Guest Editorial
The Need for Control of Viral Illnesses in India: A Call for Action
C Lahariya, UK Baveja

Review Article
Immunobiology of Human Immunodeficiency Virus Infection
P Tripathi, S Agrawal

Special Articles
Serum Levels of Bcl-2 and Cellular Oxidative Stress in Patients with Viral Hepatitis
HG Osman, OM Gabr, S Lotfy, S Gabr

Rapid Identification of Non-sporing Anaerobes using Nuclear Magnetic Resonance Spectroscopy and an Identification Strategy
S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande

Original Articles
Species Distribution and Physiological Characterization of Acinetobacter Genospecies from Healthy Human Skin of Tribal Population in India
SP Yavankar, KR Pardesi, BA Chopade

Extended-spectrum Beta-lactamases in Ceftazidime-resistant Escherichia coli and Klebsiella pneumoniae Isolates in Turkish Hospitals
S Hosoğlu, S Gündeş, F Kolaylı, A Karadenizli, K Demirdağ, M Günaydın, M Altındis, R Çaylan, H Ucmak

Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate
M Mirsadraee, A Shirdel, F Roknee

Correlation Between in Vitro Susceptibility and Treatment Outcome with Azithromycin in Gonorrhoea: A Prospective Study
P Khaki, P Bhalla, A Sharma, V Kumar

Comparison of Radiorespirometric Buddemeyer Assay with ATP Assay and Mouse Foot Pad Test in Detecting Viable Mycobacterium leprae from Clinical Samples
VP Agrawal, VP Shetty

Detection of Mycoplasma Species in Cell Culture by PCR And RFLP Based Method: Effect of BM-cyclin to Cure Infections
V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections

S Sharma, GK Bhat, S Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran

J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad

P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination

S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment

H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent In Situ Hybridization

EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis

K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study

SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital

MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre

S Shivaprakasha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India

P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India

BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case

SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis

P Mathur, JC Samarantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*

R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis

C Sanghvi

Correspondence

Prevention of Parent-to-Child Transmission of HIV: An Experience in Rural Population

N Nagdeo, VR Thombre
Combining Vital Staining with Fast Plaque: TB Assay
D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal

Disseminated Histoplasmosis
PK Maiti, MS Mathews

Authors’ Reply
RS Bharadwaj

Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi
VH Cardoso, DL Gonçalves, E Angioletto, F Dal-Pizzol, EL Streck

Endoscope Reprocessing: Stand up and Take Notice!
A Das, P Ray, M Sharma

Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India
BJ Borkakoty, AK Borthakur, M Gohain

MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal

Resurgence of Diphtheria in the Vaccination Era
N Khan, J Shastri, U Aigal, B Doctor

A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran
MA Boroumand, P Esfahanifard, S Saadat, M Sheikhvatan, S Hekmatyazdi, M Saremi, L Nazemi

Trends of Antibiotic Resistance in Salmonella enterica Serovar Typhi Isolated from Hospitalized Patients from 1997 to 2004 in Lagos, Nigeria
KO Akinyemi, AO Coker

Book Review
Hospital-Acquired Infections: Power Strategies for Clinical Practice
Reba Kanungo

Title Index, 2007

Author Index, 2007

Scientific Reviewers, 2007
RAPID DETECTION OF NON-ENTEROBACTERIACEAE DIRECTLY FROM POSITIVE BLOOD CULTURE USING FLUORESCENT IN SITU HYBRIDIZATION

EH Wong, G Subramaniam, P Navaratnam, *SD Sekaran

Abstract

Fluorescent in situ hybridization (FISH) was carried out using two different oligonucleotide probes specific for *Pseudomonas* spp. and *Acinetobacter* spp. These probes were tested against different organisms and were found to be highly specific. Sensitivity testing showed that the probes were able to detect as low as 10^3 CFU/mL. In addition, FISH was carried out directly on positive blood culture samples and the detection of microorganisms took less than 2 h. We believe that FISH is a rapid method that can be used as a routine laboratory diagnostic technique for the detection of *Acinetobacter* spp. and *Pseudomonas* spp. in clinical samples.

Keywords: *Acinetobacter* spp., blood culture samples, fluorescently labeled probes

Nosocomial infections caused by gram negative bacilli have become an increasing problem worldwide.¹ This problem has escalated in tandem with the introduction and subsequent empirical administration of broad-spectrum antibiotics in hospitals. Multidrug resistant (MDR) *A. baumannii* and *P. aeruginosa* have been isolated as causative agents of a number of nosocomial infections including septicemia, ventilator- and catheter-associated pneumonia, urinary tract and wound infections.² Among these, bloodstream infections are one of the main causes of death in hospitalized patients with mortality rates between 30 and 70%.³ Thus, the rapid identification of the causative agent of septicemia is imperative in improving the overall prognosis of the patient. Routine laboratory diagnosis of positive blood cultures such as gram stain, biochemical tests and other standard bacteriological methods, all of which could take up to 48 h for an accurate identification of the pathogen to be made. In addition, culture and sensitivity assays to determine the antibiotic profile of the infecting agent could take up to an additional 24 h. Fluorescent in situ hybridization (FISH) has been used to detect various bacteria in clinical samples.⁴ The general principle of this method is the use of a fluorescently labelled oligonucleotide probe that specifically hybridizes to the target sequence of 16S rRNA, thereby enabling visualization of the whole bacterium with a fluorescence microscope. The aim of this study was to evaluate the specificity and sensitivity of FISH for the identification of *Acinetobacter* spp. and *Pseudomonas aeruginosa* directly from blood cultures.

Materials and Methods

Blood cultures positive for gram negative bacilli were obtained from the Microbiology Diagnostic Laboratory, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.

A direct gram stain was performed and identification of the organisms was done using standard laboratory methods and the API20NE System (bioMérieux SA, Marcy-l’Etoile, France). An aliquot of blood was simultaneously used in a modified FISH assay.⁴ Briefly, 10-15 µL of aliquots from positive blood culture samples were applied onto glass slide, air-dried and fixed with 4% formaldehyde in 96% ethanol. The slides were dried and covered with 50 µL hybridization buffer [0.9 M NaCl, 20 mM Tris-HCl (pH 7.2), 0.1% SDS] containing labelled probes (10 ng/mL) prior to incubation at 50 °C for 40 min. The slides were then washed and dried prior to visualization using a fluorescence Carl-Zeiss microscope. Oligonucleotide probes, based on the 16S rRNA gene of the *Acinetobacter* spp. and *Pseudomonas* spp., were labelled with TAMRA and 6-FAM, respectively, at the 5’ end (Table). In addition, a universal eubacterial probe⁵ was used as a positive control.

The probes were tested individually against various gram negative bacteria (*Vibrio cholera*, *Stenotrophomonas maltophilia*, *Burkholderia cepacia*, *Chromobacterium violaceum*, *Escherichia coli*, *Klebsiella pneumoniae*) to test their specificity. *Pseudomonas aeruginosa* ATCC 27853 and *Acinetobacter baumannii* ATCC 15308 were included as positive controls. The sensitivity of *Acinetobacter* spp. and *Pseudomonas* spp. probes, respectively, were determined using a pure bacterial culture that was spiked into uninoculated blood culture bottles (Bectec Plus/Paeds Plus culture vial aerobic/anaerobic; Becton Dickinson, Heidelberg, Germany) in dilutions of between 10^5 and 10^4 CFU/mL, which were then incubated 16-20 h at 37 °C. Viable bacterial counts in the blood culture media was determined before and after incubation.
Table: Probe sequences

<table>
<thead>
<tr>
<th>Microorganism (probe name)</th>
<th>Gene</th>
<th>Gene accession number</th>
<th>Nucleotide sequence</th>
<th>Probe size</th>
<th>Nucleotide position</th>
<th>Fluorescent tag (5' end)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter spp.</td>
<td>16S rRNA</td>
<td>Z93435</td>
<td>GCTTGCTACCGGACCTAGCGGC</td>
<td>22 bp</td>
<td>62-83</td>
<td>TAMRA</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>16S rRNA</td>
<td>AF448034</td>
<td>ATGAAGGAGCTTGCTCCTGGATTCAG</td>
<td>26 bp</td>
<td>14-39</td>
<td>6-FAM</td>
</tr>
</tbody>
</table>

![Figure: Specificity testing of Acinetobacter spp. probe using different types of organisms. Fluorescence microscopy (×40 magnification) of gram negative bacilli from pure cultures and blood culture smears](image)

Figure: Specificity testing of *Acinetobacter* spp. probe using different types of organisms. Fluorescence microscopy (×40 magnification) of gram negative bacilli from pure cultures and blood culture smears.

EUB - eubacterial probe; A spp. - *Acinetobacter* species-specific probe; S. maltophilia - *Stenotrophomonas maltophilia*; V. cholera - *Vibrio cholera*; C. violaeceum - *Chromobacterium violaeceum*; B. cepacia - *Bukholderia cepacia*; P. aeruginosa - *Pseudomonas aeruginosa*
Results

Both the probes were highly specific and hybridized to the respective target genus only and not to other bacterial genera (Figure). All the bacterial strains tested could be detected using the universal eubacterial probe. Microscopic sensitivity testing with serially diluted bacterial suspension revealed a limit of detection by FISH at 10^3 CFU/mL. Thus, in our study, the sensitivity and specificity of FISH for the detection of Acinetobacter spp. and Pseudomonas spp. were 100%, respectively.

Discussion

Pseudomonas aeruginosa and Acinetobacter baumannii are the most frequently isolated non-fermentative gram negative species from critically ill and immunocompromised patients in intensive care units. Early detection of these microorganisms in clinical samples and blood can result in more definitive antimicrobial therapy. FISH is a suitable method for rapid and specific detection of pathogenic bacteria in clinical samples without time-consuming cultivation. The entire assay took less than 2 h compared to the conventional laboratory methods that require 1-3 days, resulting in a time gain of almost 70 h. Besides that, this technique delivers additional information concerning cell count and cell morphology and is an *in situ* means of differentiation of mixed infections. This could allow for an early detection of microorganisms and thus more definitive antimicrobial treatment of the infected patients could be adjusted 1 or 2 days earlier. This in turn could reduce the overall mortality among patients with gram negative bacteraemia as has been documented in previous studies.10

FISH has proven to be a powerful molecular method for identification, visualization and quantification of organisms of interest in microbial communities.11 Several reports show that FISH has already been successfully applied for the detection of *E. coli*, *H. pylori*, *Staphylococcus aureus* and *Brucella* spp.5-8 However, this is the first report on detection of acinetobacters and *Pseudomonas aeruginosa* using FISH in Malaysia.

Several studies have documented the value of molecular techniques, including PCR for amplification and detection of microbial DNA or RNA in order to identify bacteria in clinical specimens.12,13 Although PCR is a highly sensitive technique that can be used in direct identification of bacteria in blood,12,13 it may not be appropriate for daily routine work as it is time-consuming, expensive and expertise demanding compared to FISH, which is rapid and inexpensive. Furthermore, the added advantage of FISH over PCR is that extraction of DNA from bacteria is not required in the former.

In conclusion, the ability of rapid and simultaneous detection of non-*Enterobactericeae* in clinical samples within 2 h without time-consuming cultivation and identification by standard bacterial techniques may suggest FISH as an alternative method in routine diagnostic laboratory.

Acknowledgement

This study was supported by IRPA grant 06-02-03-0109 PR 0047/19-06 and VOTE-F F0163/2005A from the Government of Malaysia and University of Malaya.

References

11. Amann R, Ludwig W, Schleifer KH. Phylogenetic

Source of Support: IRPA grant 06-02-03-0109 PR 0047/19-06 and VOTE-F F0163/2005A from the Government of Malaysia and University of Malaya. **Conflict of Interest:** None declared.