Letters to Editor

Pathogenesis is not known it is postulated that the venom contains allergic proteins like phospholipase and various non-myelin proteins which elicit an IgE antibody response resulting in mast cell activation and release of preformed substances such as histamine as well as de novo synthesis of other mediators (i.e. thromboxane and leukotrienes) leading to anaphylactic response. Sometimes IgE antibody formed by previous sensitization directly cross-reacts with myelin basic proteins resulting in different neurological complications. [6]

Our patient was pre-sensitized with hymenoptera venom and the fourth occasion of sting probably caused immediate type hypersensitivity reaction mediated by humoral antibodies of IgE type or reagin antibodies which cross-reacted with myelin basic protein, leading to acute demyelinating polyradiculoneuropathy with secondary axonal changes.

Dhiraj Kishore, Vishal Khurana, Indarjeet Singh Gambhir, Surender Misra

1 Department of Internal Medicine and 1Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221 005, India.

E-mail: vishdoc24@gmail.com

PMID: 19934578

DOI: 10.4103/0028-3886.57796

References

Accepted on 06-08-2009

Hemangioblastoma of the lateral ventricle

Sir,

Hemangioblastomas are the most frequent vascular tumor of the central nervous system (CNS) and can be associated with von Hippel-Lindau (VHL) disease in 3 to 38% of the cases as a major manifestation. These tumors are predominantly found in the cerebellum, spinal cord, and brainstem. The unusual locations include leptomeninges and sellar-sphenoid sinus. Supratentorial location accounts for 4 to 13% of the cases. However, hemangioblastomas of the lateral ventricle are extremely rare and only 5 cases have been reported in the English literature till 2001. We report a unique case of a lateral ventricular hemangioblastoma.

A 30-year-old male presented with a progressive holocephalic headache of six months’ duration. The neurological examination was normal. Magnetic resonance imaging (MRI) of the brain showed a 3 x 2 cm mass in the left lateral ventricle, which was hypointense on T1-weighted images, hyperintense on T2-weighted as well as fluid attenuated inversion recovery (FLAIR) images. The tumor showed brilliant contrast enhancement [Figures 1-3]. The patient had a left-sided parietal craniotomy and through a trans-sulcal approach through the superior parietal...
lobule the lesion was excised. At operation the lesion was brownish red, soft to firm, highly vascular, and was adherent to the ventricular ependyma as well as the choroid plexus. An immediate post-operative computed tomography (CT) scan showed complete excision of lesion [Figure 4]. Post-operatively, the patient had transient sensory aphasia, which recovered fully in 1 month. A histopathological examination showed tissue composed of a fine network of blood spaces separated by numerous polygonal stromal cells, with lightly stained cytoplasm [Figure 5]. Immunohistochemical staining showed a strong immunopositivity in several stromal cells for vimentin, epithelial membrane antigen (EMA), and neuron specific enolase (NSE) - typical of a hemangioblastoma. The patient was investigated for other features of von Hippel-Lindau syndrome but none were found.

Hemangioblastomas of the CNS are infrequent and they account for 2% of primary CNS tumors. The most common location is the posterior fossa, cerebellar hemisphere accounting for 83%. Supratentorial location is rare, sporadic hemangioblastomas 4% and VHL disease 13%. The lateral ventricular location is extremely unusual, only four symptomatic cases and one incidental postmortem finding have been described. All the four lateral ventricle hemangioblastomas reported till date had been in patients with VHL disease. In our patient we could not find any evidence for VHL disease. However, it is prudent to investigate patients with lateral ventricular hemangioblastoma for VHL disease. The size of the lateral ventricle hemangioblastomas in all the four documented cases has been greater than the size of the hemangioblastoma in other locations. This may partly be related to the fact that the volume of the lateral ventricle can accommodate a reasonable size mass lesion and any mass lesion in the lateral ventricle has to grow to a sufficient size to produce symptoms. In other locations cystic component of hemangioblastoma has been the contributing factor to the size of the tumor, whereas all the lateral ventricle hemangioblastomas including our case were solid.

Hemangioblastoma of the lateral ventricle is associated with a better prognosis than its counterpart in the third ventricle. Diehl and Symon were able to achieve complete resection of the tumor. Our experience was also similar. We were able to achieve good control of the feeding vessels from the choroids plexus and the wall of the lateral ventricle, thus enabling in toto resection of the tumor. Post-operative dysphasia/mutism is an infrequent and usually transient complication of hemangioblastoma surgery. In our case, it was probably related to the proximity of the tumor to the posterolateral region of the thalamus and/or surgeryrelated edema and/or ischemia in
the parietal region. Its incidence can be reduced by delineating the speech area by functional MRI preoperatively\(^{[12]}\) or by using intraoperative cortical mapping.\(^{[13]}\)

Letters to Editor

Ramandeep Singh Jaggi,\(^{1}\)

Ishwar Chandra Premsagar, Abhishek

Department of Neurosurgery, Dr. R.M.L. Hospital, Baba Kharak Singh Marg, New Delhi - 110 001, India.

E-mail: rsjaggi2000@yahoo.com

PMID: 19934579

DOI: 10.4103/0028-3886.57797

References

Accepted on 10-2-2009