Contents

Editorial

Reviewing the peer review: Chetna Desai

1

Review Articles

Peptides and proteins with antimicrobial activity: Henrique Douglas Melo Coutinho, Katiucia Menezes Lôbo, Denise Aline Casimiro Bezerra, Inalzuir Lôbo

3

The potential role of vildagliptin in the management and prevention of type 2 diabetes mellitus: C.K. Chakraborti

10

Research Article

Evaluation of hypoglycemic effect of Morus alba in an animal model: Jamshid Mohammadi, Prakash R. Naik

15

Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats: Rakesh Barik, Sanjay Jain, Deep Qwatra, Amil Joshi, Girraj Sharan Tripathi, Ravi Goyal

19


23

Antiasthmatic activity of Moringa oleifera Lam: A clinical study: Babita Agrawal, Anita Mehta

28

Effect of Morus alba L. (mulberry) leaves on anxiety in mice: A.V. Yadav, L.A. Kawale, V.S. Nade

32

Adverse Drug Reactions (ADR) in the inPatients of Medicine Department of a Rural Tertiary Care Teaching Hospital and Influence of Pharmacovigilance in Reporting ADR: A.P. Gor, S.V. Desai

37

Antibacterial, antifungal and cytotoxic activities of amblyone isolated from Amorphophallus campanulatus: Alam Khan, Moizur Rahman, M.S. Islam

41

Case Report

A case of ciprofloxacin-induced erythema multiforme: Santoshkumar R. Jeavanagi, S. Manjunath, V.K. Wali

45

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal’s / publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or literary use.
Hypoglycemic and hypolipidemic activity of ethanolic extract of *Salvadora oleoides* in normal and alloxan-induced diabetic rats

J. P. Yadav, Sushila Saini, A. N. Kalia, A. S. Dangi

**Objective:** To find out the hypoglycemic and hypolipidemic activity of an ethanolic extract of the aerial part of *Salvadora oleoides* Decne in euglycemic and alloxan-induced diabetic albino rats.

**Materials and Methods:** Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Normal as well as diabetic albino rats were divided into groups (n = 6) receiving different treatments: vehicle (control), ethanolic extract (1 g and 2 g/kg b.w.), and standard antidiabetic drug tolbutamide (0.5 g/kg b.w.). Blood samples were collected by cardiac puncture and were analyzed for blood glucose and lipid profile on days 0, 7, 14, and 21.

**Results:** The ethanolic extract of *S. oleoides* produced significant reduction (P < 0.001) in blood glucose and also had beneficial effects (P < 0.001) on the lipid profile in euglycemic as well as alloxan-induced diabetic rats at the end of the treatment period (21st day). However, the reduction in the blood glucose and improvement in lipid profile was less than that achieved with the standard drug tolbutamide.

**Conclusion:** We concluded that an ethanolic extract of *S. oleoides* is effective in controlling blood glucose levels and improves lipid profile in euglycemic as well as diabetic rats.

**KEY WORDS:** Antidiabetic, arteriosclerosis, diabetes mellitus, hypercholesterolemia, sulphonylureas
(Salvadoraceae) were collected in April-June from Matanhail, Jhajjar District, Haryana (India). The plant material was authenticated by the FRI, Dehradun. A voucher specimen (No. 14/153533) was deposited at FRI, Dehradun.

The plant material was dried under shade and powdered in a grinder. The powdered material (100 g) was extracted with 70% ethanol by hot continuous percolation method in a Soxhlet apparatus. The extract was evaporated to dryness under vacuum and dried in a vacuum desiccator to obtain a residue of 13.65 g.

Drug administration

The quantities of the individual drugs to be administered were calculated and suspended in vehicle (1% w/v suspension of carboxymethylcellulose (CMC) in water 10 ml/kg b.w.). The drug was administered continuously for 21 days orally using an infant feeding tube. The rats were divided based on the standard drug tolbutamide which was also given continuously for 21 days.

Determination of LD₅₀ of S. oleoides

LD₅₀ was calculated by the probit analysis method.[9]

Induction of experimental diabetes

A single dose (120 mg/kg b.w, i.p.) of alloxan monohydrate (1%) dissolved in sterile normal saline was used for induction of diabetes mellitus in the rats. Diabetes was confirmed 1 week after alloxan injection by determining the blood glucose concentration; only animals with blood glucose of 200-300 mg/dl (mild diabetes) were used for the experiment. The diabetic animals were allowed free access to tap water and pellet diet and were maintained at room temperature in plastic cages.

Collection of blood and experimental setup

The rats were anesthetized with diethyl ether and blood samples were drawn from the heart of the animals. The rats were divided into two groups as follows:

1. Euglycemic rats: Euglycemic rats were divided into four groups, each group having six animals. Group I served as control and received 1% w/v suspension of CMC in water at a dose of 10 ml/kg b.w. Group II and III received ethanolic extract of S. oleoides in 1% CMC at a dose of 1 g and 2 g/kg b.w., respectively. Group IV received the standard drug tolbutamide at a dose of 0.5 g/kg b.w. Blood glucose and lipid profile were estimated before starting the treatment and weekly (7, 14, and 21 days) thereafter up to the end of treatment period.

2. Diabetic rats: Diabetic rats were also divided in to four groups as described above. Blood glucose and lipid profile were determined at day 0, 7, 14, and 21.

Estimation of blood glucose and lipid profile

Fasting blood glucose was determined using the orthotoluidine method.[10] Total cholesterol estimation was done using the Erba diagnostic kit.[11] Serum triglycerides were estimated using Enzokit (Ranbaxy).[12] HDL-cholesterol was determined using the Erba diagnostic kit.[13] VLDL (very low density lipoproteins)-cholesterol was calculated as: triglycerides/5; LDL (low density lipoproteins) cholesterol was calculated by the equation:

LDL-cholesterol = total cholesterol – (HDL + VLDL).

All estimations were done using the Erba Transasia auto-analyzer.

Statistical analysis

The blood glucose and lipid levels before and after the administration of extract were compared using Student’s ‘t’ test. The data on blood glucose level was also analyzed by one-way ANOVA. The minimum level of significance was fixed at P < 0.05.

Probit analysis method

Ten rats were given S. oleoides ethanolic extract in doses of 0.5, 1, 2, 3, 5, 6, and 10 g/kg b.w. The rats were kept under observation for 21 days to monitor mortality. The percentage of mortality was calculated and values were transformed to probit scale [Table 1]. Calculating the value from table, the LD₅₀ was found to be 29.51.

Results

Effect of ethanolic extract of S. oleoides on euglycemic rats

A significant reduction (P < 0.001) in blood glucose levels

<table>
<thead>
<tr>
<th>Doses of S. oleoides (g/kg b.w.)</th>
<th>No. of rats exposed</th>
<th>% mortality</th>
<th>Log conc. (X)</th>
<th>Probit</th>
<th>X² mortality (Y)</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10</td>
<td>0</td>
<td>-0.3010</td>
<td>0</td>
<td>0.0906</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0906</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0.3010</td>
<td>0</td>
<td>0.0906</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0.4771</td>
<td>0</td>
<td>0.2276</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0.6990</td>
<td>0</td>
<td>0.4886</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>30</td>
<td>0.7781</td>
<td>4.48</td>
<td>0.6055</td>
<td>20.07</td>
<td>3.48</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>40</td>
<td>1</td>
<td>4.75</td>
<td>1</td>
<td>22.56</td>
<td>4.75</td>
</tr>
</tbody>
</table>

ΣX = 2.95, ΣY = 9.23, ΣX² = 2.50, ΣY² = 42.63, ΣXY = 8.27

X = 0.422, Y = 1.318

Regression equation Y = -0.15 + 3.484X

1. Correlation factor for SSX = ΣX² = (ΣXY²)/N = 1.26
2. Correlation factor for SSY = ΣY² = (ΣXY²)/N = 41.74
3. Correlated sum of products of XY (C) = ΣXY = (ΣXY²)/N + 4.39

In the integration equation equation Y = a + bx is the slope value; where ‘b’ = C/SSX = 3.484; and ‘a’ = Y – b.X = -0.15; Y = a + b.X; if “Y” = 5; “X” = -0.15 + 3.484 X; X = 1.47; LD₅₀ was calculated by formula; LD₅₀ = X log + log 1.47 (antilog 29.51); thus, the LD₅₀ was 29.51.
was observed at the end of the second week (14th day) of treatment with ethanolic extract (1 g/kg and 2 g/kg b.w.) of *S. oleoides* in the euglycemic rats; this was further lowered after 21 days of treatment. The maximum reduction in blood glucose level was seen at a dose of 2 g/kg b.w., the fall being 10.98, 19.99, and 26.92%, respectively, after 7 days, 14 days, and 21 days of *S. oleoides* extract administration. However the effect of *S. oleoides* ethanolic extract was less than that of tolbutamide, which showed 36.05% reduction in blood glucose levels after 21 days of treatment [Figure 1].

As the blood glucose-lowering effect of 2 g/kg b.w. of the ethanolic extract was more, only the effect of this dose on the lipid profile of normal as well diabetic albino rats is shown in Table 2. Administration of the ethanolic extract led to a significant fall ([P](https://www.indianjpharm.com/misc )))< 0.001) in the level of triglycerides, total cholesterol, LDL, and VLDL, and improved the HDL levels, in normal rats. Tolbutamide also showed reduction in the levels of triglycerides, total cholesterol, LDL, and VLDL, and improved the HDL, after 21 days [Table 2].

Effect of *S* oleoides ethanolic extract on alloxan-induced diabetic rats

On repeated administration of ethanolic extract at doses of 1g and 2 g/kg b.w. for 21 days, a significant ([P](https://www.indianjpharm.com/misc )))< 0.001) dose-dependent decrease in blood glucose of the diabetic rats was seen as compared to the vehicle-treated group. Tolbutamide showed a 29.37% decrease as compared to the control group [Figure 2].

Administration of vehicle to alloxan-induced diabetic rats resulted in an increase in the level of triglycerides, total cholesterol, LDL, and VLDL, and decreased HDL, after 21 days. Continuous administration of the ethanolic extract (2 g/kg b.w.) of *S. oleoides* led to significant decrease ([P](https://www.indianjpharm.com/misc )))< 0.001) in the level of triglycerides, total cholesterol, LDL, and VLDL in the diabetic rats, while it increased ([P](https://www.indianjpharm.com/misc )))< 0.01) the level of HDL [Table 3].

Discussion

Diabetes mellitus is a chronic disorder caused by partial or complete insulin deficiency, which produces inadequate glucose control and leads to acute and chronic complications. Premature and extensive arteriosclerosis involving renal, peripheral, and cardiovascular vessels remain the major complication of diabetes mellitus. Alteration in the serum lipid profile is known to occur in diabetes and this is likely to increase the risk for coronary heart disease. A reduction in serum lipids, particularly of the LDL and VLDL fraction and triglycerides, should be considered as being beneficial for the long-term prognosis of these patients. Lowering of blood glucose and plasma lipid levels through dietary modification and drug therapy seems to be associated with a decrease in the risk of vascular disease.

In the present study, treatment with *S. oleoides* ethanolic extract (2 g/kg b.w.) in euglycemic rats produced significant decrease in blood glucose level. The hypoglycemic effect may be due to increased secretion of insulin from the b-cells of the pancreas, i.e., pancreatotrophic action. *S. oleoides* contain several organic sulfur compounds and it is well known that sulfur derivatives show hypoglycemic effects. In fact, many plants containing sulfur are used traditionally as antidiabetics. These compounds produce an increase in insulin, probably by inhibition of some substances competing with insulin for their SH-group. The results were comparable with that of tolbutamide, which acts by stimulation of insulin release, thus further confirming that the extract lowers the blood glucose by a pancreatotrophic action.

Moreover, *S. oleoides* produced significant beneficial effects in the lipid profile in euglycemic rats, reducing triglycerides, total cholesterol, LDL, and VLDL, and increasing HDL, significantly. The ethanolic extract increased secretion of insulin from b-cells of pancreas; this increased secretion of insulin stimulates fatty acid biosynthesis and also the incorporation of fatty acids into triglycerides in the liver and adipose tissue.

Alloxan, a beta cytotoxin, induces ‘chemical diabetes’ in a wide variety of animal species by damaging the insulin-secreting cells of the pancreas. Literature sources indicate that alloxan rats are hyperglycemic. The use of lower doses of alloxan (120 mg/kg b.w.) produced a partial destruction of pancreatic b-cells even though the animals became permanently diabetic. Thus, these animals have surviving b-cells and regeneration is possible. It is well known that the sulfonylureas (tolbutamide) act by directly stimulating the b-cells of the islets of Langerhans to release more insulin and these compounds are active in mild alloxan-induced diabetes where as they Since our results

---

**Figure 1:** Effect of *S. oleoides* on blood glucose level in euglycemic rats. Significantly different from control (*n* = 6), [*P*< 0.05; **P*< 0.01; ***P*< 0.001](https://www.indianjpharm.com/misc ))

**Figure 2:** Effect of *S. oleoides* on blood glucose level in alloxan induced diabetic rats. Significantly different from control (*n* = 6), [*P*< 0.05; **P*< 0.01; ***P*< 0.001](https://www.indianjpharm.com/misc ))
show that tolbutamide reduced the blood glucose levels in the diabetic animals, the state of diabetes is not severe.

Prolonged administration of an ethanolic extract of *S. oleoides* leads to significant reduction in blood glucose level, which is in agreement with other studies.\(^{24,25}\) The hypoglycemic activity of the drug was due to the regeneration of pancreatic cells that were partially destroyed by alloxan, and potentiation of insulin secretion from surviving b-cells of the islets of Langerhans.\(^{25}\)

Diabetic rats were observed to have increased plasma lipids, which are responsible for several cardiovascular disorders.\(^{27}\)

<table>
<thead>
<tr>
<th>Lipid profile</th>
<th>Period</th>
<th>Control</th>
<th>Ethanolic extract</th>
<th>Tolbutamide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 day</td>
<td>130.06 ± 3.42</td>
<td>122.05 ± 3.31</td>
<td>132.26 ± 3.04</td>
</tr>
<tr>
<td>TG</td>
<td>7 days</td>
<td>132.27 ± 3.76</td>
<td>119.46 ± 3.62**</td>
<td>127.34 ± 3.41***</td>
</tr>
<tr>
<td></td>
<td>14 days</td>
<td>136.28 ± 3.33</td>
<td>108.23 ± 2.43***</td>
<td>116.69 ± 3.56***</td>
</tr>
<tr>
<td></td>
<td>21 days</td>
<td>138.94 ± 2.42</td>
<td>99.12 ± 2.78***</td>
<td>102.63 ± 3.52***</td>
</tr>
<tr>
<td>TCH</td>
<td>0 day</td>
<td>125.452 ± 3.93</td>
<td>112.62 ± 2.76</td>
<td>120.11 ± 2.71</td>
</tr>
<tr>
<td></td>
<td>7 days</td>
<td>126.34 ± 2.21</td>
<td>106.24 ± 2.89**</td>
<td>110.07 ± 2.93***</td>
</tr>
<tr>
<td></td>
<td>14 days</td>
<td>128.60 ± 3.12</td>
<td>98.92 ± 1.86***</td>
<td>101.27 ± 2.42***</td>
</tr>
<tr>
<td></td>
<td>21 days</td>
<td>131.45 ± 2.90</td>
<td>90.46 ± 1.80***</td>
<td>93.08 ± 2.32***</td>
</tr>
<tr>
<td>HDL</td>
<td>0 day</td>
<td>17.94 ± 1.44</td>
<td>15.62 ± 1.89</td>
<td>16.43 ± 1.87</td>
</tr>
<tr>
<td></td>
<td>7 days</td>
<td>17.02 ± 1.63</td>
<td>16.95 ± 1.62**NS</td>
<td>18.23 ± 1.56**NS</td>
</tr>
<tr>
<td></td>
<td>14 days</td>
<td>16.17 ± 1.02</td>
<td>17.81 ± 1.06*</td>
<td>19.86 ± 1.72**</td>
</tr>
<tr>
<td></td>
<td>21 days</td>
<td>15.36 ± 1.57</td>
<td>18.76 ± 0.81***</td>
<td>21.16 ± 1.22***</td>
</tr>
<tr>
<td>LDL</td>
<td>0 day</td>
<td>81.50 ± 2.24</td>
<td>72.59 ± 2.15</td>
<td>82.51 ± 1.96</td>
</tr>
<tr>
<td></td>
<td>7 days</td>
<td>82.85 ± 2.77</td>
<td>65.40 ± 2.16***</td>
<td>74.21 ± 2.72***</td>
</tr>
<tr>
<td></td>
<td>14 days</td>
<td>85.18 ± 2.01</td>
<td>59.40 ± 2.49***</td>
<td>65.15 ± 2.36***</td>
</tr>
<tr>
<td></td>
<td>21 days</td>
<td>88.04 ± 2.81</td>
<td>51.88 ± 2.23***</td>
<td>56.48 ± 2.17***</td>
</tr>
<tr>
<td>VLDL</td>
<td>0 day</td>
<td>26.01 ± 2.81</td>
<td>24.41 ± 1.76</td>
<td>27.19 ± 1.76</td>
</tr>
<tr>
<td></td>
<td>7 days</td>
<td>26.47 ± 2.88</td>
<td>23.89 ± 0.72**NS</td>
<td>25.98 ± 1.10**NS</td>
</tr>
<tr>
<td></td>
<td>14 days</td>
<td>27.25 ± 1.82</td>
<td>21.64 ± 1.12**</td>
<td>23.18 ± 1.16***</td>
</tr>
<tr>
<td></td>
<td>21 days</td>
<td>27.79 ± 2.41</td>
<td>19.82 ± 0.71***</td>
<td>20.32 ± 1.28***</td>
</tr>
</tbody>
</table>

Values are mean ± SD, n = 6 in each group. NS = nonsignificant, *P < 0.05, **P < 0.01, ***P < 0.001 when compared with the vehicle-treated group.
also due to lipolysis caused by hormones. The ethanolic extract leads to regeneration of the b-cells of the pancreas and potentiation of insulin secretion from surviving b-cells; the increase in insulin secretion and the consequent decrease in blood glucose level may lead to inhibition of lipid peroxidation and control of lipolytic hormones. In this context, a number of other plants have also been reported to have antihyperglycemic, antihyperlipidemic, and insulin stimulatory effects.

It is well known that LDL plays an important role in arteriosclerosis and that hypercholesterolemia is associated with a defect relating to the lack of LDL receptors. The decrease of cholesterol and LDL levels achieved by administration of ethanolic extract, demonstrates a possible protection against hypercholesterolemia and the harm this condition brings about. Further studies are needed to identify the chemical constituents of the ethanolic extract of S. oleoides that may be responsible for the hypoglycemic and hypolipidemic activity.

Acknowledgment

Sushila Saini would like to thank the UGC for the award of a JRF/SRF.

References