北京小龙门林场黄眉姬鹟的巢与巢址特征

王 宁，张雁云，郑光美*
(北京大学生命科学学院，生物多样性与生态工程教育部重点实验室，北京 100875)

摘要：2003—2006 年，在北京小龙门林场共发现黄眉姬鹟（Ficedula narcissina elisae）巢 43 个。其中 34 巢筑于天然巢穴：开放巢占 29.4%，位于树间（10 巢）；洞巢占 70.6%，位于树洞顶端凹坑中（10 巢）和树洞中（14 巢）。开放巢距地高度高于洞巢。黄眉姬鹟的主要营巢树种是榛皮桦（Betula dahurica）。在研究区内共悬挂了 100 个大洞口巢箱和 130 个小洞口巢箱，结果发现黄眉姬鹟只利用大洞口巢箱（9 巢），不利用小洞口巢箱。以巢位为中位、半径 6 m 的样方测量巢穴的植被特征。对海拔、坡向、林冠郁闭度、乔木数量、乔木高、乔木胸径、枯枝数量、枝条数量、林下郁闭度等变量进行主成分分析。结果表明，黄眉姬鹟的巢址具有乔木高大、林冠郁闭度高、多枯枝和树洞等特征。黄眉姬鹟的繁殖成功率为 51.2%，天敌破坏是造成繁殖失败的主要原因。

关键词：黄眉姬鹟；巢址；主成分分析；繁殖成功率
中图分类号：Q959.1.739；Q958.12 文献标识码：A 文章编号：0254-5853（2007）04-0337-07

Nest and Nest-site of Narcissus Flycatcher in Xiaolongmen Forestry, Beijing

WANG Ning, ZHANG Yan-yun, ZHENG Guang-mei*
(Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China)

Abstract: During 2003—2006, forty-three nests of Narcissus Flycatcher (Ficedula narcissina elisae) were found in Xiaolongmen Forestry, Beijing. Among the 43 nests, nine nests were found in nest boxes while other 34 nests were constructed both on open sites (29.4%) and in holes (70.6%). The 10 open nests were weaved between several upward twigs, and the 24 hole-nests were built in hollows, trunks or on stumps. Open nests had larger height above ground than the hole-nests. Narcissus Flycatchers only used the nest boxes with big entrances. The majority of nest trees were Betula dahurica. Vegetation characteristics of nest sites were measured in the samples around the nests with a radius of 6 m. According to the result of Principle Component Analysis on the variables describing the nest-site characteristics, the forest with big trees and abundant stumps provided appropriate nest sites for Narcissus Flycatchers. Of the 43 nests we found, 22 (51.2%) were successful, those that failed were destroyed by predators.

Key words: Narcissus Flycatcher; Nest sites; Principle component analysis; Breeding success rate

黄眉姬鹟（Ficedula narcissina）隶属于雀形目（Passeriformes）鹟科（Muscicapidae），有 narcissina，estoni and elisae 等 3 个亚种。其中 elisae 仅繁殖于中国华北山地，在中南半岛、马来半岛等地越冬（Cheng, 1987; Dickinson, 2003; Zheng, 2005）。迄今仅见有关其栖息地和食性等方面的简单记述（La Touch, 1924; Shaw, 1936; Wilder & Hubbard, 1938; Zheng, 1984; Cai, 1988）。繁殖生态学研究尚无报道。本文记述并分析了黄眉姬鹟 elisae 亚种的巢与巢址特征。

1 研究地区和方法

1.1 研究地区概况

野外工作于 2003—2006 年每年的 5—8 月在北
京市门头沟区小龙门林场进行。小龙门林场（40°00′~40°02′ N，115°26′~115°30′ E）距北京市区114 km，地处太行山脉北段，海拔1 000~1 763 m，面积705.4 km²，属于温带季风气候，年均温4.8℃，年均降水量约500~700 mm。主要植被为次生落叶阔叶林和人工针叶林，阔叶林的主要树种有山杨（Populus davidiana）、青杨（P. cathayana）、绢柳（Salix viminalis）、黄花柳（S. caprea）、核桃楸（Juglans mandshurica）、白桦（Betula platyphylla）、榛皮桦（B. dahurica）、蒙古栎（Quercus mongolica）和元宝槭（Acer truncatum）等，针叶林的主要树种有华北落叶松（Larix principis-rupprechtii）、日本落叶松（L. kaempferi）和油松（Pinus tabulaeformis）等。研究区内山沟沟底宽约10~60 m，山坡坡度约30~60°。多数山沟沟里有永久性水源，只有雨季（5~9月）在沟底形成一些溪流和水坑。多数山沟沟里有小路从沟口通向沟顶，旅游、挖野菜、采野菜、采蘑菇等人为活动较为频繁。黄眉姬鹟elisae亚种在研究区内为夏候鸟，每年5月初来，9月初离开。
表 1 黄眉柳莺的巢址特征

<table>
<thead>
<tr>
<th>巢址类型</th>
<th>钉数</th>
<th>钉桩间</th>
<th>钉桩顶凹坑</th>
<th>钉洞</th>
</tr>
</thead>
<tbody>
<tr>
<td>数量 Number of nests</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>最低高度 Height of nest above the ground (m)</td>
<td>4.0 ± 0.6 (1.5-8.0)</td>
<td>1.5 ± 0.2 (0.4-2.3)</td>
<td>1.8 ± 0.4 (0.6-4.5)</td>
<td></td>
</tr>
<tr>
<td>最高高度 Height of nest (m)</td>
<td>6.4 ± 1.0 (1.7-11)</td>
<td>1.5 ± 0.2 (0.4-2.5)</td>
<td>6.6 ± 1.4 (2-13)</td>
<td></td>
</tr>
<tr>
<td>钉桩径径 Diameter at breast height of nest (cm)</td>
<td>17.5 ± 3.8 (6-40)</td>
<td>12.3 ± 1.4 (9-25)</td>
<td>17.4 ± 2.1 (13-25)</td>
<td></td>
</tr>
</tbody>
</table>

图 1 黄眉柳莺位于钉桩间（a）、钉桩顶凹坑（b）、钉洞中（c）的巢

Fig. 1 Three kinds of nests for Narcissus Flycatcher’s with eggs between several upward twigs (a), on the top of a stump (b), in a hollow of trunk (c)

表 2 黄眉柳莺的巢址物种

<table>
<thead>
<tr>
<th>巢址类型</th>
<th>钉数</th>
<th>钉桩间</th>
<th>钉桩顶凹坑</th>
<th>钉洞</th>
</tr>
</thead>
<tbody>
<tr>
<td>物种 Nest tree species</td>
<td>数量</td>
<td>数量</td>
<td>数量</td>
<td>数量</td>
</tr>
<tr>
<td>棕榈 Pinus sibiricaefolia</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>黄花梁 Salix caprea</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>杨柳 Populus xiaoxingensis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>木贼 Scirpus limosus</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>装饰性 Cordyline fruticosa</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>落叶木 Urtica dioica</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>湿地草 Acorus japonicus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>柏树木材 Abies balsamea</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>总数 Total</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

2.2 巢址特征主成分分析

对海拔、坡向、林冠郁闭度、乔木数量、乔木高、乔木胸径、林木数量、树种数量和林下郁闭度等 9 个巢址特征变量进行主成分分析的结果显示，前 3 个成分的特征值大于 1，提取为主成分，这 3 个主成分的方差对总方差的累计贡献率为 64.198% (表 3)。变量的载荷矩阵显示（表 4），乔木胸径、乔木数量和乔木高在主成分 1 上的载荷最大，乔木数量的载荷为负值，乔木胸径和乔木高的载荷为正值，把主成分 1 命名为乔木因子，反映了乔木高大而密度低的特征。林下郁闭度和林冠郁闭度在主成分 2 上的载荷最大，林下郁闭度的载荷为负值，林冠郁闭度的载荷为正值，主成分 2 命名为郁闭度因子，反映了林冠郁闭度高、林下郁闭度低的特征。枯枝数量和枯枝数量在主成分 3 上的载荷最大，都为正值，主成分 3 命名为枯枝和枯枝数量因子，反映了枯枝和枯枝数量多的特征。将上述结果归结为表 5。
表 3 黄眉姬鹟巢址特征主成分分析结果
Tab. 3 Principle component analysis on nest-site characteristics of Narcissus Flycatcher

<table>
<thead>
<tr>
<th>成分 Components</th>
<th>特征值 Eigenvalues</th>
<th>贡献率 (%) Rate of contribution</th>
<th>累计贡献率 (%) Cumulative rate of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.774</td>
<td>30.824</td>
<td>30.824</td>
</tr>
<tr>
<td>2</td>
<td>1.638</td>
<td>18.205</td>
<td>49.029</td>
</tr>
<tr>
<td>3</td>
<td>1.365</td>
<td>15.169</td>
<td>64.198</td>
</tr>
<tr>
<td>4</td>
<td>0.920</td>
<td>10.226</td>
<td>74.423</td>
</tr>
<tr>
<td>5</td>
<td>0.690</td>
<td>7.664</td>
<td>82.088</td>
</tr>
<tr>
<td>6</td>
<td>0.543</td>
<td>6.036</td>
<td>88.124</td>
</tr>
<tr>
<td>7</td>
<td>0.472</td>
<td>5.241</td>
<td>93.365</td>
</tr>
<tr>
<td>8</td>
<td>0.403</td>
<td>4.479</td>
<td>97.844</td>
</tr>
<tr>
<td>9</td>
<td>0.194</td>
<td>2.156</td>
<td>100</td>
</tr>
</tbody>
</table>

黄眉姬鹟的总繁殖成功率为 51.2%。位于树枝间、树冠顶端凹坑中、树洞中和大洞口巢箱中的巢繁殖成功率差异不显著（χ^2 检验，$\chi^2 = 0.772$，$df = 3$，$P > 0.05$）。造成繁殖失败的主要原因是天敌破坏，其他造成繁殖失败的原因还有风雨破坏和亲鸟弃巢（表 6）。

3 讨论

表 4 黄眉姬鹟巢址特征主成分的载荷矩阵
Tab. 4 Principle component index matrix on nest-site characteristics of Narcissus Flycatcher

<table>
<thead>
<tr>
<th>变量</th>
<th>主成分 Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>载荷矩阵</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.866</td>
<td>0.308</td>
<td>-0.057</td>
</tr>
<tr>
<td>2</td>
<td>0.731</td>
<td>0.064</td>
<td>-0.151</td>
</tr>
<tr>
<td>3</td>
<td>0.676</td>
<td>0.546</td>
<td>-0.008</td>
</tr>
<tr>
<td>4</td>
<td>0.635</td>
<td>-0.364</td>
<td>0.216</td>
</tr>
<tr>
<td>5</td>
<td>0.541</td>
<td>-0.493</td>
<td>0.377</td>
</tr>
<tr>
<td>6</td>
<td>0.281</td>
<td>-0.634</td>
<td>0.279</td>
</tr>
<tr>
<td>7</td>
<td>0.359</td>
<td>0.608</td>
<td>0.279</td>
</tr>
<tr>
<td>8</td>
<td>0.035</td>
<td>0.259</td>
<td>0.728</td>
</tr>
<tr>
<td>9</td>
<td>-0.358</td>
<td>0.167</td>
<td>0.682</td>
</tr>
</tbody>
</table>

黑体表示最大载荷值（The maximum indices were in bold）。

2 北极东北度余弦值为 0.1（One plus the cosine value of the slope exposure azimuth）。

2.3 不同类型巢址的繁殖成功率

树枝间、树桩和树洞巢的繁殖成功率分别为 50.0%、60.0% 和 42.9%，天然巢穴的繁殖成功率为 50.0%，大洞口巢箱的繁殖成功率为 55.6%，

表 5 黄眉姬鹟的巢址特征主成分命名和变量组合
Tab. 5 Name and composition of principle components on nest-site characteristics of Narcissus Flycatcher

<table>
<thead>
<tr>
<th>主成分</th>
<th>载荷矩阵</th>
<th>载荷矩阵变量的前 n 个最大值 Indexes with the largest index</th>
<th>主成分</th>
<th>名称 Name of each components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>乔木胸径 Diameter at breast height of trees (cm)</td>
<td>13.1 ± 0.7</td>
<td>乔木因子 Factor of trees</td>
<td></td>
</tr>
<tr>
<td></td>
<td>乔木胸径 Amount of trees per sample</td>
<td>14.2 ± 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>乔木胸径 Height of trees (m)</td>
<td>7.1 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>林下郁闭度 Undergrowth density (%)</td>
<td>28.0 ± 1.6</td>
<td>郁闭度因子 Factor of foliage density</td>
<td></td>
</tr>
<tr>
<td></td>
<td>树冠郁闭度 Canopy density (%)</td>
<td>60.7 ± 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>林下郁闭度 Amount of dead trees per sample</td>
<td>1.0 ± 0.2</td>
<td>林木因子 Factor of dead trees and stumps abundance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>林下郁闭度 Amount of dead trees per sample</td>
<td>0.7 ± 0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 按特征值从大到小排序，见表 3（Descending sort by eigenvalues，see Tab. 3）；2 按变量载荷的绝对值从大到小排序，见表 4 (Descending sort by absolute value of index, see Tab. 4)。
表 6 黄眉姬鹟的繁殖成功率和失败原因

<table>
<thead>
<tr>
<th>单位类型</th>
<th>树枝间</th>
<th>树枝顶端凹坑</th>
<th>树洞</th>
<th>大洞口巢箱</th>
<th>总数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fledged successfully</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>Destroyed by predators</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Destroyed by storms</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>Abandoned by parents</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>总数 Total</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>繁殖成功率 Breeding success（％）</td>
<td>50.0</td>
<td>60.0</td>
<td>42.9</td>
<td>55.6</td>
<td>51.2</td>
</tr>
</tbody>
</table>

1. 重复利用的巢址分别统计（The reused nest sites were analyzed separately）：未发现（Unfound）。

表 7 勺嘴部分鸟类的巢址类型

<table>
<thead>
<tr>
<th>栖息 Hole nest</th>
<th>开放 Open nest</th>
</tr>
</thead>
<tbody>
<tr>
<td>树枝间</td>
<td>树枝间</td>
</tr>
<tr>
<td>土地、岩石或建筑物表面</td>
<td>On ground, surface of rocks and buildings</td>
</tr>
<tr>
<td>Holes or crevices in slopes, rocks and buildings</td>
<td>Holes or crevices in trunks, hollows on stumps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>种名 Species</th>
<th>勺嘴</th>
<th>Ficedula hypoleuca</th>
</tr>
</thead>
<tbody>
<tr>
<td>鸠鸽</td>
<td>Dementiev & Gladkov, 1968; Kirby et al., 2005</td>
<td></td>
</tr>
<tr>
<td>M. griseisticta</td>
<td>Fu et al., 1984</td>
<td></td>
</tr>
<tr>
<td>乌鸫</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>M. sibirica</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>北栀鹃</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>M. davurca</td>
<td>Dementiev & Gladkov, 1968; Kirby et al., 2005</td>
<td></td>
</tr>
<tr>
<td>斑嘴</td>
<td>Dementiev & Gladkov, 1968; Czeszczewik & Wahaniewicz, 2003</td>
<td></td>
</tr>
<tr>
<td>M. ruficunda</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>锦翅</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>M. muntui</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>棕翅锦翅</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>M. ferruginea</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>白颈锦翅</td>
<td>Dementiev & Gladkov, 1968; Maurizio, 1987; Minnas et al., 1996; Minnas, 2004</td>
<td></td>
</tr>
<tr>
<td>F. albicollis</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>白颈锦翅</td>
<td>Dementiev & Gladkov, 1968; Fu et al., 1984; Zheng, 1984; Li, 1985; Zhao, 1985; Cai, 1987; Wildlife Institute of Heilongjiang Province, 1992; Gao, 2004</td>
<td></td>
</tr>
<tr>
<td>F. zanthopygia</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>杭州锦翅</td>
<td>Dementiev & Gladkov, 1968</td>
<td></td>
</tr>
<tr>
<td>F. narcissina</td>
<td>Dementiev & Gladkov, 1968</td>
<td></td>
</tr>
<tr>
<td>独脚锦翅</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>F. magimaki</td>
<td>Dementiev & Gladkov, 1968; Fu et al., 1984</td>
<td></td>
</tr>
<tr>
<td>锦翅</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>F. hodgsonii</td>
<td>Baker, 1922–1930</td>
<td></td>
</tr>
<tr>
<td>锦翅</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>F. strophia</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
洞巢能降低自然灾害，提高繁殖成功率。在小龙门林场，全为洞巢的白眉姬鹟的繁殖成功率高于黄眉姬鹟。当然，树洞的丰富度也成为影响姬鹟分布的重要因素。

黄眉姬鹟不同类型的巢穴距地高度差异显著，树枝间巢的距地高度显著高于树桩巢和树洞巢，树桩和树洞巢的距地高度差异不显著。在树枝间、树桩顶端凹坑和洞穴这 3 种类型的巢址中，树枝间巢的暴露程度相对最低，天敌发现的概率可能最大，因而巢距地越高，可能使天敌（主要是잨和蛇）难于接近，降低了显著度带来的风险。Mitrus & Sooko（2004）发现红喉姬鹟 3 类隐蔽程度接近的巢（洞，树桩顶端凹坑，剥裂的树皮和树干之间）距地高度差异不显著。

欧洲的斑姬鹟和红喉姬鹟的巢穴多数在活树上（Czeszczewik & Walankiewicz, 2003; Mitrus & Sooko, 2004）；斑姬鹟的巢穴开口方向没有明显偏向（Czeszczewik & Walankiewicz, 2003），红喉姬鹟的巢穴开口多向南（Mitrus & Sooko, 2004）。小龙门林场黄眉姬鹟的巢穴多数在枯树上，主要是由枝干断裂后朽木形成的，所选的巢穴多开口向北。在小龙门林场，白眉姬鹟的巢洞也多数在枯树上，主要来源是啄木鸟的旧巢，洞口也多向北。

在欧洲，斑姬鹟、白领姬鹟和红喉姬鹟都在多种树上营巢，但对不同树种的利用率不同，利用率最高的植株通常是繁殖地中的优势树种（Czeszczewik & Walankiewicz, 2003; Mitrus, 2004; Mitrus & Sooko, 2004）。在小龙门林场，黄眉姬鹟在 9 种树上营巢，
以棱皮桦为主。棱皮桦是黄眉姬鹟栖息地中的优势树种（Wang et al. 2006），断裂破损的桦木易腐朽（Zheng, 1985），形成较多坑洞，为黄眉姬鹟提供了适宜的巢址。

致谢：北京师范大学生命科学学院研究生张洁、孙岳、董鸥、李建强和周春发等协助进行野外工作，在此深表谢意！

参考文献：

