CONTENTS

Guest Editorial

Novel HIV Prevention Strategies: The Case for Andhra Pradesh
JA Schneider 1

Review Article

Chikungunya Fever: A Re-emerging Viral Infection
M Chhabra, V Mittal, D Bhattacharya, UVS Rana, S Lal 5

Special Article

Fabrication and Evaluation of a Sequence-specific Oligonucleotide Miniarray for Molecular Genotyping
J Iqbal, F Hänel, A Ruryk, GV Limmon, A Tretiakov, M Dürst, HP Saluz 13

Original Articles

A Comparison of PCR Detection of Meca with Oxacillin Disk Susceptibility Testing in Different Media and Sceptor Automated System for both Staphylococcus aureus and Coagulase-negative Staphylococci Isolates
S Ercis, B Sancak, G Hasçelik 21

Effect of Exposure to Hydrogen Peroxide on the Virulence of Escherichia coli
A Hegde, GK Bhat, S Mallya 25

A Low Molecular Weight Es-20 Protein Released In Vivo and In Vitro with Diagnostic Potential in Lymph Node Tuberculosis
N Shende, V Upadhye, S Kumar, BC Harinath 29

Community-based Study on Seroprevalence of Herpes Simplex Virus Type 2 Infection in New Delhi
R Chawla, P Bhalla, K Bhalla, M Meghachandra Singh, S Garg 34

Changing Patterns of Vibrio cholerae in Sevagram Between 1990 and 2005
P Narang, DK Mendiratta, VS Deotale, R Narang 40

Rapid Serodiagnosis of Leptospirosis by Latex Agglutination Test and Flow-through Assay
TMA Senthilkumar, M Subathra, M Phil, P Ramadass, V Ramaswamy 45

High Level Ciprofloxacin Resistance in Salmonella enterica Isolated from Blood
R Raveendran, C Wattal, A Sharma, JK Oberoi, KJ Prasad, S Datta 50

Role of Enteric Fever in Ileal Perforations: An Overstated Problem in Tropics?
MR Capoor, D Nair, MS Chintamani, J Khanna, P Aggarwal, D Bhatnagar 54
Brief Communications

Evaluation of a Modified Double-disc Synergy Test for Detection of Extended Spectrum β-lactamases in Ampc β-lactamase-producing Proteus mirabilis
MKR Khan, SS Thukral, R Gaind

.....58

Antimicrobial Susceptibility Profile of Neisseria gonorrhoeae at STI Clinic
C Shilpee, VG Ramachandran, S Das, SN Bhattacharya

.....62

Detection of Extra-cellular Enzymes of Anaerobic Gram-negative Bacteria from Clinically Diseased and Healthy Sites
JM Nagmoti, CS Patil, MB Nagmoti, MB Mutnal

.....65

Haemagglutination and Siderophore Production as the Urovirulence Markers of Uropathogenic Escherichia coli
MA Vagarali, SG Karadesai, CS Patil, SC Metgud, MB Mutnal

.....68

The use of Dried Blood Spots on Filter Paper for the Diagnosis of HIV-1 in Infants Born to HIV Seropositive Women
S Mini Jacob, D Anitha, R Vishwanath, S Parameshwari, NM Samuel

.....71

Evaluation of the Usefulness of Phage Amplification Technology in the Diagnosis of Patients with Paucibacillary Tuberculosis
D Biswas, A Deb, P Gupta, R Prasad, KS Negi

.....75

Case Reports

Cytomegalovirus Oesophagitis in a Patient with Non-hodgkin’s Lymphoma
SS Hingmire, G Biswas, A Bakshi, S Desai, S Dighe, R Nair, S Gupta, PM Parikh

.....79

Hydatid Cyst of Mediastinum
S Sehgal, B Mishra, A Thakur, V Dogra, PS Loomba, A Banerjee

.....80

Ochrobactrum anthropi Septicaemia
U Arora, S Kaur, P Devi

.....81

Intestinal Myiasis Caused by Muscina stabulans
S Shivekar, K Senthil, R Srinivasan, L Sureshbabu, P Chand, J Shanmugam, R Gopal

.....83

Pyopericardium Due To Group D Streptococcus
K Karthikeyan, KR Rajesh, H Poornima, R Bharathidasan, KN Brahmadathan, R Indra Priyadharshini

.....85

Pleural Effusion: A Rare Complication of Hepatitis A
A Bukulmez, R Koken, H Melek, O Dogru, F Ovali

.....87

Correspondence

Prevalence of Inducible AmpC β-lactamase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Northern India
A Bhattacharjee, S Anupurba, A Gaur, MR Sen

.....89

Parental History of Ulcer and the Prevalence of Helicobacter pylori Infection in their Offspring
KS Ahmed, AA Khan, JD Ahi, CM Habibullah

.....90

www.ijmm.org
Ciprofloxacin Breakpoints in Enteric Fever - Time to Revise our Susceptibility Criteria
C Rodrigues, N Jai Kumar, J Lalwani, A Mehta

West Nile Virus in the Blood Donors in UAE
M Alfaresi, A Elkoush

Estimation of Antibodies To HBsAg in Vaccinated Health Care Workers
TV Rao, IJ Suseela, KA Sathiavathy

Seroprevalence of Rubella Among Urban and Rural Bangladeshi Women Emphasises the Need for Rubella Vaccination of Pre-pubertal Girls
A Nessa, MN Islam, S Tabassum, SU Munshi, M Ahmed, R Karim

Novel Digestion Patterns with Hepatitis B Virus Strains from the Indian Subcontinent Detected using Restriction Fragment Length Polymorphism
P Vivekanandan, HDJ Daniel, S Raghuraman, D Daniel, RV Shaji, G Sridharan, G Chandy, P Abraham

Acute Urticaria Associated with Dicrocoelium dendriticum Infestation
A Sing, K Tybus, I Fackler

Book Reviews

Guidelines to Authors
Ciprofloxacin Breakpoints in Enteric Fever - Time to Revise our Susceptibility Criteria

Dear editor,

Apart from its considerable morbidity and absenteeism, enteric fever today consumes vast resources in developing nations. Most laboratories in India follow the Enterobacteriaceae CLSI guidelines for ciprofloxacin with an MIC of ≤1 mg/mL and zone diameter of ≥21 mm being considered as susceptible for Salmonella.

In Mumbai, resistance to nalidixic acid in Salmonella typhi has steadily increased from 0% in 1992 to 82% in 2000 and 86% in 2002.[1,2] However, in vitro susceptibility to ciprofloxacin may be seen on the basis of breakpoints that were established more than a decade ago. Clinical failure and increasing MIC to ciprofloxacin in salmonellae has prompted most clinicians to reconsider its use despite apparent in vitro susceptibility. Yet we need to re-iterate that ciprofloxacin, when susceptible, is still an ideal choice for treatment of enteric fever in the subcontinent.

In an attempt to address this issue, we analysed a total of 96 nalidixic acid-resistant (no zone of inhibition on disc diffusion) blood culture isolates in the year 2005 - 44 of S. typhi and 52 S. paratyphi A (Table).

Two criteria were considered: (1) Keeping the current CLSI (January 2006) recommended guidelines for MIC of Enterobacteriaceae in mind, based on a regression analysis of log MIC vs. zone diameter, to accommodate a susceptible MIC of ≤1 µg/mL, the zone diameter for ‘susceptible’ was increased to ≥27 mm from 21 mm with a corresponding increase in the zone diameter for resistant isolates from ≤15 mm to ≤21 mm for resistant MIC of ≥4 µg/mL. (2) Keeping pharmacokinetic and pharmacodynamic principles for gram-negative bacteria in mind (AUC/MIC >125), with a 750 mg twice daily dose of ciprofloxacin, the attainable AUC is 31.06 µg.h/mL, allowing a maximum MIC of <0.25 µg/mL to be regarded as susceptible.

In our analysis, all the isolates of S. paratyphi A had a MIC ≥1 µg/mL, making ciprofloxacin no longer an option available for therapy for this organism. However, there were 12 S. typhi isolates with an MIC of <0.25 µg/mL, 9 of them with a zone diameter of >30 mm. Thus for a PK/PD breakpoint, we suggest that the MIC of ciprofloxacin be lowered to ≤0.25 µg/mL and the resistant zone diameter breakpoint be increased to ≤28 mm and the susceptible one to ≥30 mm. Either way, we believe that the zone diameters must increase for S. typhi and S. paratyphi A.

References

*C Rodrigues, N Jai Kumar, J Lalwani, A Mehta
P.D. Hinduja National Hospital and Medical Research Center, Mahim, Mumbai - 400 016, India

*Corresponding author (email: <dr_crodrigues@hindujahospital.com>)
Received: 09-02-07
Accepted: 01-05-07

<table>
<thead>
<tr>
<th>Zone diameter (mm)</th>
<th>≤21</th>
<th>22-25</th>
<th>26</th>
<th>27</th>
<th>≤28</th>
<th>29</th>
<th>30</th>
<th>≥31</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC (µg/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>12</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Correlating MIC and zone diameters of enteric fever isolates