CONTENTS

Guest Editorial

Novel HIV Prevention Strategies: The Case for Andhra Pradesh
JA Schneider

Review Article

Chikungunya Fever: A Re-emerging Viral Infection
M Chhabra, V Mittal, D Bhattacharya, UVS Rana, S Lal

Special Article

Fabrication and Evaluation of a Sequence-specific Oligonucleotide Miniarray for Molecular Genotyping
J Iqbal, F Hänel, A Ruryk, GV Limmon, A Tretiakov, M Dürst, HP Saluz

Original Articles

A Comparison of PCR Detection of Meca with Oxacillin Disk Susceptibility Testing in Different Media and Sceptor Automated System for both Staphylococcus aureus and Coagulase-negative Staphylococci Isolates
S Ercis, B Sancak, G Hasçelik

Effect of Exposure to Hydrogen Peroxide on the Virulence of Escherichia coli
A Hegde, GK Bhat, S Mallya

A Low Molecular Weight Es-20 Protein Released In Vivo and In Vitro with Diagnostic Potential in Lymph Node Tuberculosis
N Shende, V Upadhye, S Kumar, BC Harinath

Community-based Study on Seroprevalence of Herpes Simplex Virus Type 2 Infection in New Delhi
R Chawla, P Bhatta, K Bhalla, M Meghachandra Singh, S Garg

Changing Patterns of Vibrio cholerae in Sevagram Between 1990 and 2005
P Narang, DK Mendiratta, VS Deotale, R Narang

Rapid Serodiagnosis of Leptospirosis by Latex Agglutination Test and Flow-through Assay
TMA Senthilkumar, M Subathra, M Phil, P Ramadass, V Ramaswamy

High Level Ciprofloxacin Resistance in Salmonella enterica Isolated from Blood
R Raveendran, C Wattal, A Sharma, JK Oberoi, KJ Prasad, S Datta

Role of Enteric Fever in Ileal Perforations: An Overstated Problem in Tropics?
MR Capoor, D Nair, MS Chintamani, J Khanna, P Aggarwal, D Bhatnagar
Brief Communications

Evaluation of a Modified Double-disc Synergy Test for Detection of Extended Spectrum β-lactamases in Ampc β-lactamase-producing Proteus mirabilis
MKR Khan, SS Thukral, R Gaind

Antimicrobial Susceptibility Profile of Neisseria gonorrhoeae at STI Clinic
C Shilpee, VG Ramachandran, S Das, SN Bhattacharya

Detection of Extra-cellular Enzymes of Anaerobic Gram-negative Bacteria from Clinically Diseased and Healthy Sites
JM Nagmoti, CS Patil, MB Nagmoti, MB Mutnal

Haemagglutination and Siderophore Production as the Urovirulence Markers of Uropathogenic Escherichia coli
MA Vagarali, SG Karadesai, CS Patil, SC Metgud, MB Mutnal

The use of Dried Blood Spots on Filter Paper for the Diagnosis of HIV-1 in Infants Born to HIV Seropositive Women
S Mini Jacob, D Anitha, R Vishwanath, S Parameshwari, NM Samuel

Evaluation of the Usefulness of Phage Amplification Technology in the Diagnosis of Patients with Paucibacillary Tuberculosis
D Biswas, A Deb, P Gupta, R Prasad, KS Negi

Case Reports

Cytomegalovirus Oesophagitis in a Patient with Non-hodgkin’s Lymphoma
SS Hingmire, G Biswas, A Bakshi, S Desai, S Dighe, R Nair, S Gupta, PM Parikh

Hydatid Cyst of Mediastinum
S Sehgal, B Mishra, A Thakur, V Dogra, PS Loomba, A Banerjee

Ochrobactrum anthropi Septicaemia
U Arora, S Kaur, P Devi

Intestinal Myiasis Caused by Muscina stabulans
S Shivekar, K Senthil, R Srinivasan, L Suresshabu, P Chand, J Shanmugam, R Gopal

Pyopericardium Due To Group D Streptococcus
K Karthikeyan, KR Rajesh, H Poornima, R Bharathidasan, KN Brahamadathan, R Indra Priyadarsini

Pleural Effusion: A Rare Complication of Hepatitis A
A Bukulmez, R Koken, H Melek, O Dogru, F Ovali

Correspondence

Prevalence of Inducible AmpC β-lactamase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Northern India
A Bhattacharjee, S Anupurba, A Gaur, MR Sen

Parental History of Ulcer and the Prevalence of Helicobacter pylori Infection in their Offspring
KS Ahmed, AA Khan, JD Ahi, CM Habibullah
Ciprofloxacin Breakpoints in Enteric Fever - Time to Revise our Susceptibility Criteria
C Rodrigues, N Jai Kumar, J Lalwani, A Mehta

West Nile Virus in the Blood Donors in UAE
M Alfaresi, A Elkoush

Estimation of Antibodies To HBsAg in Vaccinated Health Care Workers
TV Rao, IJ Suseela, KA Sathiavathy

Seroprevalence of Rubella Among Urban and Rural Bangladeshi Women Emphasises the Need for
Rubella Vaccination of Pre-pubertal Girls
A Nessa, MN Islam, S Tabassum, SU Munshi, M Ahmed, R Karim

Novel Digestion Patterns with Hepatitis B Virus Strains from the Indian Subcontinent Detected using
Restriction Fragment Length Polymorphism
P Vivekanandan, HDJ Daniel, S Raghuraman, D Daniel, RV Shaji, G Sridharan, G Chandy, P Abraham

Acute Urticaria Associated with Dicrocoelium dendriticum Infestation
A Sing, K Tybus, I Fackler

Book Reviews

Guidelines to Authors
INTESTINAL MYIASIS CAUSED BY _MUSCINA STABULANS_

Intestinal maggots were isolated from a patient, who had reported to the Department of General Medicine of Sri Manakula Vinayagar Medical College, Puducherry, in southern India with complaints of abdominal distress, bloating of abdomen and intestinal hurry following a meal. He was diagnosed as a case of intestinal myiasis. Maggots obtained from his stool were identified to be _Muscina stabulans_ based on characteristic patterns of posterior spiracles. He was treated with purgatives and albendazole. This intestinal myiasis case caused by _M. stabulans_ is reported here because of its rare occurrence and the need to establish a correct diagnosis.

Key words: Albendazole, intestinal myiasis, Muscina stabulans

Myiasis is an infestation of live human or vertebrate animals with dipterous fly larvae, which at least for a certain period of their life, feed on dead or living tissues or ingested food of their hosts. Severity of myiasis depends on the location of the infestation. Myiasis infestation can occur in anatomical sites, including skin, eye, ear, nasopharynx, genitourinary tract, intestine and in wounds. Cases of intestinal myiasis due to _Musca domestica_ and _Eristalis tenax_ have already been reported from the Indian subcontinent. In intestinal myiasis, even a healthy person is affected, when he consumes contaminated food or drink. The eggs or larvae previously deposited on food, upon ingestion may survive the digestive enzymes of gastrointestinal tract and develop further and cause enteritis. This infestation can cause myiasis among humans. Severity of myiasis depends on the location of the infestation. Myiasis infestation can occur in anatomical sites, including skin, eye, ear, nasopharynx, genitourinary tract, intestine and in wounds. Cases of intestinal myiasis due to _Musca domestica_ and _Eristalis tenax_ have already been reported from the Indian subcontinent. In intestinal myiasis, even a healthy person is affected, when he consumes contaminated food or drink. The eggs or larvae previously deposited on food, upon ingestion may survive the digestive enzymes of gastrointestinal tract and develop further and cause enteritis. This infestation can be asymptomatic or present with vague abdominal pain, diarrhoea, loss of appetite and weight. In the present communication, a case of intestinal myiasis due to _Muscina stabulans_ (Diptera: Muscidae) in India, in a male patient residing in a rural area is reported.

Case Report

A 20-year-old male patient, belonging to a socio-economically poor family, residing in a rural village of Villupuram district in Tamil Nadu, reported to the outpatient department of General Medicine of Sri Manakula Vinayagar Medical College and Hospital, Puducherry. He had presented with complaints of abdominal distress, bloating of abdomen and intestinal hurry following a meal. He also had the history of loose stool, generalized malaise and passing worms in stool on and off, and loss of about 5 kg of weight, over a period of two years.

On examination, he was apparently normal and examination of blood showed that TLC, DLC, ESR and Hb were within normal limits. A fresh stool sample was submitted to the Microbiology Laboratory. The sample was watery with scanty faecal matter but with numerous maggots. A repeat fresh sample collected on the same day within two hours after hospitalization, also confirmed the presence of maggots. He was diagnosed as a case of intestinal myiasis. The maggots were isolated from his stools, washed in normal saline (0.9%) and again in distilled water and then preserved in formalin (10%) and submitted to the Vector Control Research Centre (VCRC), Puducherry for identification of the species. At Vector Control Research Centre, the maggots were washed in distilled water again and soaked in 10% sodium hydroxide for six hours. The last segment of the maggot was cut and the spiracular plate was dissected under a Zeiss binocular dissection microscope and mounted in Hoyer's medium and kept over a hot plate for clearing for two days. Photographs of the whole larva and the spiracular plate were taken using MOTIC BA 300 digital compound microscope fitted with camera and identified using a standard key. The patient visited the hospital after six months and he found to be normal.

Results

The maggots were dull white in colour and measured 6-7 mm in length and 1-1.5 mm in width. Body was covered with tough integument, having bands of greyish-brown minute spines. On microscopic examination, the bodies of the maggots consisted of 11 apparent segments. Each segment had a belt of well-developed minute spines towards its posterior margin, except the anal segment, which had frontal concavity (Fig. 1). Both anterior and posterior ends of

Department of Microbiology, Government Medical College, Amritsar, India

*Corresponding author (email: <ushar_ora@yahoo.co.in>)
Received: 30-10-06
Accepted: 26-07-07

the maggots were rather narrow, while broad in the middle. The anterior pseudo-cephalic segment had two prominent oral hooks, which enable the maggots to firmly attach to the intestinal mucosa. The posterior segment had a fossa within which was located a pair of spiracles, which are respiratory in function. The peritreme of posterior spiracle consisted of a solid plate, having spiracular slits, which were more or less tortuous or arcuate and divergent from one another, showing the characteristics of the genus *Muscina*. Larvae with two slits or two simple openings at the posterior spiracles denoted that they were in the second instar stage. A curve in the spiracular slit at the middle confirmed the species *stabulans* (Fig. 2). The maggots isolated from the patient have been identified to be *Muscina stabulans*.[7]

Discussion

Intestinal myiasis in humans is probably an accidental myiasis related to ingestion of contaminated and/or uncooked food or water containing eggs or larvae of flies. Most larvae are destroyed by the digestive enzymes, but others are able to live in the intestinal tract and produce intestinal distress. Larvae of certain species of flies can also exceptionally reach the intestinal tract through the anus leading to rectal myiasis. In urban areas of developed countries, cases of intestinal myiasis are rare; most have occurred in countries where nutritional and sanitary conditions are unsatisfactory.[5] *Eristalis tenax* is the most-common species involved in intestinal myiasis and has a worldwide distribution.[5,8] Besides, the involvement of *M. domestica*[4] in India,[5] *E. tenax in Europe*[8] and Japan[9] in causing intestinal myiasis has been known. Clinical presentation of these cases has been reported to vary with the geographical location, including asymptomatic cases, abdominal pain, nausea, vomiting or anal pruritus.[8,9] In the present study, the patient presented with abdominal symptoms and generalized symptoms of loss of appetite and weight.

The finding of fly larvae in stool specimens does not necessarily denote intestinal myiasis. Many species of fly larvae that might be accidentally ingested with food cannot survive in the gastrointestinal environment. In such cases, although the dead larvae may be recognized on subsequent stool examinations, true host infestation is never established and the condition is properly termed pseudomyiasis.[10] However, in the case of *M. stabulans*, the larvae survive the gastric juice and live larvae have been recovered from fresh stool sample of our patient indicating that it is a case of true intestinal myiasis. The female flies of *M. stabulans* frequently oviposit from 140-200 eggs on food or decaying matter.[5] These eggs develop through three larval stages before pupation. The larvae developed inside the intestinal tract upon maturation for pupation drop to the ground, while the patient defecates.[5] The larval development is temperature-dependent and requires 10-20 days.[2]

Even though no effective chemotherapeutic agents are available for the treatment of intestinal myiasis,[2] treatment with purgatives and albendazole has been found to be effective in the present case. The patient presented here reported relief of symptoms following treatment with albendazole. The role of albendazole should, however, be evaluated by further studies. A high index of suspicion and
proper diagnosis is essential to avoid unnecessary treatment. Intestinal myiasis can easily be prevented by protecting the foodstuff from contamination with the eggs or larvae of dipterous flies. Thorough washing of fruits and vegetables and adequate cooking of food before consumption offer better protection. The need for correct diagnosis of myiasis, which is potentially destructive, needs to be emphasized.

Acknowledgement

We thank Dr P. Jambulingam, Deputy Director, Vector Control Research Centre, Puducherry for the facilities provided in carrying out the identification.

References

S Shivekar, K Senthil, *R Srinivasan, L Sureshbabu, P Chand, J Shanmugam, R Gopal

Department of Microbiology (SS, KS, LS, PC, JS, RG), Sri Manakula Vinayagar Medical College, Madagadipet, Puducherry - 605 107, and Vector Control Research Centre, Indian Council of Medical Research (RS), Puducherry - 605 006, India

*Corresponding author (email: <rengasrinivasan2001@yahoo.com>)

PYOPERICARDIUM DUE TO GROUP D STREPTOCOCCUS

Beta-hemolytic Enterococcus faecalis was isolated from the pericardial fluid obtained from a patient with pyopericardium. The patient was immunocompetent and had mild pleural effusion. He was treated with parenteral co-amoxiclav and amikacin, underwent pericardiectomy with repeated pericardial aspiration, and recovered completely. To our knowledge, this is the first report of pyopericardium due to E. faecalis.

Key words: Enterococcus faecalis, pleural effusion, pyopericardium

In the antibiotic era, purulent pericarditis, an infection associated with high mortality, is uncommon. Several bacterial agents have been reported to cause purulent pericarditis. These include Staphylococcus, Streptococcus, Haemophilus influenzae, Pseudomonas spp., Salmonella spp., Nocardia spp., coliforms and anaerobic bacteria. Bacterial pericarditis is usually characterized by purulent pericardial effusion (pyopericardium). Direct extension from pneumonia or empyema accounts for a majority of the cases. Haematogenous spread during bacteraemia and contiguous spread after thoracic surgery or trauma are also important mechanisms.[1] Pyopericardium can also result from the rupture of perivalvular abscesses into the pericardial space in patients with endocarditis. Rarely, pericardial invasion spreads along fascial planes from the oral cavity, particularly periodontal and peritonsillar abscesses. There is increasing evidence of anaerobic organisms being grown from pericardial fluid. The pericardium can become infected during meningococcal sepsis producing primary meningococcal pericarditis.[1-3]

To the best of our knowledge, the present report is the first case of pyopericardium due to E. faecalis.[4]

Case Report

A 60-year-old patient was admitted to the Cardiology Department, Vinayaka Mission Medical College Hospital, Salem, with complaints of breathlessness and mild retrosternal chest pain. On examination, the patient had engorged neck veins, muffled heart sound and presence of left basal crepts and rhonchi. Haemogram showed a total WBC count of 14,200 cells/cu mm with neutrophils 80%, lymphocytes 16% and eosinophils 4%. Haemoglobin was 11.2 g/dL, and random blood sugar was 114 mg/dL. The other biochemical parameters including liver function tests and the serological tests like HIV and HBsAg were normal.

Echocardiography showed pyopericardium and pleural