S Sharma, GK Bhat, S Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran

* J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad

* P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination

* S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment

* H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent In Situ Hybridization

* EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis

* K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study

* SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital

* MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre

* S Shivaprakasha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India

* P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India

* BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case

* SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis

* P Mathur, JC Samantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*

* R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis

* C Sanghvi

Correspondence

Prevention of Parent-to-Child Transmission of HIV: An Experience in Rural Population

* N Nagdeo, VR Thombre*
Combining Vital Staining with Fast Plaque: TB Assay
D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal

Disseminated Histoplasmosis
PK Maiti, MS Mathews

Authors’ Reply
RS Bharadwaj

Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi
VH Cardoso, DL Gonçalves, E Angloletto, F Dal-Pizzol, EL Streck

Endoscope Reprocessing: Stand up and Take Notice!
A Das, P Ray, M Sharma

Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India
BJ Borkakoty, AK Borthakur, M Gohain

MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal

Resurgence of Diphtheria in the Vaccination Era
N Khan, J Shastri, U Aigal, B Doctor

A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran
MA Boroumand, P Esfahanifard, S Saadat, M Sheikhvatan, S Hekmatyazdi, M Saremi, L Nazemi

Trends of Antibiotic Resistance in Salmonella enterica Serovar Typhi Isolated from Hospitalized Patients from 1997 to 2004 in Lagos, Nigeria
KO Akinyemi, AO Coker

Book Review
Hospital-Acquired Infections: Power Strategies for Clinical Practice
Reba Kanungo

Title Index, 2007

Author Index, 2007

Scientific Reviewers, 2007

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal’s / publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resell or give-away the copy for commercial or library use.
OUTBREAK OF ACUTE VIRAL HEPATITIS DUE TO HEPATITIS E VIRUS IN HYDERABAD

*P Sarguna, A Rao, KN Sudha Ramana

Abstract

Purpose: A waterborne outbreak of viral hepatitis occurred in the old city of Hyderabad from March through August 2005. An attempt was made to study the outbreak clinically, serologically, and etiologically. Methods: Five hundred and forty-six clinically and biochemically documented cases were screened for the hepatotropic viral markers, hepatitis A, B, C, and E by the ELISA method. Their demographic characteristics and outcomes were analyzed. Point source contamination of the water supply with sewerage was identified. Result: Our data confirms hepatitis E as the major cause of the outbreak (78.57%). Occasionally, mixed infection of HEV-HAV (5.31%) or HEV-HBV (0.91%) was detected in the present series of acute viral hepatitis. Conclusions: HEV was confirmed as the major etiological agent in this outbreak that was transmitted by contaminated drinking water. The study highlights the importance of screening for both enterically transmitted hepatotropic viral markers as well as the parenterally transmitted hepatotropic viral markers during outbreaks of acute viral hepatitis.

Key words: Acute viral hepatitis, epidemic, Hepatitis E virus, mixed infection

Hepatitis E virus (HEV) is the agent largely responsible for epidemic as well as sporadic hepatitis in the developing countries.1-4 The virus is transmitted by the feco-oral route, often through contaminated water5,6 and affects travelers from developed countries who have been to endemic areas.7 Primarily a self-limiting disease, it produces chronic sequelae. A mortality of 20-30% has been reported, particularly in pregnant woman who contract the disease in the third trimester.8,9 HEV has been implicated as an important etiological agent for sporadic fulminant hepatic failure (FHF) in developing countries.10

A waterborne outbreak of viral hepatitis affected a large population in the old city of Hyderabad from March 2005 through August 2005. The water distribution system in the old city of Hyderabad was examined for any recent changes in the supply system. Although acute viral hepatitis (AVH) could be differentiated into enterically transmitted virus or parenterally transmitted virus based on the mode of presentation, confirmation of etiology needs to be determined serologically. It has been well established that in endemic areas infection with HEV can be seen in association with infection by other hepatotropic viruses, such as hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV);11 this may lead to FHF worsening the already affected liver cells. In view of the above facts, this study was undertaken to determine the etiology of the outbreak and the incidence of mixed hepatotropic viral infections (HAV, HBV, HCV, and HEV) among the individuals who were affected with hepatitis E in Hyderabad.

Materials and Methods

Hyderabad city is divided into seven circles (Fig. 1). Water supply for the population of 40,36,347 is maintained by the Hyderabad metropolitan water supply and sewerage board (HMWS and SB). In March 2005, there was a breach in the sewerage pipelines located in circles 1 and 2, which contaminated the drinking water supply. The layout of the water and sewerage distribution lines in circles 1 and 2, obtained from HMWS and SB, revealed some unsafe pipelines which passed through open drains—a possible source of the infection (Fig. 2). The local inhabitants had noticed that the tap water was dirty. Tap water samples (117) were analyzed

*Corresponding author (email:<sarguna2006@yahoo.com>)
Sir Ronald Ross Institute of Tropical and Communicable Diseases, Government Fever Hospital, Hyderabad - 530 044, Andhra Pradesh, India
Received: 08-10-06
Accepted: 07-06-07

Figure 1: Incidence of acute hepatitis in seven circles of Hyderabad; March–August 2005

www.ijmm.org
for residual chlorine levels and fecal contamination as per the standard protocol.12

Following this event, 1455 patients with clinically suspected AVH from these localities reported to Sir Ronald Ross Institute of Tropical and Communicable Diseases (SRRITCD), Hyderabad, A.P., from March 2005 through August 2005. For the purposes of this study, a case of acute hepatitis was defined as acute illness with jaundice, dark urine, loss of appetite, and right hypochondrial tenderness. Exclusion criteria included history of chronic hepatitis, exposure to hepatotoxic drugs or chemicals, and chronic alcohol use. The study population included 546 consecutive patients who met the case definition of AVH and had biochemical evidence of liver function derangement. These individuals belonged to both genders, with the ages ranging from 10-70 years. The above patients reported to the hospital at different stages of illness following exposure to the contaminated water. The period of reporting varied from 1 day to 2 months after the onset of illness.

Urine was tested for the presence of bile pigments and bile salts. The liver function tests included estimation of serum bilirubin, serum alkaline phosphatase, and serum alanine aminotransferase (ALT).

Blood samples were collected from all the patients on the day of admission to the hospital. Serum was separated and preserved at −20°C until it was tested. Sera were screened within 4 days of collection for the hepatotropic viral markers. Anti-HAV IgM (ImmunoVision) was assessed using HAV-specific immunodominant recombinant antigens by capture enzyme immunoassay; anti-HEV IgM (ImmunoVision), using ORF2 as well as ORF3 recombinant antigens by capture enzyme immunoassay; HBsAg was screened for by using third-generation enzyme immunoassay (PATHOZYME); and anti-HCV antibody was detected by third-generation enzyme immunoassay (General Biologicals Corp.) using synthetic HCV peptides, core and NS4 antigens, and recombinant antigens NS3 and NS5 by sandwich assay. All tests were carried out using procedures as per the manufacturers’ instructions.

Results

The epidemic was short-lived; the majority of the cases occurred during the third week of March and between the last week of April and the first week of May. A high incidence was observed in circle 1 and circle 2 around the old city of Hyderabad.

Thirty-four of the 117 randomly collected samples of water from various taps in and around the old city during the outbreak revealed evidence of inadequate chlorination (<0.1 ppm) and presence of coliform organisms (more than 20/dL). All the 34 contaminated water samples were from the affected area of the old city of Hyderabad.

Among the 546 patients studied, males outnumbered females with a ratio of 2.3:1. The most affected age-group was that between 15 and 25 years, with an incidence of 73% in males. We found a relative sparing of children below 10 years of age. Of the 13 pregnant women with AVH, 3 (23%) women who were in the third trimester had a fatal outcome. No untoward effects were observed in the remaining 10 HEV infected pregnant women during their follow-up.

The clinical profile of the patients is depicted in Table 1. Of the 546 patients, 119 (21.79%) gave a history of usage of herbal medicines for treatment of jaundice after the onset of the present illness. All the 546 patients had abnormal liver function tests suggestive of acute hepatitis (Table 2); the tests were repeated at weekly intervals as it was found to be useful in predicting the prognosis. There was a moderate rise in serum alkaline phosphatase levels, and a relative cholestatic picture was observed in 50.36% (275/546) patients. The average duration of symptoms was 11 to 15 days. The nature of the symptoms was similar in men, women, and children.

Seroanalysis of 546 serum samples from the outbreak (Table 3) revealed the presence of at least one seromarker of hepatitis in 534 (98 %) cases.

Anti-HEV IgM positivity was significantly higher among individuals >15 years of age than in those >15 years (P < 0.001). In contrast, anti-HAV IgM positivity was statistically significant in subjects <15 years old, with a P value < 0.001 (Fig. 3).

Discussion

Contaminated water, as a source of infection, is intimately related to outbreaks of hepatitis due to HEV; this was the case in the old city of Hyderabad, similar to several other outbreaks in other places. Cases were clustered around those water supply lines that were found to be crossing the open drains. Overcrowding and poor sanitation and living conditions contributed to the rapid spread of the outbreak.

Figure 2: Incidence of acute hepatitis by block in the circles 1 and 2 of the city of Hyderabad; March–August 2005

www.ijmm.org
Diagnostic tests with high sensitivity and specificity, such as peptide-based ELISA, have enabled an extensive seroanalysis of the epidemic of hepatitis. Analysis of viral makers revealed isolated viral infection in 91.57% cases; coinfection with multiple viruses was detected in 6.22% of AVH patients. The majority of single infections were due to HEV (78.57%), followed by HAV (9.70%). The presence of HBV in 3.29% probably reflects sporadic cases in the community. The age distribution of cases was similar to that described in previous epidemics of hepatitis due to HEV: adults in the age-group of 15–25 years being predominantly affected. Children below 10 years were spared, as has been also observed in earlier epidemics of NANB hepatitis.3,9 This could be because anicteric hepatitis or subclinical infection is common in children under 9 years of age in endemic hepatitis.13 An alternative explanation could be that HEV is maintained in the community as a sporadic infection; thus, HEV is acquired early in life, making infants and children immune to another attack.1,14-16 However, seroanalysis of the epidemic of hepatitis revealed anti-HEV IgM in a few children.17

Although HEV and HAV have a common route of transmission, HAV infection was infrequent, being the predominant form in individuals less than 15 years (81.12%). Hepatitis due to HAV is considered a childhood disease in developing countries. Association of HAV infection with fulminant disease and relapsing hepatitis is frequently observed in adults over the age of 40 years. The case fatality

Table 1: Clinical profile in acute viral hepatitis (n = 546)

<table>
<thead>
<tr>
<th>Clinical manifestation</th>
<th>HEV n = 429 No. (%)</th>
<th>HAV n = 53 No. (%)</th>
<th>HEV-HAV n = 29 No. (%)</th>
<th>HEV-HBV n = 5 No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaundice</td>
<td>429 (100)</td>
<td>53 (100)</td>
<td>29 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>329 (76.68)</td>
<td>43 (81.13)</td>
<td>17 (58.62)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Malaise</td>
<td>195 (45.45)</td>
<td>18 (34)</td>
<td>5 (17.24)</td>
<td>2 (40)</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>195 (45.45)</td>
<td>18 (34)</td>
<td>8 (27.58)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>212 (49)</td>
<td>28 (52.83)</td>
<td>14 (48.27)</td>
<td>2 (40)</td>
</tr>
<tr>
<td>High coloured urine</td>
<td>429 (100)</td>
<td>31 (58.49)</td>
<td>29 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Pale coloured stools</td>
<td>60 (14)</td>
<td>6 (11.32)</td>
<td>1 (3.44)</td>
<td>-</td>
</tr>
<tr>
<td>Pain right hypochondrium</td>
<td>333 (77.62)</td>
<td>28 (52.83)</td>
<td>14 (48.27)</td>
<td>-</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>220 (51.28)</td>
<td>31 (58.49)</td>
<td>2 (6.89)</td>
<td>-</td>
</tr>
<tr>
<td>Itching</td>
<td>255 (59.44)</td>
<td>22 (41.35)</td>
<td>8 (27.58)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Liver function tests in acute viral hepatitis (n = 546)

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Normal values</th>
<th>HEV n = 429 No. (%)</th>
<th>HAV n = 53 No. (%)</th>
<th>HEV-HAV n = 29 No. (%)</th>
<th>HEV-HBV n = 5 No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum bilirubin</td>
<td>0.2-1.2 mg %</td>
<td>429 (100)</td>
<td>53 (100)</td>
<td>29 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Serum alkaline phosphatase</td>
<td>100-280 U/L</td>
<td>417 (97)</td>
<td>49 (92.45)</td>
<td>29 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Serum alanine amino transferase (ALT)</td>
<td>40 U/L</td>
<td>429 (100)</td>
<td>49 (92.45)</td>
<td>29 (100)</td>
<td>5 (100)</td>
</tr>
</tbody>
</table>

Table 3: Serological profile in AVH (n = 546)

<table>
<thead>
<tr>
<th>Viral marker</th>
<th>No. of positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-HAV IgM</td>
<td>53</td>
<td>9.70</td>
</tr>
<tr>
<td>Anti-HEV IgM</td>
<td>429</td>
<td>78.57</td>
</tr>
<tr>
<td>HBsAg</td>
<td>18</td>
<td>3.29</td>
</tr>
<tr>
<td>HEV and HAV</td>
<td>29</td>
<td>5.31</td>
</tr>
<tr>
<td>HEV and HBV</td>
<td>5</td>
<td>0.91</td>
</tr>
<tr>
<td>Total</td>
<td>534</td>
<td>97.80</td>
</tr>
</tbody>
</table>

Figure 3: Age and gender distribution in AVH (n = 546)
rate is quoted as being less than 1.5% in icteric cases. Prompt hospitalization following the onset of illness and complete rest was important in inducing recovery within a period of 2-6 weeks in the majority of the cases. We did not observe any sequelae suggestive of chronicity. There was a fatal outcome in 23% of pregnant women (all in the third trimester) due to isolated HEV infection. Pregnant women are at higher risk of a fulminant course and the case fatality rate increases with the length of the pregnancy period, as was evident in the present study.

Occasionally dual infections with HAV and HBV in acute HEV patients have been observed in the present series of AVH, affecting adults predominantly the adult age 86.20% and 100%, respectively. All the HAV and HEV dual infections were probably coinfections as they have a common route of transmission. There was no essential difference in the clinical behavior or biochemical profile between the single and multiple infection groups of AVH patients. Recovery was uneventful, without any sequelae. Coinfections with HAV and HEV have been implicated as the single largest etiologic subgroup causing AHF and sporadic fulminant hepatitis in children in North India. Yet others have reported mixed infections of HEV and HAV in a pediatric population in association with FHF (22.5%). This contrasts with our clinical experience of an uneventful course in AVH due to HAV–HEV coinfection. The discrepancy could be because their studies comprised proven cases of acute liver failure and FHF, whereas our study included cases selected on the basis of clinical criteria and deranged liver function during the waterborne outbreak of viral hepatitis.

In our study, dual infection of HEV and HBV was observed in 0.91% of acute hepatitis in adults without any sequelae, while a group of researchers observed dual infection of HEV and HBV in 5.4% of patients of acute hepatitis. We did not observe any sequelae suggestive of chronicity. There was a fatal outcome in 23% of pregnant women (all in the third trimester) due to isolated HEV infection. Pregnant women are at higher risk of a fulminant course and the case fatality rate increases with the length of the pregnancy period.

To conclude, HEV and HAV coexist during epidemic hepatitis but with different peak age positivity. Gross contamination of drinking water supplies results in outbreaks. In endemic areas, infection with HEV may be seen in association with other hepatotropic viruses (HAV, HBV, and HCV) as observed in the present study. These mixed infections could worsen the prognosis in patients with preexisting impaired liver function and may lead to AHF or FHF. HEV positivity is considered a strong marker for multiple infection; hence, investigations during HAV/HEV outbreaks should also include screening for HBV and HCV to identify mixed infections and thereby enable better management and prevention of sequelae.

Acknowledgment

The authors thank Mr. Yvan Hutin, Resident Advisor for WHO and Dr. B Sailaja, MAE and FETP for providing epidemiological details.

References

Source of Support: Nil, Conflict of Interest: None declared.