CONTENTS

Editorial

Irrational combinations: No consideration for patient safety: Shiv Prakash

Review Article

Bioequivalence: Issues and perspectives: Shubha Rani

Research Papers

Isolation, characterization and study of enhancing effects on nasal absorption of insulin in rat of the total saponin from Acanthophyllum squarrosum: S.A. Sajadi Tabassi, H. Hosseinzadeh, M. Ramezani, E. Moghimipour, S.A. Mohajeri

Pharmacological and biochemical evidence for the antidepressant effect of the herbal preparation Trans-01: Md. Shalam, S.M. Shantakumar, M. Laxmi Narasu

Effects of dexamethasone and betamethasone as COX-2 gene expression inhibitors on rigidity in a rat model of Parkinson’s disease: Mehdi Sha’afi Ardestani, Hassan Mehrab, Nourallah Sadeghzadeh

Activity of aqueous ethanol extract of Euphorbia prostrata ait on Shigella dysenteriae type 1-induced diarrhea in rats: Kamgang René, Gonsu Kamga Hortense, Wafo Pascal, Mbungi N. Jean Alexis, Pouokam Ervice Vidal, Fokam Tagne Michel Archange, Fonkoua Marie Christine

Antidiarrheal and antimicrobial activities of Stachytarpheta jamaicensis leaves: S. Sasidharan, L. Yoga Latha, Z. Zuraini, S. Suryani, S. Sangetha, L. Shirley

Research Letters

Positive inotropic and chronotropic effect of aloe gel on isolated rat heart: Pradeep Kumar, Manish Goyal, Sunita Tewari

Synergistic effect of cefixime and cloxacillin combination against common bacterial pathogens causing community acquired pneumonia: Astha Agarwal, N. Jain, A. Jain

In vitro cytotoxic and human recombinant caspase inhibitory effect of Annona reticulata leaves: Susanta Kumar Mondal, Nirup Bikash Mondal, Upal Kanti Mazumder

Correspondence

Counterfeit and substandard drugs: The need for an effective and stringent regulatory control in India and other developing countries: A. Sukhlecha

Letter to the Editor

Postgraduate education in medical pharmacology: A student’s viewpoint: Varun Gupta

Book Review

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal’s / publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or library use.
Synergistic effect of cefixime and cloxacillin combination against common bacterial pathogens causing community acquired pneumonia

The most common etiologic agent in virtually all studies of community acquired pneumonia (CAP) is Streptococcus pneumoniae, which accounts for approximately two-third of the cases of bacteremic pneumonia.[1] Other pathogens include Haemophilus influenzae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Staphylococcus aureus, Streptococcus pyogenes and Klebsiella pneumoniae and other gram-negative rods. A number of antimicrobial agents have been established for the management of CAP. No single agent is efficacious against all pathogens. A number of authors have reported that a synergistic antibacterial effect may result when either two penicillins or a penicillin and a cephalosporin are used in combination against certain gram-negative bacilli. The mechanism for this synergistic effect was shown to be a competitive inhibition of β-lactamase by one of the penicillins, which protects the second penicillin from inactivation by hydrolysis. Here we studied the synergistic effect of cloxacillin and cefixime against the common bacterial pathogens causing CAP.

Antimicrobial-sensitive standard strains of Escherichia coli ATCC 35218, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 47152, Streptococcus pneumoniae ATCC 49618, Haemophilus influenzae ATCC 49247 and Staphylococcus aureus ATCC 29213 were tested in this study. The MIC of cloxacillin and cefixime was determined by the agar dilution method, according to clinical laboratory standards institute (CLSI, 2005).[2]

Combinations of cloxacillin and cefixime were tested against each microorganism by the checkerboard method, with the MICs ranging from 1/32 µg/ml to 4 µg/ml. Fractional inhibitory concentration (FIC) was calculated for each antibiotic for every organism. The following formulas were used:

FIC index = FIC of drug A + FIC of drug B.
FIC of drug A = MIC of drug A in combination/MIC of drug A alone.
FIC of drug B = MIC of drug B in combination/MIC of drug B alone.

Synergy was defined as an FIC index of ≤0.5. Indifference was defined as an FIC index of ≥0.5 but of ≤4.0. Antagonism was defined as an FIC index of >4.0.

The MIC and FIC indices of both the drugs against all the strains are shown in Table 1. Clear synergism is seen against S. pneumoniae and H. influenzae. Although no definite synergism or antagonism could be demonstrated against the rest of the organisms, a beneficial effect is definitely seen.

A combination of chloramphenicol and ampicillin had shown synergism against H. influenzae.[3] Salverezza et al., studied patients of uncomplicated CAP and found that 28 of the 30 given cefixime were cured. One patient in the cefixime group had a partial response and one patient who had P. aeruginosa infection failed treatment.[4] Many enterobacteriace isolates exhibit a high frequency of resistance to the earlier generation cephalosporins, such as cephalothin, cefazolin and cefoxitin, with MICs > 64 µg/ml.[5]

We demonstrated the synergistic effect of cloxacillin and cefixime used in combination against S. pneumoniae and H. influenzae, the commonest causes of CAP. The strains used in present experiment were standard strains. There is the need to test this combination in clinical isolates; especially worth noting will be the response in drug-resistant isolates. If the combination proves effective against β-lactamase producing H. influenzae and penicillin-resistant pneumoniae, the clinical trials would be worthwhile.

Table 1
Summary of synergy test results

<table>
<thead>
<tr>
<th>Strains</th>
<th>MIC when single drug was used</th>
<th>MIC when combination was used</th>
<th>FIC index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cloxacillin</td>
<td>Cefixime</td>
<td>Cloxacillin</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>2 µg/ml</td>
<td>1 µg/ml</td>
<td>0.0625 µg/ml</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>1 µg/ml</td>
<td>0.25 µg/ml</td>
<td>0.25 µg/ml</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1 µg/ml</td>
<td>32 µg/ml</td>
<td>0.5 µg/ml</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>256 µg/ml</td>
<td>32 µg/ml</td>
<td>256 µg/ml</td>
</tr>
<tr>
<td>E. coli</td>
<td>128 µg/ml</td>
<td>0.5 µg/ml</td>
<td>4 µg/ml</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>256 µg/ml</td>
<td>0.5 µg/ml</td>
<td>128 µg/ml</td>
</tr>
</tbody>
</table>
Agarwal et al.: Synergistic effect of cefixime and cloxacillin

