Contents

Editorial

Pharmacologists of India: Shiv Prakash

Review Article

Therapeutic alternatives from venoms and toxins: Shivaji P. Gawade

Research Articles

Genotoxic evaluation of morphine, buprenorphine, pentazocine, and noscapine by micronucleus and comet assay in albino mice: Lakshman Kumar Puli, P. A. Patil

Age-related susceptibility to chronic haloperidol-induced orofacial dyskinesia: Biochemical and neurochemical evidence: Mahendra Bishnoi, Kanwaljit Chopra, Shrinivas K. Kulkarni

Effect of amlodipine on blood and aortic tissue concentration of endothelin in male rabbits receiving atherogenic diet: M. Mohammadi, F. Mirzaei, Reza Badalzadeh

Gastrointestinal permeability studies using combinations of rifampicin and nucleoside analogue reverse transcriptase inhibitors in rats: T.T. Mariappan, Saranjit Singh

Effects of meloxicam and rofecoxib on psychomotor performance: A randomized, double-blind, placebo-controlled cross-over study: Marwan S.M. Al-Nimer

Non-invasive evaluation of arterial stiffness in patients with increased risk of cardiovascular morbidity: A cross-sectional study: Yashmaina Sridhar, M.U.R. Naidu, P. Usharani, Y.S.N. Raju

Serum glucose and triglyceride lowering activity of some novel glitazones against dexamethasone-induced hyperlipidemia and insulin resistance: B.R. Prashantha Kumar, T.K. Praveen, M.J. Nanjan, M.D. Karvekar, B. Suresh

Workshop Report

The basic concepts of scientific research and communication: (A Report on Preconference Workshop Held in Conjunction with the 40th Annual Conference of the Indian Pharmacological Society-2007): Pitchai Balakumar, Sreekant Murthy, Gowraganahalli Jagadeesh

Author Index, 2007

Title Index, 2007

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal’s / publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or library use.
The planet Earth has been blessed with a vast variety of flora and fauna. Most of these still remain uninvestigated in the search for biomolecules with specialized structures and target specificity. Natural nonherbal therapeutic alternatives (NNTA) with proven therapeutic actions would be of immense value for the treatment of age-old diseases. These therapeutic alternatives are atypical therapeutic agents that originate from natural sources and are used for the treatment of diseases when the patient is found to be refractory to the conventional therapies. These agents are effective at extremely low doses and the therapeutic properties exhibited by them are achieved by mechanisms other than that of the known therapies. Venom is a complex mixture of a number of constituents proteins, peptides, enzymes and trace amounts of nonprotein inclusions, which exist in a specialized reservoir, i.e., the venom glands of arthropods and reptiles. These specialized secretions are employed by these creatures to paralyze their prey and its subsequent catabolism. On the other hand, toxin is a homogenous structure that is isolated, extracted, or derived from plant, animal, or microbial sources and has a specific locus of action.

The NNTA, currently under extensive evaluation, come from diverse natural sources, such as marine snail, sea anemone, leech, frog skin, snake venoms, and microbes such as Clostridium botulinum type A. These substances are being evaluated for use in various disease conditions, including inflammatory, hematological, autoimmune, infectious, cardiovascular, malignant, neuromuscular, and psychotic diseases. Table 1 summarizes the various NNTA that are under extensive evaluation.

ABSTRACT

The medicinal value of venoms has been known from ancient times. The active principles in venoms have been extensively investigated for their target specificity. Affinity for the primary sites responsible for lethality and efficacy at extremely low concentrations made these agents valuable tools or surrogates for basic biomedical research. The therapeutic effects of these agents are usually achieved by mechanisms that are different from that of conventional therapeutic agents. In the present paper, nonherbal natural therapeutic alternatives approved by the FDA, those that have undergone extensive clinical evaluation and shown promise in preclinical evaluation, or those that are isolated in pure form or subjected for the treatment to venoms are reviewed. These agents are suggested for the treatment of various diseases, including inflammatory, hematological, autoimmune, infectious, cardiovascular, malignant, neuromuscular, and psychotic diseases.

KEY WORDS: Nonherbal natural therapeutic alternatives, snake venomoid

Inflammatory Diseases

The NNTA used for inflammatory pain include, ziconotide, Xen 2174, hannalgesin, epibatidine, keluoqu tablets, etc.

Ziconotide (Prialt)

Ziconotide (2699 Da, 25 aa) is a nonopioid nonsteroidal alternative for pain relief. It is a synthetic analogue derived from omega conotoxin MVII A, which is isolated from the marine snail, Conus magus. The analgesic action of ziconotide is by blockade of the presynaptic N-type of Ca²⁺ channel present on sensory neurons. Ziconotide is used as an intrathecal analgesic in patients refractory to intrathecal opioid or oral opioid therapy. The data from a phase III clinical trial on 1250 patients revealed that ziconotide is devoid of adverse effects such as respiratory depression, tolerance, and the withdrawal syndrome.[1]

Xen 2174

It is an analogue of Mr1A X conapeptide isolated from the venom of the marine snail Conus marmoreus. Xen 2174 is more potent, selective and stable than X conapeptide. Xen 2174 has been proved to be safe in phase I clinical trials. It is recommended intrathecally to treat severe and unmanageable pain in cancer patients.[2] In a phase III clinical trial on 322 patients for 6.5 months, Xen 2174 decreased sweat production in 50% to 80% patients. It is suggested for the treatment of underarm hyperhidrosis (USFDA, July 2004). Intrathecal X conopeptide, Xen 2174 dose dependently alleviated mechanical allodynia in rats with neuropathic and intractable pain.[3]

Hannalgesin

It is isolated from the venom of Ophiophagus hannah.[4]
The analgesic action of hannalgesin is by binding to the SS1 or SS2 subunit of the sodium channel, similar to tetrodotoxin and saxitoxin.[5] In the dose of 16-32 ng/gm by i.p. injection, hannalgesin induced analgesia is without causing neurological and muscular defects. The analgesic action is blocked by naloxone and L-NG-nitro methyl ester. Additionally, hannalgesin induced analgesia is without causing neurological defects. The analgesic action is blocked by naloxone and L-NG-nitro methyl ester. Additionally, hannalgesin produced sedation and muscle relaxation and also induced locomotor activity.[14]

Epibatidine

Epibatidine (C_{11}H_{13}N_{2}Cl)⁶ is an alkaloid extracted from the skin of the frog, Epipedobatus tricolor. Epibatidine binds to nicotinic ACh receptors and receptors at the neuromuscular junction. It produced a typical arched tail in mice when injected parenterally. Epibatidine is 200 times more potent than morphine in the relief of pain.[7,8]

Keluoqu tablet

Keluoqu tablet is prepared by the incorporation of neurotoxin from the venom of the Chinese cobra. The duration of its analgesic effect is longer lasting (24 h) than that of tramadol (2.5 h). In a clinical trial on 200 patients, the effective rate of analgesia of keluoqu tablet in comparison with tramadol is 88: 72.2%. The side effects of keluoqu tablet and tramadol recorded during the clinical trial included muscle weakness and constipation, respectively.[9]

Hematological Diseases

The venom of viperidae and crotalidae primarily exert their lethal action by interference with blood coagulation, either by accelerating the process or by specific delineation of a vital factor that prevents or inhibits the coagulation process. NNTA approved by the FDA, and those undergoing extensive clinical evaluation for the treatment of various hematological diseases, include fibrinolytics, anticoagulants, thrombin inhibitors, platelet aggregation inhibitor and hematological diagnostics etc.

Fibrinolytics

Batroxobin: Batroxobin (43 kDa, 231 aa, 12 cysteines) is a serine protease from Bothrops atrox moojeni venom. It is a thrombin-like enzyme (factor IIa), which inhibits the conversion of fibrinogen to fibrin. Batroxobin is used to study coagulation on patient’s blood in the presence of heparin and prothrombin time in the absence of thrombin.[10] It is used to treat vascular thrombosis. It is also used to monitor fibrinogen levels in patients on heparin therapy.[10]

Ancrod (Viprinex): Ancrod is a directly-acting defibrinogenating enzyme. The drug prevents clot formation (by cleavage of fibrinogen), reduces blood viscosity, and increases blood flow to ischemic regions. Ancrod is a promising reperfusion agent for the treatment of acute ischemic stroke. Phase 3 clinical trials are underway to confirm its efficacy when used within 6 h of onset of stroke.[12]

Lepuridin: Lepuridin is a thrombin inhibitor derived by recombinant DNA technology from hirudin, which is isolated from the medicinal leech, Hirudo medicinalis. The antithrombic action of lepuridin is by binding to the two-thrombin anion-binding exosites, exosite I at fibrinogen and exosite II at antithrombin.[11]

Bothrojaracin: Bothrojaracin (27 kDa) is an e-type lectin-like protein from Bothrops jararaca. Bothrojaracin, at a concentration of 1 mg/kg (i.v.), decreased thrombus weight by 95% in rats with venom thrombosis and exhibited 100% protection in mice with thrombin-induced thromboembolism.[14] The antithrombic action of bothrojaracin is by binding to the two-thrombin anion-binding exosites, exosite I at fibrinogen and exosite II at antithrombin.[15]

Fibrolase: Fibrolase is a directly-acting plasminogen activator isolated from Agkistrodon, copperhead snake venom. Fibrolase rapidly lyases clot. It was also able to lyse a carotid artery thrombus rapidly when administered locally in an anesthetized dog. Fibrolase, in combination with known antiplatelet drug is suggested to be more effective thrombolytic.

Table 1

<table>
<thead>
<tr>
<th>Disease conditions</th>
<th>Category</th>
<th>Nonherbal natural therapeutic alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory disease</td>
<td>Analgesic</td>
<td>Ziconotide, Xen 2174, hannalgesin, epibatidine, Keluoqu tablet</td>
</tr>
<tr>
<td>Hematological disease</td>
<td>Fibrinolytic, Anticoagulant</td>
<td>Batroxobin, ancrod, Lepuridin, Bothrojaracin, fibrolase, Lebecetin</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>Pullulan, Immunomodulator</td>
<td>Naloxone, RVX X and V enzymes, pseutarin C, L-amino oxidase peptide Pandinins Pim 1, Pim 2</td>
</tr>
<tr>
<td>Infectious disease</td>
<td>Antibacterial (Gram +ve), E. coli, S. aureus, Aeromonas</td>
<td>Bufodienolides</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>Cardiotoxic, Antithrombotic</td>
<td>BPP9a Teprotide (Captopril)</td>
</tr>
<tr>
<td>Malignant disease</td>
<td>Potent anticancer activity</td>
<td>Salmosin, contortrostatin, eristostatin, rhodostamin, contortrostatin, toxin CM -28, BM-T 2, Dr-CT1</td>
</tr>
<tr>
<td>Neuromuscular disease</td>
<td>Muscle relaxant</td>
<td>BOTOX</td>
</tr>
<tr>
<td>Psychotic disease</td>
<td></td>
<td>POVRVP, POECVP, POESVP</td>
</tr>
</tbody>
</table>

Wright and co-workers [16] have shown that venomous snake species such as Bothrops atrox, Bothrops jararaca, and Ophiophagus hannah. The venom of these species contains various neurotoxic components such as α-bungarotoxins, bongkrekic acid, and saxitoxin. In the dose of 16-32 ng/gm by i.p. injection, hannalgesin induced analgesia is without causing neurological and muscular defects. The analgesic action is blocked by naloxone and L-NG-nitro methyl ester. Additionally, hannalgesin produced sedation and muscle relaxation and also induced locomotor activity. Epibatidine (C_{11}H_{13}N_{2}Cl) is an alkaloid extracted from the skin of the frog, Epipedobatus tricolor. Epibatidine binds to nicotinic ACh receptors and receptors at the neuromuscular junction. It produced a typical arched tail in mice when injected parenterally. Epibatidine is 200 times more potent than morphine in the relief of pain. Keluoqu tablet is prepared by the incorporation of neurotoxin from the venom of the Chinese cobra. The duration of its analgesic effect is longer lasting (24 h) than that of tramadol (2.5 h). In a clinical trial on 200 patients, the effective rate of analgesia of keluoqu tablet in comparison with tramadol is 88: 72.2%. The side effects of keluoqu tablet and tramadol recorded during the clinical trial included muscle weakness and constipation, respectively. Epibatidine

The venom of viperidae and crotalidae primarily exert their lethal action by interference with blood coagulation, either by accelerating the process or by specific delineation of a vital factor that prevents or inhibits the coagulation process. NNTA approved by the FDA, and those undergoing extensive clinical evaluation for the treatment of various hematological diseases, include fibrinolytics, anticoagulants, thrombin inhibitors, platelet aggregation inhibitor and hematological diagnostics etc. **Fibrinolytics**

Batroxobin: Batroxobin (43 kDa, 231 aa, 12 cysteines) is a serine protease from Bothrops atrox moojeni venom. It is a thrombin-like enzyme (factor IIa), which inhibits the conversion of fibrinogen to fibrin. Batroxobin is used to study coagulation on patient’s blood in the presence of heparin and prothrombin time in the absence of thrombin.[10] It is used to treat vascular thrombosis. It is also used to monitor fibrinogen levels in patients on heparin therapy.[10]

Ancrod (Viprinex): Ancrod is a directly-acting defibrinogenating enzyme. The drug prevents clot formation (by cleavage of fibrinogen), reduces blood viscosity, and increases blood flow to ischemic regions. Ancrod is a promising reperfusion agent for the treatment of acute ischemic stroke. Phase 3 clinical trials are underway to confirm its efficacy when used within 6 h of onset of stroke.[12]

Lepuridin: Lepuridin is a thrombin inhibitor derived by recombinant DNA technology from hirudin, which is isolated from the medicinal leech, Hirudo medicinalis. The antithrombic action of lepuridin is by binding to the two-thrombin anion-binding exosites, exosite I at fibrinogen and exosite II at antithrombin.[11]

Bothrojaracin: Bothrojaracin (27 kDa) is an e-type lectin-like protein from Bothrops jararaca. Bothrojaracin, at a concentration of 1 mg/kg (i.v.), decreased thrombus weight by 95% in rats with venom thrombosis and exhibited 100% protection in mice with thrombin-induced thromboembolism.[14] The antithrombic action of bothrojaracin is by binding to the two-thrombin anion-binding exosites, exosite I at fibrinogen and exosite II at antithrombin.[15]

Fibrolase: Fibrolase is a directly-acting plasminogen activator isolated from Agkistrodon, copperhead snake venom. Fibrolase rapidly lyases clot. It was also able to lyse a carotid artery thrombus rapidly when administered locally in an anesthetized dog. Fibrolase, in combination with known antiplatelet drug is suggested to be more effective thrombolytic.
alternative.[16] Fibrolase, a metalloproteinase fibrinolytic agent, which was patented (US patent 7134114) as a novel-acting thrombolytic, is useful for lysis of blood clots in vivo. Unlike streptokinase, fibrolase causes degradation of fibrin and fibrinogen by direct action.[17]

Platelet aggregation inhibitors

Lebecetin: Lebecetin (29779 Da) is a basic protein (pH 9.9) comprising two alpha and beta subunits. Lebecetin dose dependently inhibited thrombin-induced platelet aggregation. However thrombomoduline A, U46619, or acachidonic acid-induced platelet aggregation was not inhibited by lebecetin. Lebecetin, by binding to the platelet GPIb/IX receptor system, inhibited ristocetin-induced platelet aggregation in human platelet-rich plasma.[18]

Hematological diagnostics

Ecarin: Ecarin is a metalloproteinase isolated from the venom of Echis carinatus. It is a prothrombin-independent group 1A prothrombin activator. Prothrombin is converted into meizothrombin ecarin. Ecarin is used to detect von Willbrand disease by determining factors X and V and prothrombin in blood.[20,21]

RVV X and RVV V enzymes: RVV X and V enzymes are isolated from the venom of Vipera russelli. These enzymes are used to detect von Willbrand disease by determining factors X and V and prothrombin in blood.[20,21]

Pseutarin C: Pseutarin C is a group C prothrombin activator isolated from the venom of Pseudonaja textiles. Pseutarin C converts prothrombin to thrombin by activation of prothrombin. The action of pseutarin C is similar to the mammalian factor Xa-Va complex.[22]

Autoimmune Diseases

The NNTA to treat autoimmune diseases include Sh K (L5)-amide, cobra drug and basic short chain snake venom neurotoxins like α-bungarotoxin are used as autoimmune diagnostics.[23]

Sh K (L5)-amide

Sh K (L5)-amide is a peptide analogue of Sh K toxin generated from the sea anemone, Stichodactyla helianthus. Sh K (L5)-amide selectively blocked the potassium channel Kv 1.3 at very low concentrations. It is a novel immunomodulator, useful to selectively suppress memory T lymphocytes in patients of multiple sclerosis, type I diabetes mellitus, and rheumatoid arthritis.[23]

Cobra drug (immunokine)

Immunokine nontoxic peptide derived from cobra venom, termed as polypeptide O3 (PPO3) or peptide E (PEP-E), inhibited 90% of HIV infection tropism independently by blocking the chemokine receptors, CCR 5 and CXCR 4. The cobra drug, immunokine peptide, was found safe in clinical trials on HIV patients subjected to different applications.[24]

α-bungarotoxin

Neurotoxins, like α-bungarotoxin, with a strong affinity for muscle acetylcholine receptors have been used to generate acetylcholine receptor antibodies and diagnostically, in the autoimmune disease, myasthenia gravis, which is characterized by the presence of pathogenic antibodies to acetylcholine receptors.[25]

Infectious Diseases

The NNTA for infectious diseases include, L-amino oxidase, cobra peptide and pandinins.

L-amino oxidase

L-amino oxidase enzyme from the venom of Crotalus adamanteus showed antibacterial activity against Gram-positive bacteria. The venom of Agkistrodon halys pallus, Bothrops alternatus, and Trimeresurus jerdoni showed antibacterial activity against E. coli and S. aureus. The antibacterial activity of the venom of Pseudechis australis against aeromonas was 70-fold higher than that of tetracycline.[26,27]

Peptide

Peptides from the venom of Naja atra have been shown to possess antitubercular activity against Mycobacterium tuberculosis.[28]

Pandinins

Pim 1 (4799.5 Da) and Pim 2 (2612.9) from the venom of Pandinim imperator showed antibacterial activity against B. subtilis and E. coli. The antibacterial activity of pandinins was higher against Gram-positive bacteria than against Gram-negative bacteria.[29]

Cardiovascular Diseases

The NNTA to treat cardiac failure and hypertension are the bufodienolides and BPP9a, respectively.

Bufodienolides

Bufodienolides are glycosides isolated from the venom of the Central Asian green toad, Bufo viridis laur. There are six different glycosides, namely, gamabufotulin, arenobufugin, telococinobufagin, marinobufugin, bufaregonin and bufalin. The cardiotonic action of the bufodienolides is probably by the inhibition of endogenous myocardial Na+-K+-ATPase. Bufodienolides increased the force of contraction and to some extent, the heart rate. Frog atrial trabecular contractions are also increased with the rise in the slow calcium current. The yield of bufodienolide is 30% of the total venom, i.e., 70 mg/toad. The bufodienolides are NNTA to strophanthin K, celandium, and digitoxinum.[29]

BPP9a

BPP9a, a nanopeptide bradykinin potentiator with angiotensin converting enzyme-inhibiting action, was isolated from the venom of Bothrops jararaca.[30] BPP9a was synthesised at Squibb Corporation as Teprotide®, a parenteral product. BPP9a was further developed as an oral ACE inhibitor, captorplin—an antihypertensive alternative for the treatment of renovascular hypertension.[31]

Malignant Diseases

The NNTA for the treatment of malignant diseases include salmosin, rhodostamin, contortrostatin, toxin-28, and dr-CT-1.

Salmosin

Salmosin is a disintegrin comprising an Arg-Gly-Asp sequence, isolated from the venom of the Korean snake Agkistrodon halys brevicaudus. Salmosin acts by blocking the function of α2β3 integrin.[32] Salmosin suppressed tumor
progression by strongly inhibiting tumor-derived angiogenesis, adherence and proliferation of tumor cells. Maintenance of drug levels in antiangiogenic cancer therapy through liposome delivery of the salmosin gene for in vivo expression has been investigated.[38]

Rhodostomin

Rhodostomin is a disintegrin from the venom of Calloselasma rhodostoma. Rhodostomin inhibited angiogenesis induced by basic fibroblast growth factor and suppressed murine melanoma B16-F10 tumor growth.[39] The antiangiogenic effect of rhodostomin is related to integrin α5β3 blockade.

Contorstrostatin

Contorstrostatin, a disintegrin isolated from Agkistrodon contortrix contortrix, strongly inhibited the adhesion of human metastatic melanoma (M-24 met) to extracellular matrix and in vivo, lung colonization by M-24 met cells.[35] Contorstrostatin inhibited tumor growth and angiogenesis and prolonged the survival of mice with glioma.[36] Intravenous liposomal delivery of contorstrostatin was shown to be promising for human breast cancer therapy as it has a longer half life. It gets accumulated in the tumor cells and is devoid of platelet reactivity. Liposomal delivery of contorstrostatin does not respond to the immune system.[37]

Toxin CM-28

Toxin CM-28, a protein toxin from the venom of Vipera russelli and BM-T2, a nonprotein toxin from the skin of Bufo melanostictus, showed pronounced reduction in proliferation of the cancer cell cultures U937 and K562. In microscopic observations, both the toxins revealed membrane blebbing and nuclear fragmentation. BM-T2 decreased PCNA expression and exhibited cytotoxicity by MTT assay.[38,39]

Neuromuscular Diseases

Botulinum toxin type A (Botox)

Botox is injected locally in the limbs to treat generalized spastic disorders like cerebral palsy and can produce prolonged and persistent improvement, lasting several weeks.[41] Intramuscular injection of Botulinum toxin type A is used to treat involuntary muscle contractions (FDA approval, 1989). A cosmetic product of Botulinum toxin A, BOTOX®, is used to treat moderate to severe frown lines between the brows (FDA approval, 2002).[42]

Psychotic Diseases

The NNTA snake venomoids POVRVP, POECVP, and POESVP are central nervous system depressants, antidepressants, and stimulants with a wide spectrum of neuro- and pharmacological properties.
Gawade: Nonherbal natural therapeutic alternatives