Erratum

Mojiminiyi, F.B.O.¹*, Merenu, I.A.², Njoku, C.H.³, Ibrahim, M.T.O.²

Departments of Physiology¹, Community Health² and Medicine³, College of Health Sciences, Usman Danfodio University, P.M.B. 2254, Sokoto, Nigeria.

The publisher regrets that during the publication of the above mentioned article the unedited version of the figures and legends were printed. We apologize for any inconvenience caused to the reader, and hereby, republish the figures below:

*Address for Correspondence: mojiminiyi@yahoo.co.uk

Received: December 2006
Accepted (Revised): May 2007
Published: September 2007

Figure 1
Scattergram showing the relationship between haemoglobin concentration and years of exposure. The regression equation (given by the straight line) defining the relationship is: Hb concentration = 13.394 - 0.119 x years of service [r= -0.345 (P<0.0001)].
Formulae for Predicting Hematologic and Liver Functions

Figure 2. Scatter gram showing the relationship between PCV and years of exposure. The regression equation (given by the straight line) defining the relationship is: PCV = 41.065 - 0.154 x years of service \([r = -0.154 (P<0.0001)] \).

Figure 3. Scatter gram showing the relationship between platelet count and years of exposure. The regression equation (given by the straight line) defining the relationship is: platelet count \((x10^9) = 205.681 + 7.041 \) x years of service \([r = 0.342 (P<0.0001)] \).

Figure 4. Scatter gram showing the relationship between WBC count and years of exposure. The regression equation (given by the straight line) defining the relationship is: WBC count \((x10^9) = 7.64 + 0.078 \) x years of service \([r = 0.130 (P<0.0001)] \).

Figure 5. Scatter gram showing the relationship between Alkaline phosphatase (ALP) concentration and years of exposure. The regression equation (given by the straight line) defining the relationship is: ALP concentration = 33.68 – 0.075 x years of service \([r = -0.144, (P<0.0001)] \).