INTRODUCTION

Medical waste includes materials that are produced in the course of health protection, medical treatment and scientific research; it forms a separate category of medical or health care waste (Republic of Croatia, 1996b and 2004; Capak, 2001; Ropeik and Gray, 2002). However, it seems that the fraction of waste generated at medical institutions, known as special or regulated medical waste (Lee et al., 2004) or otherwise known as clinical waste (WHO, 1994), has not attracted the same level of attention as other types of wastes, particularly in developing countries, despite the fact that medical waste is labeled as hazardous because it poses serious and direct threat to human health (Coad, 1992; WHO, 1999).

In Iran, as in many other developing countries, no proper and efficient rule has been compiled as yet and also there is no useful information about medical waste management.

In this article the results of a survey on medical wastes in hospitals supported by Tehran University of Medical Sciences (TUMS) in 2007 are presented of generated amount hospital wastes, the condition of waste segregation, the type of storage containers, the temporary storage area, collection procedures, on-site transport and treatment of wastes, off-site transport and disposal of hospital wastes were studied and finally the type of training provided to hospital personnel, and the type of sewerage system used at hospitals were assessed. At the end, measures for improvement of present conditions and solving the identified problems were suggested.
MATERIALS AND METHODS

Data collection
The data gathered were based upon a 10 page questionnaire distributed to 12 hospitals. Questionnaires were used to survey the hospital wastes in terms of collection, transportation, segregation, treatment and disposal and to collect available information for analysis of the system.

Sampling and analysis
The collection of clinical waste samples and analysis were carried out in 2007. The waste characterization study was carried out in accordance with WHO guidelines (WHO 1999; WHO 2001). All of the wastes generated in 12 hospitals were segregated and weighed during a period of one month, manually. The environmental health experts as well as members of nosocomial infection control committee of hospitals or managers of waste transportation, collection and sorting, recorded the amount of medical waste on the data form. The wastes from hospitals were collected from storage areas. The quantity and composition of the wastes were determined at each hospital. Parallel to the interviews, the physical compositions of waste in hospitals were determined. Before segregation, the wastes were spread by disinfectant solution (0.5% sodium hypochlorite). Masks and large forceps were used to segregate waste into several types. During segregation, each type of medical waste was discarded into bags. General and medical wastes from outpatient and inpatient services were collected separately. The weighing and analysis of wastes were performed in a special site. The medical wastes were previously sorted into various components such as serum, syringe and needle etc. The weight of each component of the medical waste was recorded on special data forms. Following these procedures, the wastes were transported to a special site for storage and final disposal. This waste composition study was part of a continuing effort to measure and understanding the waste generated in hospitals. The raw survey data was compiled and managed so as to enable the estimation of waste generation quantities and management practices.

Data analysis
The quantities of hospital wastes were presented in terms of kg/day for total amount of waste generation. These data were used to determine the quantities of waste generated by each type of hospital. The data gathered from the questionnaire were compiled with a computer and were analyzed using statistical excel and SPSS software.

RESULTS

Hospitals status
All educational hospitals of the Tehran University of Medical Sciences are situated in Tehran. Table 1 shows the specification of hospitals.

Hospital waste generation
Wastes generated in various activities carried out in the hospitals can be classified into cultures and stocks of infectious agents, pathological, blood and other fluids, sharps and surgery wastes, laboratory, food preparation, radioactive wastes, dialysis, cobalt therapy, biological wastes, cardboard, paper documents and discarded linens categories. The total amount of waste generation rate in all hospitals was 13000-13500kg/day and the average of waste generation rate in the hospitals was estimated to be 4.42kg/bed/day.

Hospitals waste composition
The waste composition of the hospitals is shown in Fig. 1. In 42% of hospitals, hazardous chemical wastes were generated that consisted of halogen hydrocarbon (17%), radioactive (33%) and others (50%). The percentage of medical waste composition in some hospitals is shown in Table 2.

Kinds of hospitals waste and containers
This study revealed that some amount of hazardous waste is stored in the same containers as the domestic wastes and no control measures exist for the management of these wastes. The results showed that in 58% of hospitals, paper and household wastes were segregated from total medical wastes and in 96% of hospitals infectious wastes were segregated. All the hospitals had provided plastic bags and strong plastic containers for infectious waste such as empty containers of antiseptics used in the hospitals. In 58% of hospitals, infectious wastes were segregated from other wastes. The 42% of hospitals used both
Table 1: The specification of studied hospitals

<table>
<thead>
<tr>
<th>Hospital Code</th>
<th>Departments</th>
<th>Active Beds</th>
<th>Hospital activity</th>
<th>Total amount of waste generation (kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27</td>
<td>477</td>
<td>public</td>
<td>1800</td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>599</td>
<td>public</td>
<td>1800</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>150</td>
<td>public</td>
<td>500</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>120</td>
<td>public</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>142</td>
<td>public</td>
<td>170</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>198</td>
<td>public</td>
<td>130</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>528</td>
<td>public</td>
<td>2500</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>95</td>
<td>public</td>
<td>100</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>120</td>
<td>public</td>
<td>1000</td>
</tr>
<tr>
<td>J</td>
<td>7</td>
<td>200</td>
<td>public</td>
<td>130</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>51</td>
<td>public</td>
<td>120</td>
</tr>
<tr>
<td>L</td>
<td>8</td>
<td>106</td>
<td>public</td>
<td>2100</td>
</tr>
</tbody>
</table>

Table 2: The percentage of medical waste composition in some hospitals

<table>
<thead>
<tr>
<th>Hospital code</th>
<th>Paper and Cardboard</th>
<th>Plastic and Serum</th>
<th>Glass</th>
<th>Textile</th>
<th>Organic waste</th>
<th>Metals</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>35</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>38</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>35</td>
<td>5</td>
<td>25</td>
<td>20</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>K</td>
<td>20</td>
<td>25</td>
<td>9.8</td>
<td>15</td>
<td>30</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>L</td>
<td>12</td>
<td>31</td>
<td>1</td>
<td>20</td>
<td>35</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 1: The waste composition of studied hospitals

plastic bags and containers, 28% use only plastic bags, 17% used only plastic containers and 16% used only paper and textile bags for storing their household wastes. Among the hospitals included in this study, 50% chose yellow, 17% selected blue, 8% selected red and 8% chose white as the color for infectious waste containers. In general, in most of the hospitals, suitable and adequate numbers of containers were used and are kept at proper places.

Waste collection methods and time duration

In 58% of hospitals, the wastes were collected at the end of each shift at 8:00am., 4:00pm. and 12:00pm. At the end of each shift, hospital wastes were collected and transported to a temporary storage area by hospital staff. In 17% of hospitals, medical wastes were collected daily and in 25%, the collection program was unsteadily. The medical wastes were collected by trolley or manually. In 46% of hospitals these wastes were collected by trolley in 46% manually and in 8% both systems were applied. The staff employed for handling the wastes in all hospitals used almost complete personal protective equipment (the protective equipment included special dress, shirt and trousers along with at least two of the following: gloves, mask, boots, and apron).

Temporary storage site

In all studied hospitals, there were temporary storage sites. The distance between these sites to the nearest department was about 10-100m. These sites included metal containers (10%), concrete rooms (10%), special rooms (30%), used barrels (10%) and open enclosure sites (40%). The infectious and non-infectious wastes were kept in separate containers and were not mixed in the hospital’s temporary storage area. Only 67% of hospitals had a well sanitized and secured temporary storage area and the others (33%) had well secured but poorly sanitized temporary storage areas. The storage time in those sites were 12-24h (75%) and 24-48h (25%).
Off-site waste transportation
The off-site waste transportation from hospitals was done by Tehran municipality and personnel were well instructed about collection and transportation. There were good facilities for medical waste in 75% of hospitals, but in 83% of them, there were no control on transportation processes. Several ways were used to carry the medical wastes to vehicles: manual (17%), spade (17%), loader (8%) and others (58%). The medical wastes were transported daily by covered trucks (92%) and pickups (8%).

Treatment and final disposal of waste
No incinerator for medical waste was in the hospitals; but as shown in Table 3, some waste recycling in hospitals were done. All hospitals disposed of their domestic waste at the same site as the municipal waste, and the medical wastes were buried in landfills. The 33% of hospitals had treatment facilities for hazardous wastes but the equipment that are needed for emergency situations were found only in 17% of hospitals. Wastes from all hospitals were transported to a Tehran landfill area (Kahrizak landfill), purpose, located about 30km away from the city. Radioactive wastes from all hospitals were collected and disposed off by the Atomic Energy Organization. Liquid pharmaceutical and chemical wastes were poured into the sewage system in all hospitals.

<table>
<thead>
<tr>
<th>Kind of waste</th>
<th>Recycled</th>
<th>Not recycled</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample No.</td>
<td>Amount (%)</td>
<td>Sample No.</td>
</tr>
<tr>
<td>Paper and cardboard</td>
<td>8</td>
<td>67</td>
<td>4</td>
</tr>
<tr>
<td>Lamp</td>
<td>5</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Battery</td>
<td>3</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>Plastic</td>
<td>5</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Thermometer</td>
<td>4</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Barometer</td>
<td>1</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Metal cans</td>
<td>5</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Syringe and needle</td>
<td>2</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Glass</td>
<td>5</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Radiology photograph</td>
<td>5</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>Textile</td>
<td>4</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Others</td>
<td>4</td>
<td>33</td>
<td>8</td>
</tr>
</tbody>
</table>

Control measures
Some control measures were used in hospitals of TUMS for medical waste management:
- Control of container carrying to storage site (19%)
- Providing materials that were needed for collection and transportation (19%)
- Proper changing of medical waste bags (25%)
- Direct controlling of waste collectors (18%)
- Overload prevention of wastes (18%)
- Monitoring of disposal processes (1%)

Labor safety and training programs
Some of the hospitals had provided the following essential equipments for the safety of employees, housekeeping employees, in-patients and out patients:
- Protective clothing for personnel who handled the wastes (100%)
- Disinfection or autoclave facilities for disposables and reusable for pretreating certain types of wastes (0%)
- Health surveillance of labors (25%)
- Existing of environmental health department (58%)
- Medical waste experts (33%)

The hospital personnel were trained about handling and management of medical wastes, infection control and protection, hospital personnel and protection against medical waste hazards, e.g., Hepatitis B and C, AIDS, and Typhoid. 15% of managers, 45% of nurses and 40% of labors were trained about medical waste disposal. The training methods consisted of lecturing (29%), workshop (32%), brochure (7%), slides and clips (7%) and
face-to-face training (25%). The training programs have been conducted by environmental health specialists that work in hospitals or NGOs.

Sewage treatment system

Some of the hospitals had sewage treatment system prior to disposal. In 60% of hospitals, sewage was transported into absorbent wells and in 30% of hospitals, the sewage was treated by facilities located inside the hospitals. In others, sewage was discharged into the near streams.

DISCUSSION

In 1990, a study that was conducted on medical waste of Semnan province showed that the average generation rate of medical waste in hospitals is 0.8-1.8kg/bed/day (Nouri Sepehr, 1990). In a study performed in 1991 in hospitals of Tehran, the waste generation rate was reported to be 2.71kg/bed/day (Mohammadi-Baghaee, 2000). The waste generation rate in Dar es Salaam (Tanzania) hospitals in 1993 was reported to be between 0.84 and 5.8kg/bed/day (Mato and Kaseva, 1999). In 1996, a study showed that the average generation rate of hospital waste was 3.9kg/bed/day in Fars province (Askarian and Vakili, 2001). In khoozestan province, a study in 1996 showed that the total number of beds in that province was 3537 and the average generation rate of hospital waste was 2.38kg/bed/day (Amouee, 1996). In 1996, a study performed on Tehran hospital waste and showed that the average generation rate of hospital waste was 2.87kg/bed/day. This study showed that in 89.5% of hospitals, the storage time was 24h and Tehran Municipality was the responsible for medical waste transportation (Karimzadegan, 1996).

According to WHO report in 1999, average generation rate of Teaching hospital waste was 4.1-8.7kg/bed/day (WHO, 1999). In a study that was conducted on medical waste of Shiraz province in 2001, revealed that the average generation rate of hospital waste was 3.93kg/bed/day (Askarian and Vakili, 2001). A study was conducted in 2001 on hospital waste in Mazandaran province and showed that the average generation rate of hospital waste was 1.1-1.3kg/bed/day. Also, this study showed that the medical waste was carried to temporary storage site manually in 45% of hospitals and in others, those carried by trolley (Mohseni, 2001). Another study was conducted for medical waste of Mashhad province in 2001 and showed the average generation rate of hospital waste was 1.67kg/bed/day (Sadeghi, 2001). A study on medical waste of Fars province showed that the waste generation rate was 4.45kg/bed/day (Askarian et al., 2004). In 2005, a study on medical waste of Rasht city showed that the average generation rate of hospital waste was 1.67kg/bed/day (Ashrafi, 2005). A study that was conducted on Medical waste of Jordan showed that the waste generation rate was 3.49kg/bed/day for public hospitals (Bdour, 2007). So, the average generation rate of medical waste in this study is more than other provinces in I.R.Iran, but is corresponded with WHO guidelines. A study that was conducted on UK (United Kingdom) hospitals showed that 80% of hospitals have used yellow, heavy-duty, high-density polyethylene (HDPE) containers (Blenkharn, 2006), while in this study, 17% of hospitals have used plastic containers. In a study that was conducted on European hospitals showed that there were incinerators for Hospital waste disposal (except Sabadell Hospital), while in this study there is no incinerator in any hospital (Muhlich et al., 2003).

It seems that the studied hospitals need a disposal process to better manage the hospital waste and especially infectious waste.

The following discuss some of the problems and procedures associated with medical wastes of TUMS:

- Lack of comprehensive waste disposal plans for the disposal and technical aspects of hazardous wastes.
- Lack of treatment facility such as incinerator or autoclaves for treatment of pathological and infectious wastes.
- Lack of continuous on the segregation, collection, transportation and final disposal of infectious and other medical wastes.
- Lack of knowledge and awareness among the personnel in hospitals about the consequences of the potential risk of infectious, hazardous waste and environmental impact.
- Lack of proper guidelines, legislation, regulations and instructions on health care waste management such as segregation, collection and
disposal of various categories of wastes in suitable manner to render it harmless.

- Disposal of liquid waste into the municipal sewerage system without any prior treatment.

In hospitals of TUMS:

- The basic approach to medical waste management is to reduce the quantity of waste at source as far as possible. Hospital wastes should be recycled whenever feasible, with due regard to environmental aspect, to reduce the quantity of material entering the waste system.

- Waste management requires a system approach, involving the handling, storage, transport; treatment and disposal of waste by methods that at all stages minimize the risk to health and the environment.

- All hospital personnel should be made aware of the potential risk of mishandling waste. This study has created awareness regarding the magnitude of the problem of waste management in hospitals of TUMS and has generated interest for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without the willing co-operation and participation of all categories of personnel.

ACKNOWLEDGEMENTS

We would like to thanks staff of hospitals and Mrs. Zahra Poormardi and Mrs. Nassibeh Dinari for their cooperation in Tehran University of Medical Science for this research.

REFERENCES

