INDIAN JOURNAL OF MEDICAL MICROBIOLOGY
(Official publication of Indian Association of Medical Microbiologists,
Published quarterly in January, April, July and October)
Indexed in Index Medicus/MEDLINE/PubMed, ‘Elsevier Science - EMBASE’, ‘IndMED’

EDITORIAL BOARD

EDITOR
Dr. SAVITRI SHARMA
L V Prasad Eye Institute
Bhubaneswar - 751 024, India

ASSOCIATE EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

ASSISTANT EDITOR
Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam,
Puducherry - 605 009, India

ASSOCIATE EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

ASSISTANT EDITOR
Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam,
Puducherry - 605 009, India

MEMBERS

National

Dr. Arora DR (Rohtak)
Dr. Arunaloke Chakrabarthi (Chandigarh)
Dr. Camilla Rodrigues (Mumbai)
Dr. Chaturvedi UC (Lucknow)
Dr. Hemashettar BM (Belgaum)
Dr. Katoch VM (Agra)
Dr. Madhavan HN (Chennai)
Dr. Mahajan RC (Chandigarh)
Dr. Mary Jesudasan (Thriissur)
Dr. Meenakshi Mathur (Mumbai)
Dr. Nancy Malla (Chandigarh)
Dr. Philip A Thomas (Tiruchirapally)
Dr. Ragini Macaden (Bangalore)
Dr. Ramesh K Aggarwal (Hyderabad)
Dr. Renu Bhardwaj (Pune)
Dr. Sarman Singh (New Delhi)
Dr. Seyed E Hasnain (Hyderabad)
Dr. Sitaram Kumar M (Hyderabad)
Dr. Sridharan G (Vellore)
Dr. Sritharan V (Hyderabad)
Dr. Subhas C Parija (Pondicherry)

International

Dr. Arseculeratne SN (Srilanka)
Dr. Arvind A Padhye (USA)
Dr. Chinnaswamy Jagannath (USA)
Dr. Christian L Coles (USA)
Dr. David WG Brown (UK)
Dr. Diane G Schwartz (USA)
Dr. Govinda S Visveswara (USA)
Dr. Kailash C Chadha (USA)
Dr. Madhavan Nair P (USA)
Dr. Madhukar Pai (Canada)
Dr. Mohan Sopori (USA)
Dr. Paul R Klatser (Netherlands)
Dr. Vishwanath P Kurup (USA)

ADVISORY BOARD

Dr. KB Sharma (New Delhi), Dr. NK Ganguly (New Delhi), Dr. SP Thyagarajan (Chennai),
Dr. R Sambasiva Rao (New Delhi), Dr. MK Lalitha (Chennai), Dr. PG Shivananda (Manipal)

Annual Subscription Rs 2,000/-
Single Copy Rs 600/-
US $ 150
US $ 75

Editorial Office: LV Prasad Eye Institute, Patia, Bhubaneswar - 751 024, Orissa, India
Ph: (+91)-0674-3987 209, 099370 37298, Fax: (+91)-0674-3987 130, E-mail: ijmm@bei-lvpei.org, Website: www.ijmm.org

The journal is printed on acid free paper.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Editorial</td>
<td></td>
</tr>
<tr>
<td>The Need for Control of Viral Illnesses in India: A Call for Action</td>
<td>309</td>
</tr>
<tr>
<td>C Lahariya, UK Baveja</td>
<td></td>
</tr>
<tr>
<td>Review Article</td>
<td></td>
</tr>
<tr>
<td>Immunobiology of Human Immunodeficiency Virus Infection</td>
<td>311</td>
</tr>
<tr>
<td>P Tripathi, S Agrawal</td>
<td></td>
</tr>
<tr>
<td>Special Articles</td>
<td></td>
</tr>
<tr>
<td>Serum Levels of Bel-2 and Cellular Oxidative Stress in Patients with</td>
<td>323</td>
</tr>
<tr>
<td>Viral Hepatitis</td>
<td></td>
</tr>
<tr>
<td>HG Osman, OM Gabr, S Lotfy, S Gabr</td>
<td></td>
</tr>
<tr>
<td>Rapid Identification of Non-sporing Anaerobes using Nuclear Magnetic</td>
<td>330</td>
</tr>
<tr>
<td>Resonance Spectroscopy and an Identification Strategy</td>
<td></td>
</tr>
<tr>
<td>S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande</td>
<td></td>
</tr>
<tr>
<td>Original Articles</td>
<td></td>
</tr>
<tr>
<td>Species Distribution and Physiological Characterization of Acinetobacter</td>
<td>336</td>
</tr>
<tr>
<td>Genospecies from Healthy Human Skin of Tribal Population in India</td>
<td></td>
</tr>
<tr>
<td>SP Yavankar, KR Pardesi, BA Chopade</td>
<td></td>
</tr>
<tr>
<td>Extended-spectrum Beta-lactamases in Ceftazidime-resistant Escherichia</td>
<td>346</td>
</tr>
<tr>
<td>coli and Klebsiella pneumoniae Isolates in Turkish Hospitals</td>
<td></td>
</tr>
<tr>
<td>S Hosoglu, S Gundes, F Kolayli, A Karadenizli, K Demirdag, M Gunaydin,</td>
<td></td>
</tr>
<tr>
<td>M Altindis, R Caylan, H Ucmak</td>
<td></td>
</tr>
<tr>
<td>Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate</td>
<td>351</td>
</tr>
<tr>
<td>M Mirsadrae, A Shirdel, F Roknee</td>
<td></td>
</tr>
<tr>
<td>Correlation Between in Vitro Susceptibility and Treatment Outcome with</td>
<td>354</td>
</tr>
<tr>
<td>Azithromycin in Gonorrhoea: A Prospective Study</td>
<td></td>
</tr>
<tr>
<td>P Khaki, P Bhalla, A Sharma, V Kumar</td>
<td></td>
</tr>
<tr>
<td>Comparison of Radiorespirometric Buddemeyer Assay with ATP Assay and</td>
<td>358</td>
</tr>
<tr>
<td>Mouse Foot Pad Test in Detecting Viable Mycobacterium leprae from</td>
<td></td>
</tr>
<tr>
<td>Clinical Samples</td>
<td></td>
</tr>
<tr>
<td>VP Agrawal, VP Shetty</td>
<td></td>
</tr>
<tr>
<td>Detection of Mycoplasma Species in Cell Culture by PCR And RFLP Based</td>
<td>364</td>
</tr>
<tr>
<td>Method: Effect of BM-cyclin to Cure Infections</td>
<td></td>
</tr>
<tr>
<td>V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil</td>
<td></td>
</tr>
</tbody>
</table>
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections369
S Sharma, GK Bhat, S Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran374
J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad378
P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination383
S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment387
H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent *In Situ* Hybridization391
EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis395
K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study398
SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital401
MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre405
S Shivaprakasha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India408
P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India411
BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case413
SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis416
P Mathur, JC Samantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*419
R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis422
C Sanghvi

Correspondence

N Nagdeo, VR Thombre
Combining Vital Staining with Fast Plaque: TB Assay
D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal

Disseminated Histoplasmosis
PK Maiti, MS Mathews

Authors’ Reply
RS Bharadwaj

Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi
VH Cardoso, DL Gonçalves, E Angioletto, F Dal-Pizzol, EL Streck

Endoscope Reprocessing: Stand up and Take Notice!
A Das, P Ray, M Sharma

Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India
BJ Borkakoty, AK Borthakur, M Gohain

MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal

Resurgence of Diphtheria in the Vaccination Era
N Khan, J Shastri, U Aigal, B Doctor

A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran
MA Boroumand, P Esfahanifard, S Saadat, M Sheihkvatan, S Hekmatyazdi, M Saremi, L Nazemi

Trends of Antibiotic Resistance in Salmonella enterica Serovar Typhi Isolated from Hospitalized Patients from 1997 to 2004 in Lagos, Nigeria
KO Akinyemi, AO Coker

Book Review
Hospital-Acquired Infections: Power Strategies for Clinical Practice
Reba Kanungo

Title Index, 2007

Author Index, 2007

Scientific Reviewers, 2007
A COMPARATIVE STUDY FOR THE DETECTION OF MYCOBACTERIA BY BACTEC MGIT 960, LOWENSTEIN JENSEN MEDIA AND DIRECT AFB SMEAR EXAMINATION

S Rishi, P Sinha, *B Malhotra, N Pal

Abstract

Purpose: To compare BACTEC MGIT 960 (M960) with conventional culture on Lowenstein Jensen (LJ) media and direct acid fast bacilli (AFB) smear examination for the detection of Mycobacteria in clinical samples obtained from suspected cases of pulmonary and extra pulmonary tuberculosis (TB).

Methods: A total of 500 samples were processed for direct AFB smear examination, and culture on M960 and LJ media.

Results: Two hundred fifty-eight out of 500 (51.6%) isolates of Mycobacteria were obtained by combined use of the two culture methods. Two hundred and fifty-three (50.6%) were positive in culture by M960 and LJ media and 28% (140/500) by direct AFB smear examination. The positivity rate of M960 system alone was 34.10% (88/258) and of LJ alone was 1.93% (5/258). Average time to detect growth (TTD) was 9.66 days by M960 and 28.81 days by LJ.

Conclusions: M960 system is a rapid and sensitive method for early diagnosis of pulmonary and extrapulmonary TB. But for maximum recovery of Mycobacteria, a combination of both M960 and LJ media should be used.

Key words: BACTEC MGIT 960, Lowenstein Jensen media

Tuberculosis (TB) is responsible for about one third of preventable deaths worldwide.1 The spread of HIV/AIDS and emergence of multiple drug-resistant TB have further contributed to the worsening impact of the disease.2 In India, 13 million people are infected and 3.5 million are positive for acid fast bacilli (AFB) with 2.2 million new TB cases being added every year.3

Although AFB microscopy and conventional Lowenstein Jensen (LJ) culture remain the cornerstone for the diagnosis of TB, the sensitivity of these traditional methods is quite low, especially in the samples containing small number of organisms.4 There is a need for rapid, sensitive and accurate detection of these organisms in clinical specimens to hasten the administration of appropriate antimycobacterial therapy and prevent the spread of infection in the community.5 A variety of manual and automated systems have been developed specifically to reduce the time to detect and identify Mycobacteria in clinical specimens.5

The present study was carried out to compare one such automated system, i.e., BACTEC MGIT 960 (M960) with conventional culture method, i.e., LJ media and direct AFB smear examination. M960 system is a fully automated, high capacity, non-radiometric, non-invasive instrument, which requires neither needles nor other sharp implements to incubate and monitor 960; 7 mL culture tubes.6 The culture tubes contain Modified middle brook 7H9 media with fluorescent growth indicator embedded in silicone on the bottom of each tube. This compound is sensitive to the presence of dissolved oxygen in the broth. As the microorganisms grow in the media, oxygen gets depleted, allowing the fluorescence to be detected automatically over time.5

Materials and Methods

A total of 500 clinical samples were obtained from suspected cases of TB from different wards and out patient departments of the SMS and other allied hospitals of SMS Medical College, Jaipur, during the year 2004. The samples included sputum (330), cerebrospinal fluid (49), pleural fluid (41), bronchial washings (29), pus (17), urine (8), ascitic fluid (7), endometrium (5), ovarian cyst fluid (4), gastric aspirate (2), lymph node aspirate (2), bone scrapings (1), discharge from sinus (1), granulation tissue (1), menstrual blood (1), stool (1), and tissue from sinus tract (1).

A BBL MGIT tube (from Becton Dickinson) containing 7 mL modified middle brook 7H9 broth was used. Lyophilized MGIT PANTA (containing polymyxin B, azlocillin, nalidixic acid, trimethoprim, amphotericin B) was reconstituted with MGIT growth supplement (containing oleic acid, albumin, dextrose, catalase, polyoxyethylene stearate), and 0.8 mL of this was added prior to sample inoculation to the M960 tube. LJ media was prepared in the laboratory.

Processing of samples

Within 24 h of receiving the samples, direct smear was made, stained by Ziehl Neelsen method and graded as per RNTCP guidelines. For the purpose of digestion and

*Corresponding author (email: <drhemant@sancharnet.in>)
Department of Microbiology and Immunology, Sawai Man Singh Medical College, Jaipur - 302 004, Rajasthan, India
Received: 06-05-06
Accepted: 16-06-07

www.ijmm.org
The positivity rate of M960 system alone was 34.10% (88/258) and of LJ alone 1.93% (5/258). Isolation rates of Mycobacteria in pulmonary and extrapulmonary samples were 61.83% (222/359) and 21.98% (31/141) by M960, 44.01% (158/359) and 4.96% (7/141) by LJ, respectively. One hundred and forty-two samples were from patients on anti-tubercular therapy. Out of these, 98.59% (140/142) were positive by M960, 69.01% (98/142) by LJ and 69.71% (99/142) by direct AFB smear examination. Details of isolation rates of Mycobacteria by M960 and LJ with respect to direct AFB smear results are shown in Table 1.

Table 1: Isolation rate of Mycobacteria in relation to acid fast bacilli smear

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>ZN smear</th>
<th>LJ positive</th>
<th>%</th>
<th>Avg. TTD (in days)</th>
<th>M960 positive</th>
<th>%</th>
<th>Avg. TTD (in days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary samples</td>
<td>Positive (137)</td>
<td>116/137</td>
<td>84.67</td>
<td>27.09 (7-48)</td>
<td>135/137</td>
<td>98.54</td>
<td>6.79 (2-30)</td>
</tr>
<tr>
<td></td>
<td>Negative (222)</td>
<td>42/222</td>
<td>18.91</td>
<td>30.02 (14-48)</td>
<td>87/222</td>
<td>39.18</td>
<td>13.35 (3-32)</td>
</tr>
<tr>
<td>Extra pulmonary</td>
<td>Positive (3)</td>
<td>2/3</td>
<td>66.66</td>
<td>28 (28)</td>
<td>3/3</td>
<td>100</td>
<td>8.33 (4-14)</td>
</tr>
<tr>
<td>samples</td>
<td>Negative (138)</td>
<td>5/13 8</td>
<td>3.62</td>
<td>32.5 (7-48)</td>
<td>28/138</td>
<td>20.28</td>
<td>17.89 (4-39)</td>
</tr>
</tbody>
</table>

Avg. TTD - average time to detection of growth, Z.N - Ziehl Neelsen, LJ - Lowenstein Jensen media

Discussion

The present study demonstrated that M960 system provided better isolation rate of Mycobacteria (98.06%) from a variety of clinical samples than the LJ media (63.95%). Various authors have reported similar findings ranging from 80 to 100% for M960 and from 59.7 to 87.2% for LJ. In our study, isolation rate by M960 system was 34.11% more than that by LJ method. The additional positivity was seen both in pulmonary and extrapulmonary samples, not only in smear negative but in smear positive samples also. There was a low positivity rate shown by LJ method in our study in comparison to around 69-87.2% reported in literature. This could be because of the fact that samples that were grossly contaminated on LJ were considered negative, whereas in M960, since the smears were made from all instrument positive MGIT tubes, it was found that there were samples, which had both contaminants, as well as Mycobacteria grown in them. Such tubes were considered positive by M960.

Besides higher isolation rate, even the time to detect Mycobacteria was shorter on M960 than on LJ, average being 9.66 days (2-39) with M960 and 28.81 days (7-48) with LJ media. Similar findings have been reported in the literature. However in our study, time to detect Mycobacteria by M960 was lesser than that reported by others (11.6-14.4 days). This is probably because large number of samples (28%) were smear positive and incidence of TB is also higher in our country.

Time to detect Mycobacteria was directly related to the grade of positivity in direct AFB smear examination as seen in Table 2. In smear positive samples, growth of Mycobacteria was detected in average 6.79 days (2-30) by M960.
The break through contamination rates in our study (13.4% for M960 and 27.2% for LJ) were higher in comparison to other studies (3.7-10% by M960 and 1.2-21.1% by LJ).6,8,11,12 This may be attributed firstly to the hot climatic conditions in our country and secondly to the longer transport time of the specimen to the laboratory in some cases, leading to overgrowth of the contaminants.

Thus, M960 was found to be most rapid and efficient system to isolate Mycobacteria. However, for maximum recovery of Mycobacteria, it is important to use both types of media as 1.93% isolates could be detected by LJ only.

As Mycobacteria can be isolated on an average within a week in smear positive samples, the antibiotic susceptibility tests can then be done and results would be available in another 4-13 days (as per BD protocol). This is in contrast to the time taken by LJ method, average 29 days for growth and another 30 days for sensitivity tests. This has great implications in monitoring the treatment failure and multidrug resistant TB patients. Though the cost of M960 culture system is approximately 8-10 times more than that for LJ media, the sensitivity and rapidity of the system are the major advantages that benefit not only the individual patient but also the community by controlling the disease and ultimately its transmission in the society.

The break through contamination rates in our study (13.4% for M960 and 27.2% for LJ) were higher in comparison to other studies (3.7-10% by M960 and 1.2-21.1% by LJ).6,8,11,12 This may be attributed firstly to the hot climatic conditions in our country and secondly to the longer transport time of the specimen to the laboratory in some cases, leading to overgrowth of the contaminants.

Thus, M960 was found to be most rapid and efficient system to isolate Mycobacteria. However, for maximum recovery of Mycobacteria, it is important to use both types of media as 1.93% isolates could be detected by LJ only.

As Mycobacteria can be isolated on an average within a week in smear positive samples, the antibiotic susceptibility tests can then be done and results would be available in another 4-13 days (as per BD protocol). This is in contrast to the time taken by LJ method, average 29 days for growth and another 30 days for sensitivity tests. This has great implications in monitoring the treatment failure and multidrug resistant TB patients. Though the cost of M960 culture system is approximately 8-10 times more than that for LJ media, the sensitivity and rapidity of the system are the major advantages that benefit not only the individual patient but also the community by controlling the disease and ultimately its transmission in the society.

References

5. Lu D, Heeren B, Dunne WM. Comparison of the automated

Source of Support: Nil, **Conflict of Interest:** None declared.