Cultural Transition in the Northern Levant during the
Early Iron Age as Reflected in the Aegean-Style Pottery at Tell Tayinat

by

Brian Janeway

A thesis submitted in conformity with the requirements for the degree of

Doctor of Philosophy

Department of Near and Middle Eastern Civilizations

University of Toronto

© Copyright by Brian Janeway 2013
Abstract

Cultural Transition in the Northern Levant during the Early Iron Age as Reflected in the Aegean-Style Pottery at Tell Tayinat

Brian Janeway
Doctor of Philosophy
Department of Near and Middle Eastern Civilizations
University of Toronto
2013

Did an invasion of the Sea Peoples cause the collapse of the Late Bronze Age palace-based economies of the Levant, as well as of the Hittite Empire? Renewed excavations at Tell Tayinat in southeast Turkey promise to shed new light on the critical transitional phase of the Late Bronze/Early Iron Age (c. 1200-1000 B.C.), a period which in the Northern Levant has until recently been considered a Dark Age, due in large part to the few extant textual sources relating to its history (Hawkins 2002: 143). Specifically, this thesis is based upon a stylistic analysis of a distinctive painted pottery known as Late Helladic IIIC (LH IIIC) excavated at the site. Its core is comprised of a diachronic study of the Tayinat ceramics tied into a synchronic comparison with sites across the region—the Amuq Valley, the Levantine coast, Anatolia, Cyprus, and the Aegean Sea basin. Two key objectives of the pottery analysis are to discern Aegean stylistic characteristics from those that are local, and to chronologically situate the assemblage on the basis of regional parallels.

What precisely was the nature of Iron I occupation at the site? Renewed excavations suggest that a rudimentary village settlement may have been constructed. Were the inhabitants that founded the Iron Age settlement immigrants that originated in areas to the west—Cyprus, Western Asia Minor, or the Greek Mainland—who were in
search of more hospitable environs to settle? Or were they elements of the indigenous population forced to start anew after the socio-economic disruptions at the end of the Late Bronze Age? Perhaps they comprised a mixed population of both groups? Stylistic analysis of the painted ware would seem to support the third alternative, resulting in a hybrid style that fused Aegean shapes and motifs with local traditions. Did they simply relocate from the ruins of neighboring Tell Atchana (ancient Alalakh) or from other settlements in the Amuq Valley? Perhaps the movements were not en masse, but rather consisted of small elite groups or tradesmen that assimilated into the local economy, the result of a prolonged process of acculturation. The nature and relative amount of LH IIIC pottery in the Tayinat assemblage favors a traditional migration model. This research begins to fill a longstanding lacuna in the Amuq Valley and attempts to correlate with major historical and cultural trends in the Northern Levant and beyond.
Acknowledgments

The list of individuals to whom I owe a debt of gratitude is long, and I wish to acknowledge their contribution to my doctoral research project—they deserve to be recognized in print.

I wish to begin this list with a great thanks to my advisor Dr. Tim Harrison, one of the most fair and honorable men I know, who has generously given his time and genius to my academic development, which has also required from him a strong measure of patience and charity during my extended phase of research and writing.

Thanks also to the Social Science and Humanities Research Council (SSHRC) and the Institute for Aegean Prehistory (INSTAP) for their funding of the Tayinat Excavation Project (TAP), without which this research would be impossible.

I am indebted to Professors John Holladay, Mary-Ann Wegner, and Clemens Reichel for participating in my final oral dissertation defense, and for offering helpful comments on the text. My belated thanks also extend to Dr. Brian Peckham, with whom I had the distinct pleasure of studying and who also sat on my examination committee before his unfortunate passing. As the defense committee’s external reviewer, Dr. Jeremy Rutter deserves special mention. His many years in the field and expertise brought a particularly valuable Aegeanist perspective to bear on this work.

Thanks beyond counting go to Anna Sousa for her tireless efforts on behalf of me and all the graduate students in NMC, for meeting funding deadlines and facilitating the myriad of other requirements and demands of the department, the School of Graduate Studies, and the university. She has become much more to me than a mere administrative coordinator!

There are several other individuals in the NMC and the Tayinat project who have played an important role in this research. Dr. Lynn Welton as the Field 1 supervisor has worked many hours in the field and at home on the stratigraphy of Tell Tayinat, without which my ceramic analysis would have been impossible. I thank Dr. Steve Batiuk for his indefatigable work and problem solving for the Tayinat Archaeological Project (TAP). The excavations could not have run without him!
Stanley Klassen helped to refine my digital images for my initial publication of the Tayinat pottery, and his adept management of the rapidly growing Tayinat artifactual archive has been a great asset to the TAP and my research. I also benefitted from the efforts of David Lumb, who, in his capacity as square supervisor at Tell Tayinat, recovered valuable additional Iron I material from Field 1 after I was forced to leave the field to write. Natalie Dytiniak as a student assistant aided in some of the initial digitization of my pottery drawings. Amanda Wagner at the Digital Studio at Robarts Library (University of Toronto) provided indispensable technical support when it came time to format and paginate my completed manuscript. I also wish to recognize the many Turkish and Arab workers who undertook the labor to unearth six seasons worth of pottery, particularly Adnan and Mustafa, two of my best excavators!

I have had the distinct pleasure of meaningful interaction with a number of fine scholars over the years, and my analysis has been enriched by their expertise: Dr. Elizabeth French (Mycenae); Dr. Marie Henriette-Gates (Kinet Höyük); Ayelet Gilboa (Tel Dor); Drs. Ann Killebrew and Gunnar Lehmann (Mopsos Project), Drs. Robert Koehl and Robert Mullins (Tell Atchana), Dr. Aren Maeir (Tell es-Safi), Dr. Dan Master (Ashkelon), Dr. Marina Pucci (Chatal Höyük), Dr. Itamar Singer (Tel Aviv University), Dr. Lynn Swartz-Dodd (Tell Judaidah), Dr. Fabrizio Venturi (Tell Afis), Dr. Assaf Yasur-Landau (Tell Kabri), and Dr. Alex Zukerman (Tell Miqne).

I owe a particular debt of gratitude to Dr. Penelope Mountjoy, who generously shared with me her extensive experience and sharp eye for detail that distinguishes her long list of published work in Aegean ceramics. Thanks also to Dr. Vassos Karageorghis, who facilitated my participation in an Aegean symposium in Cyprus, and unwittingly provided a jumpstart to my writing by giving me a hard deadline!

I am grateful to Dr. Aslıhan Yener, director of the Tell Atchana project, for allowing me to stay and eat at the Atchana/Tayinat compound for several weeks in 2006 while I drew pottery, and for permitting me to peruse the pottery from the Amuq Valley Regional Project (AVRP) in storage there. Helen McDonald, as archivist at the Oriental Institute, was generous in making available the Syrian-Hittite Expedition’s material on several occasions.
I would be remiss if I did not acknowledge a debt of gratitude to Dr. Bryant Wood and Rev. Gary Byers of the Associates for Biblical Research for sparking my interest in “biblical archaeology,” giving me my first taste of dirt archaeology, and providing both inspiration and support throughout my educational journey. They and ABR fulfill a much needed intermediary between research in the field and the interested public—one which institutions and scholars are too often either reluctant or unable to offer.

Along similar lines, I will always be thankful to Wheaton College for “grounding” me in the world of biblical archaeology, particularly Dr. John Monson and Dr. Hassell Bullock for their tutelage and continued friendship. I have also been blessed by Rita Gjeldum for her gracious friendship and support as the Graduate Registrar, and more importantly as a trusted confidant who can always be relied upon to give frank advice!

I extend a very special thanks to Dr. Tom Petter and Dr. Donna Peter at Gordon-Conwell Seminary for their advice and encouragement during the lengthy process of dissertating, not to mention the Christian fellowship they have so graciously shared in a field largely bereft of it. When I needed a not so gentle prodding to push this project toward completion, they were there for me with tough love.

Two lengthy leaves-of-absence were granted me by my employer American Airlines, without which my education and research would have been impossible. I thank Captain Cecil Ewell, former Vice President Flight, for his grace. Without a divine appointment one morning in a 757 cockpit 35,000 feet over the Atlantic Ocean I would never have gotten off the ground! And circumstances made possible by the dastardly attacks of September 11th against my fellow employees and countrymen enabled me to further pursue my graduate studies at the University of Toronto.

I honor my father Edward Janeway, perhaps the finest man I have ever known, for his lifelong inspiration to me, even many years after his premature passing in 1997. He remains my first and foremost role model, in addition to my mother Carol Janeway. My two loving sisters, Julie Day and Pam Cox, have been very supportive every step of the way. The endless weeks and months I have spent in research was regretfully time spent away from them and their families.

I cannot fail to recognize several close friends who have been particularly supportive during my years in Toronto: Jim Clarke, John and Eva Himanen, and Oğuz Göğüş.
They have patiently endured many moments of personal anguish over matters large and small!

Finally, I am eternally grateful to **Jeff Howell**, my cousin and closest friend, who prayerfully pushed me through the years to hurry and finish so we could spend more time in life’s adventure!
Table of Contents

Title Page.. i
Abstract... ii
Acknowledgments... iv
Table of Contents... vii
List of Tables.. xi
List of Plates... xi
List of Figures.. x
List of Appendices.. xv

Chapter 1 The Late Helladic IIIC Tradition in the East Mediterranean ... 1
 1.1 Introduction... 1
 1.2 History of Late Helladic IIIC Scholarship.. 4
 1.3 Ongoing Research in the Region... 24
 1.4 Summary Observations.. 26

Chapter 2 Survey of Early Iron Age Sites Relating to Tell Tayinat... 28
 2.1 Introduction.. 28
 2.2 Anatolia/Cilicia.. 32
 2.2.1 Kinet Höyük... 32
 2.2.2 Dağılbaz Höyük... 33
 2.2.3 Tarsus.. 35
 2.2.4 Kilise Tepe... 36
 2.2.5 Tille Höyük... 38
 2.2.6 Malatya.. 41
 2.2.7 Bademgediği Tepe.. 42
 2.2.8 Miletus.. 43
 2.3 Inland Syria.. 44
 2.3.1 Tell Afis.. 44
 2.3.2 Hama.. 46
 2.3.3 Ain Dara.. 47
 2.3.4 Tell ‘Acharneh... 47
 2.3.5 Tell Qarqur... 48
 2.4 Coastal Syria and Phoenicia... 49
 2.4.1 Ras Ibn Hani and Ras el-Bassit... 49
 2.4.2 Ras Shamra (ancient Ugarit)... 50
 2.4.3 Tell Tweini.. 52
 2.4.4 Tell Kazel.. 53
 2.4.5 Sarepta.. 55
 2.4.6 Tyre.. 56
 2.4.7 Tel Dor.. 57
Chapter 3 Archaeology of the Early Iron Age in the Amuq Valley and Vicinity

3.1 Amuq Valley Surveys and Settlement Patterns
3.1.1 Braidwood Survey
3.1.2 Amuq Valley Regional Project (AVRP)
3.1.3 Sabuniye
3.1.4 Tell Ğindāris

3.2 The Syrian-Hittite Expedition and Renewed Investigations
3.2.1 Tell Judaidah
3.2.2 Chatal Höyük
3.2.3 The Syrian-Hittite Expedition to Tell Tayinat (1935–1938)
3.2.4 The Tayinat Archaeological Project (2004–present)
3.2.5 Tell Atchana (ancient Alalakh)

3.3 Summary Observations

Chapter 4 The Tell Tayinat LH IIIC Assemblage

4.1 Introduction
4.1.1 The Tayinat Assemblage
4.1.2 Field 1 Excavations
4.1.2.1 Architecture and Stratigraphy
4.1.2.2 Ceramic Assemblage
4.1.3 Order of Presentation

4.2 Aegean-Style Bowls
4.2.1 Introduction
4.2.1.1 Deep Bowl (FS 284/285)
4.2.1.1.1 Deep Bowl Morphology
4.2.1.1.2 Deep Bowl Decoration
4.2.1.2 Shallow Angular Bowl (FS 295)
4.2.1.3 One-Handled Conical Bowl (FS 242)…………………………144
4.2.2 Summary Observations……………………………………………………146

4.3 Aegean-Style Kraters…………………………………………………………148
 4.3.1 Introduction…………………………………………………………………..148
 4.3.2 Aegean Krater Shapes……………………………………………………….150
 4.3.3 Aegean Krater Assemblages………………………………………………152
 4.3.4 Kraters in the Amuq Valley…………………………………………………157
 4.3.5 Tell Tayinat Krater Assemblage……………………………………………..159
 4.3.5.1 Selection Strategy…………………………………………………………159
 4.3.5.2 Rim Typology and Morphology………………………………………………161
 KR-1 T-Shaped……………………………………………………………..164
 KR-2 Square/Rectangular………………………………………………168
 KR-3 Triangular…………………………………………………………170
 KR-4 Oval…………………………………………………………………..173
 KR-5 Everted………………………………………………………………175
 KR-6 Inverted/Exterior Thickened………………………………………177
 KR-7 Rounded………………………………………………………………178
 4.3.5.3 Miscellaneous Krater Shapes…………………………………………….180
 4.3.5.4 Carinated Fragments…………………………………………………….184
 4.3.5.5 Summary Observations………………………………………………….185
 4.3.5.6 Decoration……………………………………………………………………187
 4.3.5.6.1 Introduction……………………………………………………………..187
 4.3.5.6.2 Levantine Panel Style…………………………………………………191
 4.3.5.6.3 Regional Parallels to the Levantine Panel Style…………………………192
 4.3.5.7 Krater Decoration at Tell Tayinat………………………………………194
 4.3.5.7.1 Frieze-Style Decoration………………………………………………195
 Stacked Zigzag (some OMDS)………………………………………………197
 Solid-Painted Triangles……………………………………………………198
 Cross-Hatched Triangles…………………………………………………..199
 Wavy Line Style…………………………………………………………..201
 Stemless Spiral…………………………………………………………….203
 Checkerboard………………………………………………………………205
 4.3.5.7.2 Miscellaneous Individual Motifs and Surface Treatments……………..207
 Plain, Bands, and Monochrome Decoration…………………………………207
 Rosette and Triglyph……………………………………………………..208
 Sea Anemone……………………………………………………………..211
 Double Axe………………………………………………………………212
 4.3.5.7.3 Pictorial Decoration……………………………………………………214
 Bird (TAP)…………………………………………………………………215
 Bird (Syrian-Hittite Expedition)………………………………………………217
Fish (TAP)..219
Anthropomorphic (TAP).........221

4.3.6 Summary Observations..230

4.4 Aegean-Style Amphorae and Jars..235
 4.4.1 Introduction..235
 4.4.2 Morphology of the Tayinat Assemblage236
 4.4.2.1 Rim Typology....................................239
 AJ-1 Oval..241
 AJ-2 Triangular......................................244
 AJ-3 Profiled..246
 AJ-4 Hollow..247
 4.4.2.2 Aspects of Amphorae and Jar Forms.........................250
 4.4.3 Decoration..253
 4.4.3.1 Frieze-Style Decoration.......................................255
 Cross-Hatched Triangles.....................................256
 Herringbone...258
 Spiraliform Decoration....................................263
 4.4.3.2 Individual Motifs......................................266
 Necklace...266
 Triglyph/Panel Decoration..................................267
 Rim Hatching..268
 Handle Decoration..269
 Long Antithetic Tails......................................270
 4.4.4 Summary Observations..270

4.5 Miscellaneous Forms and Sherds.....................................274
 4.5.1 Introduction...274
 4.5.1.1 Trefoil-mouth Jug (FS 137).................................275
 4.5.1.2 Feeding/Spouted Bottle (FS 159–162).........................277
 4.5.1.3 Pilgrim Flask (FS 186–188)..................................279
 4.5.1.4 Pot-stand..281
 4.5.1.5 Mug/Goblet (FS 224–228)...................................282
 4.5.1.6 Aegean-style Cooking Pot..................................284
 4.5.1.7 Unidentified Body Sherds..................................288
 4.5.2 Summary Observations..290

Chapter 5 Cultural Transition in the Northern Levant during the Early Iron Age
as Reflected in the Aegean-Style Pottery at Tell Tayinat.........................292
 5.1 A Mercantile Phenomenon?..301
 5.2 The Result of Cypriot and/or Cilicia-Linked Migration.................303
 5.3 How Much LH IIIC is in the Tayinat Assemblage?......................305
 5.4 Historical and Archaeological Synthesis.............................309
Abbreviations .. 313
Bibliography ... 314
Appendix .. 362
List of Tables

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Comparative Chronology. 12th–11th centuries BC</td>
<td>31</td>
</tr>
<tr>
<td>2. Amuq Valley Survey: Settlement Pattern/Aegean Distribution</td>
<td>77</td>
</tr>
<tr>
<td>3. Field Seasons of the Syrian-Hittite Expedition</td>
<td>82</td>
</tr>
<tr>
<td>4. Tell Judaidah Phase N (Syrian-Hittite Expedition)</td>
<td>83</td>
</tr>
<tr>
<td>5. Chatal Höyük Phase N (Syrian-Hittite Expedition)</td>
<td>85</td>
</tr>
<tr>
<td>6. Tell Tayinat Phase N (Syrian-Hittite Expedition)</td>
<td>89</td>
</tr>
<tr>
<td>7. Deep Bowl Temper</td>
<td>119</td>
</tr>
<tr>
<td>8. Deep Bowl Size</td>
<td>123</td>
</tr>
<tr>
<td>9. Krater Typology</td>
<td>163</td>
</tr>
<tr>
<td>10. Krater Rim Types</td>
<td>164</td>
</tr>
<tr>
<td>11. Krater Temper</td>
<td>186</td>
</tr>
<tr>
<td>12. Plain/Decorated Kraters</td>
<td>189</td>
</tr>
<tr>
<td>13. Amphorae/Jar Size</td>
<td>238</td>
</tr>
<tr>
<td>15. Amphorae/Jar Temper</td>
<td>239</td>
</tr>
<tr>
<td>16. Amphorae/Jar Typology</td>
<td>240</td>
</tr>
<tr>
<td>17. Amphorae/Jar Rim Type by Field Phase</td>
<td>241</td>
</tr>
<tr>
<td>18. Amphorae/Jar Rim Stance</td>
<td>251</td>
</tr>
<tr>
<td>19. Plain/Decorated Amphorae/Jars</td>
<td>254</td>
</tr>
<tr>
<td>20. Comparative Aegean-Style Assemblages</td>
<td>307</td>
</tr>
</tbody>
</table>
List of Plates

Plate

1. Bowls. Field Phase 6 (1–15)……………………………………………………363
2. Bowls. Field Phase 6 (1–14)…………………………………………………365
5. Bowls. Field Phase 4 (1–7)…………………………………………………...371
6. Bowls. Field Phase 3 (1–13), Secondary Contexts (14–16)…………373
7. Kraters. Field Phase 6 (1–11)………………………………………………...375
10. Kraters. Field Phase 5 (1–16)………………………………………………...381
15. Amphorae/Jars. Field Phase 6 (1–13)………………………………………391
17. Amphorae/Jars. Field Phase 5 (1–7)………………………………………...395
19. Amphorae/Jars. Field Phase 4 (1–12)………………………………………399
21. Amphorae/Jars. Field Phase 3 (1–16)………………………………………403
22. Miscellaneous Forms and Sherds (1–3; 5–10), Syrian-Hittite Expedition...405
23. Miscellaneous Forms and Sherds (1–15)……………………………………407
24. Miscellaneous Forms and Sherds (1–12)……………………………………409
List of Figures

Figure

1. Eastern Mediterranean. 12th–11th Century BC.................................30
2. Northern Levant. 12th–11th Century BC...34
3. Cyprus. 12th–11th Century BC..68
4. Tell Judaidah. All Excavated Areas..83
5. Chatal Höyük. All Excavated Areas...86
6. Tell Tayinat. All Excavated Areas...90
7. Squares G4.55 and G4.56 (created by Steve Batiuk).........................108
List of Appendices

Appendix A. Tell Tayinat Pottery Plates (1–24) and Tables………………362–410
1 The Late Helladic IIIC Tradition in the East Mediterranean

1.1 Introduction

The following dissertation project was initiated shortly after the renewal of excavations at the site of Tell Tayinat in 2004, under the auspices of the Tayinat Archaeological Project (TAP) and the Amuq Valley Regional Project (AVRP). When the team from the University of Toronto began to uncover large amounts of Aegean-style ceramic material, the author conceived the study in order to clarify the Aegean pottery sequence at Tayinat, to elucidate its internal development, and to identify the source of its cultural influence, with the broader goal of shedding new light on the historical processes that took place in the region at the transition from the Late Bronze to the Early Iron Age.

Findings from Philistia have shown a transition from monochrome to bichrome decoration over time. In terms of decorative patterns, a corresponding development from simple to complex has been observed (Dothan 1989: 4–6). Are such changes to be found in the Aegean pottery at Tayinat? What portion of the Early Iron Age assemblage can be considered Aegean? Is the pottery at Tayinat and the Amuq Valley comparable to other pottery groups in the region? Can it be assigned to stylistic phases that match contemporary Greek Mainland\(^1\) sequences? These are all questions this dissertation seeks to answer.

Specifically, this study represents an intensive typological and stylistic analysis of the distinctive painted pottery known as Late Helladic IIIC (hereafter LH IIIC) excavated

\(^1\) Subsequent references to the Mainland refer to the Greek Mainland (Mycenae, Tiryns, etc.).
at Tell Tayinat. It employs an approach to ceramic analysis based on shape and decoration, using stratified ceramic deposits from the renewed TAP excavations. Although such work is now typically supplemented by an array of scientific methods, including petrography and chemical analysis, a typological study remains a necessary first step and foundation for such pottery research. The Helladic pottery tradition not only relates to vexing historical questions concerning the so-called ‘Dark Age’ in the Early Iron Age northern Levant, it also engages larger social and cultural issues in the eastern Mediterranean Basin and beyond. The core of this study will consist of a diachronic analysis of the Tayinat assemblage tied into a synchronic comparison with sites both in the Amuq Valley and the broader Levant and Mediterranean. It should be emphasized that the ceramic analysis of the Tayinat excavations is ongoing, particularly with regard to the earliest phases of the Iron Age.

The AVRP was conceived, in part, to investigate contacts between the Aegean, Cyprus and the inhabitants of the Amuq Valley during the Late Bronze and Iron Ages (Verstraete and Wilkinson 2000: 179). The Syrian-Hittite Expedition of the Oriental Institute of the University of Chicago had conducted large-scale excavations at Tell Tayinat in the 1930s, but very little material from the Early Iron Age was recovered, and only traces of Phase N ceramics were found as a result of several deep soundings (Swift 1958: 64). Unfortunately, the project was terminated by the outbreak of hostilities before significant exposures of the earlier levels could be achieved. With the exception of sporadic excavations by Leonard Woolley at Tell Atchana before and after World War II, archaeological fieldwork in the Amuq Valley was largely abandoned for nearly sixty years. As Fink recently observed in a discussion of survey data from the Amuq Valley:
…the local Amuq ceramic sequence of the Late Bronze and Iron Ages is basically unknown—no typology has so far been made…and almost no pottery is published to date. Amuq phase N is hardly mentioned at all by any of these studies. (2010: 125, 130)

Apart from an unpublished dissertation written by Gustavus Swift over fifty years ago (1958), which featured a very limited amount of Mycenaean pottery, nothing has been published of the Iron Age pottery from the original Syrian-Hittite investigations. The following study goes some way toward filling this longstanding lacuna at Tell Tayinat and in the Amuq Valley. By concentrating on the Aegean component of the assemblage, I hope to assess the extent and intensity of contact with the Aegean and Cyprus, both in cultural and chronological terms. The result will be a deeper understanding of both the nature of settlement at Tayinat, as well as the historical context within which these interactions occurred, thereby contributing to one of the major research goals of the AVRP.

The remainder of this chapter will trace the history of research in Mycenaean pottery in general terms, and will introduce particular themes and terminology that will become standard fare in later chapters. Chapter 2 will review important stratigraphic, ceramic, cultural, and historical data from sites relevant to Early Iron Age Tell Tayinat and the Amuq Valley. As such it provides a more thorough context to the numerous references made later in the ceramic analysis.

Chapter 3 features sites in the Amuq Valley. The chapter reviews the history of exploration of the region, including both past and ongoing excavations in the area. In
addition to Tell Tayinat, these will include the excavations at Tell Judaidah, Chatal Höyük, and Tell Atchana. This section also benefits greatly from new findings regarding Tell Atchana and Chatal Höyük specifically. Since this analysis features pottery from Tell Tayinat, it is particularly important to consider other excavated and surveyed sites in the Amuq, which presumably reflect processes and phenomena common to Tayinat.

Chapter 4 represents the core of the thesis. It consists of four subsections that present detailed descriptions of specific vessel categories: bowls, kraters, amphorae/jars, and a section containing a number of miscellaneous forms found only in limited quantities thus far. Each of these categories of vessels is subjected to typological analyses of form and decoration. Finally, Chapter 5 summarizes and synthesizes the ceramic findings and situates the Tayinat assemblage into a meaningful cultural and historical context.

1.2 History of Late Helladic IIIC Scholarship

The discovery and popularization of the Mycenaean civilization can be attributed largely to Heinrich Schliemann, a German businessman and archaeological dilettante who identified the ancient city of Troy in 1870 and spent the following decades excavating it and other sites made famous by Homeric legend, including Mycenae, Tiryns, Orchomenos, and Ithaka. Early work on the Mycenaean material culture was also conducted by Sir Alfred Billioti on Mycenaean tombs at Ialysos in Rhodes in 1868 and 1870 (Mountjoy 1993: 1). This, in Schliemann’s words, comprised the beginning of

2 The following ceramic terms and periods will be abbreviated as such in this work: Myc=Mycenaean, LH=Late Helladic, SM=Submycenaean, PG=Proto-Geometric, LC=Late Cypriot, CG=Cypro-Geometric, LM=Late Minoan, Pl. (capitalized and bold) refers to plates in this work while fig. or pl. (lowercase) is used to cite illustrations in other works.
Aegean archaeology and the investigation of “prehistoric” civilization in Greece, a distinction that earned him the title “Father of Mycenaean Archaeology” (Chadwick 1973: v; Wace 1973: xxi).

Excavations on Crete conducted by Sir Arthur Evans at the Minoan palace of Knossos, beginning in 1900 and continuing until 1932, were also of seminal importance to the early investigations of Aegean civilizations. Based on this research, Evans developed a relative chronology for Bronze Age Crete that became foundational to the Mycenaean periodization that followed from it (Evans 1921–1936). The three-fold division of Early, Middle, and Late Helladic roughly paralleled the Old, Middle, and New Kingdom periods in Egyptian history (Wace 1973: xxi). The Evans chronology formed the basis for work done by Carl Blegen and A. J. B. Wace, who together developed a ceramic chronology for the Greek Mainland that paralleled the Minoan system, based on deposits from the site of Korakou in the Corinthia (Wace and Blegen 1917: 175–6; Blegen 1921).

The most important and enduring contribution was made by Arne Furumark, whose classification system for Mycenaean pottery is still in use today, as a direct result of his two magisterial and pioneering volumes, The Mycenaean Pottery: Analysis and Classification (1941a) and Mycenaean Pottery II: Chronology (1941b). Until that time, he lamented, “the only instrument at my disposal was Myckenische Vasen, published in 1886” (Furumark 1941a: XVII)—a work consisting of a collection of material with only very general groupings. Though quite adequate for its time, it had become obsolete by the 1940s.
In the intervening decades, the discovery of the Minoan civilization on Crete, supplemented by additional excavations in the Aegean region, made possible a new synthesis between the Mycenaean finds and those from the island of Crete. Derived from Sir Arthur Evans’s Minoan chronology at Knossos, the new Furumark system arranged pottery assemblages into a sequence of three consecutive divisions which corresponded to Minoan periodization: Mycenaean I, Mycenaean II, and Mycenaean III, each of which was further divided into subphases (Mycenaean IIIA, IIIB, IIIC, IIIC:1a, IIIC:1b, IIIC:2 or Submycenaean; Mountjoy 1993: table 1). This system recognized the independent nature of Mycenaean culture in contrast to that of Cretan civilization. In due time the designation *Mycenaean* has largely been supplanted by the term *Helladic* and has come to represent both the Mainland and Aegean cultural spheres (Wace 1973: xxii).

Furumark also delineated several derivative classes of wares, including *Simple Style, Philistine Ware, and Cypro-Geometric Ware* (also known as *Submycenaean*). He later divided the latest phase in the sequence, Mycenaean IIIC, into subphases 1 and 2 and identified Mycenaean IIIC:2 as equivalent to *Submycenaean* (see Furumark 1941b: 116–28). In his scheme, Submycenaean formed a transition from Mycenaean to Protogeometric, and represented a “degenerate” stage of Mycenaean ceramic traditions. Subsequently, some scholars dispensed entirely with Mycenaean IIIC:2 (or LH IIIC:2) in favor of Submycenaean, which is now widely accepted (Desborough 1964, 1972; Styrenius 1967). Furthermore, with particular relevance to the present study, Furumark recognized a class of pottery found in the Levant he called *Levanto-Mycenaean style* (1941a: 446–48). Originating during the LH IIIA:2 or IIIB periods, he postulated that this
pictorial type of pottery, most prominently exemplified by the amorphoid krater, was likely inspired by prototypes from the East (Furumark 1941a: 462).

The fundamental distinctions between the pottery of Mycenaean (Myc) IIIB and IIIC were also recognized by Furumark. Until the advent of Myc IIIC, the general trend was toward gradual improvement, with Myc IIIA2 marking the high point of technical achievement, according to Furumark (1941a: 14).3 It was characterized by very evenly distributed wheel marks, vessels fired at high temperatures, lustrous paint, and decoration applied with great precision. The production of Myc IIIC in many respects signaled a deterioration in quality. Such vessels often bore uneven wheel marks, were low fired, either slightly lustrous or dull, and painted far less precisely (Furumark 1941a: 14–15).

As for the LH IIIC period, Aegean specialists today use the tripartite system refined by Penelope Mountjoy, which divides IIIC into Early, Middle, and Late, while retaining Submycenaean as a phase following LH IIIC Late (Mountjoy 1986: table 1, 8; 1999a: table 1, 17). In recent years the IIIC phase has been further divided as a result of decades of work at the key Mainland sites of Mycenae and Tiryns. The result is a further subdivision of both IIIC Early and Middle into two parts: Early 1 and 2; Middle 1 (Developed) and 2 (Advanced), respectively (Mountjoy 2005b: 165, table 7; French 2007: figs. 2, 3).4

In general terms, the IIIC period has been conceived as one of decline and deterioration that occurred following the collapse of the Mycenaean palace system. Recent research and investigations, however, have prompted a reassessment. They have

3 Aegean scholars today consider the LH IIIA2–IIIB phase to represent the pinnacle of Aegean pictorial pottery production (Rutter 2010: 419).
4 Normally the subdivisions of LH IIIC Middle are rendered as either 1/2 or Developed/Advanced, such as LH IIIC Middle 1 or LH IIIC Middle (Developed). However, the equivalent designations are combined here, such as LH IIIC Middle 1 (Developed) or LH IIIIC Middle 2 (Advanced) for the sake of clarity.
shown that the Early phase began a period of cultural recovery that culminated in the high point of LH IIIC Middle, which seems to have been a time of prosperity (Mountjoy 1993: 22). LH IIIC Early pottery exhibits a lack of uniform standards that had prevailed during LH IIIA and IIIB. The decoration is unimpressive, consisting of mostly linear designs painted on open forms, and is mostly made from local clays. Common decorative treatments include spiraliform decoration and monochrome interiors of deep bowls (Mountjoy 1986: 13).

The Middle phase of LH IIIC witnessed a growth in the range of forms and painted designs, alongside the emergence of regional styles, such as elaborate Close Style, simple Granary Style, which includes monochrome and wavy line schemes, as well as Octopus Style, and Pictorial Style, the latter of which often depicts anthropomorphic and zoomorphic scenes (Mountjoy 1986: 155–58). In many ways, LH IIIC Middle represents the apogee of artistic development during the IIIC phase of Mycenaean pottery.

Advanced and *Developed* are subphases of LH IIIC Middle (Middle 1 and Middle 2, respectively) initially discerned by Susan Sherratt at Mycenae in an unpublished dissertation (Sherratt 1981). These were conceived on the basis of both stratigraphy and style and are now commonly cited by French (2007b) and Mountjoy (2005b; 2008), among others. The degree to which these can be applied beyond Mycenae is the subject of current investigation across the region.

The following two phases—LH IIIC Late and Submycenaean—are characterized by a progressive reduction in the repertoire of shapes and decoration, the latter characterized by rather carelessly applied paint of low quality (Mountjoy 1986: 181, 194–
200). However, the Granary Style which began during the IIIC Middle period continued and became prevalent. Handmade Burnished Ware (HBW\(^5\)), which is first found in Mainland contexts in IIIB2, and which first appears in Levantine contexts in the LH IIIC Early period, becoming more common in the LH IIIC Late phase in the Aegean (Pilides and Boileau 2011: 115; Mountjoy 1993: 26, 109).

Submycenaean (SM) pottery formed the transition from Mycenaean towards Protogeometric. SM pottery found in settlements is relatively rare, while most of the material has been found in tomb deposits. Decoration was quite plain and the range very limited. Small forms like amphoriskoi and jugs predominate in the cemeteries (Mountjoy 1999a: 56). It has been called “the dying of Mycenaean culture” as it sees the last of the stirrup jar, the signature vessel of Mycenaean pottery, and slowly assimilates new features and develops independently in different locales (Mountjoy 1988: 30).

The nature and character of the SM style has been disputed (Rutter 1978; Mountjoy 1988). Jeremy Rutter argued for the abandonment of the term because he believed no settlement pottery existed that could be classified as such (1978: 59–60). Mountjoy held that Submycenaean actually did represent a genuine chronological phase (1988: 1–33; cf discussion in Mountjoy 1986: 194). The real point of contention, as Ruppenstein recently observed, was more a dispute over semantics. The material Rutter classifies as (LH IIIC) Phase 5 Early, Mountjoy calls LH IIIC Late. The implication is that Rutter’s (LH IIIC) Phase 5 Late can be equated to Mountjoy’s Submycenaean

\(^5\) Sometimes annotated HMBW, HBW refers to Handmade Burnished Ware, a class of pottery that appeared in the Mainland and elsewhere, often in association with LH IIIC pottery. It was handmade, burnished, and made from coarse clays with large mineral inclusions. The ware is comprised of large forms such as jars and basins, which are sometimes decorated with rope patterns around the rim or shoulder. It is characterized by a lack of standardization (Pilides and Boileau 2011: 119) and its origins are uncertain (see Capet 2008: 198 and Mountjoy 1993: 92).
(Ruppenstein 2003: 184). It most definitely represents a chronological phase and was not limited to a few areas as previously suggested (Mountjoy 1988: 30).

Cypro-Geometric, sometimes referred to as White Painted Ware, and Protogeometric styles are considered contemporary, the former applying to Cypriot sequences and the latter to the Mainland. They represent a departure from Mycenaean traditions, though some forms can still be traced to Aegean ancestors. The decorative repertoire includes simple bands, cross-hatch, and concentric circles (Gjerstad 1960: figs. 1–13). Overall the class is marked by a high degree of standardization (Furumark 1965: 112). The stylistic phases relevant to this study are summarized in the following chronology:

Mountjoy/French Chronology

<table>
<thead>
<tr>
<th>Period</th>
<th>Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. 1300–1225 BC</td>
<td>LH IIIB1</td>
</tr>
<tr>
<td>c. 1225–1180 BC</td>
<td>LH IIIB6</td>
</tr>
<tr>
<td>c. 1180–1160 BC</td>
<td>LH IIIC Early 1</td>
</tr>
<tr>
<td>c. 1160–1140 BC</td>
<td>LH IIIC Early 2</td>
</tr>
<tr>
<td>c. 1140–1120 BC</td>
<td>LH IIIC Middle 1 (or Developed)</td>
</tr>
<tr>
<td>c. 1120–1090 BC</td>
<td>LH IIIC Middle 2 (or Advanced)</td>
</tr>
<tr>
<td>c. 1090–1070 BC</td>
<td>LH IIIC Late</td>
</tr>
<tr>
<td>c. 1070–1050 BC</td>
<td>Submycenaean (SM)</td>
</tr>
<tr>
<td>c. 1050–1020 BC</td>
<td>Early Protogeometric (Cypro-Geometric I in Cyprus)</td>
</tr>
</tbody>
</table>

Perhaps the most important facet of the stylistic scheme devised by Furumark is that there are few clear breaks in the virtually continuous development of the pottery, with the possible exception of the transition from LH IIIB to LH IIIC discussed earlier.

6 Both scholars accept an “elusive” transitional phase between IIIB2 and IIIC Early (c. 1210–1180 BC). The difficulty in its identification is discussed by French with respect to the site of Mycenae, where only a handful of diagnostic forms and decoration is provided (2007b: see fig. 2 and 529). However, other scholars have rejected this proposed transitional phase. Vitale has persuasively argued that the material identified by Mountjoy as transitional actually belongs to two successive phases. The first he has designated LH IIIB2 Late (2006: 201, table 3), and the second equates to Rutter’s LH IIIC Phase 1 (Rutter 1977: 2; see also Rutter 2003: 194).
Furumark’s framework is, for the most part, a model of sound archaeological reasoning and methodology. He was well aware of the hazards of creating a purely typological seriation without external controls, and the theoretical possibilities of a revival of older styles (archaism) or of separate contemporary development, either of which might give rise to a “false series” (Furumark 1941a: 4). However, he also understood the potential for a system that utilized the inherently complex nature of Mycenaean pottery to delineate a typology of temporal stylistic evolution. He believed that the relatively large number of criteria for evaluating the Mycenaen ceramic sequence presented an opportunity to implement a sophisticated chronological system, and that a careful analysis of the large number of criteria embodied in Mycenaen pottery would make it possible to avoid the pitfalls involved (Furumark 1941a: 4–5).

Furumark’s discussion of the meaning of style was prescient and remains relevant to current scholarly discourse. He cautioned, for example, against the all too common tendency to equate material culture with ethnicity, anticipating debates still decades away. He also recognized that Mycenaen pottery is characterized by a large degree of uniformity and standardization that enables stylistic criteria to be applied widely, and that relying exclusively on stylistic parallels to establish a chronology, in the absence of other evidence, would be imprudent (1941a: 6–7).

One of the shortcomings of the Furumark system, however, is its overreliance on readily accessible mortuary material, rather than the admittedly scant amount of pottery from stratified settlement contexts available at the time, a problem that is only recently being remedied. Due to the poor state of preservation at many Mycenaen settlements, early researchers were forced to rely on the better preserved tomb assemblages
Furumark recognized this limitation and sought to link his stylistic analysis to independent lines of evidence. In addition to correlating his system with the stratigraphically based Minoan chronology, he incorporated numerous other forms of corroborating data, including burial customs, stratigraphy, and other artifact categories such as female terracotta figurines, spindle whorls, fibulae, swords, and daggers (Furumark 1941b: 86–97).

The start of the Late Minoan period, as conceived by Evans, was equated to the advent of the 18th Dynasty in Egypt (c. 1550 BC). In absolute terms, Furumark’s system begins c. 1550 BC (Mycenaean I=Late Minoan IA ceramic style) in the aftermath of the destruction of the Second Palace at Knossos. His Mycenaean IIIA and IIIB phases were tied, along with other finds, to those excavated in Egypt (Tell el Amarna/Gurob), Palestine (Beth-Shan, Gezer, Tell Abu Hawam, Gaza), Lebanon (Byblos) and Syria (Qatna, Ras Shamra, Minet el-Beida). The beginning of the Mycenaean IIIC:Ia phase was placed no earlier than the end of the reign of Ramses II (c.1275-1215) and the introduction of Philistine Monochrome Ware, which Furumark believed most closely paralleled the later phase of Mycenaean IIIC:1 (hereafter LH IIIC), dateable to c. 1200 BC. Subsequent phases of LH IIIC were sequenced only approximately based on

7 The currently accepted date among Egyptologists is 1550 BC (Bourriaux 2003: 185; Bryan 2003: 218), established by the conquest of the capital of Avaris and the advent of the 18th Dynasty under Ahmose (1550–25 BC). The traditional chronology of the Late Bronze Age in the Aegean and the Mediterranean, based on the work of Warren and Hankey (1989: 162–69), was subsequently challenged by Betancourt (1987: 45–49; 1990: 19–23) and Manning (1990: 91–100) on the basis of radiocarbon dating of the eruption of Thera. Cline suggested further modifications based on his interpretation of Minoanizing frescos found at Tell el Daba/Avaris (1994: 5–8). Mountjoy finds problems with both. See her discussion (Mountjoy 1999a: 16). Manning et al (2006: 565–69) has more recently proposed a higher date for the start of the Aegean Bronze Age based on the eruption of Thera (1627–1600 BC. 2-sigma standard deviation). Wiener laments the cultural disconnect between archaeologists and physical scientists, who favor their respective bodies of data, either textual-archaeological or absolute evidence (Weiner 2007: 40–41; see also Rutter 2010: 416–17).
parallels with Protogeometric and Cypro-Geometric (Cyprus) pottery, and dated to the period previously known as Myc IIIC:2 or Submycenaean (Furumark 1941b: 110–15). The success of Furumark’s efforts can be seen in the continued use of his framework which, except for slight modifications, has survived for seven decades largely intact.

Chronological issues often lie at the heart of archaeological debates and the interpretation of Mycenaean pottery is no exception. Despite the brilliance of Furumark’s work, there remain unresolved problems. The student who enters into the study of Mycenaean ceramics is immediately confronted with a thicket of methodological, chronological, and terminological difficulties. Since the publication of Furtwängler and Löeschcke’s *Mykenische Thongefasse* (1879), over one hundred and thirty years of archaeological fieldwork and research has been amassed.

Despite the vast amount of data available to the modern scholar, a participant in a recent international workshop on Aegean chronology lamented, “the irony is that the more we seem to know about the nature of events in the transition between LH IIIB and LH IIIC phases…the less we can be certain about their absolute chronology” (Yasur-Landau 2003a: 235). The lack of LH IIIC material in Egypt and the absence of late 19th and 20th Dynasty Egyptian epigraphic data in the Aegean basin further hinders the search for direct synchronisms. In their discussion of the historically crucial transition from the Late Bronze to the Iron Age and the advent of LH IIIC pottery, Warren and Hankey were forced to concede:

We acknowledge that the vast area of these events is littered with historical, philological, and archaeological traps of great emotive force, and that as field archaeologists we are rather poorly equipped to find our way through such hostile terrain in intellectual safety. (Warren and Hankey 1989: 158)
Attempts to construct an all-encompassing framework that integrates the various cultures and chronologies in the Mediterranean basin invariably founder on the absence of contemporaneous objects from the Near East and Egypt in Late Helladic contexts. Unfortunately, there is also a dearth of texts and epigraphic material for the period (Deger-Jalkotzy and Zavadil 2003: 7). Add to this the fact that radiocarbon data is sparse, and scholars are largely left with Furumark’s system of dating ceramics on the basis of form and style. It should also be noted that attempts to utilize radiocarbon dates to anchor chronologies in the Early Iron Age (c. 1200–1000 BC) are restricted by the nature of the tree-ring calibration curve, which is relatively flat for this period and contains a number of pronounced wiggles (Jung 2010: 178).

Recent advances in defining the end of the Aegean Late Bronze Age have come from the northern Greek sites of Kastanás and Ássiros, which have provided a series of high precision radiocarbon and dendro dates derived from samples of charcoal and animal bones (Jung and Weninger 2004: 209–11). The artifactual finds from the Late Bronze and Early Iron Age levels at these sites are in turn associated with well-established sequences from southern Greece and synchronized with chronologies in Egypt and the Near East. The result is confirmation of a date of c. 1200 BC for the beginning of LH IIIC Early, as determined by the destruction of Ugarit c. 1190–1185 BC (Jung and Weninger 2004: 219, 225). Further accounting for “old wood” effect in the samples, Jung and Weninger have refined an absolute date for the end of the Mycenaean palace system and Aegean Bronze Age c. 1210/00 BC, and the end of the Submycenaean period c. 1070/40 BC (Weninger and Jung 2009: 393–4).
Difficulties in precise dating also arise from the very nature of Helladic or Mycenaean pottery classification itself, though this problem is by no means unique to Mycenaean pottery. The division into Late Helladic I, II, and III does not coincide with clear breaks or changes in style from one phase to the next. Rather, the sequence develops stylistically from one period to the next in a continuous and fluid fashion. As a result, many transitional vessels can be placed on either side of an admittedly arbitrary phase division (Mountjoy 1993: 2). It should also be noted that Furumark’s conceptual framework presumed a linear development of motifs from natural to more stylized (Leonard 1988: 319).

A good example of the inherent ambiguity of the Mycenaean pottery scheme is the dispute over the relationship between Philistine and Aegean styles. Some think the Philistine Monochrome tradition most closely resembles LH IIIC Early and Middle (Dothan and Zukerman 2004: 44; Dothan, Gitin and Zukerman 2006: 72), while others would assign it to LH IIIC Middle (Warren and Hankey 1989: 166–67; Mountjoy 1993: 175). However, recent stratigraphic research from the site of Mycenae has enabled a finer distinction, with Phase X correlating most closely to the initial phase of Philistine pottery, rendering it equivalent to LH IIIC Early 2 in Mainland terms (French 2007: 528).

Indeed, the degree of variation inherent in LH IIIC material in areas outside of the Aegean Basin is a reflection of the increasing regionalization of standard Aegean styles in the aftermath of the collapse of the palace-based economies of the preceding LH IIIB period (contemporary to the Late Bronze II in the Levant). Although the general trend in the developmental trajectory of Helladic pottery reflects a gradual improvement in artistic and technical achievement (e.g., faster wheels, higher firing temperatures, and manual
skill) up to and including the LH IIIB phase (Furumark 1941a: 15), the deterioration of manufacturing techniques evident in LH IIIC suggests a change in the mode of production toward a lower degree of centralization, perhaps to the level of workshop or household production.

Another limitation of Furumark’s system is that it does not necessarily coincide with cultural or historical periodization. This aspect has led at times to a conflation of stylistic phases with archaeological periods (Ruppenstein 2003: 183). Hence, the framework works well for the purposes of relative dating, but far less so for establishing absolute chronology. Elizabeth French, director of excavations at the site of ancient Mycenae, pessimistically surmised in 1963 that “the possibility of establishing the sequence and chronological development of Mycenaean pottery by excavation on a well-stratified site is remote” (1963: 44).

Only six years later, however, the outlook had markedly improved. Concerning the first phase of LH IIIC, French wrote “the recent work at Mycenae has provided just such a sequence and the new material from Mycenae and Tiryns has given a bulk of pottery of LH IIIB and IIIC on which numerical analysis can be based” (1969: 133). The outlook brightened considerably in the years following, to the extent that Mountjoy could confidently assert in 1993 that “large amounts of stratified LH IIIC Early settlement pottery comes from the recent excavations within the Citadel at Mycenae, from Lefkandi on Euboea and from the Unterburg at Tiryns,” along with smaller settlement deposits and large stratified tombs found elsewhere (Evely 2013: 1; Mountjoy 1993: 90).

It should be further noted that efforts to refine the stratigraphic basis for the Mainland stylistic sequence, particularly in the Argolid, are presently underway by
French and Stockhammer (see French and Stockhammer 2009; Stockhammer 2009; French 2007b), [among others]. The relative chronology of the stylistic framework is based on stratified sequences in the Aegean, which are linked to Egyptian and Near Eastern absolute chronologies (Rutter 2010: 416; Mountjoy 1993: 3), and French has highlighted the ongoing problem of circular reasoning in this regard. Aegeanizing pottery groups are often dated according to Mainland sequences, which are themselves based on absolute dates of *in situ* Aegean material found in Egyptian and Near Eastern contexts (French 2007c: 374). Despite the ingenious system of classification devised by Furumark and the numerous attempts to refine and clarify it, the system still has limitations. Furumark’s warning rings as true today as it did over half a century ago when he asserted, “the framework of chronology must be built up from external evidence, given by the actual conditions in the field” (1941b: 13). However, as noted above, the use of radiocarbon dates and other scientific techniques to better ground the stylistic phases into an absolute chronology are finally being implemented.

The difficulty in classifying LH IIIC and determining its cultural impetus is reflected in the diverse terminology used today. A conundrum immediately confronts the newcomer to the subject: the literature is riddled with a host of various terms. The earliest scholars in Cyprus—an island that played an important mediating role between the Aegean and the Near East—noted the coarse, matt-painted ware they took to be an imitation of Mainland style, which usually bore lustrous paint. Gjerstad, for example, included this material in his *Submycenaean* class (Gjerstad 1926: 220–28), while Myres called it *Cypro-Mycenaean* (Myres 1914: 47). There was also disagreement over whether it was manufactured locally or imported (Kling 1989: 91).
Furumark applied the term *Levanto-Mycenaean* to a style he believed was unique to the Eastern Mediterranean (1941a: 446). Also of note is Anderson’s use of the term *Levanto-Helladic* for Aegean-style pottery at Sarepta and elsewhere (1988: 274, n. 726). Another permutation, coined by Åström (1972: 276–89), and favoured by a number of Cypriot specialists (Kling 1989: 92; Sherratt 1998: 298), is *White Painted Wheelmade III*. But even this term fails for its emphasis on Cypriot characteristics at the expense of Aegean traits, particularly in the Levant where wheel-thrown pottery was in use from the onset of the 2nd millennium BC (Dothan and Zukerman 2004: 2). Porphyros Dikaios, excavator of Enkomi (1948–1958), recognizing the close links between Cypriot and Levantine pottery, employed the term Myc IIIC:1b, which was almost universally adopted in the east (Dikaios 1969b: 267–69; Sherratt 2006: 368).

Unfortunately, even in the Levant, in an area as well-excavated as Philistia, there is no consensus about what to call LH IIIC type pottery, which is an ongoing concern that can be traced through recent publications, even from the same site. In an article entitled “Reflections on the Initial Phase of Philistine Settlement” (2000), Trude Dothan used the term *Myc IIIC:1b*. By 2004 it was shortened to *Myc IIIC:1* (Dothan and Zukerman 2004: 2). Most recently, in a published final report from Tel Miqne-Ekron (Field INE), the excavators have adopted a new threefold designation consisting of *Philistine 1* (= old Myc IIIC:1), *Philistine 2* (= old Philistine Bichrome) and *Philistine 3* (= debased Philistine) (Dothan, Gitin and Zukerman 2006: 72).

At the very least, it is clear that the differences between Myc IIIC:1a and b have not been satisfactorily demonstrated in Levantine contexts. According to Dothan and Zukerman,
…Mycenaean IIIC:1b is less satisfactory since the Mycenaean IIIC:1a style appears to be vague and ill-defined, and thus Furumark’s subdivision of Mycenaean IIIC:1 pottery needs to be reconsidered…LH IIIC Early, Middle, and Late subphases cannot be straightforwardly applied to locally made Mycenaean pottery from Philistia. (2004: 2)

Interestingly, the authors of Ashdod VI have elected to retain the traditional terms *Myc IIIC:1* (monochrome) and *Philistine Bichrome* (Dothan and Ben-Shlomo 2005: 65, 70), and much the same can be said for final reports emanating from Ashkelon (see Stager, et al. 2008: 257–71). As these inconsistencies are presently being enshrined in the literature, it appears they will be with us for quite some time (see the discussion of Philistine sites in Chapter 2: section 2.5). Most recently, Yasur-Landau has opted for the term *LH IIIC-style* (2010: 242), while Ann Killebrew prefers *Aegean style*, subdivided according to her shape classifications (*AS 1, AS 2, etc.; 2000: 234*). Amihai Mazar has dubbed groups previously labeled *Myc IIIC:1b* or *Philistine Monochrome* as *local Myc IIIC* (2007: 575).

Unfortunately, the problem is not limited to Philistia. It obtains at sites up and down the Levantine coast and Cyprus—wherever Aegean-type assemblages are found. Reinhard Jung at Tell Kazel suggests the term *Mycenaeanizing* or *local Mycenaean*, for its fidelity to Mycenaean prototypes in form and decoration (2007: 559). Other variations used in the northern Levant include *Aegean style* at Ras Ibn Hani (du Piéd 2010: 225), and either *LH IIIC* (Vansteenhuysse and Bretschneider 2011: 191) or *locally made Myc IIIC* pottery at Tell Tweini (Kaniewski et al. 2011: 4). French favors use of the phrase *Aegean type* to describe all such material in the Levant (personal communication, Nov. 2011), while Sherratt seems generally content with the term *Myc IIIC:1* (2006: 370).
This author preferred the term *Myc IIIC:1* in an initial publication of the Tayinat corpus (Janeway 2008), but in a more recent article abandoned *Myc IIIC:1* in favor of several other terms used interchangeably, including simply *Myc IIIC* (2010). The view taken here, is that no single term is entirely satisfactory, but that several of the terms described above—*Myc IIIC, LH IIIC, Aegean, Aegean-type or –style, Aegeanizing, Mycenae, or Mycenaeanizing, Helladic*—are equally acceptable. All apply to locally produced assemblages that display Aegean characteristics in form or decoration. The use of these equivalent terms is maintained in this work for stylistic purposes and does not imply any broader cultural significance. However, while these designations refer to the origin and inspiration of the style, they should not be used to imply sequence or chronology. When specific parallels from the Mainland sequence are cited, however, the LH IIIC nomenclature will be employed.

Ethnic designations pose another set of issues. Explicitly ethnic terms for Aegean-style pottery in the Levant are not favoured by Susan Sherratt. In a series of articles, she has forcefully argued against the nearly universally accepted theory of Philistine migration to account for the material changes observed there (1998, 2003, 2005, 2006; see also Bauer 1998: 149–68, and Rutter 2013: 561). Her theory hinges on the central role played by Cypriot industry during the late 13th and 12th centuries. The export market created by Cypriot potters resulted in a need among “sub-elites” in the Levant for products to replace the loss of imports caused by the collapse of the palace-based exchange systems of the Late Bronze Age as part of a process of “import substitution.” Ceramic assemblages, which consist primarily of drinking sets, are found in those places where Cypriot goods had been imported in the 14th and 13th centuries. Her so-called
“socio-economic” or “mercantile” model views the “Sea Peoples” as comprising a merchant class that sought to emulate elites of a bygone age (1998: 294–307). Not surprisingly, Sherratt downplays textual and inscriptive evidence from Egyptian and Biblical sources, dismissing accounts from the former as “Egyptian diplomatic-speak” (Sherratt 1998: 307). Equally unsurprising is the fact that Philistine scholars have almost unanimously rejected the socio-economic argument on a number of grounds (Barako 2000, 2003; Dothan and Zukerman 2004: 45; Yasur-Landau 2003: 589–90, 2010: 263). That rebuttal and the implications for the settlement at Tayinat will be explored more fully in Chapter 5.

A further problem inherent in the Furumark system relates to the methodological trap of circular reasoning (Kling 2000: 287; Ruppenstein 2003: 183). Though a given pottery style is often characteristic of a particular developmental phase, the two are not necessarily synonymous, nor contemporary. The process of establishing the stratigraphy of a given site and the analysis of certain pottery styles and traditions should be undertaken separately to avoid the fallacy of classifying pottery according to the stratigraphic sequence, while at the same time basing the stratigraphy on the pottery. Moreover, archaeological periods should be defined on a material basis without using historical interpretations to delineate them. J. D. Muhly succinctly stated that “Archeological evidence must be interpreted on its own terms before it can be related to historical sources or literary traditions in any meaningful way” (1984: 54). Ultimately, ceramics must be ordered by the stratigraphic sequences in which they were found.

One further reservation need be noted with respect to the application of the Helladic system to Levantine assemblages. Scholars are awakening to the possibility that
the direction of stylistic innovation in the Early Iron Age may not have been unidirectional, thereby undermining the traditional understanding that trends naturally originated in Mainland Greece, particularly at the sites of Mycenae and Tiryns. While this was doubtless true to a large extent, especially in the Late Bronze Age, French has suggested that influence in the Levant may have been exerted from areas outside the Argolid, for example from Crete or Cyprus, and that the Mainland may have been the recipient of reciprocal cultural innovation in due course as well (French 2007a: 529). This assertion has already been made regarding specific features in Cypriot decoration (Kling 1989: 172), which may have even contributed to the elaborate style on the Greek Mainland (Sherratt 1998: 304, n. 22).

It should by now be apparent that the Mycenaean stylistic system rests on less than firm foundations. In a trenchant review of Furumark’s framework, Albert Leonard detailed the tenuous assumptions that form its chronological setting (1988: 319–31). As noted above, the bulk of the pottery assemblages on which Furumark based his system derived from tomb deposits, rather than from stratified contexts. Though he was aware that assigning absolute dates to his categorizations could be problematic, he nonetheless did so in his second volume, The Chronology of Mycenaean Pottery (1941b). One of the shortcomings associated with his scheme is that many vessels cannot be dated more precisely than a two-century window, because the system is correlated to Near Eastern pottery, which itself cannot be dated with any greater precision (Leonard 1988: 320, 325).

When the connections to Levantine burial contexts are carefully examined, modern scholars are left with a “depressing situation,” to quote Leonard (1988: 324). Though the following comments pertain to LH IIIA and LH IIIB deposits in the Late
Bronze Age, they nonetheless illustrate the thin chronological basis on which assemblages have traditionally been evaluated:

Of the five Mycenaean IIIA deposits, only one (Ras Shamra Tomb XIII) has any archaeological ‘validity’; of the ten Mycenaean IIIB deposits, only Minet el Beida Tombs III and VI—and these with hesitation—seem to be worthy of more discussion. (Leonard 1988: 324)

In Leonard’s view, scholars today are left with three alternatives: (1) reject both Furumark’s typology and his chronology, (2) retain his typology but appeal to recent excavations for dating, or (3) keep both his typology and his chronology.

The widespread practice of dating local assemblages by the imports contained therein constitutes an intellectual exercise in circular reasoning. Leonard implies (option 3), but does not actually suggest, the best way out of this conundrum. He warns that scholars can no longer present the imported wares as if they “told the whole story,” and cautions that if we continue with the third option, we must promptly and fully publish all of our work so that other scholars can fully evaluate the results (Leonard 1988: 330).

Though these observations were made some time ago, they are still relevant to the methodology being employed in current research, as the presuppositions of excavators are often implicit.

However, a wholesale jettisoning of Furumark’s system is, in my view, unwarranted, and to continue to repeat the mistakes of the past (option 3) is intellectually irresponsible. This admittedly bleak picture can be remedied by adopting a modification of Leonard’s option two, which is the approach taken by most Aegean ceramicists today (e.g., French, Mountjoy, Jung). Furumark’s typology was built on certain assumptions about the developmental trajectory of Mycenaean style—particularly decoration from
more natural to more stylized—namely as a continuing departure from Minoan-inspired motifs (Furumark 1939: 135, 136; Leonard 1988: 319). These carry with them chronological implications that we need not accept. The most reasonable approach is for scholars to continue using the index of shapes and decorations, which after all, represent an accurate inventory of excavated vessels, while at the same time “appealing to recent excavations for dating” (Leonard 1988: 324). In so doing, continuity with decades of accumulated literature is maintained, while reserving priority to current excavations and their improved stratigraphic methods.

Our knowledge of Syro-Palestinian pottery has advanced far beyond the days of Furumark, whose synthesis included published material only through 1937, such that correlation of Mycenaean Pottery with local pottery is likely to provide a firmer basis for dating, as long as the levels to which they are assigned are based on independent stratigraphic decisions. This conventional excavation technique carefully practiced and coupled with new scientific tools such as radiocarbon dating, petrography, and INAA, will provide a much higher level of precision and confidence.

1.3 Ongoing Research in the Region

Toward this end, scholars in the southern Levant are producing a greater quality and quantity of data than ever before. The results of excavations at Philistine sites are at last being published, such as from Tel Miqne/Ekron (Meehl, Dothan, and Gitin 2006), Ashdod (M. Dothan and Ben-Shlomo 2005) and Ashkelon (Stager et al. 2008). In addition, topical studies such as those by Ben-Shlomo (2006; 2010), examine specific aspects of Philistine material culture. Assaf Yasur-Landau has produced a fine synthesis incorporating the latest research on all facets of Philistine culture (2010). To these can be
added the book-length archaeological-historical study by Ann Killebrew, which sought to explain the Philistine migration in terms of ethnic identity in the Early Iron Age, with particular reference to Egyptians, Israelites, and Canaanites (2005). Ongoing excavations at Tell es-Safi/Gath have resulted in several article length treatments (Maeir 2006; Kolska-Horwitz et al. 2006; Zukerman et al. 2007; Ben-Shlomo et al. 2008).

A perusal of the bibliography reflects the scholarly attention devoted to the Late Bronze–Iron Age transition in the Levant in the form of numerous conferences and seminars over the past twenty years organized around the theme. The role of LH IIIC pottery is often central to those concerns. The SCIEM project (Synchronization of Civilizations in the Eastern Mediterranean), directed by Manfred Bietak and Ernst Czerny of the Austrian Academy of Science, has staged a number of important gatherings of leading scholars to develop a comprehensive chronology for the region. Several volumes are dedicated to LH IIIC material and its various aspects (Deger-Jalkotzy and Zavadil 2003, 2007; Deger-Jalkotzy and Bächle 2009).

The ongoing work of Penelope Mountjoy is fundamental to the study of Helladic pottery in the Bronze and Iron Age, particularly in the Aegean, but also more broadly across the Mediterranean. Her stylistic approach to shape and decoration has become the standard for analysis in the field. Several seminal volumes comprise a virtual encyclopedia on the development of all phases of decorated Mycenaean pottery. *Mycenaean Decorated Pottery: A Guide to Identification* (1986), subsequently expanded in a two volume set, *Regional Mycenaean Decorated Pottery* (1999), and *Mycenaean Pottery: An Introduction* (1993), are all now standard references. Over the past decade Mountjoy has brought her considerable expertise to assemblages outside the Aegean

1.4 Summary Observations

As noted in the introduction to this chapter, research in the Amuq Valley has been long neglected. The only comprehensive ceramic sequence remains that of the Syrian-Hittite Expedition of the University of Chicago (Braidwood and Braidwood 1960). Most of the Iron Age material was never published, and only appeared in a dissertation by Gustavus Swift some twenty years after the excavations were concluded (1958). Although the Amuq sequence was very well-conceived for the time, as some of the following analysis will show, it is nonetheless in need of refinement. While Fink’s pessimistic assessment of the current state of knowledge is well taken, his statement cannot fairly be applied to Swift’s dissertation, which devotes a substantial chapter to Phase N material (Chapter IV: 63–123).

This study therefore seeks to amend the rather dismal state of Early Iron Age ceramic research in the Amuq Valley. The foregoing discussion has illustrated some of the shortcomings of the stylistic system created by Furumark. Bearing these limitations in mind, the view here taken is that his system remains the most fruitful method of classifying Aegean-type ceramics, grounded in stratigraphic reality, and supplemented by scientific techniques now available to the archaeologist.
Moreover, the prospects for research in the vicinity of the Amuq Valley are quite promising, as a number of new projects are ongoing, many of which are explored more fully in Chapters Two and Three as they relate to Tayinat. In northern Syria, ongoing work continues at the important site of Tell Afis, with results that are highly relevant to research in the Amuq, as it represents perhaps the most thoroughly published ceramic sequence in the region (Venturi 2007; Mazzoni 2005; Cecchini and Mazzoni 1998; Mazzoni 2005).

The excavations at Tell Atchana under the direction of Aslıhan Yener are producing exciting results and are finally achieving some measure of resolution to the stratigraphical issues that have long hampered a clear understanding of the site (Yener in press). And not to be overlooked in connection with the AVRP is the ongoing effort to fully publish the material from the Syrian-Hittite Expedition’s excavations at Tell Judaidah (Lynn Swartz-Dodd), Chatal Höyük (Marina Pucci), and Tell Tayinat (Heather Snow in press). It would thus appear fair to say that the erstwhile “Dark Age” is finally receiving a generous dose of illumination in the Amuq Valley and the northern Levant, and it is clear that the renewed investigations at Tell Tayinat will be at the forefront of this effort.

8 These include Tel Arqa and Sidon (Lebanon), Tell Kazel, Tell Tweini, Ras Ibn Hani, Tell Qarqur (Syria), Tell Atchana, Sabuniye, Zinjirli, Kinet Höyük, and Tarsus (Turkey).
2 Survey of Early Iron Age Sites Relating to Tell Tayinat

2.1 Introduction

The following chapter documents a number of sites relevant to the study of Aegeanizing pottery at Tell Tayinat. As such, it seeks to integrate important cultural, archaeological, ceramic, and historical data critical for understanding the pottery analysis presented in Chapter 4, and to complement the review of the Early Iron Age investigations in the region of the Amuq Valley discussed in Chapter 3. More specifically, the material presented in this chapter attempts to incorporate a broad array of ancient settlements from a variety of regions adjacent to and in the vicinity of the Amuq.

Several sites were considered for inclusion but were omitted for various reasons. Tell Arqa has produced an unbroken ceramic sequence from the 13th to 12th centuries, but the transition to the Early Iron Age is not in evidence until the 11th century, a common phenomenon at Lebanese sites. Although the ceramic assemblage at Arqa includes LH IIIB and HBW, no LH IIIC has yet been found.9 Excavations at Sidon have quite recently uncovered LH IIIC deposits, but publication of these finds is still premature.10 The evidence at Tell Nami, located 7 km. north of Tel Dor on the Carmel Coast, indicates that the site suffered destruction and abandonment at the beginning of the

9 Personal communication. Hanan Charaf. July 19, 2013. See her discussion of Mycenaean imports and HBW (Charaf 2008: 143–50), and of the lower date for the Late Bronze Age-Iron Age transition in the region, particularly at Lebanese coastal sites (Charaf 2007-2008: 14–22; Thalmann 2006: 171). Other sites in the area where the lower transition has been noted include Sarepta (Anderson 1988: 390), and Tell Kazel (Capet 2003: 117–18; Capet and Gubal 2000: 430, 438).
12th century contemporaneous with the destruction of Ugarit (Artzy 2006: 50–52, figs. 6.13–17, 10.11, 12; Artzy 1995: 32).

Excavations at Tel Akko have recently been renewed under the direction of Ann Killebrew and Michal Artzy. Earlier excavations directed by Moshe Dothan from 1973-1989 revealed Late Bronze through Iron Age stratigraphic sequences, including late 13th and early 12th century remains atop the MB IIA ramparts in Area A and early Iron Age deposits in Area H (M. Dothan 1993b: 21; 1986: 106–7; see also Artzy 2006: 49–50, 52, fig. 6.7–12). Unfortunately, however, this material remains unpublished.

The relevance of this geographically broad inter-regional scope is a reflection of the strategic location of the Amuq Valley, which served as an important communication intersection for widely dispersed areas in antiquity, a crossroads that bears the imprint on its material culture generally and on its ceramic record specifically. The assemblage displays influences from the Greek Mainland, Anatolia, inland and coastal Syria, Phoenicia, and Cyprus—both in its Aegean and local wares. The chosen sites also reflect the widespread phenomenon of LH IIIC pottery, which has been found at sites across the breadth of the Mediterranean Sea. Particular attention has been paid to the chronological and stratigraphic context of the finds in an attempt to establish contemporary parallels for the Tayinat assemblage. All of the sites discussed in this chapter can be located on Figs. 1, 2, 3, and their respective chronologies are depicted in Table 1.

11 The current excavations have only reached the late Iron Age levels thus far (personal communication. Ann Killebrew. July 20, 2013).
Fig. 1. Eastern Mediterranean. 12th-11th Century BC
<table>
<thead>
<tr>
<th>Region</th>
<th>Late Bronze Age</th>
<th>Early Iron Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site</td>
<td>c. 1200 BC</td>
</tr>
<tr>
<td>Amuq Valley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Tayinat</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Tell Atchana</td>
<td>I?</td>
<td>O</td>
</tr>
<tr>
<td>Chatal Höyük</td>
<td>Level 10</td>
<td>Level 10_fill</td>
</tr>
<tr>
<td>Tell Judaidah</td>
<td>level 12</td>
<td>level 11</td>
</tr>
<tr>
<td>Anatolia/Cilicia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilise Tepe</td>
<td>III</td>
<td>IIa-c</td>
</tr>
<tr>
<td>Tarsus</td>
<td>LB Ib</td>
<td>Transitional</td>
</tr>
<tr>
<td>Kinet Höyük</td>
<td>13.2</td>
<td>12</td>
</tr>
<tr>
<td>Malatya</td>
<td>IV</td>
<td>III</td>
</tr>
<tr>
<td>Tille Höyük</td>
<td>initial phase</td>
<td>“middle” phase</td>
</tr>
<tr>
<td>BademgediğiTepe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inland Syria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ain Dara</td>
<td>XX</td>
<td>XIX</td>
</tr>
<tr>
<td>Tell Afis</td>
<td>V</td>
<td>IV</td>
</tr>
<tr>
<td>Hama</td>
<td>Periode I</td>
<td></td>
</tr>
<tr>
<td>Coastal Syria-Phoenicia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ras el-Bassit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ras Ibn Hani</td>
<td>Phase I</td>
<td>Phase II</td>
</tr>
<tr>
<td>Ras Shamra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Tweini</td>
<td>7B 7A</td>
<td>6G-H</td>
</tr>
<tr>
<td>Tell Kazel</td>
<td>Level 5, Level 6 Final</td>
<td>Level 4-3, Level 5</td>
</tr>
<tr>
<td>Sarepta</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>Tyre</td>
<td>XV</td>
<td>XIV</td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypriot</td>
<td>LC IIC2</td>
<td>LC IIIA</td>
</tr>
<tr>
<td>Enkomi</td>
<td>Level IIIA</td>
<td>IIIB Early</td>
</tr>
<tr>
<td>Kition</td>
<td>Floor IV-IIIA</td>
<td>IIIA-III</td>
</tr>
<tr>
<td>Tel Dor</td>
<td>Phases 10-9</td>
<td></td>
</tr>
<tr>
<td>Tel Qasile</td>
<td>XII</td>
<td>XI</td>
</tr>
<tr>
<td>Philistia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tell Miqne</td>
<td>VIII</td>
<td>VII</td>
</tr>
<tr>
<td>Ashdod</td>
<td>XIV</td>
<td>XIII</td>
</tr>
<tr>
<td>Ashkelon</td>
<td>Phase 21</td>
<td>Phase 20</td>
</tr>
<tr>
<td>Greek Mainland</td>
<td>LH IIIB IIIC Early IIIC Middle IIIC Late Submyc</td>
<td>PG I</td>
</tr>
</tbody>
</table>
2.2 Anatolia/Cilicia

2.2.1 Kinet Höyük

Despite its close proximity to Tayinat, 65 km. northeast across the Amanus range, the site of Kinet Höyük has produced very little LH IIIC pottery to date. It nonetheless is important as a comparative measure for its Late Bronze Age–Early Iron Age cultural sequence. During the Late Bronze Age, Kinet Höyük’s coastal location and presumed political affiliation is reflected in the Anatolian character of its assemblage (Period 14–13.1), consisting of a standardized collection of Drab Ware shapes and fabric, as well as the frequent use of potmarks, and by the maritime orientation of its faunal collection (Gates 2006: 299–300).

However, the recent discovery of a level directly antecedent to the Early Iron Age, designated “sub-Hittite” (Period 13.2), is most revealing. It exhibits a degradation of the standardization typical of previous phases, a disappearance of potmarks, but a continuing complement of imported ware, consisting of BR II, WS II, and LH IIIA/B. The loosening of production standards is comparable to contemporary assemblages at Boğazköy (Büyükkaya Early Iron Age phase; Genz 2003: 179; Schoop 2003: 173) and Kilise Tepe (II a–d), a development that took place locally before the end of the Late Bronze Age. This would seem to indicate that ceramic transition did not strictly correspond to important historical or political events in the area (Gates 2006: 300–304).

The ensuing Iron Age occupation (Period 12) was marked by an abrupt change in orientation. The faunal assemblage, comprised of equal numbers of sheep and goat and a dearth of fish species, is indicative of a pastoral lifestyle. Archaeologically, it consists of trash deposits, fire installations and pits, and a relatively small but significant percentage
of painted pottery decorated with bands, wavy lines, cross-hatch, and latticed triangles (Gates 2013: figs. 4, 7).12 The heterogenous nature of the assemblage suggests a household level of production and includes isolated examples of LH IIIC, but too few and from contexts too uncertain to be of chronological value, except in a general sense (Gates 2013: 7, fig. 4). The assemblage also includes remnants of Drab Ware, but these deposits may be the result of mixed stratigraphy and pitting. Overall, the pottery of Period 12 is comparable to the cremation cemetery and associated settlement at Hama (Riis 1948), and to Kilise Tepe Levels IIa–e (Hansen and Postgate 1999), broadly dated to c. 1200–1050 BC (Gates 2013: 494, n. 2; Venturi 2007: 77–79, fig. 25).

2.2.2 Dağlbaz Höyük

In cooperation with the excavations at Kinet Höyük, a five-year survey of the Gulf of Iskenderun was undertaken in 2004 by a team led by Ann Killebrew (Killebrew et al. 2005: 6–8; d’Alfonso and Killebrew 2011: 113). Though only a small number of sites from the Bronze and Iron Age were identified, the few that were found proved to be significant. Namely, a prominent mound with a steep citadel—Dağlbaz Höyük (Fig. 2)—included finds from the Late Bronze through the middle Iron Age, most importantly (for this study) LH IIIC type ceramics (Lehmann et al. 2007: 172–3, figs. 1–2; Killebrew and Lev-Tov 2008: 341, LXVII.b). It is not known at present whether future plans include excavations at a major tell site in the Cilician Plain, where the project’s namesake is linked to the foundation of cities following the Trojan War.

12 My thanks go to Marie Henriette-Gates for making this article available to me in advance of its publication.
Fig. 2. Northern Levant. 12th-11th Century BC
2.2.3 **Tarsus**

A very important Mycenaean assemblage was discovered at the Cilician coastal site of **Tarsus**, where excavations by Goldman (1934–1939) uncovered a cultural sequence that bridged the Late Bronze Age–Early Iron Age transition. The original excavator dated the LB IIb stratum to c. 1225–1100 BC based on the presence of Granary Style pottery, found sealing a destruction attributed to the Sea People (Goldman 1956a: 63–4). A detailed analysis of the forms and motifs has concluded that the Aegean assemblage relates to the Cypriot sites of Enkomi and Palaepaphos, particularly with respect to the prevalence of antithetical spiral decoration (French 1975: 73–4). Moreover, the corpus correlates with several subphases of LH IIIC in Mainland terms, and consists of spiraliform decoration, shallow angular bowls (SAB), and deep bowls with interior monochrome paint. French correctly lowered the date for the onset of the LB IIb phase from 1225 BC to the early 12th century, concluding that it represented an Aegeanizing group of pottery exhibiting independent development, while retaining tenuous contacts with Mainland Greece (1975: 73–4). It is important to note that the LH IIIC pottery at Tarsus, called *Transitional Ware* by the original excavators, was assigned to both LB IIb and to the Iron Age, reflecting the mixed stratigraphy at the site (Ünlü 2005: 145).

Recently, in anticipation of renewed excavations at Tarsus, Mountjoy undertook to publish all the Helladic pottery from the Goldman excavations, while consciously avoiding chronological conclusions and links to other regions, except with respect to individual elements as they occur. She has dated many of the individual pieces stylistically to LH IIIC Early, but due to mixed stratigraphy and lack of stratified
settlements in the area found it difficult to assign a precise date for the assemblage, though it consists of a limited range of mostly open Aegean shapes typical of a standard settlement assemblage (Mountjoy 2005: 83–134). Hopefully, resolution to the stratigraphic issues that have long beset Tarsus will be achieved with a resumption of excavations at the site.

2.2.4 Kilise Tepe

Kilise Tepe overlooks the Göksu Valley and sits astride a strategic route connecting the Mediterranean coast at Silifke inland to the Anatolian Plateau. The site was inhabited during the period spanning the Late Bronze and Early Iron Age and is important for the fact that, while the ceramic assemblage largely represents Anatolian potting traditions, it also contains a small quantity of LH IIIC material (Hansen and Postgate 1999: 111). The stratigraphy at Kilise Tepe, however, entails some “knotty problems,” as the excavator conceded in the final report (Postgate 2007: 34).

Level III was assigned to the Late Bronze Age with an assemblage similar to highland sites presumed to have been under Hittite administration, such as Gordion, Norşuntepe, as well as Tarsus and Kinet Höyük (Periods 15–13) in Cilicia. The assemblage was characterized by standardized unpainted Hittite wares and the use of potmarks (Postgate 2005: 26; 2007: 331). The assemblage of Level IIa-c marked a cultural break, though still in the Late Bronze Age tradition, as indicated by the presence of storage jars contemporary to those found at Tarsus LB IIa. The pottery featured the appearance of red-painted ware decorated with geometric motifs such as cross-hatch and stacked zigzag (Hansen and Postgate 2007: 344; 1999: 113).
The following Level IId featured a small collection of LH IIIC fragments belonging to stirrup jars and deep bowls, evidently correlated to IIIC Early in the middle of the 12th century, which were found on the floor of the ‘Stele Building’ (French 2007c: 374; Postgate and Thomas 2007b: figs. 408–409.955–65). In historical terms, the transition from Level III to Level II correlates to the end of the Hittite administration at Boğazköy (fase 2; 1215–1190 BC; Müller-Karpe 1988: taf. 15–16; Parzinger-Sanz 1992: 73). At Kilise Tepe, the level equated to an estimated 40-50 year accumulation that included the production of LH IIIC and its subsequent deposition in the destruction of Level IId. Postgate has equated Level IId to the post-destruction LB IIb assemblage at Tarsus, based on the similarity of its Aegean pottery (2007: 35). This material is difficult to date with confidence, according to French, but could not have originated before 1180 BC (2007c: 374). The assemblage of Aegean pottery was subjected to petrographic and chemical tests, which yielded mixed results. Some examples were likely produced from local clays while others were non-local, though their origin is uncertain. Cyprus was suggested as a potential provenance (Knappett and Kilikoglou 2007: 258–9, 271).

The Level II assemblage at Kilise Tepe also appears to contain a local wavy line tradition (Hansen and Postgate 2007: fig. 400.815–22). As the group is comprised of sherd material, it is difficult to assess the forms on which it was applied. The excavators compared the style to examples at LB I Tarsus, which were not common in the LB II or the Early Iron Age (but cf. Ünlü 2005). Since the decoration is also uncommon at Kilise, they suggest it reflects contact with the north and west, where it is frequently found in the Phrygian repertoire (Hansen and Postgate 2007: 345–6).
What caused the ceramic repertoire to undergo such a significant shift while still under centralized Hittite rule is unclear. Typically such a transition occurred elsewhere only after the cessation of Hittite control. A hypothetical possibility is the creation of the Kingdom of Tarhuntassa (c. 1280 BC) or other such events, which might account for both the material break and the reassertion of local traditions, perhaps Luwian in nature (Postgate 2005: 29; 2007: 35). It is worth noting that Hittite Drab Ware was found in quantity alongside LH IIIC pottery at Tarsus, and quite possibly at Kilise Tepe (the excavators qualify its presence in Level II by suggesting the need for further investigation), long after Hittite imperial control had ceased (Hansen and Postgate 2007: 344; Ünlü 2005: 145, 148; Goldman 1956a: 205). While “knotty problems” remain, the following represents the stratigraphic reconstruction from the final report:

- **Level III**: LB Hittite rule. Stele Bldg. constructed. (ends with new capital of Tarhuntassa?)
- **Level IIa–c**: cultural break marked by red-painted ware and realigned architecture. Rebuilt Stele Bldg. continues in use. Level ends in destruction contemporary with fall of Hattuša.
- **Level IIId**: Stele Bldg rebuilt. LH IIIC pottery. Level ends in destruction mid-12th century.
- **Level IIe**: architectural and some ceramic continuity.

2.2.5 Tille Höyük

The site of **Tille Höyük**, located on the Euphrates River at a natural crossing point in southeast Turkey, is important for establishing inland Anatolian and North Syrian connections, in contrast to coastal sites, where Aegean or western contact is more prevalent (only a single sherd of LH IIIA/B was found) (Summers 1993: 14, 45). The fact that a continuous sequence bridging the Late Bronze and Iron Age has been excavated at Tille Höyük makes it all the more valuable for comparative purposes. Despite its distant
inland location, the pottery assemblage contains morphological and design elements similar to the Tayinat assemblage. It also has the benefit of being well published and contains a substantial painted repertoire as comparanda (Summers 1993; Blaylock 2009: figs. 35–39).

At the end of the Late Bronze Age Tille Höyük was a small, heavily fortified site that controlled the Euphrates River crossing, and is presumed to have been situated at the border of the Hittite Empire. According to dendrochronological dating, it survived the collapse of Hittite control (c. 1180 BC) but was subjected to a fiery destruction some 80 years later, c. 1100 BC (“Burnt Level” Summers 1993: 2, 30). The pottery from this phase was characterized by Drab Ware plates, platters, dishes, and shallow bowls, also well-known at other sites in the vicinity, such as Malatya, Korucutepe, Norșuntepe, and Tarsus (Summers 1993: 47).

Despite evidence that the “Burnt Level” (c. 1100 BC) covered the entire site, the material culture and settlement that followed generally shows continuity with the previous “Hittite” occupation, which coincides with recent findings at other sites in the vicinity, such as Malatya and Carchemish, as argued by Hawkins (1988: 103–4; 2002: 148). This stands in contrast to the traditional understanding of Ramses III’s description of widespread destruction at the hands of the Sea Peoples, particularly at Carchemish. The evidence of burning at Tille Höyük was thought to be an extension of Ramses III’s campaign among smaller settlements, whose destruction has more recently been linked to Assyrian expansion under Tiglath-Pileser I (1115–1077 BC) at Lidar Höyük (Hauptmann 1987: 204–5), which presents a more plausible chronological and geopolitical setting for these events.
After the destruction of the last Late Bronze Age settlement, the excavators postulated a century of abandonment and pitting activity ("pre-Level I"), which was sealed by the first of three architectural levels (I—III). Together, these three architectural layers—Levels I–III—comprise the Early Iron Age at Tille Höyük (Blaylock 2009: table 2.4, 36). The construction consisted of village-type dwellings. The associated strata contained a concentration of painted ware alongside "coarse and poorly fired buff wares" typical of the Late Bronze Age, evidence of ceramic continuity with Levels I–III corresponding to the 11th and 10th centuries BC (Blaylock 2009: 25, 81–3).

A reassessment of the original radiocarbon analysis at Tille Höyük was published recently by Griggs and Manning (2009), in which three tree-ring sequences collected from the destroyed gate building ("Burnt Level") were subjected to "wiggle matching." The results of the analysis suggest a more complex construction history than previously thought, and the possibility of continuous occupation from the late-13th to the 11th century. The initial building phase is dated c. 1150 BC, coinciding with the end of the Late Bronze Age. A second date of approximately a century later dates a subsequent phase of construction, c. 1050 BC, with a "middle" intermediate phase placed between, c. 1100 BC (Griggs and Manning 2009: 717–19). The end result raises the date for the end of the Bronze Age and eliminates the abandonment phase from the original chronology. The respective sequences at Tille Höyük can be summarized as follows (Griggs and Manning 2009: 717–19; Blaylock 2009: table 2.4):
Original Chronology

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA: destroyed</td>
<td>(c. 1100 BC)</td>
</tr>
<tr>
<td>Period of abandonment</td>
<td></td>
</tr>
<tr>
<td>Pre-I: intermediate period of pitting</td>
<td>(c. 1050 BC)</td>
</tr>
<tr>
<td>I : Early Iron Age village</td>
<td>(c. 1000 BC)</td>
</tr>
<tr>
<td>II : Early Iron Age village</td>
<td></td>
</tr>
<tr>
<td>III : Early Iron Age village</td>
<td>(c. 950 BC)</td>
</tr>
<tr>
<td>IV : appearance of red-slip sherds</td>
<td>(c. 900 BC)</td>
</tr>
</tbody>
</table>

Reassessment (2009)

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial gate phase</td>
<td>(c. 1150 BC)</td>
</tr>
<tr>
<td>Intermediate phase</td>
<td>(c. 1100 BC)</td>
</tr>
<tr>
<td>no abandonment</td>
<td></td>
</tr>
<tr>
<td>Second gate phase</td>
<td>(c. 1050 BC)</td>
</tr>
</tbody>
</table>

“Neo-Hittite” structural level.

2.2.6 **Malatya**

Malatya is important for much the same reason as Tille Höyük, since it provides an assemblage of inland Anatolian material culture far removed from Mediterranean contacts, and because its pottery compares in certain respects with that of Tayinat. As research in the area of southeast Anatolia and northwest Syria has intensified in recent years, scholars have slowly come to the recognition that conditions of political and cultural continuity may have prevailed in the erstwhile eastern territories of the Hittite Empire. Owing to epigraphic finds at the sites of Carchemish and Lidar Höyük, two distinct kings of the ancient Kingdom of Melid (modern Malatya), Runtiyas and Arnuwantis I, have been identified as grandsons of Kuzi-Tešub, the Hittite viceroy at Carchemish and himself a direct descendant of Suppiluliumas I. Reckoning chronologically, the kings of Melid may well have ruled Malatya in the 12th century (Hawkins 1988: 102–3; 2002: 147).

Relevant parallels to the Tayinat assemblage can be found in the krater series, where similar styles appear at Malatya in both the Late Bronze Age (Level IV) and Early Iron Age (Level III). These will be investigated more fully in Chapter 4. The ceramic
assemblage from the campaigns of 1963–1968 at Arslantepe has been published in *Malatya III* (Pecorella 1975: figs. 1–27).

2.2.7 Bademgediği Tepe

The site of Bademgediği Tepe is located in western coastal Anatolia, near the modern city of Izmir somewhat distant from the Amuq Valley. It is important for establishing the presence of a settlement with a significant Aegean-type assemblage on the Ionian coast. It was likely synonymous with the ancient city of Puranda from the Annals of Mursili II. The stylistic associations of the assemblage reflect all phases of LH IIIC and are found in Levels II and I (Meriç 2003: 79–81).

The pottery includes several features with intriguing similarities to the Tayinat assemblage. In addition to a spectacular krater decorated with a pictorial maritime battle scene, comparative examples include the presence of such closed forms as amphorae and hydriae, amorphoroid kraters, and numerous one-handled conical bowls (Meriç and Mountjoy 2002: 88, fig. 4). The latter especially are characterized by a deep body and relatively high base, typical of the LH IIIC Middle at Lefkandi (Phase 2a; Meriç and Mountjoy 2002: 88; Mountjoy 1999a: 39, Table II; see also Popham, Schofield and Sherratt 2006: 153), and also found at Tarsus, where the examples, by contrast, have a shallow shape and low ring base (Mountjoy 2005a: 98–100, figs. 5–7). The Wavy Line design appears to have been preferred over the spiral patterns so common in LH IIIC deposits elsewhere. Finally, it is important to note the numerous examples of Grey Ware found in both Iron Age levels (I and II) at Bademgediği Tepe, which coexist alongside Aegean material from the LH IIIC Early, Middle and Late found in Level II (Meriç and
Mountjoy 2002: 82; Merič 2003: 86–7). The relevant stratigraphy at Bademgediği Tepe is outlined as follows (see Merič 2003: fig. 5):

- **Level II** (c. 1180–1050 BC=Troy VIIb): LH IIIC Early–Late, Grey Ware, HBW
- **Level I** (c. post-1050 BC=Troy VIII) : Grey Ware kraters

2.2.8 Miletus

Miletus is located south of Bademgediği Tepe along the Ionian coast of Asia Minor, and is important for similar reasons, in addition to being more thoroughly published than the latter site. Most recently excavated by Wolf-Dietrich Niemeier and his wife Barbara beginning in 1994, it has been equated to the city of Millawanda in the Hittite archives (Niemeier 2005: 19). The Bronze Age settlement has been divided into three architectural periods, the last of which is most relevant to this discussion.

- **First Building Period**: c. 1750/20–1490/70 BC (MM III–LM IB)
- **Second Building Period**: c. 1445/15–1320/00 BC (LH IIIA:1–IIIA:2)
- **Third Building Period**: c. 1320/00–1100/1060/40 BC (LH IIIB–IIIC)

The stratum designated *Miletus VI* in the Third Period is poorly preserved owing to later construction activity and earlier excavations. However, it contains a few deposits of LH IIIB and LH IIIC pottery, much of which is undecorated (Niemeier 2005: fig. 30). The destruction of the final Bronze Age settlement is uncertain, and hinges on two alternative proposals, either that it ended in LH IIIC Middle (c. 1100 BC; Mountjoy 1993: 175–6), or in LH IIIC Late (c. 1060–40; Schachermeyr 1980: 338–9). It may have involved an occupational hiatus after the destruction of unknown length, as fragments of Submycenaean pottery were found above the ruins (Niemeier 2005: 20).
Mountjoy has reassessed the IIIC pottery at Miletus and drawn parallels to the “Transitional LH IIIB–C Early” material found at Ugarit (2004: 189). Her stylistic analysis identifies several motifs, most notably found on an intricately decorated mug, which she now assigns to the transitional phase or LH IIIC Early (Mountjoy 2004: fig. 1). The elaborate pictorial decoration that forms the hallmark of LH IIIC Middle at Mainland sites is now seen to be a feature of the east Aegean during the LH IIIC Early phase, including at Miletus. Given that preliminary NAA testing has indicated that most of the Mycenaean pottery was locally made (Gödecken 1988: 310–13), the site may have served as a regional production center, which might also help to explain its independent stylistic trajectory (See also discussions in Greaves 2002: 59–65, and Gorman 2001: 26–31). The implications of Mountjoy’s analysis are that the destructions at Miletus and Ugarit should be considered contemporary (c. 1185 BC), and that the length of the abandonment at the former after its destruction was considerable (Mountjoy 2004: 199).

2.3 Inland Syria

2.3.1 Tell Afis

The site of Tell Afis, located near the modern city of Idlib in northwest Syria is of particular significance for the Tell Tayinat assemblage. Excavations there have been ongoing since 1986 and comprise the most thoroughly published site in the region, and therefore valuable both for its proximity to the Amuq and its continuous LB–Iron Age ceramic sequence (Cecchini and Mazzoni 1998; Mazzoni 2005). Phase Vb (formerly level 10) comprises the last cultural Late Bronze level, and features a well-constructed residence (Building F) in which two cuneiform texts in the Hittite language were discovered (dated to mid-13th C), testifying to relations with Hittite polities. Phase Vb
ended in conflagration, c. 1200 BC, a date based on findings in the subsequent phase Va (Venturi 2010: 2–4). In general terms, Phase Vb comprises the latter 13th to the early 12th century.

Phase Va (formerly levels 9c–b) was a transitional phase in which Late Bronze structures were leveled for relatively temporary construction along new spatial lines. LH IIIC pottery makes its first appearance in the form of a well preserved deep bowl with antithetic spirals (Bonatz 1998: 217–18, fig. 5.1; Venturi 2000a: 522, fig 6.2; Venturi 2007: 269, fig 56.1). A radiocarbon sample from a group of burned seeds has been dated 1280–1130 BC13 (Venturi 2010: 4, n. 19), situating Phase Va in the transition from the Bronze to Iron Ages.

The layout of **Phase IV** (formerly levels 9a–8) preserved the plan of the previous phase, but also included a considerable number of circular silos located within domestic units and in open spaces that were used for storage and dumps. Similar installations have been found at Tayinat (see section 4.1.2). The Phase IV architecture was of lesser quality than the previous period, and it contained a more substantial collection of Aegean-style material. This material was characterized by Wavy Line decoration, placing this first phase of the Iron Age settlement in the last quarter of the 12th century, and continuing until the middle of the 11th century, according to the excavators (Venturi 2010: 5–6; 2007: 301). Of special significance is a set of three deep bowls that parallel vessels found in LC IIIB levels at Kition and Enkomi, corresponding to LH IIIC Late in Aegean terms (2010: fig. 11.1–3; see further sections 4.2.1.1.1, 4.2.2).

13 The report provides no further information as to what this date represents (1-sigma, 2-sigma?), other than that it is calibrated.
The reconstructed and well-planned buildings of **Phase III** (formerly level 7) were built along the lines of Phase IV. The stratum also displays a continuity of material culture, including a painted repertoire similar to Phase IV. It is presented conceptually as a single assemblage by the excavators and dates from the latter half of the 11th century to the mid-10th century (Venturi 2010: 6; 2007: 301). The stratigraphic situation at Tell Afis is summarized below:

- **Phase Vb**: c. 1250–1160 Residence (Bldg. F), Hittite texts and Hittite-type pottery
- **Va**: c. 1160–1120 transitional phase, new settlement, initial LH IIIC
- **Phase IV(c–a)**: c. 1120–1050 reorganized construction, LH IIIC Wavy Line
- **Phase III (d–a)**: c. 1050–950 cultural continuity with Phase IV and LH IIIC

2.3.2 Hama

The site of Hama, located on the Orontes River in central western Syria, was excavated from 1931–1938. It is an important site for understanding cultural developments in the Syrian interior during the Bronze and Iron Age. Its ceramic assemblage was well published and provided a comparative sequence with the Amuq Valley in an unpublished dissertation by Gustavus Swift (1958). The assemblage of **Level F** (originally 1200-1075 BC) on the citadel (Fugmann 1958: 147, 278) is contemporary to Amuq Phase N. At Hama, this is equivalent to a second area of Early Iron Age remains, the cremation cemetery **Periods I and II**, located south of the citadel mound (Riis 1948: 6, fig. 1).

In Swift’s view, the pottery assemblage at Hama was judged to display minimal contact with Mycenaean culture. Therefore, it provided a good representation of “Syro-Palestinian” ceramic traits (Swift 1958: 69). The Hama assemblage remains significant
today, particularly for its well-documented repertoire of painted decoration typical of Levantine style (Riis 1948: figs. 130A/B). A recent reevaluation of the material has lowered the beginning of Level F from c. 1200 to 1170 BC (Venturi 2007: 28). The Level F ceramics exhibit continuity with the Late Bronze Age in several respects, while the appearance of painted pottery, the use of iron, and cremation burials mark important innovations introduced in the 12th century.

2.3.3 Ain Dara

The site of Ain Dara (see Fig. 2), located east of the Amuq Valley on the route linking the Mediterranean coast to Aleppo, represents an inland Syrian assemblage with a modest amount of painted ware (Stone and Zimansky 1999). Unfortunately, the excavations in the lower city were suspended after only two seasons (1983–1984). They nonetheless succeeded in revealing an unbroken Late Bronze Age–Early Iron Age occupational sequence. The Level 2 pottery assemblage contained painted ware and shapes reflecting Aegean influence, including deep bowls with horizontal handles. Such material was equated by the excavators to the Granary Style and dated to later stages of the LH IIIC period (Stone and Zimansky 1999: 30, fig. 27).

2.3.4 Tell ‘Acharneh

Excavations are presently being conducted at the site of Tell ‘Acharneh (see Fig. 2), situated on a spur of high land in a low expanse of marshy area known as the Ghab Valley. The mound is located some 20 miles northwest of Hama on the east bank of the Orontes River, and is probably synonymous with ancient Tunip (Dion 2006: 45). Work
began at ‘Acharneh in 1998 by a Canadian team from Laval University. Though Early Iron Age deposits have been encountered—evidently confined to the sizeable upper mound (Levels TE a-b-c)—excavated exposures have thus far been fairly limited. The published corpus includes Early Iron Age painted ware and a selection of Mycenaeanizing forms including SABs (shallow angular bowls) and deep bowls, along with shell-tempered cookware with inverted rims, all of which are comparable to elements of the Tayinat assemblage (Cooper 2006: 148, 155, figs. 14, 15).

2.3.5 Tell Qarqur

Early Iron Age strata have been reached only in small areas at Tell Qarqur (see Fig. 2), located some 36 miles north of Tell ‘Acharneh on the east bank of the Orontes River. The excavations have been directed by Rudolph Dornemann since 1993 (2003). Very little from the ceramic finds have yet been published, but enough to reveal a repertoire of Near Eastern painted motifs comparable to those at Tell Tayinat. Areas A and B have produced Aegean-type ceramics with form and stylistic parallels to the Tayinat repertoire, including locally made deep bowls and decorated kraters (Dornemann 2012: fig. 20).

Initial findings suggest two color traditions similar to ROP14 and BOW at Tayinat, and the extent of Iron I pottery suggests to the excavators that the occupation covered the entire site (Dornemann 2012: 172). The assemblage overall shows little evidence of contact with either Aegean or Cypriot cultural spheres (Dornemann 2003: figs. 88–90). As research progresses at this important site and wider Early Iron Age exposures are

14 Red-on-Pink and Black-on-White, respectively. See Chapter 4: section 4.1.1, for discussion of these shorthand terms.
uncovered, we can expect further ceramic parallels with the Amuq Valley. Moreover, it will be important to trace the Late Bronze Age-Iron Age transition at Tell Qarqur, since that critical period is missing at many sites in the region.

2.4 Coastal Syria and Phoenicia

2.4.1 Ras Ibn Hani and Ras el-Bassit

The sites of Ras Ibn Hani and Ras el-Bassit (see Fig. 2), located on the north Syrian coast, are treated together since they have similar occupational and cultural histories, and because they appear in recent publications as part of a common ongoing research effort (du Piêd 2008, 2011). Both sites had continuous habitation spanning the Late Bronze and Early Iron Ages, with Ras el-Bassit experiencing destruction at the end of the LBA and immediate reoccupation. The stratigraphy at Bassit is very poorly preserved, whereas Ibn Hani is more intact and coherent (du Piêd 2008: 162–3). Both sites also share the peculiarity of having talc-tempered cooking pots in their assemblage, which at Bassit was found to be a continuation of Late Bronze Age tradition.

The cookware group, however, does not include Aegean types, but rather consists of straight-sided pots that develop into inverted shapes in the Early Iron Age, followed by hole-mouthed shapes in the Iron II period (2011: 222, 227, fig. 5). Both sites provide evidence of Early Iron Age reoccupations built over Late Bronze Age destructions. At Ras Ibn Hani, the stratigraphy is conceived in general terms as follows:

- **Phase I**: c. 1200–1150
- **Phase II**: c. 1150–1050
- **Phase III**: c. 1050–950
The Aegean-style assemblage at Ibn Hani consists of a limited range of shapes, mostly deep bowls and kraters, part of so-called drinking sets that are believed to reflect communal activities (see also Mühlbruch 2009: 50–54, table 16). The krater group is of special interest. A white-slipped series of amphoroidal shapes in Phases I and II bear both monochrome and bichrome decoration in a fabric common to vessels found at Tell Kazel (Lagarce and Lagarce 1988: 154–5; Badre, et al. 1994: 304; Capet and Gubel 2000: 438–9; Capet 2003: 112; du Piéd 2008: 169, 171–7; 2011: 224, figs. 8A, 8B) and Tell Tweini. However, whereas some Ibn Hani examples are decorated in bichrome, the Tweini vessels are painted exclusively in red (Vansteenhuyse and Bretschneider 2011: 190).

As detailed in Chapter 4, such kraters were a favorite in the north, somewhat exclusive to the northern Levant and Cyprus. Spiraliform design and linear bands often adorned a second type of vessel, the bell-shaped krater, which significantly disappears after Phase I, along with its repertoire of motifs (du Piéd 2011: 225). The Wavy Line motif, usually applied to closed forms, is also discontinued after Phase 1. Du Piéd judges the Aegean corpus at Ras Ibn Hani as analogous to assemblages at Tarsus, Cyprus, and the Philistine sites during their initial, or monochrome phase, but with a far more limited range of shapes and decoration (2011: 225). In sum, as the analysis in Chapter 4 will show, the Aegean assemblages at these north Syrian coastal sites intersects with that of Tayinat at some points, and diverges in others, with the overall picture serving as an example of regional eccentricities inherent in 12th century assemblages in the Levant.

2.4.2 Ras Shamra (ancient Ugarit)

Recent reports from the ancient site of Ugarit have documented the presence of locally produced Aegean-style pottery. Vassos Karageorghis has identified several LH
IIIC sherds belonging mostly to deep bowls decorated with antithetical spirals (2000: 64–5, fig. 32.485–89). Their appearance is linked to a modest post-destruction settlement erected on the ruins of the abandoned city, contemporary with occupation at nearby Ras Ibn Hani (Yon 2000: 15). Additional fragments of several decorated linear angular bowls (SABs) and a chalice appear in a separate publication (Montchambert 2004: figs. 1628, 1631, 1632). However, the stratigraphic position of the material is ambiguous. The question is whether the pottery assemblage should be attributed to a post-destruction settlement similar to Ras Ibn Hani, or to the destruction debris itself, which would require a production date prior to the city’s demise (Montchambert 2004: 279, 321–22; Vansteenhuyse 2011: 188).

Jacques-Claude Courtois has proposed to include the LH IIIC material in a LH IIIB/IIIC transitional group that would occupy the first quarter of the 12th century, during the terminal phase of Ugarit (1973: 137–65; see also Mountjoy 2004: 189–200). The lower date for the appearance of LH IIIB pottery is corroborated by recent discoveries at Kition (Warren and Hankey 1989: 159–62) and Tell Deir ‘Allah (Franken 1992: 31). This has led Paul Åström to downplay the significance of “transitional” sherds, and instead to suggest that LH IIIC was produced before the end of Late Bronze Age Ugarit (2007: 505, n. 3). These theories may help to explain the appearance of LH IIIB and LH IIIC in the same stratigraphic context. The situation at Ras Shamra highlights the recurring difficulty in classifying Levantine assemblages from the 12th century in terms of Mainland sequences and the poorly defined transition points in its stylistic development. As the LH IIIC pottery from Ugarit is still being assessed, we must await its final and complete publication before assessing its ultimate significance.
2.4.3 Tell Tweini

Tell Tweini was once part of the Late Bronze Age kingdom of Ugarit, and is mentioned twice in the 13th century BC archive (Gibala) excavated there (Bretsneider and Van Lerberghe 2008: 12). As recently as 2010, no LH IIIC pottery had been reported, despite an occupational history that spanned the Late Bronze to Early Iron Age transition (Vansteenhuyse 2010: 41). However, ongoing excavations at the site have produced an assemblage of Aegean pottery classified by the excavators as LH IIIC Early (Kaniewski et al. 2011: 3–6, fig. 3C). Along with this material, the publication of radiocarbon dates (1192–1190 BC15; Kaniewski et al. 2011: 6) for the critical destruction layer (7A) has added a new level of precision to the chronological debate concerning depredations traditionally associated with invading groups from the west.

Level 7B comprises the terminal phase of the Late Bronze Age at Tweini, whose ceramic repertoire compares to contemporary Ugarit. The stratum was brought to an end in a fiery destruction, evidenced by a widespread ash layer, designated Level 7A (Kaniewski et al. 2011: 3). In addition to signs of combat in the form of bronze arrowheads, the ceramic assemblage included examples of LH IIIB, LH IIIC Early, and Cypriot IIC. It is unexpected, but not unprecedented, to find IIIB and IIIC in the same deposit (see Ras Shamra, Chapter 2: section 2.4.2). Curiously, the following two levels, 6G-H and 6E-F, together comprising the Early Iron Age, were found to contain no further Aegeanizing pottery (Vansteenhuyse and Bretschneider 2011: 189–90). Evidently the local production of such ceramics was relatively short-lived. Alongside the

15 The calibrated age ranges of the samples are 1215–1190 BC (1-sigma) and 1180–1160 BC respectively, with which the authors integrate archaeological, astronomical, and textual data to further refine the destruction date to the years 1192–1190 BC.
Aegean pottery, the new finds also included Aegean-type architecture, Handmade Burnished Ware (HBW), and Aegean-type loomweights. However, like other north Syrian coastal sites, Aegean-style cookware is thus far largely absent from the assemblage.

Based on a correlation of various lines of evidence, both textual and archaeological, the excavators of Tell Tweini have pegged the site’s destruction to the years 1192–1190 BC, which they link to contemporary Sea Peoples’ attacks against Late Bronze Age Ugarit. The very few published pieces of LH IIIC Early material consist of deep bowl fragments decorated with antithetical spirals and filling motif (Kaniewski et al. 2011: 3–6, fig. 3.C). While these are dissimilar to deep bowls from Tell Tayinat, further comparisons will have to await complete publication of the ceramic repertoire from Tell Tweini.

2.4.4 Tell Kazel

Tell Kazel, likely the ancient city of Sumur (ancient Simyra), capital of the Late Bronze Age kingdom of Amurru, is strategically located on the Syrian coast near the main mountain pass (Homs gap) to the interior of the country a few miles north of the Lebanese border. Since 1985 excavations have been jointly conducted by the Syrian Department of Antiquities and the American University of Beirut under the direction of Leila Badre (Badre 2006: 65).

During the Early Iron Age, when Tell Kazel reached its cultural zenith, the city was destroyed in a severe conflagration, an event associated by the excavators to the Sea Peoples in the eighth year of Ramses III. Evidence of destruction has been found in Level
6 in Area II and Level 5 in Area IV, which also contains the initial deposits of what Reinhard Jung calls local Mycenaean or Mycenaeanizing pottery, produced on site as verified by chemical, petrographic and technological analyses. The assemblage features quantities of unpainted vessels and a notable absence of spiraliform decoration so typical of other contemporary sites in the region. It includes vessels that fuse Aegean and Syrian traits in shape and decoration, such as amphoroid kraters bearing Near Eastern style ornamentation. The range of shapes in the group is quite unlike that of Late Bronze imported ware found in earlier strata, evidence that argues against the mercantile theory that such pottery was manufactured to satisfy demand for Mycenaean imports following the breakdown of international trade (Jung 2007: 557–60).

The Aegean pottery at Tell Kazel compares well to LH IIIC Early style in Mainland assemblages, such as with deep bowls bearing linear decoration, among other examples. The IIIC Early character of the pottery continued into the following strata, Level 5 in Area II and Level 4–3 in Area IV, which followed the destruction of Level 6/5 and a short abandonment. A date slightly later than Level 6/5 is indicated by several traits that according to Jung resemble LH IIIC Middle 1 (Developed) pottery (2007: 565–6). The excavators have linked the first destruction event (Levels 6/5) to the Sea Peoples on the basis of direct reference by Ramses III to the “desolation of Amurru” (Peden 1994: 29). However, local Aegean and Handmade Burnished Ware (HBW) was found in the burn layer itself and, for that reason, is not attributed to the invaders, who were ostensibly responsible for the destruction and hence not linked to the pottery’s production. The end of subsequent Levels 5 and 4–3 is associated with the reoccupation of Ras Ibn Hani (Jung
2007: fig. 12, 566–7, n. 100). The reconstructed events at Tell Kazel are outlined below (Jung 2007: fig. 12):

<table>
<thead>
<tr>
<th>LBII/Early Iron Age transition</th>
<th>Area II</th>
<th>Area IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 6</td>
<td>Level 6</td>
<td>Level 5</td>
</tr>
<tr>
<td>Sea Peoples’ destruction (c. 1176 or 1179 BC)</td>
<td>Sea Peoples’ destruction (c. 1176 or 1179 BC)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Early Iron Age</td>
<td>Level 5</td>
<td>Level 4–3</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>destruction</td>
<td>destruction</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>

An alternate explanation to Jung’s reconstruction has been proposed by Badre. It consists of a “two-wave theory,” in which the conflagrations are linked to separate groups of Sea Peoples: the first as found in Ramses III fifth year inscription, and the second as recorded in Ramses eighth year (Badre 2006: 93; Klengel 1992: 184).16

2.4.5 Sarepta

The site of Sarepta at the modern village of Sarafand on the southern Phoenician coast near Sidon is important not only for its cultural contemporaneity, including contacts with the west as shown by numerous imports, but for its typological system, utilized herein as a model with particular attention to the krater and amphorae assemblages at Tayinat (Anderson 1988: 175–84, pl. 48 for kraters; 189–200, pl. 49 for jars). The collection of deep bowls also shows similarity to the Tayinat group, both morphologically and decoratively (type X-23: Anderson 1988: 158, pl. 47).

The small corpus of Mycenaeanizing pottery was published in separate monographs, in preliminary form (Pritchard 1975: 90–1, figs. 26, 52), and as a portion of the “imported” assemblage from Cyprus and the west (Koehl 1985: 44–5, 146–7, figs.

16 Karageorghis has equated the destruction of the Cypriot fortified settlement at Pyla-Kokkinokremos to the events at Tell Kazel (Karageorghis 2011: 90).
Robert Koehl has classified some examples, consisting mostly of deep bowls, as equivalent to the early stages of LH IIIC, while others are doubtless later and resemble Granary Style and Submycenaean pottery. The Sarepta series is not stratigraphically dated, but rather based on stylistic parallels from Philistia, Cyprus and Asia Minor, a point of uncertainty conceded by Koehl (1985: 44, 146).

Sarepta was continuously occupied from the Late Bronze I period to the 5th century BC. However, the traditional transition date from Bronze to Iron Age in the southern Levant is not in evidence at Sarepta. The site displays both architectural and ceramic continuity until the end of the 11th century, a phenomenon repeated elsewhere in Phoenicia, for example, at Tyre and Tell Arqa (Anderson 1988: 390, 395–6). The indefinite nature of the following chronology is at least partly due to the vagaries of dating what the author calls “Levanto-Mycenaen” ware. Stratigraphic levels relevant to this analysis consist of the following (Anderson: 422–3):

- **Stratum G**: c. 1320/1290–1200/1190 BC
- **Stratum F**: c. 1200/1190–1150/1125 BC
- **Stratum E**: c. 1150/1125–1050/1025 BC
- **Stratum D**: c. 1025/1000–850/825 BC

2.4.6 Tyre

Another significant Phoenician site is found at Tyre, with its relatively well published pottery sequence and unbroken occupation across the Late Bronze Age/Iron Age transition in Lebanon. At Tyre, this transition occurs at the end of **Str. XIV** (c. 1200–1070/50 BC). The preceding **Str. XV** (c. 1375–1200) contained large numbers of Cypriot and Mycenaean imports, including White Slip II, Base Ring II, and LH IIIB. Cypriot imports continued in Str. XIV, though in markedly decreased numbers, while a
LH IIIC cup and other material contemporary with Hazor XII and Megiddo VI were found (Bikai 1978: 65–8).

Several aspects of the Tyre assemblage compare to the Tayinat corpus, particularly among kraters, amphorae, and jars. The high degree of continuity with Late Bronze Age culture and the late onset of the Iron Age are common themes at Tyre and elsewhere, as will be illustrated in the ceramic analysis of Chapter 4. The chronology of Tyre is based in turn on that of Cyprus, which is judged to be on a more solid stratigraphic foundation. However, even the Cypriot sequence is somewhat uncertain in absolute terms, despite several refinements over the years, based as it is largely on tomb material (Bikai 1978: 64; Birmingham 1963: 39–40). It must be borne in mind that many correlations in Cyprus are, in turn, based on Mainland parallels, which themselves have thus far largely been based on unstratified tomb deposits.

2.4.7 Tel Dor

At Tel Dor, long thought to be a settlement of the Šikila (SKL) contingent of Sea Peoples, excavations have prompted a reformulation of the migration timetable in the Early Iron Age southern Levant. Cultural connections to the Phoenician coast and areas north prompt the inclusion of Dor among the sites in the Syria-Phoenicia coastal zone. Excavations have revealed what appears to have been a modest and mostly unexcavated Late Bronze Age village, which seems to have been confined to a portion of the western hill. That settlement was succeeded in the late 12th century by a relatively large-scale city, contemporary with the bichrome phase in Philistia (Phases 10–9: Stern 2008: 1695–7).
Alongside a continuation of Late Bronze Age forms familiar to the region, most of the ceramic assemblage was undecorated, particularly tableware, which was in contrast to Philistine sites, where it often bore painted designs. Very small amounts of Philistine Bichrome were found, but were proven to be of non-local manufacture from Philistia proper. On the other hand, many commercial containers were painted, some with Wavy Line style paralleled in LC IIIB Cyprus (Gilboa 2005: 53–6).

Ayelet Gilboa, in rejecting the socioeconomic rationale proposed by Sherratt and Bauer, has suggested Cyprus as the point of origin for a group of Early Iron Age settlers who arrived at the site of Tel Dor. In addition to locally produced pithoi bearing Wavy Line patterns, she cites a group of deep bowls as supporting evidence, the only coherent Aegeanizing group of vessels at Dor. They differ from Philistine skyphoi in their lack of standardized production and variety of poorly rendered linear motifs, comprised mostly of bands and occasional spirals. There are no signs of the more elaborate artistry found in Philistine painted compositions. It should also be noted that most of these so-called “Northern skyphoi”17 were formed with straight sides (versus convex or concave). They are morphologically comparable to the deep bowls at Tayinat, where straight-sided shapes comprised nearly three-quarters of all skyphoi (Gilboa 2005: 54–7, 64, 66, figs. 2–3; see detailed analysis of deep bowl morphology, section 4.2.1.1.1). In a subsequent study, Gilboa has revealed further stylistic connections to Syria (including the Amuq Valley) and Cyprus, particularly in a series of amphoroid kraters bearing a pattern she calls Overlapping Multiple Diagonal Strokes, or OMDS (Gilboa 2008: 218–34; see section 4.3.5.7.1, for a discussion of this motif).

17 Gilboa cites several other regions with similar “skyphoi phenomena,” including Tell Afis and sites in the Amuq Valley (2005: 64, n. 38).
Excavations at Tell Dor have compelled a reassessment of the Sea Peoples event, highlighting its diverse and perhaps prolonged nature in various regions of the Levant, and the pivotal role played by Cyprus. In cultural terms, the assemblage at Dor shares greater affinities with pottery assemblages on the Phoenician and Syrian coast than it does with Philistia, a demarcation that begins somewhere north of the Yarkon River. Moreover, its stylistic correlations to elements of the Tayinat Aegean assemblage suggest some intriguing possibilities to be explored in later sections.

2.5 Philistia

2.5.1 Tel Miqne (ancient Ekron)

The Philistine sites in the southern Levant are perhaps the best known ancient cities that have produced Aegeanizing cultural assemblages, thanks to ample documentation in the Egyptian and biblical sources. Now finally their publication record is rising to match the prominent position they occupy in ancient histories. Nowhere is this true more than at Tel Miqne, where the ancient Philistine pentapolis city of Ekron was excavated from 1981–1996 under the direction of Trude Dothan, whose seminal work, *The Philistines and Their Material Culture* (1982) formed the basis of all subsequent work in the region. In it she demonstrated the Aegean origins of the Philistine material culture, from ceramics to hearths to Mycenaean figurines to clay spool weights, all occurring as intrusive “urban impositions” on the Canaanite substrate beginning early in
the 12th century, coinciding with the annals of Ramses III and biblical narratives in the Book of Judges.18

From a lengthy article in BASOR, in which Trude Dothan and Alex Zukerman published a thorough form and motif analysis of the pottery of both Ekron and Ashdod (Dothan and Zukerman 2004), to the final report of Field INE in 2006, Tel Miqne now stands as the best-documented of the Philistine sites. The successive phases of Philistine style pottery are designated \textit{Philistine 1} (Myc IIIC:1b), \textit{Philistine 2} (Philistine Bichrome), and \textit{Philistine 3} (debased Philistine). Petrography and chemical testing have demonstrated that the assemblage is a product of local potters consisting of mostly open forms—primarily deep bowls and bell-shaped kraters—derived from LH IIIC Early and Middle style, and closely related to Cypriot IIIA ceramics (Dothan, Gitin and Zukerman 2006: 72; French 2007: 528–29, fig. 3).

Ekron \textbf{VIIB}, the first architectural level of the Iron Age, dated to the second quarter of the 12th century, is the first stratum at the site to report large amounts of Philistine (Philistine 1) pottery, characterized by linear motifs. An internal development to more complex decoration, sometimes referred to as \textit{Pleonastic Style},19 was noted in \textbf{Stratum VIIA} (Dothan and Zukerman 2004: table 2). The most salient aspect of \textbf{Stratum VI} is its introduction of Philistine 2 pottery (bichrome), which eventually replaced Philistine 1 (Meehl, Dothan, and Gitin 2006: 49). The final phase of Philistine pottery comprised what is considered a debased style, terminating c. 1100 BC with the end of \textbf{Stratum VA}. During this nearly two-century period, Philistine pottery

18 However, see Dothan, Gitin, and Zukerman (2006: 93) and Yasur-Landau (2010: 341–2) for a different interpretation of the initial settlement, also discussed in Chapter 5.

19 \textit{Pleonastic} is a term coined by Fritz Schachermeyr to describe the more elaborate types of decoration, which include pictorial representations, not to be confused with \textit{Close Style}, also ornate, but characterized by miniature design with numerous filling motifs found in Mainland sequences (Schachermeyr 1979: 206).
transitioned through the three phases cited above (Dothan and Zukerman 2004: 6, table 2). The chronological phasing is given below together with Ashdod.

2.5.2 Tell Ashdod

Published recently virtually in tandem with Ekron is the site of Ashdod, investigated in the years 1963–1965 and again from 1968–1972 (M. Dothan 1993a: 93; Dothan and Ben-Shlomo 2005). Stratum XIII represents the initial Iron Age, in which the layout of the city, even at this early stage, was already marked by a high degree of urban planning, constructed atop the destruction debris of the final Late Bronze Age city (Str. XIV). It also marks the initial appearance of intrusive Aegean-type culture, including Myc IIIC:1 pottery, or Philistine Monochrome, as well as trace amounts of bichrome (Dothan and Ben-Shlomo 2005: 65, 70). The following Stratum XII exhibited the best-preserved Early Iron Age architecture and revealed a large concentration of Philistine pottery, including a larger repertoire of forms and decoration similar to Ekron Stratum VI (Dothan and Ben-Shlomo 2005: 81).20 Philistine Bichrome still constitutes the predominant style in Stratum XI, while the following Stratum X signals the transition to the Iron IIA period with the advent of red-slipped and burnished ware, which replaces Philistine Bichrome ware (Dothan and Ben-Shlomo 2005: 122, 170). The same developmental trajectory observed at Ashdod has been traced at Ekron through Stratum VA.

20 The Philistines appear to have reused the Egyptian governor’s residence at Ashdod, one of many such structures identified in Late Bronze Age Canaan (see E. Oren’s 1984 survey, to which several more have been added since his publication). Among such sites, Ashdod contains the only stratified sequence of Aegean-style pottery. Several residency sites produced only imported LH IIIA and IIIB sherds, such as Tell el-Farah (S) (Petrie 1930–32: pls. LXIII, LXXII, LXXXIX). However, LH IIIC material has been found at several others: Tell Sera’ (Oren 1993: 1331), Tell Jemmehi (Van Beek 1993: 669–70; Petrie 1928: pls. LXIII–LXIV), Beth Shean (Mazar 1997: 71; 2007: 572; James 1966: figs 50.17, 123:3), and Tell el-Balah (T. Dothan 1993: 345).
The excavators at Ashdod have retained the designation *Myc IIIC:1* for Philistine Monochrome. Together the sites of Ekron and Ashdod provide excellent examples of an intrusive western culture transplanted into the indigenous Canaanite population, with unbroken habitation from the Early Iron Age through the Iron II period. Their respective ceramic sequences are compared as follows:21

<table>
<thead>
<tr>
<th>Ekron</th>
<th>Ashdod</th>
<th>Pottery Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str VIIB</td>
<td>XIII</td>
<td>Myc IIIC:1 (linear)</td>
</tr>
<tr>
<td>VIIA</td>
<td></td>
<td>complex/pleonastic (Ekron only)</td>
</tr>
<tr>
<td>VI</td>
<td>XII</td>
<td>complex/pleonastic and Bichrome</td>
</tr>
<tr>
<td>VA</td>
<td>XI</td>
<td>Bichrome and debased</td>
</tr>
</tbody>
</table>

2.5.3 Tell Ashkelon

The site of Ashkelon is at long last coming into final publication after nearly three decades of fieldwork (1985–2000, 2004–present) under the supervision of Larry Stager and most recently Dan Master. Constructed directly over the remains of an Egyptian garrison, absent any sign of destruction, is Phase 20 (Grid 38), where Philistine Monochrome first appears alongside what have become known as hallmarks of Philistine material culture, locally-made Mycenaean IIIC pottery, Aegean cooking pots (over 50% of cookware overall; Master 2011: 262), hundreds of unbaked clay cylindrical loom weights, and Cypro-Minoan potmarkings (Cross and Stager 2006: 130). Moreover, during this period pork comprised a substantial portion of the diet for the first time (20%), a trend that continued throughout the Early Iron Age levels. The stratum for the initial Philistine settlement is dated on the basis of a scarab of Ramses III, corresponding to the second quarter of the 12th century BC (Stager 2008: 1580–3; Master 2005: 344).

21 This table represents a simplified version of the one published in Dothan and Zukerman 2004: 6.
Phase 19 revealed the first deposits of Philistine Bichrome Ware in a new architectural layout featuring two domestic complexes clustered around a courtyard. This scheme lasted through Phase 17, the last phase of the Iron I occupation. Phase 18 represents the apogee of Philistine culture at Ashkelon, where an expansion of Aegean elements, including incised scapulae, stamp seals, intramural child burials in pits, and benches, are on abundant display. In Phase 17 Philistine pottery underwent further transformation into so-called “Ashdod Ware,” which consisted of red-washed and red-slipped wares corresponding to the ceramic assemblage from Tell Qasile Str. X (Stager, et al. 2008: 266, 271).

Several observations of the Ashkelon assemblage are worth noting. First, in Phase 20 the Aegean style pottery consisted of mostly linear designs similar to LH IIIC Early 2 material from the Mainland (Stager 2008: 1580; French 2007a: 528–29). However, even here signs of development toward a more elaborate, or Pleonastic Style were evident, parallel to LH IIIC Early 2 and LH IIIC Middle 1 style in the Aegean, a trend that continued in later phases at Ashkelon. The ceramic observations correspond to findings at Ekron and Ashdod, where simple linear patterns were followed by more complex decoration, which was produced alongside Philistine Bichrome (Dothan and Zukerman 2004: table 2).

Secondly, spiraliform decoration, which was found in Phase 20 and continued in use until Phase 18, consisted primarily of antithetical motifs very unlike spirals found at Tell Tayinat (see analysis section 4.4.3.1). Anatolian Grey Ware was also discovered, presumably in the earliest Iron Age phase, though specific information is lacking (Master
The excavators have retained the use of traditional terminology to describe Philistine pottery. The sequence at Ashkelon is characterized as follows:

Phase 20: Philistine Monochrome.
Phase 19: mixture of Monochrome and Bichrome.
Phase 18: Philistine Bichrome only.
Phase 17: Philistine Bichrome and Late Philistine Painted (‘Ashdod’) Wares.

<table>
<thead>
<tr>
<th>Phase 20</th>
<th>1175-1140 BC</th>
<th>New architectural plan</th>
<th>Philistine Monochrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 19</td>
<td>1140-1100 BC</td>
<td>First significant new bldg activity</td>
<td>Mono/bichrome mix</td>
</tr>
<tr>
<td>Phase 18</td>
<td>1100-1060 BC</td>
<td>Monumental bldgs</td>
<td>Bichrome only</td>
</tr>
<tr>
<td>Phase 17</td>
<td>1060-1020 BC</td>
<td>Rebuilds</td>
<td>Bichrome and Late Philistine Painted.</td>
</tr>
</tbody>
</table>

2.5.4 Tell es-Safi (ancient Gath)

The Philistine site of **Tell es-Safi** has produced its first preliminary report covering the first ten years of ongoing excavations (1996–2005; Maeir 2012). The site has finds from the Early and Middle Bronze Ages, as well as a continuous Late Bronze Age to Iron II period occupational sequence. The director has confidently identified the settlement with **Gath** of the el-Amarna texts and Biblical Gath of the Philistines, in addition to attributing its 12th century destruction to the Sea Peoples (Maeir 2012: 16–19).

The excavators are careful to state that the Iron I assemblage is thus far relatively small and restricted to stratified deposits in Area A (**Strata A5 and A4**), consisting of a domestic sector separated by courtyards (Zukerman and Maeir 2012: 217), and Area E (**Stratum E3**), which was comprised of rubbish pits and ephemeral architecture (Shai, Uziel, and Maeir 2012: 230). Although a site-wide stratigraphy has not yet been
established, the assemblage in the two areas contains ceramic remains belonging to Philistine 1 (Myc IIIC:1 or Monochrome), Philistine 2 (Bichrome) and Philistine 3 (debased Philistine), representing all phases of the Early Iron Age at the site (Zukerman 2012: 265, 269).

The earliest Iron I levels are marked by the appearance of cultural traits long associated with the Philistines, consistent with those from Ekron Str. VII and Ashdod Str. XIIIIB. The stylistic features of the pottery most closely correlate with LH IIIC Early in Mainland assemblages, whereas those of the Philistine 2 or Bichrome group are consistent with the so-called “Sinda Style” in Cyprus and LH IIIC Middle in the Aegean. By the late Iron I period, a debased version of Philistine style occurs alongside red-slipped and burnished ware (Zukerman 2012: 269–70, 299–303). The repertoire of Aegean forms includes bell-shaped kraters, deep bowls, shallow angular bowls, Aegean-style cooking vessels, and a small number of potters marks that may be Cypro-Minoan signs (Zukerman 2012: pls. 31.1–24).

2.5.5 Tell Qasile

Like the sites of Ekron and Ashdod, archaeological evidence for an 11th century zenith in Philistine culture is also reflected at Tell Qasile, a port city that emerged at a point later in the stylistic development of Philistine pottery, according to the trend established at the pentapolis sites. The city was constructed on a previously uninhabited hill north of the Yarkon River by Philistine settlers contemporary with the second phase of ceramics at Ashdod and Ekron (Str. XII and VI, respectively) during the second half of the 12th century BC (Mazar 1985a: 120, table 19).
Stratum XII was marked by the absence of Philistine Monochrome and the presence of Bichrome. In Stratum XI, the first instance of red-slipped pottery bearing black decoration was found, an innovation that may have originated at Qasile itself, from which it subsequently diffused northward and southward. The assemblage of Stratum X, which ended in destruction (attributed by Mazar to the campaigns of King David), was still abundantly Philistine in character, but employed new decorative techniques typified by a series of kraters painted with black spirals. The assemblage represents a hybrid form of pottery, fusing horizontal handles and degenerated spiriform ornamentation together with local shapes and decoration on a burnished red slip (Mazar 1993: 1205; 1985a: 122–27).

2.6 Cyprus

Ceramic developments on the island of Cyprus (Fig. 3) have long been valuable as ceramic correlates for assemblages in the Near East, given that native wares like White Slip and Base Ring were coveted as imports during much of the Late Bronze Age and following. With respect to the Amuq Valley, commercial ties to Cyprus during the Late Bronze Age have been amply demonstrated by findings from surveys and excavations, particularly at the site of Tell Atchana (Bergoffen 2003; Woolley 1955). The trade networks of the Late Bronze Age appear to have been severed in the region sometime in the 12th century. However, the Aegeanizing pottery at Tayinat shows evidence of contact with the island nonetheless. Cypriot chronology corresponds to the Aegean and the Levant along the following lines:22

22 Chronological chart is adapted from Iacovou (2008: table 1, 626).
2.6.1 Enkomi and Kition

No account of Cypriot history in the Bronze and Iron Ages can fail to incorporate the findings at Enkomi, which was subject to investigation several times, most significantly by intensive excavations under the supervision of Claude Schaeffer (1934–1974), and most recently Porphyrios Dikaios (1948–1958). Although a number of sites throughout the island have produced pottery equivalent to LH IIIC, such as Hala Sultan Tekke (Öbrink 1979; Åström 1998a), Sinda (Furumark 1965; Furumark and Adelman 2003; Åström 2007), Maa-Palaeokastro (Karageorghis and Demas 1988), and Alassa, only Enkomi (Dikaios 1969, 1971) and Kition (Karageorghis 1974, 1981; Karageorghis and Demas 1985) share the distinction of having continuous stratigraphy from LH IIIC Early to Submycenaean. The detailed stratigraphy established by Dikaios was integrated with that of Kition into a new composite scheme by Penelope Mountjoy on the basis of

<table>
<thead>
<tr>
<th>Cyprus</th>
<th>Aegean</th>
<th>Levant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC IIC (c. 1300–1200 BC)</td>
<td>LH IIIB</td>
<td>LB II</td>
</tr>
<tr>
<td>LC IIIA (c. 1200–1125/1100 BC)</td>
<td>LH IIIC Early</td>
<td>Iron IA</td>
</tr>
<tr>
<td>LC IIIB (c. 1125/00 BC–1050 BC)</td>
<td>LH IIIC Middle-Late</td>
<td>Iron IA</td>
</tr>
<tr>
<td>Cypro-Geometric I (c. 1050–950 BC)</td>
<td>Submycenaean</td>
<td>Iron IB</td>
</tr>
</tbody>
</table>
recent work at the Mainland sites of Mycenae, Tiryns and Lefkandi, adapted below (2005b: 125–7; table 7, 165):

<table>
<thead>
<tr>
<th>Aegean</th>
<th>Enkomi</th>
<th>Kition</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH IIIC Early 2:</td>
<td>Level IIIA</td>
<td>IV-IIIa</td>
<td>Simple linear</td>
</tr>
<tr>
<td></td>
<td>Level IIIa</td>
<td>III-Ia</td>
<td>Pleonastic Style appears</td>
</tr>
</tbody>
</table>

---Destruction--

<table>
<thead>
<tr>
<th>LH IIIC Middle 1:</th>
<th>Level IIIB Early</th>
<th>III</th>
<th>Pleonastic Style fully develops</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LH IIIC Middle 2:</th>
<th>Destruction and hiatus?</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LH IIIC Late:</th>
<th>Level IIIB Late</th>
<th>III-II</th>
<th>Wavy Line Style, linear-monochrome</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Submycenaean:</th>
<th>Level IIIC</th>
<th>II, I</th>
<th>Wavy Line Style, linear-monochrome</th>
</tr>
</thead>
</table>
It is important to note the presence of Pleonastic Style at Enkomi Level IIIB Early, contemporary to LH IIIC Middle I (Developed) in the Aegean. Following a putative destruction, Mountjoy proposed an occupational hiatus at Enkomi based on the absence of pottery similar to LH IIIC Middle 2 (Advanced), a gap she assigns about thirty years, or a generation. However, she concedes that this hiatus might not exist at all, if the native wares could be shown to have continuous development (2005b: 164–6).

The most important aspect of Mountjoy’s reconstruction for the Tell Tayinat assemblage, however, is its relevance to the Wavy Line Style, whose first appearance is noted on Floor III at Enkomi in Level IIIB Late and Kition Floors III-II. The closest precursor to the style is traced to the Argolid at several sites: Mycenae, Asine, Kea, Naxos, and at Bademgediği Tepe in western Anatolia, corresponding to LH IIIC Late style on the Mainland (2005b: 159, fig. 16). The Wavy Line style at Enkomi and Kition is shortly thereafter found alongside a linear-monochrome class of decoration, both of which continue to be produced during Level IIIC at Enkomi and Kition Floors II-I, equivalent to Submycenaean in Mainland chronology. The Wavy Line and linear-monochrome groups are dated to the last quarter of the 12th century continuing into the first half of the 11th century, in Mainland terms. However, the presumably contemporary production of similar material in the Levant remains to be corroborated by radiocarbon dates and stratigraphic reality.

2.7 Summary Observations

The goal of this survey of sites was to lay the groundwork for a deeper understanding of the geographical and cultural context of the Tayinat assemblage, the
analysis of which will follow in Chapter 4. The spatial distribution of Aegean-type ceramics is truly vast, which speaks not only to the popularity of the style, but to the movement of peoples, particularly eastward from origins unknown to locations in Cyprus and the Levant. This chapter is most valuable when used as a reference point for future chapters when specific comparisons are made to strata, assemblages, and individual vessels. Each region and site selected for the review is considered in some way relevant to the Aegeanizing assemblage at Tell Tayinat. The chapter to follow will continue in greater depth the analysis of sites, with a focus on the excavations and investigations in the Amuq Valley.

Moreover, several pertinent stylistic observations emerge from this review of regional assemblages: First, that Wavy Line Style represents a northern phenomenon, including Cyprus, and is almost completely absent in the southern Levant. The style would also appear to be a chronologically late development that appeared largely after the LH IIIC Early and IIIC Middle phases, in Mainland terms, equivalent to the latter half or quarter of the 12th century BC. Secondly, the spiral motif was quite popular in LH IIIC assemblages, particularly antithetical spirals, which were characteristic of the LH IIIC Early phase. Such decoration has been found in the north and the south, as well as in Cyprus. However, there are other forms of spiral motif characteristic of the Tayinat assemblage that may reflect a later developmental stage of spiraliform decoration, which will be discussed further in Chapter 4, in the section pertaining to Aegean-style amphorae and jars.
3 Archaeology of the Early Iron Age in the Amuq Valley and Vicinity

3.1 Amuq Valley Surveys and Settlement Patterns

Modern archaeological research of the Amuq Valley began under the direction of Robert Braidwood and the University of Chicago’s Oriental Institute, as part of an ambitious project of surveys followed by excavations at prominent mound sites (Braidwood 1937; Braidwood and Braidwood 1960). These efforts resulted in the work of the Syrian-Hittite Expedition, which specifically undertook investigations at Tell Judaidah, Chatal Höyük, and Tell Tayinat (Fig. 2). Although these excavations were never fully published, several volumes were produced: a study of the Luwian hieroglyphs (Gelb 1939), a study of ceramics from the Amuq Valley (Phases K to O) in an unpublished dissertation (Swift 1958), an architectural and artifact analysis of the early periods (Braidwood and Braidwood 1960), and an architectural analysis of the three featured sites (Haines 1971).

The important site of Tell Atchana (ancient Alalakh) has also been subject to excavation, originally by Leonard Woolley of the British Museum (1937–49). More recently, Aslıhan Yener has renewed excavations at the site, initially as a University of Chicago project (Yener, Schloen, and Fink 2004), and now under the auspices of Koç University in Istanbul (2005–present). Woolley published a number of articles, a scholarly volume, *Alalakh: An Account of the Excavations at Tell Atchana in the Hatay, 1937–1949* (1955), and a popular work entitled, *A Forgotten Kingdom* (1959). His
stratigraphic conclusions at various points have been challenged by scholars, such as Marie Henriette-Gates (1981), Tom McClellan (1990), and most recently with regard to the Late Bronze Age by Amir Sumaka’i Fink (2010). As excavations are ongoing at Tell Atchana, only preliminary studies have been published thus far, the most important being an analysis of the Late Bronze-Iron Age transition presently pending (Yener in press).

Most recently the Amuq Valley Regional Project, or AVRP (1995–2002), was initiated to bring a multidisciplinary approach to renewed archaeological fieldwork in the valley. These efforts have yielded a preliminary volume (Yener 2005) and lengthy article (Yener et al. 2000) on the results of an intensive survey and geomorphological research. Work began in Turkey in 1999 with an intensive program of surveys and geomorphological research as a prelude to excavations at major mound sites (Yener et al. 2005: 1). In 2004, excavations commenced at Tell Tayinat as the Tayinat Archaeological Project (TAP) under the direction of Dr. Tim Harrison and the University of Toronto. Several articles have been published thus far, primarily pertaining to the Iron Age (Harrison 2001, 2009a, 2009b, 2010, 2011; Janeway 2008, 2011; Lauinger 2011). Moreover, the AVRP was tasked with final publication of the excavations of the Syrian-Hittite Expedition. These include Tell Judaidah (Lynn Swartz Dodd), Chatal Höyük (Marina Pucci), and Tell Tayinat (Heather Snow), all of which are pending.

After nearly eight decades, the results of research begun by Robert Braidwood and continued by others are finally coming to fruition. At the same time, new research is promising to answer many questions relating to the Amuq Valley, particularly with respect to Tell Tayinat and Tell Atchana. The following chapter will examine those investigations in greater depth.
3.1.1 Braidwood Survey

The site of Chatal Höyük was the first site in the Amuq Valley to be subjected to modern research. It was chosen for investigation based on several factors, most notably its putative identification as the Iron Age capital of the region, Kunulua, the high profile of its mound, and the large amounts of Iron Age pottery laying on its surface (McEwan 1937: 8; Oberheid 2007: 190–202; Pucci 2010: 568). Investigations began in earnest in 1933 with a survey conducted by Robert Braidwood as part of the Syrian-Hittite Expedition of the Oriental Institute at the University of Chicago (Braidwood 1937; Braidwood and Braidwood 1960). His survey was a truly pioneering effort, both methodologically and because so little was known about the region at the time. Braidwood himself noted that the normal course of research should begin with a regional survey, followed by excavations at key sites. However in his words, “this presupposes on the part of the surveyor knowledge of evidence, chiefly ceramic” (Braidwood 1937: 1).

In the case of the Amuq Valley, however, there was very little if any prior knowledge. Thus a decision was made to conduct a step trench at the site of Tell Judaidah in order to establish a ceramic sequence for the regional survey that followed. The survey did not attempt to document all ancient sites in the region. Rather, it focused on mounded tell sites, which were divided into three categories (small, medium, large) according to the surface area of the mound (Braidwood 1937: 1-4). The survey was exemplary for its day and resulted in a total of 178 visible sites being recorded, including settlements ranging from the Neolithic to the Islamic period. This helped set the stage for large-scale excavations at the key sites of Chatal Höyük (1933–1936), Tell Judaidah (1933–1936),
and Tell Tayinat (1934–1938), both of which were the scene of wide exposures that revealed their extensive Iron Age remains (Haines 1971; Yener 2005: 5; Haines 1971; Swift 1958: 11, table 2).

3.1.2 Amuq Valley Regional Project (AVRP)

Of the original 178 sites found by Braidwood, 154 now fall within the borders of Turkey, which annexed the Republic of Hatay in 1939. This list of sites formed the basis of renewed work by the Oriental Institute in the 1990s as part of the Amuq Valley Regional Project (AVRP), an interdisciplinary long range archaeological investigation of the Hatay region of southern Turkey. By 2005, the AVRP had surveyed a total of 346 sites from all archaeological periods—the large increase in number of settlements owing to the fact that the survey was no longer limited to tell sites (Yener 2005: 1 and see Appendix A: Gazetteer of Sites, 203-80; Verstraete and Wilkinson 2000: 179). A related survey of the Orontes Delta was also initiated concurrently with the AVRP, documenting a total of five sites from the Iron Age (Pamir 2005: 72).

One of the primary objectives of the AVRP between 1995 and 2002 was to reconstruct ancient settlement patterns across the history of human occupation in the valley. An adjunct to this larger goal was a focus on cultural links with the Aegean and Cyprus during the Late Bronze and Early Iron Ages in order to “interpret the social significance of Aegean products in the Levantine economy” (Verstraete and Wilkinson 2000: 179).

A notable finding of the Braidwood survey of the 1930s was that the Amuq Valley witnessed a decline in the number of sites during the Late Bronze Age (see Table 2; see also Verstraete and Wilkinson 2000: figs. 6d, 12a). It recorded 40 Phase K/L sites
(MB), 30 Phase M sites (LB), 47 from Phase N (Iron I), and 58 from the Phase O (Iron II) (Braidwood 1937). An important aspect of this pattern is that 74 percent of Phase N settlements (30 of 47 sites) were new foundations, a mark of discontinuity from the previous period (Harrison 2009b: 175–6; Harrison 2001: 122–4). Also interesting is the fact that, while aggregate settled area increased during Phase N, the average site size decreased. The Amuq appears to have experienced a “dispersal” of population into a collection of small, rural settlements (Casana and Wilkinson 2005: 39). Data collected by the AVRP team has corroborated the Braidwood survey, while demonstrating that the number of settlements recovered to exceed Middle Bronze Age levels during the subsequent Iron Age. This phenomenon parallels a wider trend noted east of the Amuq and in the southern Levant (Verstraete and Wilkinson 2000: 180, 187; Buccelatti 1997: 110; Falconer 1994: 329; Ibach 1987: 157; McClellan 1992: 169, fig. 20.2; Petter 2005: 114, 165).

The Late Bronze Age decline in the Amuq Valley would appear to have textual support in the archives of ancient Alalakh (Tell Atchana). These indicate that only 18 out of a total of 58 settlements recorded in the Middle Bronze Age archives (Alalakh Level VII) were still inhabited in the Late Bronze Age (Alalakh Level IV) (Wiseman 1953: 8). This number corresponds well with survey results showing that 19 Middle Bronze Age sites continued to be inhabited during the Late Bronze Age (Verstraete and Wilkinson 2000: 187; see Harrison 2009b: 175–6; 2001: 122–4 for more detailed discussion). Moreover, during the Middle Bronze Age the concentration of sites shifted to the southern portion of the Amuq Valley, where the major mound sites of Tell Atchana,

23 However, see J. Casana (2009) on the difficulty of correlating the Alalakh archives with survey observations in the reconstruction of ancient polities.
Chatal Höyük, and Tell Judaidah were located, evidently to take advantage of existing transportation routes and trade networks.

The distribution of settlements during Phase M was characterized by a nucleated pattern where clusters of secondary and tertiary settlements clustered around the primary mound sites (Magness-Gardiner 1994: 40, 44). This corresponds to the period when Alalakh was vassal to the kingdom of Yamkhad (Klengel 1992: 44), and the major communication route ran east-west along a corridor between the Mediterranean Sea coast and the modern city of Aleppo, the seat of ancient Yamkhad (Verstraete and Wilkinson 2000: 188, 191).

According to the AVRP survey, Aegean ceramics, including both imported and local imitations, were found at a total of 21 sites located primarily in the south of the valley along the principal trade route (Verstraete and Wilkinson 2000: 188; see Table 2). The survey discerned two phases. The first phase, Phase M, was marked by Aegean imports, consisting of Myc IIIA and IIIB (c. 1400-1200 BC), which were found at only 3 sites: Tell Atchana, Chatal Höyük and Tell Judaidah. Outside of Tell Atchana, only seven Mycenaean sherds were found by the Syrian-Hittite Expedition from this phase, five of which came from Tell Judaidah, and none of these from clean stratigraphic contexts (Swift 1958: 63). On current evidence, the presence of imported Mycenaean pottery seems to have been confined primarily to Tell Atchana.

The AVRP’s second phase of Aegean ceramic material, Phase N, witnessed a transition from Myc IIIA and IIIB imports to locally-produced Aegean-type pottery. This local tradition was reported at 18 distinct sites (Verstraete and Wilkinson 2000: 188–89),
not including an additional five sites that contained either “possible Early Iron Age” or “Late Bronze–Iron Age” pottery (Casana and Wilkinson 2005: Appendix A, 203–80). A cursory review of this survey material by the author in July 2008 revealed that the distribution of local Aegean-style pottery was wider than reported, with at least six additional sites in the valley producing LH IIIC material. This brings the total number of Phase N sites with locally produced Aegeanizing pottery to as high as 29.

The results of the AVRP remain to be fully published, but the presence of locally manufactured Aegean material in the Amuq appears to have been considerably greater than initial estimates. It must be admitted, however, that interpretation of both the Braidwood and AVRP surveys remains hampered by the absence of a thorough publication and analysis of the local potting traditions (Fink 2010: 130).

Jan Verstraete has surmised that the wider distribution of locally produced Mycenaean pottery was due to an expansion of taste for such wares by broader social

24 My thanks go to Dr. Aslihan Yener for allowing me to peruse the AVRP collection in July, 2008.
groupings (Verstraete and Wilkinson 2000: 189). According to this view, the breakdown of the Late Bronze Age palace economies and trade networks led to the regionalized and local production of imitation Mycenaean pottery to suit the tastes of a wider market than a relatively narrow segment of Late Bronze Age society (Sherratt and Crouwel 1987: 340–2). Another alternative is the influx of intrusive population elements.

It is interesting to note that almost all of the sites occupied during the Late Bronze Age continued to be inhabited in the Early Iron Age, the most notable exception being Tell Atchana25 (Verstraete and Wilkinson 2000: 189), which appears to have been supplanted by Tell Tayinat, its sister site. The continued occupation of Late Bronze Age mounds in the Iron Age is paralleled in surveys undertaken in the Kahramanmaraş and Sakçegözü regions northeast of the Amuq, where all but one of the Early Iron Age sites were established on preexisting mounds from the preceding period (Swartz-Dodd 2003: 131).

The AVRP survey further demonstrated an important aspect of the settlement pattern in the Amuq Valley: that Tell Atchana and Tell Tayinat are in such close proximity to one another that they should be considered “twin settlements,” an idea that might help explain complementary occupational periods of the two sites (Verstraete and Wilkinson 2000: 189). The combination of sites, which seems to have served essentially as capitals of the valley during their respective periods, comprised the largest settlements through successive periods in the Amuq Valley, from the Early Bronze Age until the end of the Iron Age (Yener 2005: 4; Casana and Wilkinson 2005: 38). The fact that the capital of the valley was located continuously at sites only 700 meters apart illustrates the

25 However, see below regarding the recent discovery of LH IIIC pottery belonging to an ephemeral 12th century occupation at Tell Atchana (section 3.2.5).
importance of the primary communication route along the southern border of the Amuq on the banks of the Orontes River—a state of affairs that prevailed for nearly two millennia. The collocation of the two sites might be the result of the geomorphology of the area, particularly with respect to the course of the Orontes River, which may have once flowed between the two. The cities may have occupied opposite sides of the river that once flowed between them (Fink 2010: 130). The explanation for this complementary settlement history poses an important research question for ongoing excavations.

3.1.3 Sabuniye

Also important to the history of the Amuq Valley are investigations at the site of Sabuniye downriver from the Amuq Plain and three miles upriver from the modern Mediterranean coastline (see Fig. 2). Its discovery was the result of Leonard Woolley’s attempt to secure proof of his theory of cultural transmission, which asserted that Minoans had borrowed from the Ancient Near East, since “only excavation could prove or disprove the theory” (Woolley 1938:1). His search for the port city of the Amuq at the mouth of the Orontes, resulted in his discovery of the site of Al Mina, where his findings were disappointing. Local tradition had it that a flood 100-150 years earlier had roared down the valley and washed away the northern part of the tell, taking with it any material Woolley thought to be earlier than the 9th century BC (Woolley 1938: 8). Following Woolley’s excavations at Al Mina, Joan Du Plat Taylor reassessed the site’s stratigraphy and found that the earliest level (X) rested on virgin soil and dated only to the late 8th century (1959: 62, 91). Al Mina was clearly not the Bronze Age entrepot of the Amuq Valley sought by Woolley.
However, upon further investigation upstream from Al Mina, Woolley was introduced to a small hill named Sabuniye, which was rumored to have yielded “sensational discoveries” (1938: 8). He undertook to clear several soundings, and his findings were significant. Woolley reported finding Attic red-figured and black-figured wares, Cypriot and Island Geometric, and white “milk bowls” of the Cypriot Bronze Age and Mycenaean (1938: 8–9), the latter presumably consisting of Myc IIIA or IIIB, though he does not specify. The Orontes Delta Survey’s investigations at Sabuniye have confirmed Woolley’s findings, recovering material ranging from the Middle Bronze Age to the Iron Age. This ceramic assemblage includes examples of locally produced Aegean-style pottery (Pamir 2005: 71-72, figs. 3.7, 3.8, 3.11).

Woolley’s theory that Al Mina served as the port for Sabuniye and the Amuq Valley was flawed, at least as pertains to the Bronze and Early Iron Ages. Rather, Sabuniye appears to have served as the Mediterranean port of Late Bronze Age Tell Atchana and Early Iron Age Tell Tayinat, while Al Mina fulfilled the same role for Tayinat during the later Iron II and III period. For reasons unknown—perhaps related to political realignments or due to a shifting coastline as a result of heavy sedimentation of the Orontes River—over time the port relocated from Sabuniye to Al Mina, which clearly served as the entryway for goods heading to Tell Tayinat during its heyday in Phase O (Pamir 2005: 76). Unfortunately, attempts to excavate at the site have been hampered by poor preservation and mixed stratigraphy.
3.1.4 Tell Ğindāris

Excavations independent of the AVRP have also taken place at the eastern Amuq site of Tell Ğindāris (see Fig. 2), located in the Afrin Valley, and originally surveyed by Braidwood (1937: map IV, 25, site no. 58). The site was initially associated with the ancient capital of Kunulua by Dussaud (1927: 241, n. 1) and Gelb (1935: 189–91), followed by Braidwood (1937: 25, n. 3), and most recently Dietrich Sürenhagen (1999: 161, 166). Recent investigations undertaken by a Syro-German team led by Sürenhagen from 1993–1996 have identified a large mounded site with occupation dating as early as the Middle Bronze Age and as late as the Iron II period, but thus far lacking remains from the intervening Late Bronze Age (Sürenhagen 1999: 165). Unfortunately, the Early Iron Age levels, though present, consisted of badly preserved domestic architecture and numerous pits (Sürenhagen 1999: 163). However, an abundance of LH IIIC pottery has been reported, including deep bowls, SABs (shallow angular bowls), and krater fragments decorated with wavy line motif and triple stacked zigzag reminiscent of the Tayinat motifs (Mühlenerbruch, Sterba, and Sürenhagen 2009: pl. 2; Sürenhagen 1999: fig. 10). Sürenhagen has dated the Iron Age occupation of Tell Ğindāris to c. 1100–600 BC (1999: 164).

3.2 The Syrian-Hittite Expedition and Renewed Excavations

The Syrian-Hittite Expedition undertook to excavate key mound sites in the Amuq Valley. The campaigns took place over six years in all, occurring simultaneously at all three sites from 1935 to 1936 and continuing at Tell Tayinat alone for two additional seasons (see Table 3). The expedition consisted of excavations at Tell Judaidah (three seasons from October 1933 to June 1936), Chatal Höyük (four seasons
from January 1933 to June, 1936), and Tell Tayinat (four seasons from October 1935 to August 1938). The results are summarized as follows:

Table 3. Field Seasons of the Syrian-Hittite Expedition

<table>
<thead>
<tr>
<th>Campaigns/Sites</th>
<th>Tell Judaidah</th>
<th>Chatal Höyük</th>
<th>Tell Tayinat</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1933 (Jan–June)</td>
<td></td>
<td>CP 1–363 (pottery)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 1–401 (objects)</td>
<td></td>
</tr>
<tr>
<td>-1933–1934 (Oct–Apr)</td>
<td>Z 1–1178</td>
<td>A 1–2848</td>
<td></td>
</tr>
<tr>
<td>-1934–1935 (Oct–Apr)</td>
<td>Y 1–1050</td>
<td>B 1–2915</td>
<td>T 1–222</td>
</tr>
<tr>
<td>-1937 (July–Nov)</td>
<td></td>
<td></td>
<td>T 2000–3277</td>
</tr>
<tr>
<td>-1938 (Apr–Aug)</td>
<td></td>
<td></td>
<td>T 3278–3850</td>
</tr>
</tbody>
</table>

3.2.1 Tell Judaidah

The Syrian-Hittite Expedition identified stratified deposits of Phase N material at Tell Judaidah, Chatal Höyük, and Tell Tayinat. At the site of Tell Judaidah (see Table 3, Table 4), Early Iron Age pottery was found in the following areas—TT20, D8/1, F7–9, G7, H7, and J7 (see Fig 4; Swift 1958: table 1, 226; cf. Haines map 1971: pl. 53). Moreover, amongst the three sites excavated by the Expedition, Judaidah produced the “greatest number of reliable consecutive phase N levels” (Swift 1958: 64). Specifically, a series of four levels from Phase N (levels 12–9) were uncovered in area F7. According to the excavator, the stratigraphic remains from Judaidah showed no signs of widespread destruction, either in the transition from Phase M to N or in the transition to Phase O (Swift 1958: 63–4).

26 Table is adapted from Swift 1958: 11, table 2. Numbers under site headings are object field registration series.
27 Adapted from Swift (1958: 11, table 2).
Table 4. Tell Judaidah Phase N (Syrian-Hittite Expedition)

<table>
<thead>
<tr>
<th>Square(s)</th>
<th>Haines levels (Swift)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F7</td>
<td>11–9 (12–9)</td>
<td>Private houses</td>
<td>Swift 64; Haines 27</td>
</tr>
<tr>
<td>F8, F9</td>
<td>11–9 (10–9)</td>
<td>Large rectangular bldg</td>
<td>Swift 64; Haines 27</td>
</tr>
<tr>
<td>G7, H7, J7</td>
<td>11–9 (1)</td>
<td>No description</td>
<td>Swift 64; Haines 34</td>
</tr>
<tr>
<td>D8/1</td>
<td>11–9 (9–4)</td>
<td>No description</td>
<td>Swift 64; Haines 26</td>
</tr>
<tr>
<td>TT20 (J–K3)</td>
<td>11–9 (5–1)</td>
<td>Step trench</td>
<td>Swift 64; Haines 26</td>
</tr>
</tbody>
</table>

I have made no attempt to resolve the stratigraphic discrepancies between Swift and Haines. Both are included for reference, though the latter is presumed to be the definitive scheme.
Unfortunately, the exposures at Judaidah were, in Swift’s words, “either so small (D8/1, F7) or insufficiently trustworthy (TT20),” to resolve the question of whether there was a stratigraphic discontinuity amounting to a hiatus of two and a half centuries (c. 1400–1150 BC) in the Amuq Valley (1958: 63). Swift had proposed a hiatus on the basis of mixed content in the transitional levels at Chatal Höyük (1958: 63). However, he conceded that there may have been intervening levels undiscovered at Judaidah since five of the seven total known Mycenaean sherds came from that site (Swift 1958: 63-4). This assertion would seem to apply to imported Mycenaean pottery specifically, which would correspond to his hiatus, though this remains unclear due to his lack of specific ceramic terminology. It should be noted that Pucci’s recent stratigraphic reassessment of Chatal Höyük argues against Swift’s hiatus theory as it relates to the site, which is discussed at greater length below (Pucci in press).

The excavations at Tell Judaidah uncovered a large area, comprised mostly of domestic architectural remains, even though those concerning the Phase M-N transition were fairly limited. They revealed that occupation on the mound was more or less continuous from Amuq Phases M through Phase O, equivalent to the Middle Bronze, Late Bronze, Iron I, and Iron II periods (Swift 1958: 63; Haines 1971: 26). The continuity at Tell Judaidah is paralleled at nearby Chatal Höyük and adds nuance to the idea that there was a valleywide hiatus during the transitional phase.

Unfortunately, there were only two Phase N vessels published from Tell Judaidah: a painted shallow bowl and a painted deep bowl, or skyphos (Swift 1958: figs. 18, 21; Haines 1971: 27-28). Fortunately, the mandate of the AVRP calls for a full publication of the finds of the Syrian-Hittite Expedition, something that was woefully neglected for
many decades. The task of processing the finds from Tell Judaidah has been undertaken by Dr. Lynn Schwartz-Dodd and results are forthcoming at this important valley site.

3.2.2 Chatal Höyük

At Chatal Höyük, Phase N material was recovered wherever digging penetrated below Phase O levels (Swift 1958: 64, see map 225; also see Table 3, Table 5 and Fig. 5). Of the six areas into which the mound was divided, Phase N pottery was found in five. Indeed, most of Swift’s ceramic illustrations come from the site (Swift 1958: table 1, figs. 17, 19, 20, 22–26; Haines 1971: 3–24). These areas include Area I (V13, W15), II (N13, N14), IV (H4, J9), V (P4), and VI (T8). Area III was not excavated to a depth sufficient to reach Phase N levels (Haines 1971: pl. 18).

Table 5. Chatal Höyük Phase N (Syrian-Hittite Expedition)

<table>
<thead>
<tr>
<th>Area. Square (s)</th>
<th>Haines levels (Swift)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. W13, W15</td>
<td>10–7 (9–7)</td>
<td>Private houses</td>
<td>Swift 64; Haines 5</td>
</tr>
<tr>
<td>II. N13</td>
<td>11–9 (10–9)</td>
<td>Private houses</td>
<td>Swift 64; Haines 13</td>
</tr>
<tr>
<td>III. Q8</td>
<td>10–9 (—)</td>
<td>No structures</td>
<td>Swift 64; Haines 17</td>
</tr>
<tr>
<td>IV. H4, J9, L3</td>
<td>6–5 (5–4)</td>
<td>Private rooms</td>
<td>Swift 64; Haines 18, 20</td>
</tr>
<tr>
<td>V. P4</td>
<td>4–2 (2)</td>
<td>Wall fragments</td>
<td>Swift 64; Haines 23</td>
</tr>
<tr>
<td>VI. T8</td>
<td>8 (8–7)</td>
<td>Thin walls</td>
<td>Swift 64; Haines 24</td>
</tr>
</tbody>
</table>

Marina Pucci has undertaken the final publication of the Chatal Höyük material and is forthcoming with preliminary reports on the finds (2010: in press). Contrary to Swift’s argument for an occupational hiatus of 250 years between Phase M and N, which

29 No attempt was made to resolve the relatively minor stratigraphic discrepancies between Swift and Haines. Though the latter is presumed to be the final scheme, both are included for reference.

30 I thank Marina Pucci for making this article available to me in advance of its publication.
was based largely on results from Chatal Höyük (1958: 63), Pucci has discerned an unbroken continuity of occupation at the site. Her conclusion is based on the similarity in structural phases, without signs of destruction, discontinuity or abandonment, along with
a smooth transition in the ceramic record (Pucci in press; see discussion in Fink 2010: 134–5 for implications at Tell Atchana, and discussion below, section 3.2.5). Although the new findings are based on limited exposures from the original excavations, they have important chronological implications for the refoundation of settlement at Tayinat.

The earliest stratified material at Chatal Höyük dates to Amuq Phase M, and was found in Areas II and IV. Area II provided sufficient exposure and ceramics to establish two separate cultural horizons, the earlier of these two (II_12=Area II Level 12) consisting of material that parallels Late Bronze Age assemblages at Alalakh (Levels IV–III) and Tell Afis (Phases VIb and Vb) (Pucci in press). Some of the common ware shows signs of standardized production. The painted wares, which reflect Late Bronze I traditions, amount to approximately 11% of the total. In the latter horizon, Level 11, equivalent to Late Bronze II, a significant change occurred in the spatial organization of the area. At the same time, the ceramic record exhibited a large degree of continuity, although with a few imports, such as several pieces of Cypriot White Slip II and Red Lustrous spindle bottles (Pucci in press). The discovery of a late Phase M assemblage is significant, since the Swift theory of a two century hiatus was based on the absence of such wares at both Chatal Höyük and Tell Judaidah (1958: 20–21). If the new findings at Chatal Höyük can be extended to other sites in the valley, this proposition may have to be revised. Indeed, Fink has argued as much in shortening the proposed hiatus to approximately one century (2010: 125).

Level 11 in Area II was comprised of pebble floors, mudbrick silos, and graves. In the subsequent Level 10 these features continued in use without interruption. Pucci has divided the pottery assemblage from this level into two groups. The earliest level of
material was found on and inside the floors, and the latter in a layer of fill material that accumulated above the floors, but below the following architectural Level 9. The pottery on the floors of Level 10 was similar to the Late Bronze Age material from the preceding Level 11, while the fill (designated Level 10_fill) was marked by the sudden appearance of new shapes, such as Aegean-style deep bowls and shallow angular bowls (SAB) decorated in monochrome paint with a variety of mostly linear designs. They included plain bands, wavy lines, and cross-hatched triangles mixed with a few figurative motifs such as birds and fish (Pucci in press). The degree to which this assemblage relates to that of Tell Tayinat will be the subject of further analysis in Chapter 4. Suffice it to say, that Pucci has equated the Aegean-style ceramics from Chatal Höyük to LH IIIC Middle 2 (Advanced) in Greek Mainland terms, corresponding to the last quarter of the 12th century BC.

Pucci has marked the advent of LH IIIC painted ware at Chatal Höyük to phase II_10_fill, on the basis of painted bowls with internal reserved bands below the rim and on the presence of the Wavy Line Style, the latter of which does not actually appear until LH IIIC Late in Mainland contexts (Mountjoy 2005b: 157). However, this chronology is somewhat indefinite as Mountjoy had dated the first appearance of flowing wavy line motifs to LH IIIC Middle in an earlier publication (1986: fig. 200.19). It should also be noted that Cypriot imported ware, such as White Slip II, was found in Level 11 and continued to appear alongside the Aegean-style assemblage in the Level 10_fill (Pucci in press).
3.2.3 The Syrian-Hittite Expedition to Tell Tayinat (1935–1938)

Large-scale excavations were conducted at Tell Tayinat by the Syrian-Hittite Expedition of the Oriental Institute between 1935 and 1938 (see Table 3, Table 6, and Fig. 6). Their soundings were focused primarily on the West Central Area of the upper, or citadel mound, though several other areas were opened at the eastern and southern edges of the mound, as well as the lower settlement. The work of the team resulted in exposures relating to five distinct architectural phases, or Building Periods, which historically corresponded to the Iron II and III periods (Amuq Phase O; Haines 1971: 64–66). However, deeper probes reached earlier strata consisting of Early Iron Age (Phase N) and Early Bronze Age (Phases H, I, and J) remains (Braidwood and Braidwood 1960: 13–14). These findings suggested there was a hiatus at the site equating to the Middle and Late Bronze Ages.

Table 6. Tell Tayinat Phase N (Syrian-Hittite Expedition)

<table>
<thead>
<tr>
<th>Building</th>
<th>Building Period</th>
<th>Description</th>
<th>Reference (Haines 1971)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform XV</td>
<td>4</td>
<td>Adjoined Bldgs IV and I</td>
<td>(43, 65, pl. 101)</td>
</tr>
<tr>
<td>Bldg XIV</td>
<td>1</td>
<td>Monumental bldg. Palace?</td>
<td>(39, 64, pl. 95)</td>
</tr>
<tr>
<td>Bldg XIII</td>
<td>1</td>
<td>Bit hilani</td>
<td>(38, 64, pl. 94)</td>
</tr>
<tr>
<td>Courtyard VIII</td>
<td>2</td>
<td>Paved central area</td>
<td>(40, 64, pls. 102, 106)</td>
</tr>
<tr>
<td>Bldg I</td>
<td>2</td>
<td>Bit hilani</td>
<td>(44, 64, pl. 103)</td>
</tr>
<tr>
<td>T5</td>
<td>pre-Phase O</td>
<td>East-west step trench</td>
<td>(57, pls. 93, 98)</td>
</tr>
<tr>
<td>T8</td>
<td>pre-Phase O</td>
<td>Probe under Bldg V (G 21)</td>
<td>(38, pl. 93; Braidwood 1960:13)</td>
</tr>
<tr>
<td>Bldg II</td>
<td>2</td>
<td>Tripartite temple</td>
<td>(53, 64, pls. 81, 103)</td>
</tr>
<tr>
<td>T7</td>
<td>pre-Phase O</td>
<td>Probe trench (Q 13)</td>
<td>(63, pl. 93)</td>
</tr>
</tbody>
</table>
Fig. 6. Tell Tayinat. All Excavated Areas
(Adapted from Haines 1971: pl. 93)
The **First Building Period**, the least well-documented and understood, represented the initial architectural level of the Iron Age, as delineated by the Chicago team. Limited exposures resulted in the identification of two major structures designated Buildings XIII and XIV (Haines 1971: 38–40). Building XIII was recognized as a *bit hilani* palace featuring what was evidently a porticoed entrance, located north of an open area (Haines 1971: pl. 94). Building XIV was a massive structure situated on the southern edge of the same open area. It measured an estimated 49 by 95 meters, with mudbrick walls 3 meters thick (Haines 1971: pl. 95). Subsequent investigations by the renewed excavations suggest that Building XIV was constructed in the Late Iron I/Early Iron II period, approximately dated to the 10th–9th centuries BC, contingent on further excavation (Harrison 2009b: 186).

The monumental buildings of Building Period One were in turn sealed by structures belonging to the **Second Building Period**. A number of important monumental structures were uncovered, which appear to have clustered around the same central courtyard (Haines 1971: pl. 106). The tradition of *bit hilani* architecture at the site continued, as the ground plans of three major structures make clear (Buildings I, IV, and VI; see Haines 1971: pls. 103, 96). To this building complex was added a western gate, Gateway XII, which afforded access to the paved courtyard, designated Courtyard VIII (Haines 1971: pl. 106). A small *megaron*-style temple (Building II) was also constructed adjacent and to the south of Building I (Haines 1971: pl. 103). The royal complex was collectively dated to the late 9th and 8th centuries BC, on the basis of Luwian inscriptions found on or below the floors of Buildings I and II (Haines 1971: 66).
The **Third Building Period** consisted primarily of renovations to the West Central Area, with the exception of a newly-erected elevated rectangular platform, Platform XV (Haines 1971: pl. 107). Moreover, in an area south of the West Central Area, Building IX was constructed. It did not resemble the typical *bit hilani* style architecture so common at the site during the earlier periods, but rather exhibited the distinctive signs of Mesopotamian royal construction, featuring two paved baked-brick courtyards and several adjoining rooms (see Haines 1971: pl. 109; Harrison 2005). The palace was evidently constructed during the period of Assyrian occupation in the late 8th to early 7th century BC.

Building I was completely rebuilt in the **Fourth Building Period**, a north-south wall was erected across the courtyard, and Building II was evidently abandoned. These developments coincided with Assyrian construction activity at the site that continued in the 7th century (Haines 1971: pl. 108). To the **Fifth and final Building Period** was attributed the highest floor of Building I, fragments of Platform XV, and a retaining wall on the east edge of the mound (Building X). These structures were dated to the end of the 7th and early 6th centuries BC (Haines 1971: 66). At this point the site was abandoned for the final time, with the exception of a small Arab village which occupied the site in the early 20th century.

The Syrian-Hittite excavations were successful in exposing a wealth of monumental architecture, primarily from the Neo-Hittite, or Syro-Anatolian31 era, but also from the Neo-Assyrian period of occupation, described in royal Assyrian annals of the conquest of Kunulua, capital of the kingdom of Patina/Unqi (Harrison 2011: 29).

31 See discussion of the neutral term “Syro-Anatolian” over against “Neo-Hittite,” the latter of which presumes an ethnic demographic that may not be warranted (Osborne 2012: 29, n. 1).
However, the Syrian-Hittite team did not reach the Early Iron Age levels, except in small probes. Not until the excavations of the Tayinat Archaeological Project (TAP) commenced in 2004 were these earlier strata finally revealed.

The Syrian-Hittite Expedition’s excavations at Tell Tayinat produced only traces of Phase N pottery in the limited soundings conducted below the monumental Phase O buildings (Fig. 6) (Swift 1958: table 1, 64; Haines 1971: 41, 58). However, an examination of the material uncovered by the Syrian-Hittite Expedition by the author, presently housed in the Oriental Institute, coupled with a review of the excavation field notes, indicates that the distribution of Phase N painted ware was widespread, being found in virtually every area excavated on the upper mound.\(^32\) In sum, the extent of the Phase N deposits uncovered by both the Syrian-Hittite Expedition and the renewed excavations of the TAP suggest the likelihood that the entire surface of the citadel mound was occupied in the Early Iron Age.

Specifically, Phase N material was found beneath each of the following structures at Tayinat: Platform XV, Building XIV, Building XIII, Building VIII, Building I, and T5,\(^33\) which consisted of an east-west step trench dug along the western edge of the citadel mound to investigate the western fortifications (Haines 1971: pl. 93; Braidwood 1960: fig. 8). Additionally, field notes from 1937 indicate that “sub-yc” material was found under Building V (probe T8), Building II, and in probe T7 on the northeast corner of the mound (Square Q13), where no building remains were uncovered (Haines 1971: 63). Thus far it has been difficult to integrate the Early Iron Age material from the

\(^32\) Many thanks go to Helen McDonald at the Oriental Institute for arranging and retrieving this material for my study on several occasions.

\(^33\) Areas preceded by the letter “T” designate test pits cut for exploratory purposes, some of which were subsequently subsumed into building numbers if the digging resulted in expanded excavation (Haines 1971: 37).
Syrian-Hittite excavations into the stratigraphic sequence of the renewed excavations with any degree of precision. The best that can be said is that this material came from Early Iron Age levels below the monumental structures of the First through Fourth Building Periods, the earliest of which was dated to 875–825 BC by the Syrian-Hittite Expedition (see further description in Haines 1971: 66).

3.2.4 The Tayinat Archaeological Project (2004–present)

Preliminary seasons at Tell Tayinat were undertaken in 1999, 2001, and 2002 for the purposes of surveying and mapping of the site (see Batiuk et al. 2005). Excavations were initiated in 2004 with a short exploratory season in which two five-by-ten meter squares (G4.55 and G4.56) were opened in Field 1, located on the south edge of the West Central Area uncovered by the Syrian-Hittite excavations (see Fig. 6). The area was selected in order to provide a clear link to the earlier excavations and to test the data collected from surface surveys and remote sensing (for annual reports, see Harrison 2006, 2007, 2008, 2009c, and 2010b). In subsequent seasons, the two pilot squares were expanded to include squares G4.65 and G4.66, which together comprise an area measuring 400 sq. meters.

The Tayinat Archaeological Project (TAP) completed its ninth field campaign during the summer of 2012. Excavations took place in several major areas (see Fig. 6): Fields 1, 2, and 6. The seasonal objectives consisted of expanding the Early Bronze Age (Amuq Phase E/EB IVB) exposure in Field 1, continuing to investigate the Iron II/III complex in Field 2, opening exploratory trenches in the northeast section of the upper mound, designated Field 6, and completing a geophysical survey of the upper tell in
Fields 2 and 6. There is also an ongoing effort of stabilization and conservation of the assemblage of artifacts recovered over several recent seasons, particularly a collection of cuneiform tablets discovered in Building XVI in Field 2.

The investigations in Field 1, initiated in 2004 and continuing to the present, have revealed the remarkably well-preserved remains of a long succession of Early Bronze and Early Iron Age settlements at Tell Tayinat. Excavations in this area have now uncovered a substantial (almost 300 sq m in area) section of the terminal EB IVB (or Amuq Phase J; ca. 2250-2000 BC) settlement, which lay beneath the previously excavated Iron I strata, with ceramic evidence indicating that earlier EBA phases exist yet lower.

Field 2 excavations commenced in 2005 by uncovering the remains of Building XIV, and were expanded northward in subsequent seasons. They have succeeded in uncovering a sprawling expanse of the Neo-Assyrian religious complex, what appears to be a ‘sacred precinct.’ This area (Platform XV), which was first discovered by the Syrian-Hittite Expedition, was likely integrated with the temple building to the south. Excavations within Building XVI itself have now further clarified the complex construction history of this structure, distinguishing the earlier Neo-Hittite construction from the subsequent Neo-Assyrian renovations.

Though now seemingly overshadowed by architectural and epigraphic discoveries relating to Phase O, the Early Iron Age period at Tell Tayinat continues to produce ceramic finds in virtually every area that has reached sufficient depth. Unfortunately, much of the building remains from this period have suffered substantial damage from later pitting and construction activity. However, the growing ceramic corpus is highly significant, for it shows evidence of an alien and intrusive culture that originated in
Aegean areas to the west. The historical circumstances and precise nature of its appearance in the region of the Amuq are still unclear, but excavations at the site and epigraphic discoveries at Tayinat and elsewhere are beginning to yield substantive and intriguing results. The Iron I stratigraphic sequence in Field 1 will be described in greater detail in Chapter 4.

3.2.5 Tell Atchana (ancient Alalakh)

For most of the second millennium the capital of the Amuq Valley was located at Tell Atchana (see Fig. 2). Excavations under the direction of Leonard Woolley were conducted between the years 1936 and 1949 (Yener 2005: 99, 102). The ancient city of Alalakh may well have been subdued by the Hittite king Šuppiluliumaš I during his first Syrian campaign (c. 1350 BC) in the mid-14th century, after which it existed as a possession of Carchemish until its eventual demise, a period represented by Woolley’s Levels III–I (c. 1340–1190 BC; Yener 2005: 102). The Hittite policy of mass deportation of subjugated peoples may have subsequently been imposed on the population of Mukish, possibly during the reign of Muršili II (Bryce 2005: 161; Fink 2010: 120–23).

The period following the conquest witnessed a decline in imported Mycenaean pottery as determined by Wace (Woolley 1955: 369), who undertook Woolley’s ceramic analysis. Vronwy Hankey, while skeptical of Woolley’s attempt to lower the last occurrence of LH IIIB at Alalakh to the early 12th century, nonetheless concurred that IIIB material was present (1967: 111). However, a recent reassessment by Robert Koehl rejected that long held opinion, and concluded that LH IIIB pottery is largely absent from Tell Atchana (2005: 415–26; see also Mühlenbruch 2009: 29–32, table 5; Yener in press).
The drop-off or absence of Mycenaean imports might also reflect Hittite political domination in areas of Cilicia and North Syria in the late-14th and 13th centuries, as suggested by some (Jung 2007: 551–52; Badre 2006: 82; Sherratt and Crouwel 1987: 345–46). The Šaušgamuwa Treaty, between the Hittite King Tudhaliya III and the last known Bronze Age king of Amurru, dated to between 1234 and 1223 BC, sought to impose a trade embargo on imported products to Assyria from the Kingdom of Ahhiyawa (Bryce 2005: 315–16; Klengel 1992: 173). A consensus of scholars now equates Ahhiyawa to the Kingdom of Mycenaean Greece (Bryce 2003: 59; Collins 2008: 2; Hawkins 2009: 166; Niemeyer 2005: 203). Although no such record exists of a similar embargo placed on the region of Mukish or the Amuq Valley, it remains entirely plausible since the area seems to have been firmly in Hittite control during this period.

In fairness to Woolley, he conceded his lack of expertise with Mycenaean pottery, and consulted the ceramic specialists of his day, including Wace, Stubbings, Schaeffer, and Furumark. Collectively they agreed that both LH IIIA and LH IIIB were present in the assemblage, which determined the inclusive date of 1400-1200 BC for the levels in question—and that most of the material had been brought to Alalakh by way of Cyprus. The latest examples were judged to be “no later than 1230 BC” by Furumark himself (Woolley 1955: 369, 374; Swift 1958: 40).

This history of discrepant interpretations illustrates several problems, some of which are discussed at length by Fink in his detailed reexamination of Atchana’s stratigraphy (2010: 135–37). First, Woolley only published a small portion of his Aegean assemblage, and quite poorly recorded its context. Secondly, the situation at Tell Atchana

\footnote{It should be noted that Ahhiyawa is a restored reading, and that an alternative one has been proposed (see Steiner 1989: 393–411).}
once again highlights the difficulties inherent in the stylistic identification of Aegean pottery, which clearly lends itself to a certain degree of subjectivity and imprecision. Thirdly, there is a recurring tendency to use relatively rare occurrences of imported ware to date the larger local assemblage. This confluence of factors has had the result of creating longstanding confusion about the chronology at Tell Atchana, which is only now finally coming into clearer focus, thanks to the concerted efforts of recent and current excavators (Fink 2010; Yener in press; Horowitz in press).

In any event, the absence of Aegean imported ware at 13th century Atchana coincides with the apparent abandonment of several domestic zones and a reduction in occupied space in the vicinity of the palaces (Yener, Schloen, and Fink 2004). The city evidently experienced a steep decline in the 13th century, an occupation that Woolley postulated terminated in a destruction of Level I at the very beginning of the 12th century, an act he confidently attributed to the Sea Peoples ("cannot be doubted" Woolley 1955: 373, 398; 1959: 152).

After a half century of abandonment, an ephemeral 12th century settlement arose, designated Level 0 by Woolley, which consisted of a substantial wall and tower. Unfortunately, no pottery was published from this relatively short-lived occupation (Stein 1997: 55; Yener 2005: 103, 112; Venturi 2007: 82). Fink’s stratigraphic reassessment concluded that the architectural remains of Woolley’s Level 0 amount to only a collection of unrelated wall segments (Fink 2010: 56, 123). However, the possible existence of a heretofore undiscovered lower town in the adjoining plain west of the mound cannot be dismissed, buried beneath alluvial deposits from the Orontes River (Casana 2009: 30; Casana and Gansell 2005; Fink 2010: 139; Yener in press).
Fink has argued that Alalakh effectively ceased to exist as a viable city in the 13th century, on the basis of stratigraphy, pottery, and textual references (2010: 123–25). The same conclusion is supported by the body of evidence from the ongoing excavations conducted by Yener (2003–present; see Horowitz in press), which have recently brought to light a small collection of LH IIIIC painted ware, alongside Handmade Burnished Ware (HBW), found in Area I beginning in 2007. This thin layer of material is allegedly associated with a large structure, possibly constructed with casemates. In addition to the Iron Age wares, the assemblage was characterized by “strong continuity from the LB II” (Yener in press). According to R. Koehl, the few sherds recovered thus far belong stylistically to the LH IIIIC Middle 1 (Developed) (c. 1140–20 BC), or possibly LH IIIIC Middle 2 (Advanced). By Aegean stylistic standards, the LH IIIIC Middle period begins c. 1140 and ends c. 1100/1090 BC.

It must be stated, however, that the totality of architectural and ceramic evidence for a 12th century settlement at Atchana is somewhat tenuous. What very small amount of Aegean-style material discovered there appears be part of a mixed context, and may indeed have originated at Tell Tayinat, further illustrating the coterminous nature of the two sites.

Woolley’s primary dating criterion for the Level 0 settlement was a scarab incorrectly associated with Ramses VI (c. 1151–43 BC), which was discovered in a cremation burial and led him to date the stratum to 1140 BC (Woolley 1955: 202–203, 373, 399). Alexander Pruss, in his study of selected unpublished material from the Syrian-Hittite Expedition, failed to address the scarab evidence and placed Level 0 at c.

\[\text{35} \text{ The nature of this assemblage and its context remain uncertain and is currently under discussion.}\]
\[\text{36} \text{ Communication with R. Koehl, Nov. 4, 2011.}\]
1180 BC, coinciding with the start of his Phase N (2002: 162). In fact, the Egyptian scarab was later determined to belong to Amenhotep III in the mid-14th century (Kitchen 1982: 88; Ritner in press; Yener in press). With the newly discovered pottery, stylistically assigned to LH IIIC Middle 1(Developed), one chronological criterion has effectively been replaced by another, coincidentally arriving at similar results.

In the final assessment, as noted by Yener, Woolley was essentially correct with respect to certain aspects of the last stages of Alalakh, but for the wrong reasons. His theory that the site was only sparsely populated in the 13th century has been confirmed by current excavations, as has his identification of an ephemeral settlement in the latter half of the 12th century, possibly corroborated by the recent discovery of LH IIIC Middle pottery (c. 1140–1090 BC). The implications of these findings for the Early Iron Age at Tell Tayinat are significant, both for the date of its reoccupation and its relationship to the mound at Atchana, whose status as a sister site finds new support.

3.3 Summary Observations

Both the examination of excavated and surveyed sites in the Amuq Valley and the final publication of the Syrian-Hittite Expedition to Tell Judaidah and Chatal Höyük have given fuller context to the ongoing excavations at Tell Tayinat and Tell Atchana. The accumulating evidence from this research is filling a longstanding lacuna in the valley, the unfortunate cumulative result of decades of scholarly neglect. Recent data from surveys and excavations portrays a region that suffered decline in the Late Bronze Age, possibly a result of a deportation policy imposed by the Hittite Empire at the end of the

14th century (Fink 2010: 125). While this state of affairs may have endured throughout the Amuq Valley well into the 12th century, as at Tell Atchana, other sites, such as Chatal Höyük and Tell Judaidah, show evidence of continuity, even though this may have consisted of mere village level existence. Evidence of continuity exists alongside that of discontinuity, such that while fully 74 percent of Phase N settlements were founded at new sites, the remaining 24 percent represent continuous occupation across the Phase M-N transition (Harrison 2009b: 175–6).

Moreover, the hiatus originally proposed by Swift was evidently not uniform across the valley, and may have lasted as much as a century less than previously assumed. Findings at Chatal Höyük, Tell Atchana, and Tell Tayinat further suggest that Bronze Age ceramic traditions continued into the late 12th century. The advent of the Iron Age, marked by the appearance of Aegean-type pottery, might not have occurred until relatively late in the region. At present, the ongoing investigations at these key sites in the Amuq Valley are shedding new light not only on the sites themselves, but on the relationship between the two most important sites in the area, Tell Tayinat and Tell Atchana, a relationship that was intertwined and long lasting, the nature of which will no doubt continue to constitute a primary research focus for many years to come.
4 The Tell Tayinat LH IIIC Assemblage

4.1 Introduction

It has long been recognized that Levantine assemblages of Aegeanizing ceramics constitute a more limited repertoire of forms and motifs when compared to those in Mainland Greece, both antecedent and contemporary. These assemblages are largely comprised of household vessels used for preparation and consumption of food and drink, what have been called standard settlement assemblages, and contain a large proportion of open to closed shapes (Mountjoy 2005a: 83). The domestic nature of these assemblages is evident at the Philistine sites (Killebrew 2000: 234; see Killebrew 2005:figs. 5.13, 5.14 for range of forms; Dothan et al. 2006: 72), in coastal Syria (du Piêd 2008:169), the Cilician coast (Mountjoy 2005a: 83), and Cyprus (Kling 2000: 282).

While these Aegean-type assemblages generally show a preference for open shapes over closed, they nonetheless reflect regional tastes as in, for example, the more expansive range of forms in Cyprus (Dothan and Zukerman 2004: 44), or the preponderance of painted closed forms that occur in Northern Levantine contexts (Swift 1958: figs. 24–26; du Piêd 2008: 169), a situation that also prevails at Tell Tayinat (Janeway 2008: fig. 4.5–6). Hybrid vessels exhibiting familiar Mycenaean shapes mixed with local stylistic elements are an aspect of these Levantine assemblages now receiving closer scrutiny. Recent examples have been recorded at Tell Kazel (Badre et al. 2005: 29, 36) and Tel Miqne/Ekron (Mountjoy 2010).
4.1.1 The Tayinat Assemblage

The assemblage upon which this typology is based was excavated primarily from **Square G4.55**, along with a limited number of other fragments chosen from adjacent squares in Field 1 (see further below, Squares G4.56, G4.65, G4.66) in order to supplement the repertoire of shapes and motifs established from Square G4.55. For this reason, sherds from squares other than G4.55 are excluded from statistical counts. The goal was to include the complete Early Iron Age deposit from Square 55 in the results. However, recent excavations have shown that earlier phases in the sequence exist in Field 1, which are not fully represented here, and may also exist in other areas of the mound not yet excavated (see below: Ceramic Assemblage, section 4.1.2.2). The total number of sherds by category is the following: bowls (81); kraters (94); amphorae and jars (110); miscellaneous (100); Total (385).

The TAP (Tayinat Archaeological Project) employs a total retrieval field collection strategy. All soil deposits are dry sieved at a 1:1 correspondence, and the pottery is collected into separate containers onsite. The pottery is then soaked in water prior to being hand washed, after which it is placed into porous plastic baskets or trays for drying before being laid out on tables in preparation for preliminary pottery analysis. Diagnostic material—rims, bases, handles, and decorated fragments—is separated from non-diagnostic material, which consists mostly of body sherds. Preliminary identifications are then written on tags attached to the pottery bags and subsequently entered into a database. Following the preliminary sorting and processing, all ceramics are stored for future laboratory analysis, some of which will be subjected to petrographic and chemical analyses.
From this assemblage the author selected a representative sample. All pottery fragments within the bounds of the excavated areas of Field 1 were collected and processed. The effort began with the identification of clearly Aegean forms and motifs, and expanded to include all painted sherds, and plain ware that fell into the formal categories of bowls, kraters, amphorae, and jars. Sampling in this way was thought to be the best approach to establish a study assemblage in which local forms and motifs could be distinguished from those emanating from the Aegean and Cyprus. All sherds within the chosen formal categories (see below) were subsequently incorporated into the analysis. In addition to Aegeanizing sherds, the analysis includes plain and undecorated pottery and those pieces that appear to reflect local painted traditions. This approach has been defined as a judgement sample, in which “the researcher uses his knowledge and experience to define and select the sampling units to collect and analyze” (Sherratt 1991: 48–9). Although there are certain limitations inherent in this approach, in cases where the research involves specific designs and goals, it is considered effective.

The design and goal of the following analysis is, simply stated, to identify the Aegean component of the assemblage, and to assess its cultural significance and temporal context. The identification of a problem is the best starting point for such an analytical project (see relevant discussion in Rice 1987: 321–25). This in turn leads to the question of how best to accomplish the goal within the finite constraints of time and resources, which raises the question of sampling. It is clearly not feasible to completely excavate a site of considerable size such as Tell Tayinat, nor is it considered prudent. On the other hand, it is self-evident that the larger the sample size, the better representation of the assemblage generally. The compromise taken here is to sample the entire collection of
pottery within a defined space. Having a well-established set of parameters for the style of pottery being sought, under the general category of Mycenaean ceramics, offers a decided advantage in the selection of sample sherds. With these caveats in mind, it seems reasonable to assume that the following sample comprises a fair representation of the Tayinat assemblage as a whole.

Nonetheless, the unknown degree of variability inherent in a regional sequence of Aegean-type pottery, like that of Tayinat, presents certain challenges. Toward this end, all sherds within the several form categories chosen are included in the analysis, regardless of their attribution to Aegean or local influence. This applies to all aspects of form and decoration. From that representative sample the analysis will proceed, and the attempt made to isolate the various features belonging to each.

In addition to the stylistic distinctions, the descriptions of each formal type include macroscopic fabric characterizations. However, since this study represents a typological analysis of form and decoration, more focused petrographic and chemical analyses are being undertaken as separate studies elsewhere.\(^\text{38}\) That research will both supplement and complement that undertaken here. It should also be emphasized that the assemblage under study consists primarily of locally produced Aegean-style pottery. The few examples of imported LH IIIC ceramics (Field Phase 6c, see further below) that are included are noted in the chapters to which they individually pertain, and discussed as a group briefly in the concluding chapter.

Also, it is important to bear in mind that much of this study hinges on the stylistic approach with certain inherent limitations, along with its application of parallels over

\(^{38}\) A detailed petrographic study is currently being conducted by L. Welton (see Chapter 5 for further discussion).
sometimes considerable distances. And it should be noted that the source of stylistic innovation cannot always be determined at present. In reference to Aegean correlations with the Levant in the 12th century, Elizabeth French recently wrote, “the impetus for the new style and range may not come solely from the mainland of Greece but also from elsewhere in the Aegean” (2007a: 529). Finally, it must be acknowledged that the fine-tuned Aegean subphases utilized by Mountjoy and others, though they provide reasonable parallels, are based largely on stratigraphy and stylistic observations at Mycenae, subphases that may not be strictly analogous to the local pottery sequence in the Amuq Valley.

Although it is standard practice in the scholarly literature pertaining to Mycenaean pottery, the use of the Furumark system of classification for shape (FS) and motif (FM) in this study reflects the view that the Tayinat assemblage reveals visible and significant Mycenaean influence in terms of morphology and painted decoration. However, the use of such nomenclature does not necessarily imply Aegean origin or inspiration. Rather it is given in order to provide a point of reference. The ultimate attributions are proven with respect to individual features through analogy, as the following study will demonstrate.

As for the painted color traditions in the assemblage, several shorthand terms have been adopted for this study. They are predominantly comprised of two groups—various shades of dark red-on-pink self-slip coined ROP (Red-on-Pink),\(^{39}\) and BOW (Black-on-White) for black or dark gray paint-on-white or buff self-slip.\(^{40}\) Although not a focal point of the analysis, these terms are cited on occasion, but are not utilized for any

\(^{39}\) Munsell colors in this category approximate 10YR 4/6 on 5YR 8/3 (red-on-pink).
\(^{40}\) Munsell readings in this category approximate 5YR 4/1 on 7.5YR 6/2 (black-on-white).
specific analyses. Furthermore, the system used for pottery illustrations follows conventions used by scholars working in the Aegean. Exterior decoration is represented by black shading and interior by 20% gray scale, regardless of the actual color on the vessel surface. **Pl.** (capitalized and bold) refers to plates in this work while **fig.** or **pl.** (lowercase and not bold) is used to cite illustrations in other works. All plates are scaled 3:1.

4.1.2 Field 1 Excavations

4.1.2.1 Architecture and Stratigraphy

As previously described in Chapter 3 excavations at Tell Tayinat commenced in 2004 and succeeded in exposing two five-by-ten meter squares (G4.55 and G4.56). Designated Field 1, the area was expanded in subsequent seasons to include squares G4.65 and G4.66, which together comprise an area measuring 400 sq. meters (see **Fig. 7**).

The earliest Iron Age settlement remains, represented by three sub-phases of **Field Phase 6** (FP 6a, b and c), lie directly atop remains dating to the late third millennium BC (specifically EB IVB; Amuq Phase J; FPs 9–7; see Welton et al. 2011). Though disturbed by subsequent building and pitting activities, FP 6 nevertheless preserved a number of large storage ‘silos’ (e.g., G4.56:153, 164, 176, 237), some of which were constructed with a lining of mud brick (e.g., G4.56: 288, 279). There are also a large number of smaller pits interspersed between them, a few of these contained large concentrations of non-perforated, cylindrical clay loom weights and other artifacts associated with textile production (e.g., G4.56: 167, 196). Many of these early Iron Age pits displayed a thin white lining likely consisting of phytolithic material, which is absent in pits dating to the Early Bronze Age.
Very little architecture is preserved that dates to FP 6. The top of a mud brick wall (G4.55:29=G4.56:33), constructed of a single row of flat-lying bricks, and preserved to only two courses in height, was uncovered along the northern edge of the excavation trench. It extended in a northeast direction, from the mid-point of Square G4.55, before exiting the excavation area through the north balk of Square G4.56. The only other architecture in this field phase consists of two walls that join in a ‘dog-leg’ formation (G4.56: 189/244 and G4.56: 190/241/242) in the southeast corner of the excavation trench. A small circular pyrotechnic installation (G4.56: 204) was uncovered in the corner formed by these two walls. A second pyrotechnic installation was uncovered in the
eastern portion of square G4.56, and discarded fragmentary remains of similar constructions have been found in refuse pits in the same area.41

Despite its ephemeral architectural remains, FP 6 preserves the earliest Iron Age material uncovered to date in Field 1. In the southern two squares (G4.65 and G4.66), the foundations of the Iron II temple (i.e., Building II, FP2) cut directly down to the level of FP 6, leaving no remains of any of the later Iron I phases. In these two squares, only a small wedge of FP 6 material was preserved \textit{in situ} in the northern portion of the squares. Slightly to the south of this, an Iron II passageway, or street cut through the Iron I remains and directly into Early Bronze Age levels, leaving little Iron I material intact in the majority of the area excavated in these squares. However, in the eastern portion of Squares G4.56 and G4.66, FP 6 deposits reached greater depths than was found to the west, and represent the earliest Iron I remains (FP 6c) encountered to date. This phase was not preserved in the western squares (G4.55 and G4.65) of Field 1.

Due to the disturbance of the Iron II construction activity, remains dating to FPs 5 and later were encountered primarily in the northern two squares, specifically G4.55 and G4.56. A number of poorly preserved wall segments in Square G4.55 (G4.55:62-65, 77, 99, 104) have been attributed to the two sub-phases of FP 5, as well as a few wall fragments found in G4.56 (G4.56: 120, 145, 146). Storage bins and silos dating to this phase were also documented (G4.56: 111/112, 97/98, 159/250; G4.55: 23/24). The FP 5 remains were unfortunately disturbed by later activities associated with a number of phases, including construction activities during FP 4 (Iron I) and FP 2 (Iron II), and pitting activity during FP 3 (Iron I). Nevertheless, the surfaces and soil layers associated

41 For similar installations at Tell Kazel, see Badre 2011: 150, fig. 1a.
with FP 5, and in particular the ashy deposits removed from the silo-like storage pits, produced a wealth of faunal and botanical evidence, including a carbon sample from a sealed context with a radiocarbon date of 2910 ± 50 BP (or a calibrated date of 1115 BCE; 1-sigma standard deviation).

FP 5 was sealed by a more substantial construction layer, **Field Phase 4**, which included the best preserved architectural remains found in the Iron I sequence. In particular, a well-preserved rectilinear structure (G4.56:23, 66-68, 76) was excavated in the western part of G4.56. The walls formed a single small room, measuring approximately 1 X 2 m in size. A number of other significant, although fragmentary, walls (G4.55:15, G4.56: 91/226, 92/96) also date to this phase. All of these walls display a similar ‘header and stretcher’ construction technique. Deep, straight-sided foundation trenches were excavated into the surrounding soil matrix, and the trenches were packed directly with mud bricks. Often, the mud brick packed into these foundation trenches was not oriented consistently, with each layer of mud brick within the foundations displaying a slightly different orientation. During excavation, the inconsistent orientations of the bricks originally led to the assignment of multiple loci in the belief that they represented different constructions and/or re-constructions. However, upon complete excavation, it was clear that these mud bricks belonged to a single phase of construction. As with all the Iron I constructions, these walls were constructed entirely of mud brick, with no stone foundations. The absence of stone foundations is a distinctive construction feature seen throughout the occupational sequence at Tayinat.

Although generally well-preserved, the remains of FP 4 appeared to have been heavily damaged by the leveling that occurred during construction of the foundations and
sub-structures of the later Iron Age temple (or Building II; see further description below) associated with FP 2, and by extensive pitting activity during an intermediate occupational phase (FP 3).

Field Phase 3, the final phase in the Field 1 Iron IA sequence, formed a somewhat enigmatic phase represented primarily by substantial pitting activity. This was best exemplified by two large ashy pits in the western part of Square G4.55 (G4.55:19 and 37), the former of which was sealed in turn by a concave-shaped plastered installation (G4.55:16). No walls or other free-standing structures were assigned to this phase.

Cut deeply into the Early Iron Age remains, and obliterating the remains of any intervening cultural strata, were the foundations of Building II, an Iron II temple complex first uncovered by the Syrian-Hittite Expedition in the 1930s.\(^{42}\) The 2004 exploratory probe uncovered the remains of the north wall and portions of the cobbled surface that had paved the central room of Building II, as well as two flat stone pavers that had once formed part of the stepped approach to the building. Expansion of the probe to the south in 2005 revealed additional remains of the complex, which was assigned to **Field Phase 2** (the modern plow zone and topsoil formed **Field Phase 1**), including the piers that separated the front porch of the building from its central room, and extensive mud brick-packed foundation trenches which had provided structural support for the walls of the temple. These foundation trenches included those associated with the southern temple wall, which was never identified during the 1930s excavations, but was reconstructed based on the presumed plan of the building.

Most of this impressive structure, which once was graced by a flanking pair of columns supported by large basalt double lion statues, was no longer preserved, having been destroyed since the completion of the Chicago excavations. The associated pottery, though recovered from heavily disturbed contexts, contained quantities of Red Slip Burnished Ware, and was dated to the Iron II.

The substructure of Building II is particularly important in that it may well have removed later Early Iron Age remains as it cut through FPs 3–5, leaving FP 6 as the only phase that appears relatively undisturbed by its construction. In the central portions of Squares G4.55 and G4.56, in the areas untouched by the building’s foundations, the remains of FPs 3–5 were pedestalled between its foundation trenches. It should be noted that Syrian-Hittite Expedition observed a smooth transition from Phase N to Phase O in the Amuq, with no evidence of intervening destruction or architectural change (Swift 1958: 124). This finding appears to have been based primarily on the stratigraphy of Chatal Höyük, and the criterion for the transition to Phase O was determined by the appearance of Red Slip Burnished Ware (Swift 1958: 125).

In summary, the four-phase Early Iron Age sequence at Tell Tayinat compares well to other sites in the valley, such as Chatal Höyük (four) and Tell Judaidah (three), as well as Tell Afis in northern Syria (four) (see Chapter 3: section 3.2, for more detailed discussions of sites in the Amuq). Later Iron I levels which might have once existed in this area, dating to the Iron IB-IC, were completely destroyed by the later construction associated with Building II.
4.1.2.2 Ceramic Assemblage

Whereas locally-made LH IIIC pottery forms one of the dominant traditions in the Early Iron Age assemblage at Tell Tayinat, it is rare in the earliest levels of the sequence (i.e. FP 6c). As noted previously, preliminary petrographic analysis suggests that some of these sherds may not be the product of local industry. Analysis of the material from these earliest levels is in its preliminary stages, and is ongoing.

In addition to the prominent IIIC component, the assemblage includes several other notable types of pottery, some of which are typical of the LB II and LB-Iron 1 transitional periods in the region.43 A total of 7 sherds of earlier imported Mycenaean material were discovered, most likely dating to the LH IIIB period. All but two of these examples were small body sherds, the two exceptions represent the false mouth of a stirrup jar and a painted conical kylix. All but one of these examples date to the very earliest levels of Iron I occupation at the site (FP 6b–6c). Also, a total of 11 sherds of Cypriot White Slip II have been found at Tell Tayinat. However, in all but one case, these were found in unstratified contexts (in topsoil and/or alongside Red Slipped Burnished Ware dating to the Iron II period). A single body sherd and a partial milk bowl were found in a FP 6b context (see \textbf{Pl. 2.14}).

\textit{Local Plain Ware}, elsewhere known as \textit{Hittite Monochrome Ware} (HMW) forms a significant portion of the Field Phase 6 pottery assemblage. It consists primarily of plates, shallow bowls, deep bowls (not of the Aegean type), and various jar forms typical of Late Bronze Age Anatolia. The Tayinat group closely parallels those belonging to the terminal phase of the Hittite Imperial period, including at Hattuša, nearby Tell Afis

43 See forthcoming articles by Harrison et al. and Ünlü for a detailed treatment of these non-Aegean pottery groups.
(Venturi 2000b: fig. 5.1–8), and neighboring Tell Atchana (Woolley 1955: 319, pl. CIX; Horowitz in press: fig. 4; for examples of deep bowls, see Woolley 1955: pl. CIX.4c; Horowitz in press: figs. 4, 5). After FP 6, HMW becomes less prominent and by FP 3 it occurs in amounts equal to that of LH IIIC pottery. These trends are reflected in the relative amounts of plain versus painted ware amongst kraters (see section 4.3.5.7.2, Table 12), amphorae/jar forms (see section 4.4.3, Table 19), and the overall assemblage (see section 5.3, Table 20) discussed below.

Near the end of the Late Bronze Age a revival of earlier (MB and LB I) local painted traditions occurred at many sites in the region, and these also appear to be present in the Tayinat assemblage. The decorative repertoire consists mostly of geometric motifs such as hatched triangles, parallel straight lines, and wavy lines framed by parallel lines (see Chapter 4 for detailed analyses of motifs). Recently it has been suggested that the reappearance of such painted traditions from as far back as the Early Bronze Age in central Anatolia is associated with the collapse of Hittite Imperial control (Genz 2005: 82).

The presence of Slippered and Burnished Ware in small quantities has been noted at Tayinat in FPs 6 and 5, including spindle bottles comparable to the Red Lustrous Wheel-Made Ware tradition. As with local plain and painted assemblages at Tayinat, these are likewise paralleled at central Anatolian sites and have been found at Tell Atchana. Limited quantities of Grey Ware have also been recovered, which have been documented mostly at coastal sites in the Levant in terminal Late Bronze Age levels. This assemblage is characterized by finely textured grayish-black fabric and incised decoration typically
applied to carinated bowls, small jars, and juglets. Similar examples have been reported at Tell Kazel (see Badre et al. 2005: fig. 7), among many other sites.

In sum, the various wares within the Tayinat pottery assemblage serve generally to illustrate the enduring quality of Late Bronze Age potting traditions in the Amuq Valley, and specifically highlight the close relationship between Tell Atchana and Tell Tayinat. The presence of pottery similar to Hittite Drab or Monochrome Ware alongside LH IIIC is paralleled elsewhere, for example, at Kilise Tepe and Tarsus, as mentioned previously (see section 2.2.4). It should also be noted that architecture associated with Late Bronze Age occupation at Tayinat has not yet been established. Hence the significance of the LB ceramic styles is uncertain, particularly given the very close proximity of the collocated site of Tell Atchana.

4.1.3 Order of Presentation

Each of the following sections of Chapter 4 include introductions followed by a description of the forms and decoration of the formal type category being presented. In the case of kraters and large closed shapes, the chapters also feature typologies. Susan Sherratt has delineated two components critical for a well-constructed typology: replicability and verifiability. The terms should be clearly defined so that other scholars can replicate its classification using the same criteria, and support it with statistically verifiable data (Sherratt 1991: 46). Whether or not one agrees with the typological schemes developed herein, they represent an earnest attempt at clarity in definition that is readily replicable in statistical terms.
The present analysis takes the view that seeking ceramic parallels in the heartland of Mycenaean pottery—the Greek Mainland and the Aegean basin—is highly relevant. The intensive and long-lasting contact between the two regions during the Late Bronze Age, mainly in the form of pottery exports from the Greek areas, is well established by clay source studies (petrographic and INAA) and stylistic analyses (Mommsen et al. 2009; Badre et al. 2005; Koehl 1985: 145; Asaro and Perlman 1973; Catling et al. 1963; 1978). After the system of international exchange and commerce between these regions disintegrated at the eclipse of the Late Bronze Age, derivative assemblages appeared at a number of coastal sites that exhibit regionalized expressions of Aegean pottery.

A similar rationale applies to the analogous Aegean assemblages along the Levantine coast as far as the Philistine pentapolis. If we accept that Philistia, the Northern Levant, and Cyprus were implicated, to one degree or another, in some of the same historical and cultural processes—a fact attested in ancient sources—then examining how ethnically similar communities transplanted elsewhere adapted to their new homelands is relevant to understanding the process that took place in the Amuq Valley.

The range of vessel forms presented in this chapter will proceed from open to closed forms, beginning with the deep bowl, or skyphos, a well-known Aegean type vessel. The **deep bowl**, or **skyphos** (FS 284/285) is one of the longest established and easiest Aegean shapes to recognize, and is easily distinguished from other bowls types by its gently everted rim, horizontal circumflex handles, thin walls, and usually painted surfaces. Its strong presence in the Tayinat assemblage makes it an excellent tool for evaluating the Mycenaean character of the group.
The **krater** was the palette of choice for Aegean-style potters to display their most graphic and creative compositions. Dominant shapes treated in this analysis include the ring-based krater (FS 281–282) and amphoroid vessel (FS 52–55), varieties not always distinguishable from indigenous forms on the basis of sherds alone.

A section of this chapter deals with large closed forms, consisting mainly of **amphorae and jars**. The assemblage is comprised of forms frequently decorated with a relatively narrow range of painted motifs when compared to the krater.

Miscellaneous forms include several vessel types that were recovered in quantities insufficient to warrant separate sections, but nonetheless preserved well enough to identify their respective forms. In order to discern and distinguish native from Aegean style it was thought necessary, for the purposes of illustration, to include vessels that were, after close analysis, deemed to belong to both categories. The assemblage also includes examples of Aegeanizing cookware. The unique shape of the Aegean-type cooking pot makes it readily identifiable in Levantine assemblages, particularly in Cyprus and Philistia, where it appears in significant numbers. It comprises a relatively inconsequential portion of the cookware at Tayinat recovered to date.
4.2 Aegean-Style Bowls

4.2.1 Introduction

Despite the limited range of shapes in the overall LH IIIC assemblage at Tayinat, the bowl group is characterized by a wide variation in shape and size, comprised primarily of deep bowls, or skyphoi, but there are also examples of shallow angular bowls (SAB) and one-handled conical bowls (FS 284/85, 295, 242). Similar circumstances have been found at nearby Chatal Höyük in the Amuq Valley (Pucci in press). The excavators at Ekron and Ashdod noted a similar phenomenon in which “considerable variability” prevailed (Dothan and Zukerman 2004: 8). In Cyprus the situation is reversed. While deep bowls were in widespread use throughout LH IIIC Middle and Late, they show a high degree of stylistic uniformity, both in shape and decoration (Kling 1989: 106).

The LH IIIC bowl assemblage at Tell Tayinat is dominated by two fabric types with associated surface treatments: (1) a light pinkish-buff clay painted with medium to dark red matte paint, and (2) a pale green-gray paste painted in very dark brown to black. Preliminary petrographic analysis shows that these two color traditions also represent distinct fabric groups. All vessels bear a self-slip, the surfaces occasionally being treated with burnish or wet smoothing. The bowls are comprised of well-levigated clay tempered with only the smallest inclusions, rarely with chaff, shell, or lithic, and always well-fired. A sizeable percentage of vessels have no significant temper added whatsoever.

44 Dr. Lynn Welton has undertaken petrographic studies of the Early Iron Age assemblage (personal communication). See Chapter 5 for additional comments on this material.
(see Table 7). Venturi and Bonatz have noted the similarity in fabric types between Tell Afis, the Amuq Valley, and sites in Cyprus (Venturi 1998: 129; Bonatz 1998: 213, n. 6). Indeed, since northern Syria, southern Turkey, and Cyprus share a common geological history, petrographic studies to ascertain provenance have proven difficult, and INAA is sometimes necessary to distinguish between them (Cross and Stager 2006: 136, 141, in a study of Cypro-Minoan inscribed jar handles; Badre et al. 2005: 31; Mazar 2007: 572).

4.2.1.1 Deep Bowl (FS 284/285; Plates 1–6)

One of the most common bowl forms in the Early Iron Age levels at Tell Tayinat is the skyphos, also known as the deep or bell-shaped bowl (FS 284/285). It is hemispherical in shape with two opposed horizontal, circumflex handles and most often a ring base, with a rim diameter measuring 7–18 cm (avg. 12–14 cm), walls .3–.5 cm thick, and handles 1.0 cm in diameter (Kling 1989: 94–95, fig. 3a; Killebrew AS14, 2000: 236;

1 AS=Aegean style
The skyphos was a utilitarian vessel—possibly associated with the consumption of wine—and has been found at most settlement sites, while it is rarely found in tomb assemblages (Kling 1989: 106; Steel 2004: 292–4; Lehmann 2008: 517; Gates 2010: 66–7).

The popularity of the bell-shaped bowl is indicated by its long lifespan of three centuries or more, from LH IIIA to Submycenaean, and by its geographic ubiquity, occurring virtually wherever Aegeanizing culture is found. At Ekron and Ashdod it is the dominant Aegean-type vessel and comprises half the total Mycenaean assemblage (Dothan and Zukerman 2004: 8). The same situation prevails at Tarsus (Mountjoy 2005a: 83).

The skyphos was so widespread in Cyprus that it was considered to be a defining feature of Mycenaean pottery on the island (Kling 1989: 106). It appeared in Cyprus as early as LC II, became widespread in LC IIIA and B, and continued into the Cypro-Geometric Period (see Kling 1989: 94 for references; Killebrew 2000: 236, n. 20). Whether due to fashion or function, it appears to have replaced the White Slip and Basing bowls on the island after 1200 BC (Åström 1998: 82). Deep bowls are also found in abundance in Mainland Greece, mainly in settlement contexts. They were less common in Crete and occurred there probably as a result of Mainland influence (Killebrew 2005: 242, n. 79).

Skyphoi have been found at numerous sites in the southern Levant (see Killebrew 2005: 222, n. 78 for full references), coastal Syria/Lebanon at Sarepta (Koehl 1985: fig. 20. 192–6), Tell Kazel (Jung 2007: figs. 7, 8, 10; Capet 2008: figs. 6, 9, 11; Badre et al. 2005: figs. 6–8), in large numbers at Tarsus in Turkey (Goldman 1956b: figs. 330, 331f;
Mountjoy 2005a: figs. 8–14), and elsewhere in Cilicia at Kazanli (Sherratt and Crouwel 1987: figs. 4.8, 5.8, 6.2, 7) and Dağlıbaz Höyük (Lehmann et al. 2007: fig. 2).

The presence of deep bowls is also attested at inland Syrian sites such as Tell ‘Acharneh (Cooper 2006: fig. 15.11), Hama (Riis 1948: figs. 89, 90), Tell Afis (Venturi 2010: fig. 11.1–3; Venturi 2005: fig. 54. 1–4, 6; Bonatz 1998: figs. 2–5), Tell Qarqur (Dornemann 1999: fig. 88.5), and ‘Ain Dara (Stone and Zimansky 1999: fig. 27.1). In the Amuq Valley, the Syrian-Hittite Expedition recovered numerous skyphoi (Swift 1958: 66, figs. 19–21). Unfortunately, although a total of thirty-five such vessels were recorded, thirty-three of which bore painted decoration, only three were illustrated in G. Swift’s unpublished dissertation. A thorough publication of finds, including deep bowls, from the Syrian-Hittite Expedition’s excavations at the site of Chatal Höyük is forthcoming (Pucci in press).

4.2.1.1.1 Deep Bowl Morphology

At Tell Tayinat, deep bowls comprised the most common Mycenaean-type vessel. The assemblage is not characterized by a standardization of shapes. It includes vessels that are short and squat (Pl. 4.5) as well as deep and globular (Pl. 3.1), whose sides are convex (Pl. 2.1), straight (Pl. 4.4), carinated (Pl. 4.8), and occasionally concave (Pl. 6.16). Rims are simple, everted, and often sharp or short (Pl. 3.1). Their size is also highly variable, with rim diameters ranging from 8–21 cm (avg. 15 cm), and on that basis can be divided into three groups (see Table 8):
1) small: less than 12 cm classified as cups\(^{46}\) (Pls. 1.2, 8, 15; 2.2, 5, 6; 4.13, 14)

2) medium: between 12–19 cm. (Pls. 1.6, 9, 11–14; 2.1, 9, 11; 3.5, 9; 4.1, 4, 5, 7, 8, 10, 11; 5.1, 2, 5; 6.1, 4, 6, 8, 9, 11, 12, 16)

3) large: between 20–25 cm (Pls. 3.1, 4; 5.7; 6.5, 13, 14)

Larger versions of bowls, deep or bell-shaped, typically bearing thickened rims with more elaborate decoration, and presumably serving a different purpose are herein considered kraters (FS 282), and are not treated in this chapter. The distinction is well-founded and has been made by Furumark, Mountjoy and Kling in Mycenaean assemblages from the Greek Mainland and Cyprus (Kling 1988: 317).

Several observations pertaining to bowl size distribution are worth noting. The average rim diameter increases over the course of Field Phases 6–3, from 13.5 (6) to 15.2 (5) to 16.5 (4) to 17.2 (3), respectively. The greatest range of sizes occurs in Field Phase 5 (8–21 cm), after which cups virtually disappear. Also, Field Phase 6 is a mirror image of Field Phases 4 and 3. Whereas the earliest phase contains many cups and no bowls larger than 17 cm, in FP 4 and 3 the situation is reversed. These latter phases produced no cups smaller than 12 cm, and a number of large bowls, perhaps reflecting a change in food preparation or consumption habits over time.

The linear deep bowl in Cyprus develops from a deep semi-globular shape to a more square, straight-sided, or bulging form; the fully mature version occurring on Kition Floor I (Mountjoy 2005b: 176; Bonatz 1998: 213). At Tayinat the latter shape is much more common. Deep bowls of the square, straight-sided variety are dominant (72%) and are more common in all field phases. Semi-globular vessels are found mostly in Field Phases 6 and 5, although they comprise a minority of the vessels. Their greater presence

\(^{46}\) Some scholars reserve the term cup for vessels having one handle only (French, personal communication).
in the early phases may simply reflect the smaller overall number of sherds excavated in the latter phases, rather than being indicative of a developmental trend. However, if the morphological transition observed at Tayinat is legitimate, its parallel in Cyprus would lend support to a late date for the local bowl assemblage. Kition Floor 1 is equivalent to CG 1 in Cyprus and Submycenaean in the Mainland.

Gilboa has documented a group of deep bowls (“northern skyphoi”) from Tel Dor

<table>
<thead>
<tr>
<th>Group</th>
<th>Cups (<12 cm)</th>
<th>Medium (12–19 cm)</th>
<th>Large (>19 cm)</th>
<th>avg. size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 6</td>
<td>10 11 13 15 16 17</td>
<td>13 15 16 17</td>
<td>16</td>
<td>13.5</td>
</tr>
<tr>
<td>FP 5</td>
<td>8 10 13 14 15 16 17 18 20 21</td>
<td>15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 4</td>
<td>12 15 18 21</td>
<td>16.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP 3</td>
<td>14 15 18 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totals (=41)</th>
<th>Cups (8 (20%))</th>
<th>Medium (28 (68%))</th>
<th>Large (5 (12%))</th>
<th>avg. size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 (20%)</td>
<td>28 (68%)</td>
<td>5 (12%)</td>
<td>15.1</td>
</tr>
</tbody>
</table>

(Iron 1A), which bear a morphological similarity to the straight-sided forms so typical at Tayinat. A. Mazar was the first to note the presence of such vessels as a geographical phenomenon in “Northern Palestine” at such sites as Tell Keisan, in contrast to Myc IIIC examples found in Philistia (Mazar 1985a: 90). The Dor bowls are more coarsely made than early Philistine skyphoi and bear simple linear designs, which Gilboa has dated contemporary to the Philistine Bichrome phase, coinciding with the founding of the Early
Iron Age settlement (Gilboa 2008: 213). She goes on to equate this group with similar bowl assemblages at Keisan and Sarepta, which also employed simple standards of production. Gilboa has also revived the idea first proposed by T. Dothan that the northern skyphoi together warrant a temporal explanation, contra the geographical one offered by Mazar (2005: 56–7, figs. 2, 3; Dothan 1982: 98, 105–6).

Examples of deep semi-globular bowls at Tayinat include Pls. 2.1, 6 and 3.1. Shapes belonging to the straight-sided category include Pls. 1.6, 11, 14, 3.9, 4.8 and 10, among others. The predominance of straight-sided deep bowls at Tayinat may be indicative of a late-12th century date equivalent to Philistine Bichrome and bowl assemblages at Tel Dor, Tell Keisan, and Sarepta.

Several morphological aspects of the deep bowl series at Tell Tayinat are of particular interest. One of these is the carination at mid-body—a feature present in a significant number (approximately 30%) of deep bowls with sufficient preservation to demonstrate (Pls. 1.11; 2.5; 4.5, 8; 5.1, 5; 6.1, 16). It appears in all field phases but in terms of size tends to cluster in medium to small bowls in the 12–15 cm range (except Pl. 4.8). This may be significant or may simply be an accident of preservation as smaller vessels are more likely to have survived intact. There also appears to be no chronological value to the relative occurrence of carination, as it appears in roughly equivalent numbers in all field phases.

The frequency of carinated bowls at Tayinat stands in contrast to their relative absence in deep bowl assemblages elsewhere. Such bowls are very unusual at Ekron and Ashdod (Dothan and Zukerman 2004: 8, fig. 8.5; Dothan et al. 2006: fig. 3.20: 17). Both published examples from Ekron VIIA bear a close morphological resemblance to a
Tayinat vessel (Pl. 4.8). The same situation prevails at Tarsus, where carination is virtually non-existent among the large sample of published deep bowls (except Mountjoy 2005a: figs. 8–14, cf. fig. 12.300; French 1975: fig. 19.13).

In the Aegean, recent examples of carinated skyphoi have been published from the LH IIIC corpus at Bademgediği Tepe in Ionia near modern Izmir, where they are attributed to Minoan influence (Meriç and Mountjoy 2002: 96), but not to be conflated with Mainland examples from the LH IIIB–C Transition at Iria in the Argolid (Mountjoy 1999a: fig. 40.302), Messenia (Ibid. fig. 120.110, 112, 114, 115), and Laconia (Ibid. fig. 95.176–9). In addition to being characterized by straight sides and vertical lipless rims, Mainland examples do not survive beyond the Transition (in Crete they continue well into LM IIIC) and bear little resemblance to Tayinat shapes, which have concave walls and flaring rims (Mountjoy 1999b: 512).47 The deep bowl form in Crete is the predominant bowl shape throughout the island in LM IIIC and is a marker for its beginning (Hallager 2000: 139, 142, pl. 35; see also Rutter 2013: 557). But the straight-sided, everted walls of Minoan examples are also quite different from those at Tayinat.

Deep bowls with short or sharp rims and/or stubby handles comprise other peculiar traits in the Amuq Valley that may represent local development.48 Examples of short rims are found on Pls. 2.2, 6, 3.9, and 4.7; Pls. 1.6, 13, 4.1, and 6.14 demonstrate the stubby handle type bowl, which is characterized by a very wide handle root that often but not always attaches high on the wall and near the rim. Short rims make up approximately half (54%) of the total deep bowl rim assemblage—stubby handles a little

47 A single exception from Transitional LH IIB2-LH III C Early Laconia (Mountjoy 1999a: fig. 95.179) can be compared to an unpublished skyphos from Tayinat (TT04.G4.55.48.1) but with a wholly different decorative scheme.
48 I thank Dr. Penelope Mountjoy for this observation.
over half (58%) of all handles. These two traits occur in tandem on only 34% of sherds with both rim and handle intact.

The few (only three) skyphoi published by the Syrian-Hittite Expedition to the Amuq share the same morphological features. A bowl from Tell Judaidah, according to Swift, was most typical of the series (Swift 1958: fig. 21). It bears what he called a *sharp* rim and *close-set* handles (Swift 1958: figs. 19–21). Although another example from Chatal Höyük lacks a stubby handle, it does feature a sharp out-turned rim (Swift 1958: fig. 19). New research from Chatal Höyük further corroborates the presence of sharp, short rims (figs. 4.9, 10; 5.1, 2, 14) and stubby handles (fig. 5.13) on deep bowls (Pucci in press). At Tarsus in Cilicia the deep bowls do not have these characteristics. The skyphoi there conform to a conventional—by Aegean or Cypriot standards—gentle S-profile with smoothly flaring rims (Mountjoy 2005a: figs. 8–14).

Tell Afis Phase IV has produced several deep bowls (Venturi 2010: fig. 11.1–3; Mazzoni 2005: fig. 54.1–4, 6) with parallels to material from Enkomi Floors II–I (Mountjoy 2005b: fig. 19.14, 15; fig. 20.18; fig. 21.28) and Kition Floor II (Karageorghis and Demas 1985: pl. CCXII. 5030, 5483), both LC IIIB Late to CG. It is interesting to note that two of the Afis bowls have short rims, one of which also features a stubby handle. Moreover, Venturi surmised that the low ring bases of Phase IV bowls at Afis are stylistically earlier than those from Cyprus. To that can be added their deep globular shape, which also places them earlier morphologically and creates closer parallel to Tayinat Pl. 4.1, with which they also share the flowing wavy line motif.

Sharp rims are rare in Philistia and stubby handles virtually non-existent. Only two published examples can be cited at Ekron VIIA/B (Dothan et al. 2006: figs. 3.8: 14;
3.11: 15). In Cyprus several sharp rims have been published from Enkomi IIIA (Mountjoy 2007a: fig. 5.6; 6.8), IIIB Late (Mountjoy 2005b: fig. 22.32), and IIIC (Mountjoy 2005b: fig. 21.24), Kition LC IIIB Late (Karageorghis and Demas 1985: pl. CCVIII.5104), Maa-Palaeokastro LC IIIA (Karageorghis and Demas 1988b: pls. CCVII. 24/1; CCX.473; CCXXIV.324; CCXXXV.671), and Kition LC IIIB Late (Karageorghis and Demas 1985: pl. CCVIII.5104). In sum, the short rim is in short supply at Cypriot sites while stubby handles do not exist at all.

In the Aegean, deep bowls with short rims are sporadic and isolated, appearing from LH IIIC Early at Melos (Mountjoy 1999a: figs. 374.153; 375.169), Korinthia (Mountjoy 1999a: fig. 77.197), Laconia (Mountjoy 1999a: fig. 97.205), and Messenia (Transitional IIIB2–IIIC Early. Mountjoy 1999a: figs. 120.111; 120.108).49 Two LH IIIC Late sites have examples of short rims: Chios (Mountjoy 1999a: fig. 474.19) and Attica (Mountjoy 1999a: fig. 238.598). Again, stubby handles are not found among the published finds from these areas.

The Amuq Valley may be unique in its typological development of the sharp rim and stubby handle on deep bowls. It is clear that the rim type is very rare in other regions that produced the shape, the stubby handle being virtually non-existent outside the confines of the valley. The short rim and stub handle, together with the relatively high rate of carination among the bowl series, would seem to provide evidence of a unique set of local departures from the well-established morphological norms in the Aegean and Cyprus.

The bases of the Tayinat deep bowls are mostly low ring types with few exceptions. Those that survive as fragments (Pls. 1.1, 3, 4; 2.8, 10; 4.9) are assumed to

49 Perhaps coincidentally Laconia and Messenia also produced carinated bowls (see above).
belong to deep bowls or SABs, since the difference is difficult to discern from sherds (but cf. Mountjoy 2005a: 98). In the Aegean, bases of open vessels undergo typological development during LH IIIC Late, SM, and PG, where they transition from low ring to conical to high conical, respectively. But Cypriot bases tend to be higher—they are mostly conical, even during Enkomi IIIB Late when contemporary SM bases in the Aegean are predominantly low ring (Mountjoy 2005b: 167).

The Mainland scheme seems generally applicable to the Tayinat assemblage in the following features: Several low base types (Pls. 1.1, 3, 4; 2.2, 8; 4.1) are stylistically earlier than the one-handled bowl (Pl. 3.3) and more so for the high, stepped conical base (Pl. 6.16). A morphological comparison of bases supports the notion that the assemblage corresponds to LH IIIC Late to SM in Aegean terms. Decorative aspects of the bowl bases at Tayinat are further discussed at the end of the following section.

4.2.1.1.2 Deep Bowl Decoration

Although analysis of the decorative repertoire is still in its initial stages at Tell Tayinat, it is clear that bowls were adorned simply with a limited range of design elements, usually consisting of bands, reduplicated (wavy) lines, or combinations thereof. Monochrome occasionally occurs (Pls. 2.1; 4.12; possibly 1.14; 4.11), stacked triangles or zigzag (FM 61) is rare (Pls. 3.1; 6.12, 16), and spirals (FM 52) rarer still (Pl. 2.8).

One of the more notable motifs found at Tell Tayinat is the double-antithetic streamer or antithetic tongue (FM 19:2), four of which are painted on bowls from Field Phases 6 and 5 (Pls. 2.1; 4.12, respectively). The decoration consists of a loosely-flowing motif painted on a frieze between a wide rim band and a group of lines painted below the belly. The double-line streamer (Pls. 2.1; 4.12) typically descends vertically from the rim
band and splits in a symmetrical fashion, before climbing again as it spreads laterally. The vessel interior, like the exterior, usually bears a broad band at or slightly below the rim. Judging from the space available in the decorative zone between the handles, the outward descending loops would need to be fairly steep as depicted on bowl (Pl. 4.11), a motif that appears to preserve the left “hump” of an antithetic streamer. Both bowls have similar convex profiles with a flaring everted rim. The decoration on a Tayinat fragment (Pl. 4.11) quite closely parallels an antithetic loop motif found on a LH IIIC Late bowl from Lefkandi Phase 3, which Mountjoy has assigned to her East Mainland-Aegean koine (2009: 293, fig. 15.1), based on specific shapes and motifs found at the key sites of Mycenae, Asine, and Lefkandi. Several further fragmentary examples may be present in the Tayinat assemblage (Pls. 1.7, 13; 3.9; 4.8; 5.2; 6.5, 6, 14).

Views differ on the origin of the antithetical streamer, some thinking it emerged first in Crete (Mountjoy 1999b: 513–14), while others in Rhodes (Furumark 1944: 207–8). It was a popular decoration throughout LH IIIA–IIIC in Mainland Greece (Furumark 1941a: 298–301) having developed from the tricurved arch in LH IIIC Middle (Mountjoy 1993: 98).

In Philistia, examples of the antithetical streamer at Ekron VIIA/B of the same type are found exclusively on deep bowls, but are more elaborate in their filling motifs than the Tayinat motifs (Dothan and Zukerman 2004: fig. 8.7–9; Dothan et al. 2006: figs. 3.16: 12–14, 15; 3.18: 16; 3.20: 17, 19). Examples of antithetic tongues were also found at Tell es-Safi (Bliss and Macalister 1902: pl. 35.11), and Ashkelon (Stager 1995: fig. 3.6, 25, 45). Cypriot parallels from LC IIIA and B occur at Enkomi IIIA, Sinda II, Kition Floor III/IIIA, Kition Tomb 9-Upper (Karageorghis 1974: pl. 157.138), and Hala Sultan
Tekke (Kling 1989: cf. 105 for complete list). A similar design from Maa-Palaeokastro featuring triple-line streamers is probably LC IIIB Early (Karageorghis and Demas 1988b: pl. CCXXXV.671). What distinguishes these patterns from those at Tayinat is their relative complexity. All the examples cited above have filling or connecting motifs that variously consist of vertical chevrons, central herringbone patterns, ladder motifs, cross-hatched lozenges and the like.

Examples of simple antithetic streamers have been documented in the Amuq Valley and vicinity. It was the only motif (other than painted bands and monochrome) illustrated among the deep bowls in the pottery report of the Syrian-Hittite Expedition (Swift 1958: fig. 21), and bears close resemblance to the Tayinat design in its relative simplicity. It is composed of two symmetrical double-wavy lines descending from the upper register that finish at either handle stem. A virtually identical motif from Chatal Höyük was found on a large deep bowl (Pucci in press). A recent surface find on a deep bowl fragment from nearby Dağlıbazar Höyük quite clearly bears the same decoration in fragmentary form (Killebrew and Lev-Tov 2008: pl. LXVII.b). The central uppermost line is visible before it splits into what appears to be the right half of the streamer motif. The banding is similar as well, consisting of a frieze framed by a broad rim band and thin secondary line below. The interior of the bowl is not illustrated.

Tell Afis has published a deep bowl series bearing reduplicated line motifs with close similarities to the Amuq streamers (Venturi 2010: fig.11.1–3). One example (fig. 3) is painted with deep undulating lines particularly reminiscent of two vessels from Tayinat (Pls. 2.1 and 4.11). These are important for understanding the chronological sequence at Afis as they have been linked to the Wavy Line tradition in Cyprus, specifically to bowls
found at Enkomi Floors III–II and Kition III–II, corresponding to LH IIIC Late in the Aegean (Mountjoy 2005b: table 7). Afis Phase IV is dated to 1130–1050 BC on the basis of these and C14 analysis of charcoal remains from Phase V (1280–1130 BC; Mazzoni 2005: 118).

The double antithetic streamer from Tell Tayinat is a less ornate version of its more complex relative found in the Aegean, Philistia, and Cyprus. As such it seems to represent a simpler, more austere local decorative tradition in the Amuq Valley that may have disseminated beyond the confines of the valley. Such may be the case at Tell Afis, where close affinities have long been recognized (Venturi 1998: 129, 2010: 5). Indeed, it may prove that the Amuq Valley, with Tell Tayinat at its head, was the locus for innovation in the region, perhaps overshadowing the influence of coastal Syria/Anatolia and Cyprus.

The zigzag or stacked triangle pattern (FM 61) is a motif well-attested at Tell Tayinat and is found in all field phases (Pls. 3.1; 6.12, 16, etc). In terms of the Tayinat pottery sample, it most often appears in single or triple-stacked versions (95% of all such examples). Strangely, there are virtually no examples of double or quadruple-stacked zigzags. During the early phases the triple version was dominant, whereas in the final phase it was the single zigzag that prevails. There is also the question of whether the zigzag is a featured element of the decoration or is complementary to it. At Tayinat the former seems to be the case since it often adorns the central shoulder zone of the vessel. These examples of zigzag also indicate that kraters were the most popular shape chosen for such decoration, amounting to fully two-thirds of the total among all vessel classes. A restored example from the Iron II period (Phase O) was found in Amuq Valley that
featured double-stacked zigzags on the shoulder of an amphoroid krater (Swift 1958: fig. 38).

The Tayinat bowl (Pl. 3.1) is a good example of a triple-stacked zigzag motif used as the central decorative element. The design is enclosed by a broad rim band and a series of mid-body bands. A broad band also adorns the inside rim. The featured aspect of the zigag bears close similarity to its use in other repertoires in the region, for example, at Hama (Riis 1948: figs. 29, 43, 50, 51, 63, 130.10–12), Tell Kazel (Badre et al. 2005: fig. 5.1), Ras Ibn Hani (Phase II) on a group of amphoroid kraters (du Piêd 2008: figs. 11a, 11b), and Tell Afis Phase V–III (Venturi 2007: fig. 56.2; 2010: fig. 13.6).

However, the stacked zigzag was not new to Phase N in the Amuq Valley, with earlier examples appearing on a Phase K bowl from the Middle Bronze IIA period (Swift 1958: fig. 1), a Late Bronze I bichrome krater from Alalakh V (Gates 1981: fig. 5d), and a Late Bronze II krater from Alalakh II (Woolley 1955: pl. CXI.25). At Chatal Höyük, a krater from Phase M bears a five-line stacked zigzag motif in the shoulder zone, a quad version appears on a Phase N mug, and a triple zigzag is found on a Phase N strainer jug (Pucci in press). There is a well-established tradition of zigzag decoration in Anatolia as demonstrated at Iron Age Kilise Tepe Level II (Hansen and Postgate 1999: figs. 6–10), Çadir Höyük (Ross 2010: fig. 12d), Tarsus Transitional (Goldman 1956b: fig. 391.1352), and at Early Iron Age Boğazköy and Kaman-Kalhöyük, both in the plateau region of Anatolia (Matsumura 2008: fig. 2; Genz 2003: figs. 2.5, 3.1–2, 4.4, 7).

Much of what has been classified as zigzag in Cyprus more closely resembles tight wavy lines, often sloppily rendered, and usually secondary to the central motif (cf. discussion in Kling 1988: 322). The only decoration bearing the slightest affinity to the
triple-stacked zigzag on the Tayinat bowl (Pl. 3.1) is from Maa-Palaeokastro (Karageorghis and Demas 1988b: pl. CCIV.48), which consists of a single row around the neck and a double-stacked zigzag on the shoulder of a medium size jar. With few exceptions, examples of zigzag motif in Cyprus bear no relation to the Anatolian or Syrian style. Examples of the latter are usually more carefully drawn and positioned as a central element in the decoration.

Stacked triangles are virtually non-existent at the Philistine sites of Ashdod and Ekron. Instead, the cross-hatched triangle is common, sometimes filled, and usually serving as an auxiliary element in combination with other motifs (Dothan and Zukerman 2004: 40). Although examples are found in the Aegean for zigzag used as a primary decoration, it often supplemented pictorial birds, fish, and animals as a filling motif, particularly in LH IIIC Middle. By SM it evolved into what resembles a tight wavy line (Mountjoy 1993: 51, 98, 117).

Mycenaean zigzag in the Aegean originated in Middle Helladic painted on goblets, and in LH IIIC Middle was used primarily to supplement pictorial birds, animals, and fish as a filling motif. By SM it evolved into what resembles a tight wavy line (Mountjoy 1993: 51, 98, 117). It is painted on a wide variety of shapes, including kalathoi, jugs, alabastra, feeding bottles, piriform jars, hydria, amphoriskos, kraters, but only rarely on deep bowls. In contrast to Cyprus and Philistia, the stacked triangle is almost always the featured aspect of the design. The four-stacked zigzag is common and painted on two bowls, one a kantharos from LH IIIC Late Kephallonia (Mountjoy 1999: fig. 167.73), and the other a LH IIIC Early deep bowl from Attica (Mountjoy 1999: fig.
Another deep bowl from Attica, this one in SM, features a single zigzag in the register (Mountjoy 1999: fig. 244.651).

This brief analysis of the zigzag motif shows that it was rarely used to decorate deep bowls. As such, its application on a deep bowl at Tayinat reflects the fusion of a regionally popular decoration on a shape that was foreign to the area prior to Phase N in the Amuq Valley.

The **Wavy Line Style** (FM 53) has been closely associated with so-called Granary Class pottery found in the ruins of the Granary at Mycenae belonging to LH IIIC Middle. However, the Wavy Line Style itself belongs primarily to LH IIIC Late, with a few examples occurring on bell kraters at Tiryns as early as LH IIIC Middle 2 (Wace 1921–3: figs. 9, 12; Mountjoy 2005b: 157; Stockhammer 2009: 349–50, n. 20). The style is characterized by reduplicated lines (numbering from 1–5) painted horizontally in metopes in the upper body zone of cups and bowls. Furumark believed Wavy Line Style evolved from the narrow zigzag of LH IIIB and Early LH IIIC (Furumark 1941a: 370–75, 373, fig. 65). Sherratt has proposed an Eastern Mediterranean origin, perhaps Cyprus, from which it subsequently diffused westward to the Aegean (Sherratt 1981: 236). Mountjoy has traced the decoration to the East Aegean-West Anatolian Interface on *Light-on-Dark* and *Dark-on-Light* pottery from the LB I and II periods (Mountjoy 1998: 39, fig. 3.3).

An indigenous origin has been suggested for Early Iron Age examples of wavy line motif found in Cilicia, at the sites of Kinet Höyük (Gates 2010: 71) and Tarsus (Ünlü 2005: 146, 151). It should also be noted that Swift long ago recognized two distinct wavy line traditions in the Amuq, one native and the other Mycenaean (1958: 111, table 7).
However, he was not explicit in distinguishing the two, observing only that the local version was situated between straight bands (1958: 71, 77). This is clearly an insufficient criterion since most all occurrences bear the motif between bands or lines.

Pottery with wavy line decoration in Cyprus was initially thought to occur as early as LC IIIA at Enkomi (Dikaios 1971: 490–91, n. 401; Kling 1989: 37). However, a reexamination by Mountjoy of the stratigraphy and sherds in question has shown that this material was either not wavy line decoration at all, or was intrusive, the result of “disturbance and erosion” (Mountjoy 2005b: 157–58). The result of her analysis has shown that Wavy Line Style did not actually appear in Cyprus until Enkomi Floor III and Kition Floor III–II, corresponding to Enkomi Level IIIB Late (Mountjoy 2005b: table 7), contemporary with LH IIIC Late in the Aegean.

Wavy Line decoration is not uncommon at Tell Tayinat, and usually consists of loosely flowing motifs of between one and four lines (Pls. 1.7?, 12?, 13, 14?; 3.2; 4.1, 8?, 11, 14; 5.2?; 6.5, 6, 14), but occasionally in tight waves (Pls. 2.9; 4.7). 75% of all such motifs in the assemblage are single wavy line versions, and bowls are the preferred vessel form for the motif, along with kraters. Five bowls bear designs that may represent streamers (Pls. 1.14; 3.9; 4.11; 6.5, 6), but Pls. 4.1 and 6.14 clearly depict triple and double (or possibly triple) reduplicated wavy line motifs, the former example here being reconstructed from parallels at Enkomi and Kition (Dikaios 1969: pl. 113.5912/3, 5923/2).

A close Cypriot analogue has been found at Kition Floors III–II, stylistically belonging to PWP, or SM in the Aegean (Karageorghis and Demas 1985: pl. XLVI.895A/2; Mountjoy 2005b: fig. 20.23). The triple wavy loosely-flowing motif
terminating at either handle is strikingly similar to that found on the Tayinat bowl (Pl. 4.1). However, the Cypriot shape differs morphologically. Its walls are more straight-sided, its rim more flaring, and its base unfortunately missing (Mountjoy did not reconstruct it). However, a complete bowl from Enkomi Floors II–I from LC IIIB Late displays correspondence at several points: in its motif, handle stripe, darkground lower body, monochrome interior with reserve band below the rim, and low ring base (Mountjoy 2005b: fig. 20.18).

Another bowl from Kition Floors II–I bears a double-wavy motif, darkground lower body, monochrome interior and overall globular shape, but has a high conical base (Karageorghis and Demas 1985: pl. CCXX.5246). Aegean parallels for the Wavy Line Style at Enkomi are also found at Bademgediği Tepe, where it was virtually the only motif applied to deep bowls. The western Anatolian site also features numerous examples of carination in the LH IIIC assemblage (Meriç and Mountjoy 2002: 93, fig. 6). As noted previously, the short rim and close-set handle of Pl. 4.1 stands in contrast to deep bowls from Cyprus and the Aegean.

It should be recalled that the loosely rendered wavy line characteristic of LH IIIC Late in the Aegean developed into a tightly drawn motif that resembles a zigzag. The stylistic development is one of the diagnostic traits for the transition from LH IIIC Late to Submycenaean (Mountjoy 1988: 4, figs. 2, 13; Stockhammer 2009: 351, fig. 5.9). The loosely flowing version is prevalent in the local repertoire at Tayinat, but the stylistically later tight wavy line is also present, mostly in the latter phases (Pls. 4.7; 6.12, 16; except 2.9 in FP 6). Two of these are here classified as zigzag (Pls. 6.12, 16), but judging from SM parallels found elsewhere, they could also be interpreted as Wavy Line decorations.
The design on a Tayinat deep bowl (Pl. 4.7) reflects an interesting combination of traits. Its darkground exterior features a tight wavy line in the decorative zone characteristic of SM style, but its deep semi-globular shape and stratigraphic context would seem to indicate an earlier date. Unfortunately the base is missing, but it sports the trademark high-set handles and sharp rim of the Amuq. Recall, however, that the zigzag pattern in Cyprus often resembles tight wavy lines, which might explain the presumably anomalous features of Pl. 4.7, but which again serves to demonstrate that applying Mainland wavy line standards to Levantine assemblages can create difficulties. At any rate, Wavy Line decoration at Tell Tayinat is largely discontinued after Field Phase 5.

Other decorative features at Enkomi were found to be roughly contemporary with the Wavy Line Style in Levels IIIB Late and IIIC. One of these painted traditions identified by Mountjoy, which first appeared in LC IIIB on Enkomi Floor II and Kition Floor III–II, was the linear/monochrome style (Mountjoy 2005b: 176, figs. 22, 23). This group has several traits that correspond to the deep bowl assemblage at Tayinat. Among these are monochrome handles with reserve undersides (Pls. 1.11, possibly 1.13; 2.2, 3, 5, 6; 3.4; 4.1, 5, 7, 8; 5.1, 5; 6.1, 5, 16), and occasionally darkground lower bodies (Pls. 1.1; 4.1; 5.7 and possibly Pls. 1.6; 4.4, 8; 6.1). Interiors may be linear with bands, which is a commonplace feature at Tayinat, as most bowls bear matching broad bands painted on the inside and outside of rims, possibly representing a local painted tradition. Decorative zones on deep bowls at Tayinat are generally not reduced by painted circles around handles as they are, for example, on the so-called “salami bowls” in Cyprus and the Aegean (Mountjoy 2005b: fig. 22.35; 1999: fig. 326.34). However, isolated examples have been found (Pls. 4.10; 5.7; 6.16).
A deep bowl with monochrome decoration from Tayinat (Pl. 1.6) illustrates several stylistic points. Although it does not strictly match the specifications of the monochrome series in Cyprus as defined by Mountjoy (for example, it has no reserved bands), it does compare well with an example from Enkomi IIIB Late, one of only two monochrome motifs (with no reserved zones) found on the island, as reported by Kling (1989: 107b, fig. 26c). The Cypriot bowl (Dikaios 1969: pl. 124.1) has vertical sides, short rim, high-set handles, and a concave base. The base of the Tayinat vessel (Pl. 1.6) is missing, but its intact walls are nearly vertical and it has the characteristic short rim and stubby handle of the Amuq. A strong preference for solid paint on deep bowls was recorded at Maa-Palaeokastro, but its occurrence was limited to interiors, whereas the exteriors were adorned with a collection of various motifs (Karageorghis and Demas 1988).

Finally, a closer inspection of two Tayinat deep bowls (Pls. 5.5; 6.16) is revealing. Although Pl. 6.16 is a surface find, the two clearly illustrate the last stylistic phase of the deep bowl series at the site. Their concave walls, bulging shape (Pl. 5.5), and stepped conical base (Pl. 6.16) clearly situate them late in the sequence. As comparanda the group from Enkomi and Kition show the closest affinities. Some of these bear Wavy Line decoration and some linear, all of which occur in Enkomi IIIB Late and IIIC, equivalent to LH IIIC Late and SM in the Aegean.

Parallels for the Tayinat bowl (Pl. 5.5) have been found at Kition Floor I (Karageorghis and Demas 1985: pl. CCXXIV.538, 4829) and Enkomi Sanctuary Sol I (Mountjoy 2005b: fig. 24.48). The linear decoration, concave sides and overall

50 Pls. CLXX. 238, 155; CLXXV. 600; CXCII. 419, 556, 592, 707, Bothros 1/11; CCVII. 24/1; CCX. L/12, L/24, L/1; CCXXX. 641; CCXXXV. 385; CCXLVII. 705.
proportions of these Cypriot PWP-WP I bowls make them very close parallels, even without the missing base (Pl. 5.5).

Several other examples from Cyprus relate more closely to (Pl. 6.16) (Mountjoy 2005b: figs. 21.24, 31, 22.39, 23.44; Karageorghis and Demas 1985: pl. CCXII.98, 5027, CCXXIV.2495). All examples in this group have concave sides, similar overall proportions, and linear design. However, bowls from Kition Floor II (Mountjoy 2005b: 23.44) and Floor I (Karageorghis and Demas 1985: pl. CCXXIV.2495) bear the closest resemblance with their lipless rims. In the case of the latter example from Floor I, its stepped conical base (although not carinated) and stubby handle are comparable. Both bowls are stylistically assigned to CG I, equivalent to SM in Mainland terms.

The Iron Ia level at Dor has produced a virtual match with Tayinat skyphos (Pl. 6.16), particularly in terms of shape, dimensions, handle placement, and carination (Gilboa 2005: fig. 2.16). The Dor vessel’s only decoration is a band outside the rim. The base, concave or bulging walls, as well as the rim diameter and mid-body having equal dimensions are traits that make the Tayinat bowls (Pls. 5.5; 6.16) stylistically later than other examples in the assemblage, perhaps PWP or even CG I in Cypriot terms, well into the 11th century BC.

Finally, monochrome deep bowls with reserved lines inside the rim, characteristic of the LH IIIC Middle (developed) at Mycenae (French 2007b: 176), are documented in the Amuq Valley at Chatal Höyük (Swift 1958: fig. 19; Pucci in press: fig. 4.9). The decoration is important as it marks a ceramic transition to Amuq Phase N at the site (Pucci in press: 6, 8). No such motif has yet been found at Tayinat, although as noted above, general monochrome decoration is present (Pls. 1.4; 4.1, 4).
As for decoration on the interior of bowl bases at Tayinat, the majority of sherds bear painted designs, mostly with concentric bands but sometimes reserve bands and rarely spirals (Pl. 2.8). Spiraliform decoration inside bases is unusual in the Aegean and Greek Mainland, but occurs with regularity at Bademgediği Tepe in western Anatolia, as well as Tarsus and Cyprus, which suggests an eastern origin for the motif (Kling 1989: 170; Meriç and Mountjoy 2002: 88–9).

4.2.1.1.3 Summary Observations

A morphological analysis of the deep bowl at Tell Tayinat has shown that there was little in the way of standardized production on site, at least not in the limited exposures excavated thus far. It further reveals that there are regional eccentricities in terms of shape and decoration: an unusual taste for carinated forms, sharp rims, and high-set stubby handles. Deep bowls at Tayinat are characterized by low ring-type bases. These morphological traits are complemented by a relatively simple repertoire of painted motifs consisting of Wavy Line Style, linear, monochrome and a limited selection of other designs such as antithetic tongue or streamers, and stacked zigzag. Three particular vessels at Tayinat demonstrate the popularity of decorating small bowls or cups with fine line groups painted on the belly (Pls. 2.2, 6; 3.3). Some decoration was doubtless an expression of local traditions, while others represent Early Iron Age innovations in the Amuq Valley.

In addition to Wavy Line Style, Mountjoy has noted other decorative elements that were used concurrently in Levels IIIB Late and IIIC at Enkomi (Mountjoy 2005b: 168). This repertoire, which differed markedly from that of the preceding Level IIIB
Early period, included examples of hatched triangles, geometric triglyphs, spirals, fringed semicircles, and necklaces, all of which are attested at Tell Tayinat and the Amuq during the Early Iron Age, when the entire range of shapes in the pottery assemblage is included.

The painted repertoire at Tell Tayinat features other motifs, including spiraliform decoration. However, these and an array of others are largely confined to closed shapes—amphorae, jars, possibly hydria—and to kraters, although the sherd nature of the material often makes precise vessel identification difficult. The virtual absence of antithetical spirals at Tayinat stands in contrast to assemblages at coastal sites like Ras Ibn Hani and Tarsus, and in Cyprus, where the motif is found in far greater numbers. Its relative absence at Tell Tayinat may be a chronological phenomenon.

4.2.1.2 **Shallow Angular Bowl (FS 295)**

SABs (FS 295) are a standard and common vessel in Mycenaean assemblages. Their conical shape features strap handles just above the carination at mid-body and either a flat or concave ring base. The shape can be either plain or decorated with horizontal bands on the rim and interior, and concentric bands or spirals inside the base. There is a range of variability within the shape as evidenced by the classification schemes used in different regions. The SAB has been divided variously by size (Dothan and Zukerman 2004: 7), vessel proportions (Killebrew 2005: 242, n. 74), or by using a combination of criteria (Kling 1989: 131–37, figs. 5a–e).

Tell Tayinat has produced SABs consisting of two types: (Type 5b and 5c= figs. 5b and 5d, respectively). The first type, similar Kling’s Type 5b (Kling 1989: 131–2), comprises the predominant version of the form at Tayinat. Three examples were found in Field Phases 6 and 5 (Pls. 2.12; 3.10; 4.3). They bear medium-to-broad painted rim
bands inside and out and have rims measuring 16–18 cm. Parallels have been found in Cyprus at numerous sites in the LC IIC, IIIA, and IIIB periods (see Kling 1989: 132) during LC IIC and IIIB.

The less common version of the SAB at Tayinat, found in Field Phase 5 (Pl. 3.14), has an out-turned rim (Kling’s Type 5c), is decorated with medium bands on the rim inside and out, and bears a band at the carination on the exterior. In Cyprus, Kling’s Type 5c has been reported at relatively few sites: Enkomi, Kition, Kourion, Maa-Palaeokastro, Athienou, and it is found throughout the same chronological range as the more common type. SABs were particularly popular in Cyprus during the LC IIIA and IIIB periods, when both types were both imported and made locally (Steel 1998: 287). Mountjoy has argued an Aegean origin for the SAB with out-turned rim, owing to the fact that it was produced in Mainland contexts in LH IIIB: 2 and did not exist on Cyprus until a subsequent point in time, when examples were imported from the west (Mountjoy 1986: 132–33; Kling 1989: 134).

Several examples of SABs from Tarsus also provide good comparisons to Tayinat versions (Mountjoy 2005a: fig. 15.381, 387, painted; fig. 17.421, 427, plain). An early example from LH IIIB Lefkandi provides an analogous profile to Tayinat bowl (Pl. 3.14) (Popham and Milburn 1971: fig. 8.1). SABs also figure prominently in Philistine assemblages, being found at Ashkelon (Stager 1995: fig. 3: 11, 41–43, 48), Tell es-Safi/Gath (Bliss and Macalister 1902: pl. 35.7, 8), Ashdod Level XIIIb (M. Dothan and Ben-Shlomo 2005: 70), and Ekron VIIA (Dothan and Zukerman 2004: 7–8, figs. 5, 6; Dothan et al. 2006: 82–3).
SABs have been documented on the North Syrian coast at Ras Ibn Hani (Bounni 1979: fig 25.3, 4; du Piêd, 2008: fig 7g), and at 12th century Kinet Höyük (Phase 12a), where the only published example was evidently part of an “ephemeral and short-lived potting tradition” (Gates 2010: 72, fig. 8). Large numbers of such bowls have been found at Tarsus (Goldman 1956b: pl. 332.1266–68; French 1975: 61, figs. 16, 17; Mountjoy 2005: 126, fig. 15 painted, fig. 17 plain), but none are listed in the bowl corpus from the Syrian-Hittite Expedition to the Amuq Valley (Swift 1958: 66–7), perhaps because they were not recognized or identified as such. That they may have been overlooked is further supported by forthcoming reports from Chatal Höyük, where the SAB has been documented (Pucci in press), and at nearby Tell Ğindāris (Mühlenbruch et al. 2009: pl. 2). Although the impetus for applying paint to this shape may well have been inspired by imports, particularly in Cyprus as suggested by Mountjoy, Kling has noted that shallow conical and rounded bowls with horizontal handles had been crafted on the island for some time prior to the arrival of imports from the Aegean (Kling 1989: 133–34).

Examples of SABs bearing linear decoration have been cited as criteria for distinguishing the earliest levels of LH IIIC at Mycenae (French 2007a: fig. 2). However, the Tayinat vessels are not decorated in like manner. A series of SABs from the Argolid, published by French and Stockhammer (2007: fig. 25), shows an increasing degree of carination in rim profile over time. Along this developmental continuum, the Tayinat forms most closely resemble the concave rims of LH IIIC Middle (French and Stockhammer 2007: figs. 25.6, 7). Unfortunately, the published sequence at Argolid sites does not continue beyond the Middle phase of LH IIIC. It may be significant that Cypriot parallels of the shallow angular bowl at Tayinat are last found in LC IIIB Late (Kition
Area II, Floors II–III and Enkomi only in pits of uncertain date; Kling 1989: 132). This terminal date is contemporary with the point at which the form passes out of use in the Aegean in LH IIIC Late, which may suggest an approximate date for the Tayinat vessels, given that they have been found only in Field Phases 6 and 5.

4.2.1.3 One-Handled Conical Bowl (FS 242)

A well-preserved example of FS 242, the one-handed conical bowl, was found at Tell Tayinat in Field Phase 5 (Pl. 3.3). In the Aegean, the shape first came into use during LH IIIC Middle, continued in IIIC Late, but disappeared in SM (Mountjoy 2001: 97, 114). Mountjoy has suggested that the vessel form originated in the Levant, possibly Cilicia or Cyprus, and from there spread westward to Mainland Greece (2007: 587–8; 2009: 292). Sherrat has traced its origins to carinated hemispherical bowls indigenous to Cyprus (Sherrat 1981: 223–4). Kling has cited precursors at LC IIC Enkomi and subsequent examples at Maa-Palaeokastro, Kition, Kourion, and Kouklia (Kling 1989: 137).

The Tayinat one-handed conical bowl does not exhibit a true conical shape as found in the Aegean, but rather gently curves at mid-body. The decoration differs from the typically sparse linear exterior and monochrome interior of the Aegean in favor of a wide rim band, a thin interior rim band, and monochrome handle with underside reserved. The shape, exterior rim band, and lower body bands of the Tayinat example (Pl. 3.3) closely resemble two LH IIIC Late bowls from Lefkandi Phase 2b (Popham, Schofield and Sherrat 2006: 171, fig. 2.12.4; Popham and Milburn 1971: fig. 4.4, 5). Its elevated concave base (fig. 4.4) and everted rim also compare well. In contrast, however, the one-
handled conical bowl from Tayinat (Pl. 3.3) bears the short rim and stubby handle that are peculiar to the Amuq Valley.

At Tarsus the one-handled conical bowl was found in numbers second only to the deep bowl (Mountjoy 2005a: 83). There the bowls were most often fashioned in a true conical shape with low ring bases, and bore painted linear motifs (Mountjoy 2005a: 99–100, figs. 6, 7, 17), such as splashes on the handles and decorations, often spirals, on the interior of bases (Mountjoy 2005a: fig. 6.105–17). The rims were either straight or incurving. In contrast, the Tayinat bowl has slightly curved walls and a short everted rim. The handle is monochrome and the interior base undecorated. The higher ring base of the Tayinat bowl places it morphologically later in the LH IIIC sequence, most likely in IIIC Late.

A series of LH IIIC Late one-handled conical bowls from Lefkandi and Bademgediği Tepe bear decorative patterns similar to that of Tayinat’s, including thick rim bands, thin mid-body bands, and a base band. Their interior rim bands and higher ring bases also compare well (Mountjoy 2009: fig. 12.6, 7; Meriç and Mountjoy 2002: 88). However, the short everted rim of the Tayinat bowl differs from the vertical or non-existent rims found elsewhere, and the stubby handle is lacking entirely. As noted earlier, sharp rims and stubby handles are salient features on deep bowls at Tayinat, where their presence might suggest the handiwork of a single workshop. Such traits are also found elsewhere in the Amuq, at both Chatal Höyük and Tell Judaidah (Swift 1958: figs. 19–21; Pucci in press), in which case they may simply reflect a wider regional phenomenon unique to the Amuq Valley.
4.2.2 Summary Observations

The LH IIIC bowl assemblage at Tell Tayinat, while displaying unmistakable signs of independent development, would seem to have its closest stylistic affinities with sites in Cyprus contemporary to Enkomi Levels IIIB Late and IIIC, equivalent to the LC IIIB and Cypro-Geometric I period on the island (see Comparative Chronology Table 1: section 2.1). However, the provisional nature of these comments should be borne in mind, given the limited range of shapes under review, and the ongoing nature of the research. Further work grounded in the stratigraphy of the site and common wares may compel modifications to these preliminary conclusions in the future.

It is important to note the specific stylistic basis for dating of the Enkomi and Kition sequences, based as it is on Mainland prototypes. To reiterate, the Wavy Line Style first appeared in the upper level of the Granary at Mycenae and dates stylistically to LH IIIC Late. Contemporary Aegean parallels have been reported at Asine, Kea, Naxos, and Bademgediği Tepe (Mountjoy 2005b: 159, n. 117–22). In absolute terms, the beginning of LH IIIC Late is dated to c. 1090 BC and its subsequent introduction in Cyprus estimated to be a decade later, c. 1080 BC (Mountjoy 2005b: table 7; French 2007a: fig. 3). However, it is important to bear in mind the limited extent to which these dates are anchored in stratigraphic or radiocarbon reality.

In more general Aegean terms, the decorative repertoire at Tayinat correlates well to the Granary Style, which began in LH IIIC Middle (Advanced) and continued into LH IIIC Late, not only for the limited range and particular motifs, but for the virtual absence of Pictorial, Close, or Pleonastic Styles that characterize the LH IIIC Middle 2
(Advanced) phase elsewhere. The Granary Style, in contrast to the other more elaborate styles, typically consists of linear or monochrome design with a limited number of motifs. These include tassel, scroll, and wavy line, all of which appear in LH IIIC Middle 2 (Advanced). It also includes antithetic loops, necklace, and stemless spirals, which either newly appear or become more popular in LH IIIC Late (Mountjoy 2007b: 223).

Also, several shapes in the Aegean first appear in LH IIIC Middle 2 (Advanced), such as the trefoil-mouthed jug and one-handled conical bowl, both of which have been found at Tayinat. Mountjoy has recently lowered her estimate for their initial occurrence from LH IIIC Middle 1 (Developed) to LH IIIC Middle 2 (Advanced) (2007b: 222; see also Mountjoy 1999a: 155).

In conclusion, Tayinat bowls most closely correspond to Aegean and Cypriot parallels stylistically belonging to the LH IIIC Middle 2, IIIC Late, and Submycenaean periods (c. 1120-1050 BC).
4.3 Aegean-Style Kraters

4.3.1 Introduction

The decorated kraters of Tell Tayinat should be understood as part of a wider tradition of Mycenaean pictorial vase painting in the Mediterranean world that thrived for several centuries, between approximately 1400 and 1050 BC. In the Greek Mainland, a wide variety of shapes and forms were decorated. However, in Cyprus and the Levant, it was primarily kraters, with their large surface area, that were chosen to bear a wide range of painted scenes and motifs. The painted ornamentation on kraters is believed to have been inspired by frescos painted on the walls of elite palaces and villas (Crouwel 2007: 75; Vermeule and Karageorghis 1982: 1, 5; Mountjoy 1993: 73), as well as other art forms such as metal vessels and signet rings (Kopcke 1977: 32–33, figs. 7, 8). They were truly the palette of choice for such artistic displays. In fact, elaborate compositions were not limited to elite society, as proven by frescos discovered in private dwellings, such as the “House of the Oil Merchant” at Mycenae and elsewhere (Wace 1958: 14).

In the absence of conventional artistic displays on frescos and the like during the LH IIIC period, kraters effectively supplanted wall paintings and frescos of an earlier age (Yasur-Landau 2010: 138). Whereas during the Late Bronze Age in the Levant, such decoration was limited to imported pottery from the Aegean and Cyprus, pictorial depictions of the Early Iron Age were largely produced by local potters. The “koine” style of LH IIIB, which witnessed a more or less standardized array of shapes and motifs,
was replaced by products of local industry (Rutter 1977: 1). Although such decoration reached its zenith during the LH IIIC Middle period in the Mainland, pictorial kraters continued to be produced across the Mediterranean basin through the Submycenaean period in the middle of the 11th century BC.

Kraters were often much more than strictly utilitarian vessels. They formed an integral component of wine service assemblages, which were associated with Bronze Age ritual drinking traditions both in the Aegean and the Levant. These sets usually included kraters, deep bowls, and kylixes. The term itself (ka-ra-te-ra) is attested in Linear B tablets from the Late Bronze Age (Yasur-Landau 2010: 138). In Ue 611, a tablet found in the “House of Sphinxes” at Mycenae, a list of rations bears the names of several vessel types, including the krater, actual examples of which were found in nearby rooms (Chadwick 1973: 331; Melena and Olivier 1991: 22, 71). Some of the vessel names also appeared on clay sealings found at the doorway of a pottery storeroom in the vicinity (Tournavitou 1995: 263–64).

The name for the krater derives from the Greek verb keránymi, meaning “to mix” (Richter and Milne 1935: 6), a practice described in a scene from Homer in which Odysseus’ house attendants draw wine out of a mixing bowl and proceed to fill up the goblets of the guests (Odyssey IX.1–10).51 The Greek custom of mixing wine with water is further attested in a scene in which the nobles “had heralds attending them…some of them mixing the wine and the water together in wine bowls” (Odyssey I: 109). In the Levant, a Late Bronze Age ivory plaque from Megiddo depicts a similar setting in which two wine servants stand ready behind the enthroned king, with cups on hand to dispense

drink to the dignitaries. A large amphoroid krater and two animal-headed rhyta sit on the floor between them (McGovern 2003: fig. 9.2). It is probably not coincidental that the appearance of pictorial kraters coincided with the rise of Mycenaean palace-based economies in the LH IIIA period, and the elite drinking rituals that accompanied them (Sherratt 2004: 326).

4.3.2 Aegean Krater Shapes

What trait or traits characterize Mycenaean or Aegean-style kraters? Is there a distinctive repertoire of shapes, rim styles, or decorative schemes? How can Mycenaean kraters be distinguished from local or regional forms? Following the system developed by Furumark, published Aegean sequences use the overall shape of the vessel as the determining factor. Rims and decoration are secondary and often used as subdivisions of the body shape categories. Three shapes are typically classified as kraters in the Helladic scheme: stemmed (FS 7–10), ring-based (FS 281, 282), and amphoroid (FS 52–55). The following discussion will focus on these particular shapes.

The **stemmed krater** has a conical to piriform profile, with two long opposing strap handles from rim to belly. The shape first appeared in LH IIIA1 and continued until LH IIIC (Mountjoy 1986: 61, 170, table IV). However, this form became rare in the Aegean by the LH IIIC period. Moreover, it has not been found thus far in the Near East in any period (Leonard 1994: 12).

Ring-based kraters (FS 281, 282) were a very common shape in Mainland assemblages. In sherd material they are easily confused with stemmed kraters—in the absence of bases or handles—as their overall body shapes are at times quite similar.
Ring-based kraters were first produced in LH IIIB1, reached their most developed state in LH IIIC Middle, and are found as late as Submycenaean in Mainland contexts (Mountjoy 1986: 146, 172–5, table IV). In Levantine settings this form is equivalent to the bell-shaped krater, or simply bell krater.

The third type of Mycenaean krater, the amphoroid krater (FS 52–55), is perhaps the most interesting. Like the earlier varieties of the stemmed krater, its overall shape tends toward the piriform, with generally everted rim, high vertical neck, and pedestal base. Morphologically, however, it is somewhat ambiguous, bearing traits of both the amphora and the krater. It has been variously classified as both an open and a closed form. Its mouth is almost as wide as the vessel’s greatest width, but with a reduced shoulder zone that separates the two.

It would seem that this ambiguity in shape accounts for the absence of the amphoroid krater amongst a comprehensive table of forms published by Mountjoy (1986: table III, IV). Leonard has called the amphoroid krater “truly a specialty piece” (Leonard 1981: 90). Until fragments of amphoroid vessels were found on the Mainland at Berbati (Åkerström 1987), scholars believed they were exclusive to an eastern Mediterranean production center and market (Stubbings 1951: 87; Vermeule 1974: 204). The amphoroid krater’s association with the Levant was so pronounced that Furumark himself did not even count the form among his group of Levanto-Helladic shapes (Leonard 1994: 7).

Fritz Schachermeyr called the amphoroid shape “more Levantinian than Mycenaean,” in reference to an example found at Kition in Cyprus, (1979: 212). It seems likely that pictorial versions of the shape painted with chariot scenes, known as “chariot kraters,” were mass produced in the Argolid for a target market in Cyprus and the Near
East (Mountjoy 1993: 73, 170). It would appear that both amphoroid and ring-based versions of the krater were exported to the region as luxury items, valued as much for their highly aesthetic and impressive appearance as for their contents (Mountjoy 1993: 163; Leonard 1981: 91).

The origins of the amphoroid krater have been traced to Crete in the form of Minoan *Palace Style* jars. These elite vessels, as their name implies, were found primarily in royal contexts at Knossos, and were first manufactured in the Late Minoan IB period (early 15th century BC), equivalent to LH IIA in Helladic terms (Betancourt 1985: 156, figs. 23.H, 24.A–D). The Palace Style jars are believed to have derived in turn from metal prototypes. They were elaborately decorated and had three or more short vertical handles on the shoulder. Ceramic descendants of such jars subsequently spread to Mainland Greece, where pictorial examples began to appear in significant numbers during LH IIIA2 (Crouwel and Morris 1995: 167).

4.3.3 Aegean Krater Assemblages

Whereas pictorial kraters were exported to the Near East in the Late Bronze Age, the bell krater was not common on the Mainland until LH IIIC, and the amphoroid version never achieved the popularity in the Aegean that it did in the Levant (Mountjoy 1993: 83, 90). Four Mainland variations of the ring-based shape have been delineated on the basis of date, shape and decoration: rounded rim, carinated, squared rim, and straight upper body (Mountjoy 1986: 172–76, figs. 223–26; Rutter 1977: 1–20).

In Crete, both bell and amphoroid shapes have been found in LM IIIC assemblages. The amphoroid krater originated in LM IIIA and continued in IIIB, but
appears to have been largely replaced by newer versions of the bell krater in IIIC, a straight-sided or carinated variety instead of the earlier globular type (Hallager 2000: 149). Bell kraters are a common occurrence at two Cretan sites strongly associated with Mycenaean presence during the LH IIIB period—Knossos and Khania (Tsipopoulou 1997: 219).

The bell krater was the most popular shape of the so-called East Mainland–Aegean Koine, a zone that includes Cyclades and links sites of the Argolid with coastal West Anatolia and associated islands (Mountjoy 2009: 291). The decorative repertoire of this region resembles a version of the Granary Style of LH IIIC Middle 2 (advanced), as found on the Mainland. And though the range of shapes and motifs in these assemblages is limited, the amphoroid form was also popular, particularly in the East Aegean where it shares common traits with Minoan examples discussed above (Betancourt 1985: pl. 30A; Meriç and Mountjoy 2002: 83; 1998: 54).

In Cyprus bell kraters have been found at sites whose pottery was previously classified as Myc IIIC:1. Locally-produced examples were likely inspired by LC IIC imports from the Mainland during the Late Bronze Age (Kling 1988: 327). The amphoroid krater was also popular and, according to Kling, had been produced prior to LC IIC on the island, where it appeared as a plain wheelmade form, the application of painted decoration coming again by way of Aegean influence, as exemplified by the chariot kraters. Cypriot potters also developed variations of their own, such as a carinated biconical variant of the bell krater, which may have in turn spread west to the Aegean (Kling 1989: 108, 127, 130, 170, figs. 3c–d, 4a–b).
According to Albert Leonard, identification of Furumark’s amphoroid series in Late Bronze Age Syria-Palestine has been difficult to apply in light of the poorly-preserved state of most of the excavated material. Therefore, he has divided the class into three divisions on the basis of decoration: chariot scenes, non-chariot pictorial/patterned motifs, and linear patterns (Leonard 1994: 23, 27, 32). At Tell Atchana in the Amuq Valley, he goes on to list seven examples of chariot kraters, six examples of non-chariot motifs, and none from the linear category (Leonard 1994: 22-33). These numbers have subsequently been revised upward as the result of recent investigations at the site by Robert Koehl (see below, section 4.3.4).

Leonard has further noted the difficulty in distinguishing between Furumark’s two variants of the bell-shaped krater (FS 281-282) in Syro-Palestinian assemblages (1994: 116). Kling holds that there are no “consistent” differences at all between the two (1989: 26). Although the two forms are morphologically similar, FS 282 is thought to be a later development of the shape, and in the Levant is more common during the LH IIIC period. Until recently, it had been considered difficult to recognize in Near Eastern assemblages. But this has now changed dramatically in light of intensive excavations in Philistia and the Levantine coast over the past twenty years. However, in the Amuq Valley at the site of Tell Atchana, no bell kraters have been reported thus far, in stark contrast to the preponderance of amphoroid kraters at the Late Bronze Age site (Leonard 1994: 113-17).

Distribution maps demonstrate the relative popularity of the amphoroid krater in the Late Bronze Age Levant. All three of Leonard’s decorative schemes are fairly widespread, ranging from Tell Atchana in the north to Tell el-Ajjul in the south. The bell krater, however, was far less common. Although examples have been found as far north
as Ras Shamra and as far south as Tell esh-Sharia, only about half the number of sites have reported its presence, as compared to the amphoroid krater (Leonard 1994: 32, map 5).

In Philistia during the Early Iron Age, the bell krater became far and away the dominant Mycenaean krater form. This fact is borne out in recently published findings from Ashdod and Ekron, where we can now get the full portrait of an engrafted foreign culture along the lines of Stager’s “urban imposition” (Stager 1995: 345). At these sites, Aegean-style kraters are fairly easily distinguished from Canaanite shapes, the latter being characterized by carination and an absence of decoration. As noted previously, the excavators at Ekron have dispensed with the archaic Myc IIIC:1 terminology in favor of the designations Philistine 1 (monochrome), Philistine 2 (bichrome), and Philistine 3 (debased Philistine). This assemblage technically includes Philistine-style tableware, but excludes Aegean-style cookware (Dothan et al. 2006: 72). Amongst kraters, there is a wide variety of sizes, particularly in Philistine 1 pottery (15–43 cm). It consists of kraters that are bell- or globular in shape in Strata VII and VI (Dothan et al. 2006: 83, 90). The absence of amphoroid vessels in the Philistine assemblage at Ekron is notable.

At Ashdod in Strata XIII–XI, the team has opted to retain Myc IIIC:1 for monochrome (three fabric groups), followed by bichrome, and thirdly degenerate bell-shaped kraters. The assemblage follows the same developmental trajectory as the Philistine pottery at Ekron, with variations of the bell krater again proving dominant (Ben Shlomo 2005: 65, 91, 173; 2006: 30–31). Similarly, the krater assemblage is lacking in amphoroid-shaped vessels. At 11th century Tel Qasile (Strata XII–X), the bell krater (type KR 2) initially prevailed, then quickly degenerated and disappeared during the 10th
century (Stratum IX). Once again the absence of amphoroid vases is significant (Mazar 1985a: 47, 91, 104).

By contrast, the distribution of amphoroid kraters is far different, beginning in the region of Tel Dor and north along the Levantine coast. The site of Tel Dor has long been associated with the Sea Peoples, owing to its mention in the Wenamun papyrus, where it is said to have been ruled by the Šikila. However, excavations at Dor have not revealed a culture befitting a transplanted group of settlers from the west. As detailed above, amphoroid kraters virtually disappeared in the Philistine cultural zone after the Late Bronze Age, when they had been imported to the region. At Dor, however, they are the only forms that almost always bear painted decoration, other than certain commercial containers. Reinforcing the idea that the shape was an eastern phenomenon, Ayelet Gilboa has linked both the amphoroid shape and a specific motif she calls *Overlapping Multiple Diagonal Strokes*, or OMDS, to sites in Early Iron Age Syria and Cyprus (Gilboa 2008: 210, 215, 234; see “Stacked Zigzag” below, section 4.3.5.7.1).

Examples of Early Iron Age amphoroid kraters are further attested in Lebanon at Sarepta, where they are somewhat rare (Anderson 1988: table 7, K-6A), at Tyre (Bikai 1978: figs. XLI.7, XLII.21), and they have been found at several cemeteries near Tyre (Chapman 1972: figs. 18–20). They have also been found in Syria at Tell Kazel (Badre 2006: figs. 13.2, 3; 2005: fig. 5.1), Tell Tweini (Vansteenhuyse 2010: figs. 11, 12; 2002: 41, fig. 6), Ras Ibn Hani, where examples of both bell and amphoroid kraters have been published (Bounni 1979: fig. 25; Badre 1983: figs. 1, 2; du Piéd 2008: figs. 7, 10, 11), and at Ras el-Bassit, where several amphoroid shapes have been reported (du Piéd 2008: fig. 2).
Moreover, two key inland Syrian sites (Hama and Tell Afis) have produced amphoroid shapes: 1) Hama on the Orontes, where a plain Late Bronze Age vessel (Period G) from the citadel was published (Fugmann 1958: fig. 161.5A921), and other examples from the Iron I (Period F, Fugmann 1958: fig. 165.4B931) and Iron II levels (Period E, Fugmann 1958: fig. 310.7B17). Other such vessels were found in the corresponding Early Iron Age cremation cemeteries (Periods I–II, Riis 1948: figs. 56, 57). 2) Tell Afis has also produced a number of painted amphoroid kraters (Mazzoni 1998: fig. 16.8; Venturi 1998: fig. 4.2; 2000: fig. 7.10).

At Tarsus in Cilicia, painted examples of both bell and amphoroid kraters have been found, though not in great numbers and lacking restorable vessel forms (Mountjoy 2005: figs. 7, 8; Goldman 1956b: fig. 391.1352).

4.3.4 Kraters in the Amuq Valley

Aegean-style decorated kraters, particularly amphoroid shapes, have a long history in the Amuq Valley, as evidenced by Woolley’s finds at Tell Atchana. Subsequent studies of the imported Mycenaean IIIA and IIIB pottery have reinforced the idea that Alalakh was a primary destination for such luxury ware—only Ugarit received a greater number of Mycenaean amphoroid kraters at sites along the Levantine coast (Koehl 2005: 419).

One of the earliest examples of an amphoroid krater found at Tell Atchana (Woolley’s Level II, Fink’s revised Level IVB) was a wide-mouthed version elaborately painted in the style Woolley called “Atchana Ware,” similar to Nuzi Ware (Woolley 1938: pl. IX.2). A Base Ring I amphoroid vessel found in the palace of Niqmepa is
without parallel in Cyprus (Woolley 1955: pl. CXXV.c; Koehl 2005: 419), and a well-
preserved example of a chariot krater (Woolley 1955: pl. CXXVIII.a) has been dated to
the LH IIIA period (Hankey 1967: 111).

Robert Koehl’s analysis of unpublished finds from the Woolley excavations has
shown that pictorial amphoroid kraters were among the most common Mycenaean shapes
(23% of the total), and are presumed to reflect the specific tastes and social customs of
the its inhabitants (Koehl 2005: 419). Marguerite Yon has suggested that chariot kraters,
which were quite popular at the palace sites of Ugarit and Alalakh, comprised a status
object of the local mariannu, a warrior class of aristocracy linked to chariotry, attested in
the Alalakh archives (2000: 12; Koehl 2005: 420). Despite the well-documented
difficulties in Woolley’s chronological evaluation of the imported pottery and site
stratigraphy, the consensus regarding the Mycenaean assemblage is that it corresponds to
that of Tell el Amarna, which is deemed to be LH IIIA:2 (Morris and Crouwel 1985: 97).

Unfortunately, there is precious little in the way of published ceramics from the
Syrian-Hittite Expedition to the Amuq in the 1930s. Only eight kraters are mentioned by
Swift, seven painted and one undecorated. The paltry description of the material states
that they are ring-based, have ledge rims projecting outward, with between two and four
handles (Swift 1958: 67). The only published illustration of a krater from Phase N depicts
a densely decorated amphoroid shape, whose form compares well to those from the Hama
cremation cemetery, primarily found in Périodes I and II (Swift 1958: fig. 23; Riis 1948:
figs. 56–8). A second example from the Syrian-Hittite Expedition shows that a carinated
version of the bell krater continued in use into Amuq Phase O (Ibid: fig. 38). An article
by the author from the renewed excavations at Tayinat documents several new fragments:
a bell krater decorated with semicircles and stacked zigzag, and a pictorial sherd bearing the image of a bird (Janeway 2008: figs. 5.3, 4). Finally, a forthcoming report from Chatal Höyük shows two possible amphoroid shapes from the transitional Late Bronze–Early Iron Age, one decorated with stacked zigzag and the other with a repeating fish pattern painted around the neck of the vessel (Pucci 2011: figs. 3.16, 4.13).

4.3.5 Tell Tayinat Krater Assemblage

4.3.5.1 Selection Strategy

The decision to include all excavated krater shapes in the analysis was based on the following criteria:

1. **It is consistent with the approach of grounding the Mycenaean assemblage within the local and regional potting traditions and its proper stratigraphic context.** Too often in the past local assemblages have been dated based on the presence of imports, usually Aegean or Cypriot, which leads to a circular reasoning process in which Aegean finds in turn are dated by their occurrence in Near Eastern deposits (Leonard 1981: 87).

2. **When determining which vessels are Mycenaean, it is necessary to survey the full range of krater forms in the assemblage before discerning which are Mycenaean and which are not (as for example with cooking pots).**

3. **The possibility that hybrid forms would emerge was considered,** such as non-Mycenaean local shapes bearing Aegean decoration or the opposite, Mycenaean forms decorated with local motifs, a phenomenon which has been encountered at other Levantine coastal sites (Badre, et al. 2005: 16; figs. 5.1, 2; 8.5; Mountjoy 2010: 10), as well as in Cyprus (Kling 1989: 172). Indeed, Swift himself characterized the Phase N
assemblage as representing a “fusion of native and Mycenaean elements” (Swift 1958: 72).

4. The presence of undecorated Mycenaean kraters and skyphoi was reported in the earliest phases of Philistine settlement (Ekron VII: Gitin, Meehl, and Dothan 2006: 78 and Ashdod XIII: Ben-Shlomo 2005: 66), a phenomenon which remains largely unexplained and which declined markedly in subsequent phases of Philistine pottery. It was also noted at other sites associated with Sea Peoples settlement on the Syrian coast, such as at Tell Kazel, where large quantities of plain imitation Mycenaean Pottery were found in Level 5, the transitional LB-Early Iron Age period (Badre 2006: 82, 89, figs. 13.2, 3, 18.6–9), and at Ras Ibn Hani Phases I and II (du Piêd 2008: 171, fig. 11c).

Kraters are defined herein as vessels with a deep, broad body and a wide mouth. They have a distinct neck or shoulder and a rim diameter generally less than the widest point of the vessel, in contrast to bowls. The rims are usually thickened or profiled in some fashion, also in distinction from bowls. However, a certain degree of ambiguity is inherent in the definition as it encompasses a large variety of wide-mouthed vessels that could in truth be variously assigned to other categories such as bowls, pithoi, amphorae, or storage jars (Anderson 1988: 175; Chapman 1972: see figs. 18–20 for amphoroid kraters classified as amphorae).

In contrast to deep bowls, which are easily recognized in excavated sherd material, kraters present a different challenge. The question of what qualities constitute an Aegean-style krater is complicated further at Tell Tayinat by poor preservation and the virtual absence of complete krater forms. Therefore it is necessary to develop a typology of rim style for the krater assemblage.
One of the most salient aspects of the krater rim assemblage at Tell Tayinat, not unlike that of deep bowls only more so, is its lack of standardization, something also reported at Tel Miqne and Ashdod (Dothan et al. 2006: 83; Dothan and Zukerman 2004: 12). The wide variety of profiles necessitates a typology that relies more on “splitting” than it does “lumping” (perhaps also a function of the small sample size), but which still leaves several forms morphologically orphaned, since they comprise unique and singular shapes. It should also be borne in mind that the categories described below include a range of variability within each type.

Assessing body sherds is another matter. Differentiating kraters from bowls or amphorae can be difficult (Tufnell 1958: 219). For example, the walls of deep bowls at Tayinat measure .30–.70 cm thick (.46 cm avg), whereas krater walls range in thickness between .50–1.6 cm (.90 cm avg). A collection of body sherds is included in the following analysis, having been selected on the basis of thickness, profile, and decoration. However, it must be conceded that some of the pieces may in fact belong to other shapes.

4.3.5.2 Rim Typology and Morphology

Due to the fragmentary nature of excavated ceramic assemblages, it is necessary to develop a typology based on rim style, since these are often the only diagnostic pieces that survive. Such is the case at Tell Tayinat. Therefore, we are left to infer body forms and shapes from incomplete information. Hence a system based on rim morphology is presented below.
The goal of a typology is to make it practical, intuitive, replicatable, and as much as possible, relevant to other sequences in the region, so as to provide a sound basis for comparison. However, a survey of reports in the region reveals a shortage of systematic approaches to the classification of kraters. Instead, most projects rely on arbitrary identification of a few familiar forms, usually with the benefit of complete profiles, and subsequently proceed with descriptions of these with accompanying citations of parallels. The typologies that actually do exist use a myriad of conceptual themes involving a wide variety of subjective interpretation not always explained or discernible in publication. An additional effort was made to utilize sites with a mix of Aegean and local forms comparable to Tell Tayinat. That being said, the krater typologies developed for the excavations at Sarepta and Tell Afis were most helpful (Anderson 1988: 175–84, pl. 48; Venturi 2007: 251–2), portions of which have been adapted into the present scheme.

Seven krater rim types have been delineated thus far in the Phase N assemblage at Tayinat, with several subtypes (see Table 9). It should also be kept in mind that the rim types herein can be associated with a variety of body shapes and so parallels cited are representative only of the general characteristics of rim morphology and not necessarily to individual illustrations. The inclusion of a rim style into any of the seven types took into account stance and neck shape, whenever surviving fragments made that possible.
Typological Designations

KR-1. T-shaped (a-heavy, b-light)
KR-2. Square/Rectangular (a, b)
KR-3. Triangular (a-regular, b-flat)
KR-4. Oval
KR-5. Everted (a-exterior thickened, b-beveled, c-simple flared)
KR-6. Inverted/Exterior Thickened
KR-7. Rounded
KR-1 T-shaped (KR-1a Heavy, KR-1b Light)

Both KR-1 subtypes consist of asymmetrical T-shape rims with greater thickening on the exterior, a relatively flat top, and a high, vertical neck. A smaller ridge projects on the interior side. This group occurs almost exclusively in Field Phase 5 and is subdivided on the basis of size. The large size (KR-1a) averages 50 cm with rim thickness of 3.6 cm and walls 1.5 cm thick (Pls. 9.1, 12.7, etc.). KR-1 rims almost always bear red paint on either pink or pinkish-gray self-slip (ROP tradition). The temper of these large vessels was comprised of chaff and the vessel was usually well-fired. Aside from painted decoration, its surfaces are otherwise untreated.

Most krater sherds are not preserved below the upper neck except for one example (Pl. 9.1). It consists of a long concave neck that may have once culminated in carination, perhaps with a biconical profile similar to the very large Phase N amphoroid krater published by Swift (1958: fig. 23), whose shoulder zone is filled with latticed
triangles, but whose drawing unfortunately does not permit comparison due to the absence of a section profile. Decorative range amongst other KR-1a class rims at Tayinat includes mostly simple banding, solid triangles, and rim hatching. Only rarely are they undecorated. The lone example of a KR-1 style rim in Field Phase 3 was found in a pit, which may have originated in an earlier phase. It bears painted solid red triangles in a horizontal frieze on the upper neck (Pl. 12.7).

T-shaped rims, which are also known as hammer or ledge rims, have been found at Tell Afis in Str. IV of the late 12th and early 11th century (Venturi 2007: fig. 58.3, 9). At other inland sites the form is well-represented: Malatya IV (LB II) produced a large version (Pecorella 1975: fig. 26.21), two painted examples are attested at Early Iron Age Ain Dara Level II (Stone and Zimansky 1999: figs. 27.9–10), a hammer rim appears on an amphoroid krater from Period F (1200–900 BC) from the citadel at Hama (Fugmann 1958: fig. 165.4B931), and examples have also been reported at Tell Munbaqa on the Euphrates from the Late Bronze I period (de Feyter 1989: fig. 8.2; see also Venturi 2007: 37, fig. 6.15).

Rim profiles comparable to KR-1 have also been found at contemporary coastal sites. A close parallel to Tayinat Pls. 12.7 and 13.2 was produced at end of the Late Bronze Age at Tarsus (Goldman 1956b: fig. 390.H). A hybrid vessel at Tell Kazel from the Late Bronze II-Iron I transition combines a rim very similar to the checkerboard piece from Tayinat discussed above (Pl. 9.1), with an amphoroid body shape decorated with local motifs (Badre 2006: fig. 13.3).
Along the Philistine coast, both large and small T-rims have been found at Tell Qasile (KR 2a), both on plain and decorated bell kraters (Mazar 1985: figs. 13.19, 24, 27; 15.23, 24; 16.22; 23.4). The closest parallels to Tayinat KR-1 style at Qasile were found in Stratum XII, dated to the second half of the 12th century, during the initial phase of settlement at the site, corresponding to the Philistine bichrome period in the southern Levant.

In Cyprus, analogues to the large Tayinat hammer rims (Pls. 12.7, 13.2) have been found at Hala Sultan Tekke and Sinda (Mountjoy 2007b: figs. 12.4, 13.2; Öbrink 1979: 53, fig. 175; Furumark and Adelman 2003: pl. 17. Px112), but appear no earlier on the island than Sinda III in the latter half of the 12th century (Åström 2007: table 1).

The small version of the T-shaped rim (KR-1b) at Tell Tayinat averages 32 cm and 1.8 cm rim thickness, with walls .5 cm (Pls. 9.7, 10.7). In all cases the style is decorated with red-on-pink self-slip (ROP). Its paste is chaff-tempered and thoroughly fired. Surface treatments on KR-1b style rims sometimes bear hand-burnishing. Motifs consist of banding on exteriors and interiors. Tarsus produced painted T-shaped rims in the Early Iron Age bearing a close resemblance to Tayinat Pl. 9.1 (Goldman 1963: pl. 113.12). Small rims at Sarepta similar to KR-1a are classified as K-11B. Although they have a long history, beginning in the mid-14th century (Str. H) until the mid-10th century (Str. D2), K-11B rims were most popular in the first half of the 12th century (Str. F. Anderson 1988: table 7A, pl. 31.2).

Parallels to the KR-1b style rims have been found at Ekron Str. VIIB, where their shape and size closely resemble Canaanite hammer rims from the Late Bronze Age.

52 The group at Tell Qasile includes rims with a wide range of shapes. Only parallels specifically parallel to Tayinat material are cited in the text.
A recently discovered pictorial bell krater from Ashkelon bears a hammer rim (30 cm, 2.3 cm rim), and demonstrates the Philistine predilection to fuse an otherwise foreign rim style with a conventional Mycenaean body shape and decoration (Stager and Mountjoy 2007: figs. 2, 3). By the last quarter of the 12th century the rim shape was largely discontinued. KR-1b style in Philistia is further attested at Ashdod on a Canaanite krater bearing a palm tree motif from Str. XII, as well as on Philistine bichrome jars from Str. XI (Ben-Shlomo 2005: figs. 3.30.8; 3.47.1, 3; 3.57.23).

The hammer rim is not indigenous to the Greek Mainland, nor does it appear in Cyprus until the latter half of the 12th century (Mountjoy 2007b: figs. 12.4, 13.2). However, it is found amongst Canaanite kraters during Late Bronze Age and continuing into the Early Iron Age in the southern Levant (Lachish: Ussishkin 2004: fig. 19.48: 4ff; Hazor X: Amiran 1969: pl. 71.1). The rim style was incorporated into the Philistine repertoire, as exemplified by a spiral-decorated monochrome bell krater from 12th century Ekron (Mountjoy 2010: fig. 2.4).

What emerges from the survey above is the wide distribution of the T-rim, both at coastal and inland sites, and its Near Eastern derivation originating in the Late Bronze Age. Tellingly, it is not found on Mycenaean imports from the Late Bronze Age, which strengthens the argument for its Levantine inspiration. The T-rim continued to be used well into the Early Iron Age. When Aegean populations arrived, they evidently grafted

53 Mountjoy distinguishes the true version of the T-shaped rim from the variant, the former having a more or less flat top, as distinct from semi-rounded examples cited by Dothan et al. (2006). When both “true” hammer rims and related types are counted together, the style is quite prevalent in the southern Levant, particularly in the Late Bronze II period, a fact amply demonstrated at Lachish (Ussishkin 2004: group K1; 1037, figs. 19.5–8, 14, 16, 24, 26–28, 36, 40, 43, 47, 52; 21.3, 6, 8, 12)
the preexisting form into their own repertoire, mixing it with Mycenaean-inspired shapes and decoration, resulting in a new hybrid style.

The evidence of KR-1 class rims at Tayinat points strongly in the direction of local or regional origin, both in form and its painted compositions. The predominant forms of decoration, consisting of solid-painted triangles, simple bands, and rim hatching, are all common Levantine motifs. On the other hand, checkerboard design could be attributed to either local or external inspiration. This also applies to rim hatching, which was a common ornament on local kraters. However, the nature of the checkerboard design here is decidedly not Aegean in style, as it encompasses the entire decorative zone, and is unlike anything attested in the west (cf. the following section).

There can be no doubt that KR-1 class rims originated in the Near East during the Late Bronze Age, and from there disseminated westward during the subsequent period. And though the rim type is fused with Mycenaean body types elsewhere, such as in Philistia, this is not the case at Tayinat, where the KR-1 rim style retains purely regional modes of shape and decoration.

KR-2a Square; KR-2b Rectangular

The KR-2 rim group is comprised of both square (KR-2a) and rectangular (KR-2b) shapes (Pls. 7.8, 8.10, 10.9). Like KR-1a class, this category typically encompasses oversized vessels, some of which may have been manufactured with more utilitarian purposes in mind, judging from their often undecorated surfaces (or perhaps their undecorated status was unrelated to function). Rim diameters average 43 cm and rim thickness 3.0 cm. Wall thickness varies between .70–1.5 cm and averages 1.1 cm.
Surface treatment in this class is nil. Paste color includes examples of very pale brown, pink, and pinkish gray. Chaff is sometimes used as temper, and the clay is often finely-levigated, with few visible inclusions. Most examples of the KR-2 rim type occur in Field Phase 6, but continue into the following phase.

The square and rectangular profiles of KR-2 find equivalence in kraters with rectangular expanded rims at Tell Afis designated CR1 (Venturi 2007: 251). Such rims there are limited to Phase Vb, the first half of the 12th century (Venturi 2007: figs. 49.2, 54.5; 1998: fig. 6.10), particularly those with square shapes (KR-2a) like Tayinat (Pls. 7.8 and 10.9). Similar rims were regularly produced during the Late Bronze Age at widely scattered sites in the Anatolian plateau, inland Syria, and coastal sites: at late 13th century Hattuša (Müller-Karpe 1988: type T2, taf. 16–17; Parzinger-Sanz 1992: taf. 3.8–13, 53.1–2; see also Venturi 2007: fig. 86.8–11), Kaman-Kalehöyük IIId on a biconical shape (Matsumura 2008: fig. 2; Genz 2003: fig. 4.8), similar to Tell Bazi (Venturi 2007: fig. 5.6), Kilise Tepe II (Hansen and Postgate 1999: fig. 12), Kinet Höyük Period 13.2 (Gates 2006: fig. 10.7), and Tarsus; plain in the Late Bronze Age (Goldman 1956: figs. 389.D, M), and decorated in the Transitional level on a bell krater (Mountjoy 2005a: fig. 7.137). KR-2a style rims were rare in the southern Levant, for example at Ashdod XI on a bichrome bell krater (Ben-Shlomo 2005: fig. 3.47.2). The shape also survived into the Early Iron Age at Çadir Höyük (Ross 2010: fig. 4a).

Large rectangular rims (KR-2b) like Tayinat Pl. 8.10 were far less popular than the square style, but were nonetheless common at Late Bronze Age Tarsus (Goldman 1956b: fig. 389.O, 390.F), Tell Afis Vb (LB II) (Chiti 2005: fig. 49.12), and Malatya III (Pecorella 1975: fig. 19.1). They were only rarely produced at Ugarit, on a Mycenaean
amphoroid krater (Schaeffer 1978: fig. 46.9), and in Cyprus on a bell shape corresponding to the LH IIIC Middle period (Mountjoy 2005b: fig. 4.1). Rectangular style rims are also attested at Ras Ibn Hani on Phase I bell-shaped kraters, and on Phase II amphoroid kraters (du Piêd 2008: figs. 7a, 10c, 11a).

Rim class KR-2 represents a continuation of a Late Bronze Age tradition that survived into the Early Iron Age across a wide area, predominantly inland areas of Anatolia and northern Syria. Examples found at Tell Tayinat reveal that the square rim shape was most often left undecorated, consistent with earlier traditions in the region, though exceptions decorated with local motifs are also found. Only rarely were KR-2 rim styles mixed with Mycenaean body shapes and decoration. Its rectangular variant is similarly linked to regional pottery traditions and was only occasionally fused with Aegean styles at coastal sites. KR-2 rims at Tayinat were clearly a result of local production, a conclusion supported by their distinctive adornment, such as solid-painted fish. Given these factors, it is possible that comparable rim styles once belonged to biconical-shaped kraters. Chronological comparisons place this rim style predominantly in the transition from Late Bronze to Iron Age in the Levant.

KR-3 Triangular (3a Regular, 3b Flat triangular)

Rims belonging to KR-3 are subdivided into two types: regular triangular (KR-3a) and flat triangular (KR-3b). Collectively they comprise the most common shape at Tayinat and occur in all field phases (see Table 10). KR-3 sherds tend to be better preserved, and often include a substantial portion of the upper neck, which tends to be high and straight, occasionally concave, and bearing a slightly everted stance. Some
examples have inner projecting rims (ipr). KR-3 class equates to the triangular expanded rim at Tell Afis (Venturi 2007: type CR1Ba: 252). A larger version of the regular triangular rim (Pls. 8.6, 10.3) has close affinities to the heavy, externally thickened, T-shaped rim at Sarepta (Anderson 1988: type K-11A, pl. 48).

KR-3a rims average 22 cm diameter and 1.7 cm thick with walls .60 cm (Pl. 8.2, 9.4, etc.). The larger version averages 31 cm diameter at the rim, 2.5 cm thick, and has .90 cm thick walls. Surface treatment is rare. Very few examples exist of wet smoothing and hand burnishing. Fabric is finely-levigated, normally containing very few visible inclusions, but in a few cases tempered with chaff, shell, lithic, or fine white grit. Some pieces are plain, but the vast majority of pieces (approximately 75%) are decorated. The most common paste is pinkish in color, but light brown, buff, and greenish-white fabrics are also attested.

Rims comparable to KR-3a occur at Tell Afis Phases III-II in the late Iron I period (Venturi 2007: figs. 70.20; 78.5). The regular triangular rim is virtually unknown in the southern Levant, at the Philistine sites or otherwise. This is not surprising since the bell krater dominates the assemblages at these sites. Parallels to the triangular rim on high necks occur on painted vases at Tarsus, which are presumed to belong to amphoroid kraters (Mountjoy 2005a: 104, fig. 7.131; Goldman 1963: fig. 114.20).

Stance is often indicative of body shape, and kraters found at Syrian and Lebanese coastal sites provide useful examples. Amphoroid vessels at Ras Ibn Hani have inverted neck stances and biconical bodies (du Piêd 2008: figs. 10–11). However, stances of amphoroid kraters with more vertical necks offer closer comparisons to those from Tayinat: Early Iron Age decorated vases at Tell Tweini (Vansteenhuyse 2010: figs. 11–
12), Tell Kazel (Badre 2006: fig. 13; Venturi 2007: fig. 21.2), and in Early Iron Age tomb assemblages near Tyre, which produced a series of amphoroid vessels with long vertical necks (Chapman 1972: figs. 18–20).

Amphoroid kraters with similar tall straight necks and triangular to oval rims were quite common in 12th century Cyprus at Kition, Enkomi, and Kourion (Kling 1989: 128, fig. 4a; Mountjoy 2005b: figs. 25–26). In sum, though internal evidence cannot prove the link between the KR-3a rim and amphoroid body shape, rims with similar stances from coastal Syria, Lebanon, and Cyprus make a strong case that the rim style at Tayinat belonged to such kraters. The fact that most of these sites are associated with Aegeanizing cultures lends added support to the idea.

KR-3b rim style is also triangular, but with a less pronounced shape and a flattened top (Pls. 8.6, 10.3). It averages 34 cm diameter, 1.7 cm thick, with 1.2 cm thick walls. In rare cases it shows signs of hand-burnishing, but is otherwise untreated on its surface. Chaff is the dominant temper and examples are usually fired thoroughly. All KR-3b rims are decorated using a variety of colors, including red, light red, and brown, all on pinkish or buff colored slip. The shape has affinities with Tell Afis CR3 class rims, some of which also preserve biconical carinated body types (Venturi 2007: 252, figs. 60.2, 3; 70.9).

In the southern Levant KR-3b is paralleled at Ekron Str. VI, where it only rarely appears on decorated bell kraters and is generally atypical of Philistine-style rims (Gitin, Meehl, Dothan 2006: figs. 3.28.9; 3; 3.29.7). Tarsus has also produced a rim shape comparable to KR-3b on a decorated bell krater (Mountjoy 2005a: fig. 7.138). The flat triangular rim has been found on a variety of body shapes, and hence we cannot be
certain to what overall shapes they belonged at Tayinat. Judging from their typically painted band motifs, KR-3b rim style is likely local in origin (except Pl. 13.13). Its strongly Mycenaean ornamentation suggests it is a stylistic hybrid (see analysis of decoration below).

Although it is difficult to be certain without complete forms, we can speculate that KR-3a shapes at Tell Tayinat once belonged to a series of amphoroid kraters, characterized by simple banded decoration. The range of available dates for KR-3 class rims begins in the second quarter of the 12th century at Tarsus, and possibly earlier, contingent on new findings at Tell Tweini Level 7A. It continues to the end of the Iron I period at Tell Afis Phase IIb, making it a predominantly Early Iron Age rim style.

KR-4 Oval

KR-4 constitutes the second most common rim type at Tayinat, after KR-3 class (Pls. 7.1, 8.3, 10.1, etc.). Like the KR-3 style, KR-4 rim sherds tend to preserve well, as several large fragments demonstrate. They average 29 cm rim diameter, 1.7 cm thick, and have 1.2 cm thick walls. Nearly half of all KR-4 pieces (42%) have inward projecting rims, for example, in Pls. 7.1 and 7.6. The oval rim occurs most often in the early field phases (Field Phases 6 and 5). The remainders have been found in Phase 3 pits. Surfaces are mostly untreated, fabric is most often pink or yellowish-red, but occasionally pale brown. Chaff is the favorite temper for KR-4 class rims, followed by shell, and chaff mixed with shell. The vessels are usually well-fired. The majority of oval rim types are

54 A new radiocarbon study uses a combination of radiocarbon dates, historical sources and archaeological data to fix the Sea Peoples invasion of coastal sites in northern Syria to 1192–1190 BC (Kaniewski et al: 2011). This may serve to raise the advent of the LH IIIC Early style to as much as twenty years earlier than previously believed (Mountjoy 2008: fig. 8; French 2007: fig. 3).
undecorated. However, those that do bear paint display semicircles, stacked zigzag, solid triangles, and wavy lines, all of which are arranged in horizontal friezes.

KR-4 class rims at Tell Tayinat are analogous to krater rim class K-9 at Sarepta (Anderson 1988: table 7A, pl. 28.1), and closely resemble CR2 kraters at Tell Afis (Venturi 2007: 252, figs. 49.11; 56.3; 60.5). Tell Kazel has produced similar oval-shaped rims from the Early Iron Age on amphoroid shapes described as having “mixed typological traits” (Badre et al. 2006: fig. 5.1), and have been found at Ras Ibn Hani (du Piéd 2008: fig. 11). Oval rims are also documented on Transitional period kraters from Tell Sukas (Riis et al. 1996: 33, fig. 23.9063), which are themselves derivations of Late Bronze Age antecedents found at Ugarit (Yon, et al. 2000: 215, fig. 37; 216, fig. 38), where they were popular on imported LH IIIB chariot kraters. Such rims were also common at Late Bronze II Lachish, where the style appears on a local shape decorated in Canaanite fashion (Amiran 1969: pl. 50.9).

Oval rims are rare in the Philistine repertoire, for example, on a bichrome bell krater from Ashdod XII (Ben-Shlomo 2005: figs. 3.19.2). In the Early Iron Age southern Levant similar rim types are more common at non-Philistine sites such as Lachish, Megiddo VII-VI (Loud 1948: pls. 69.15–16; 78.17–18), Hazor Lower City 3-1 (Yadin 1958: pl. 89.2. 1960: pl. 110.1), and Tell Keisan 9c (Briend and Humbert 1980: pl. 78.1, 1a). In Cyprus the KR-4 class rim is usually, but not always found on amphoroid shapes, such as at Enkomi IIIB on amphoroids (Mountjoy 2005b: figs. 25.52; 26.55) and bell-shaped kraters (Mountjoy 2005b: fig. 41.105–106). Examples of oval rims in the Greek Mainland can be found throughout the LH IIIC period on bell kraters (Mountjoy 1986: figs. 183.182; 223.1, 5; 226.1).
At Tayinat, two of the best preserved KR-4 sherds quite clearly belong to bell kraters (Pls. 7.1, 10.1), the former of which has a slight carination. However, other examples with more vertical or everted stances (Pls. 7.6, 8.3, 12.6, 12.12) could belong to either bell or amphoroid shapes, while Pl. 13.12 most likely represents a large amphoroid krater—all of which bear oval rim shapes. The body profile of Pl. 12.12 parallels that of the only definitive amphoroid krater found thus far (Pl. 7.4), while its rim is quite different. To sum up, it simply cannot be known to what shapes many of the oval rims at Tell Tayinat once belonged.

To be sure, oval-shaped rims were a common rim shape in many cultural contexts, which makes the fact that they appear on Aegean and Levantine kraters alike unsurprising. The decorative syntax of the style at Tayinat, however, shows that Near Eastern motifs were often applied to Aegean shapes. The KR-4 rim type has Late Bronze Age roots in the north, but was produced quite regularly at coastal sites throughout the Early Iron Age. Parallel material is found predominantly in transitional LB-Iron I levels and continues into the 11th century at Tell Afis and at the southern sites of Megiddo and Hazor.

KR-5 Everted (5a Exterior Thickened, 5b Beveled, 5c Simple Flared)

The KR-5 group consists of three similar subtypes: an exterior thickened style with occasional inward projecting rim (5a), a neat beveled profile similar to examples from Philistine sites in the southern Levant (5b), and a simple flared shape (5c).

KR-5a is the most common of the everted style group at Tell Tayinat (Pls. 8.1, 9.5, etc.). Morphologically, it is a loosely affiliated collection, all of which share the
common traits of inverted stance and everted rim. Most examples have inward projecting rims, pinkish fabric, plain decoration, chaff temper, and are thoroughly fired. KR-5a, like KR-4, overlaps K-9 rim types at Sarepta, particularly with respect to inward projections (Anderson 1988: pls. 26.9; 28.2, 3). However, instead of the oval-shaped rims at Sarepta, the rims at Tayinat are more elongated and triangular. The style at the former site was most popular during the 13th through the mid-11th centuries (Anderson 1988: table 7A). At Tyre in Str. XIV, rims with exterior thickening are found on amphoroid vessels in the first half of the 12th century (Bikai 1978: pl. XLI.7). At Megiddo Str. VIIA-VIA, everted rim styles are found in both the Late Bronze IIB and Early Iron Age levels (Loud 1948: pls. 69.15–16, 78.17–18).

A review of northern sites shows that the KR-5 class rim was widely produced. Tell Afis (Venturi 2007: figs. 49.7, 70.19, 75.11–12), Norsun Tepe (Korbel 1985: fig. 70.4199), Tell Kazel (Badre et al. 2005: fig. 4.3), Tell Tweini (Vansteenhuyse 2010: fig. 11) and Tarsus (Goldman 1956: pl. 391.1357; 1963: pl. 113.19) all contain close approximations of the everted oval rim in their krater assemblages.

Rims belonging to type KR-5b (Pls. 9.6, 11.3) differ from KR-5a in their neat, beveled rim and high inverted neck. Amongst Philistine kraters the beveled everted rim was the most popular and widespread (Mountjoy 2010: fig. 2.5–6), as close to a standardized morphological trait as anything in the Philistine krater corpus. Numerous examples have been found: Ashdod in Str. XII–XI (Ben-Shlomo 2005: figs. 3.16.2, 3; 3.43.14; 3.48.3), Ekron in Str. VII (Meehl et al. 2006: figs. 3.25.3, 3.27.1), and Tell Qasile in Str. XII–XI (Mazar 1985: figs. 13.22, 15.26).
A distinct everted rim with a simple flared shape and no external thickening comprises **KR-5c (Pl. 10.2)**. It is a close facsimile to K-8A at Sarepta (Anderson 1988: 483, pl. 48). The rim shape seems primarily limited to the Lebanese coastal zone, at Sarepta in Str. G1–F (Anderson 1988: Table 7A, pl. 28.4) and Tyre Str. XIV (Bikai 1978: fig. 39.25, 26, 28). However, isolated examples have been found at Tell Sukas Str. J–H, amongst an assemblage that also contains stylistic antecedents from the Late Bronze Age (Riis, et al. 1996: figs. 23.3640, 3636; but see also Ashdod XI; Ben-Shlomo 2005: fig. 3.48.3). No counterpart for this rim type has been reported from Tell Afis or other inland Syrian sites.

In general, KR-5 class rims comprise a morphologically mixed group. With the exception of KR-5b, they appear to represent regional traditions. But even here, shapes that most closely match Philistine-style rim forms at Tell Tayinat are either decorated in Levantine fashion (Pl. 9.6) or lack decoration at all (Pl. 11.3). Other painted motifs are consistent with this finding, such that the group as a whole shows little if any Aegean influence. KR-5a and KR-5c both represent continuations of Late Bronze Age forms that survived until the end of the 11th century elsewhere in the region. KR-5b rim style coincides with Philistine monochrome and bichrome phases in the southern Levant.

KR-6 Inverted/Exterior Thickened

The rims of **KR-6** are distinct from other styles at Tayinat, by virtue of their sharply inverted stance (Pls. 7.5, 11.1). They average 33 cm, 2.4 cm at the rim, and .80 cm in wall thickness. Their surfaces are untreated and undecorated, with a preference for pinkish fabric tempered with shell and chaff. Vessels with similar rim type and stance at
Tell Afis have been cited by the excavators as evidence of conservative Late Bronze Age ceramic production that continued into the Early Iron Age (Venturi 2010: 3, figs. 7.4, 9.2, 3). The body shapes of these so-called “closed kraters” are somewhat squat and ovoid, and not at all related to those of Aegean inspiration.

The Late Bronze Age origins of inverted, exterior thickened rim types are clearly illustrated by examples from several inland sites. At Hama Period G, where such shapes pass out of use in the Early Iron Age, they coincide with cultural discontinuity at the tell and construction of the cremation cemetery (Fugmann 1958: fig. 143.489). They also occur at Tille Höyük Level II, where the style is discontinued in the Iron Age post-burnt level (Summers 1993: fig. 47.5), and at Late Bronze Age Tell Atchana (Woolley 1955: pl. CXVIII.101b). All of these shapes share a common body type with the Late Bronze Age–Early Iron Age kraters from Tell Afis. At Tarsus, the only painted shapes with rim type KR-6 are attested in the Transitional phase, where they exemplify a fusion of LB morphology with new painted traditions (Goldman 1963: figs. 114.99, 137).

All told, krater rims of the KR-6 style at Tayinat appear to be a residual shape from the Late Bronze Age, which appears to have survived locally well into the Early Iron Age. The fact that they are unpainted suggests that the rim type does not derive from Mycenaean prototypes.

KR-7 Rounded

The **KR-7** rim group includes examples with a more or less rounded or knobby shape, and thickened both inside and out (Pls. 9.2, 13.6). Rim diameters tend to be larger than those from other categories (except KR-2), and they comprise a largely undecorated
class. These factors might indicate a function that was less concerned with aesthetic appeal, perhaps used for storage rather than for serving. Indeed, similar shapes elsewhere have been classified as storage jars or pithoi (Venturi 1998: fig. 10.3; Anderson 1988: pl. 48, “heavy rolled” type). The rounded rim style is somewhat ambiguous morphologically. However, since decorated parallels to KR-7 are classified as kraters elsewhere, the rim shape is treated here likewise. Surfaces are subjected to burnish and wet smoothing. Fabric varies from very pale brown to yellow and incorporates shell and small amounts of lithic material. Most examples are fully fired, but some display darkened cores.

Direct parallels for KR-7 style rims are rare and sporadic. As a class, KR-7 can be compared to undecorated pithoi from Tell Afis Phase Vb (Venturi 2007: 255, fig. 50.22)—the only level in which these shapes were found—during in the first half of the 12th century. Somewhat looser correspondence can be found at Sarepta, particularly in the heavy rolled rims in class RR-2 and RR-4, rim shapes which occur with frequency in levels G1–E (c. 1250–1050 BC), and F–E (c. 1200–1050 BC), respectively (Anderson 1988: pl. 49, table 8A/B). Painted examples are attested on the Anatolian coast: on an amphoroid shape at Transitional Tarsus (Goldman 1963: pls. 59, 115.124), and on a bell shape at Bademgediği Tepe during the LH IIIC period, where the interior is painted in monochrome like Tayinat (Pl. 9.2) (Meriç and Mountjoy 2002: fig. 5.32).

The rounded rim is quite unusual, if not unknown at the principle Philistine sites, except at Tell Qasile, where a somewhat loosely-affiliated group of rims are classified as Type KR4. These vessels are a hallmark of Strata IX–VIII (c. 1000–900 BC). Some are decorated in red slip and others are left plain, while all preserved body profiles are carinated (Mazar 1985: 47: figs. 52–55).
In sum, the rounded rim is relatively rare, both at Tayinat and in the Levant. Elsewhere, the rim style was not applied uniformly to any particular body shape. The few attested examples show that it belonged to kraters of various types as well as to pithoi, both plain and decorated. KR-7 rims at Tayinat do not relate closely to any of the examples cited above. And the chronological range, straddling the end of the Late Bronze Age to the early Iron II period, makes dating the Tayinat vessels on the basis of parallels both difficult and imprecise. The relative lack of painted decoration makes it quite unlikely these pieces are Mycenaean.

4.3.5.3 Miscellaneous Krater Shapes

Several rim styles found at Tell Tayinat are morphological outliers, not easily classified and so few in number that they do not form a coherent group. One example in this category is preserved well enough to discern the overall body type (Pl. 7.4). Its significance lies in the fact that it represents the only definitive amphoroid krater yet recovered at the site. Discovered in Field Phase 6, it is rather small at 21 cm diameter, and has a somewhat oval rim profile with a small ridge on top. It also stands alone as the only decorated krater rim with lithic temper. Other pieces tempered in a similar fashion include plain kraters and a body sherd bearing wavy line motif. This rather curious group of krater sherds shares several traits. They are all tempered with lithic material, have rounded or knobby rim profiles, and are almost exclusively undecorated. Morphologically, most lie at the margins of their respective categories and could as easily be classified in other groups, though they cannot be strictly classed together based on shape alone. Together they comprise a rather odd collection of statistical outliers. The
combination of characteristics leads to the suspicion that these vessels served purposes other than aesthetic or public. The exceptional piece in this group, due to its unique rim profile and rather elaborate decoration, happens to be the amphoroid krater shape cited above (Fig. 7.4).

The compositional syntax of (Pl. 7.4) is an excellent expression of the Levantine Frieze Style, as described by Kling. It consists of latticed triangles framed by two registers of single wavy lines on a concave shoulder enclosed by wide bands. A close parallel in terms of rim and vessel shape (but much larger at 36 cm) was found at Late Bronze II Tarsus (Goldman 1956: pl. 390.C). Contemporary levels at nearby at Ras Ibn Hani did not produce similar rim styles in its amphoroid krater series. However, a krater with a similar overall shape from Phase II (du Piêd 2008: fig. 11.11b) bears a wide single zigzag in the handle zone in the OMDS style documented by Gilboa (see “Stacked Zigzag” below, section 4.3.5.7.1). A rim with very close affinities was found at Malatya Level III in the Early Iron Age (Pecorella 1975: 115, fig. 16.44; see also Venturi 2007: pl. 13.10). Although the vessel was adorned in the ROP color tradition so common at Tayinat, it is nonetheless an unusual piece.

Another likely Tayinat amphoroid fragment (Pl. 8.14) is decorated with reduplicated Wavy Line motif in the shoulder zone, with alternating solid triangles and stacked zigzag on the neck. Its squat globular shape, characteristic of Cypriot kraters (Mountjoy 2005b: 178), also resembles an Iron I krater from Dor decorated with stacked zigzag (without solid triangles) in the OMDS style, which has been linked to amphoroid kraters across the region (Gilboa 2008: fig. 1.1). Aegean examples of the Wavy Line Style from several Mainland and island sites, as well as the western coast of Anatolia,
date to LH IIIC Late, and are paralleled at Cypriot sites in the LC IIIB period (Mountjoy 2005b: 159. cf. bowl chapter), though the design has been found on bell kraters at Tiryns as early as LH IIIC Middle 2 (Advanced) (Stockhammer 2009: 349–50, fig. 4.2).

Although shapes similar to (Pl. 12.4) are elsewhere designated as kraters, they could also be classified as carinated bowls. The decoration on the Tayinat vessel comprises a fine example of the Levantine Frieze Style with its single zigzag below the rim, empty frieze, and double zigzag, all of which is framed by bands at the carination. At Ekron Str. VIIB a similar carinated shape with near vertical walls is included in a group of Canaanite-style kraters (Dothan et al. 2006: fig. 3.10.7). It has a knobby rim similar to (Pl. 12.4) and bears a sloppily-rendered decoration consisting of squares filled with eight-spoke motifs, alternating with cross-hatched squares, in a style unrelated to Philistine decoration. Two parallel shapes decorated in Levantine style have been found at Tell Afis, from Phases IV and III (Venturi 1998: fig. 12.2; Mazzoni 1998: fig. 22.1). These parallels situate the Tayinat krater chronologically between the middle of the 12th and the middle of the 11th century BC.

(Pl. 12.8) features a closed form of krater with an everted rim atop a long straight inverted neck. It is rather small (19 cm), and is exceptional by virtue of its bichrome decoration, consisting of a dark red wavy line and black rim band, and two black bands running circumferentially around the top of the rim. The partially preserved motif in the shoulder zone may relate to the Levantine Simple Style, or perhaps Wavy Line Style, both of which are well represented in the deep bowl assemblage at Tayinat. A small krater (20 cm) with similar rim and body shape featuring Wavy Line decoration was
found at Early Iron Age Tille Höyük (Blaylock 1999: fig. 1.15; Venturi 2007: fig. 11.13), but is elsewhere unattested.

The oversized rim fragment in (Pl. 9.8) is an example that could well be designated a storage jar. However, since similar rims bear decoration at other sites, it is included here amongst krater forms. Although it is large (44 cm, 4.0 cm rim) and unpainted, the fact that its profile compares well to a very large LH IIIC pictorial bell krater (64 cm, 2.6 cm rim) from Bademgediği Tepe shows that such shapes on occasion were chosen for elaborate pictorial decoration. One of the most ornate kraters discovered thus far in Anatolia, the Bademgediği krater depicts a sea battle replete with rowers and well-armed marines (Mountjoy 2005: 425 pl. XCVI. see further discussion of motif below, section 4.3.5.7.3). Unfortunately, too little of the Tayinat piece is preserved to reconstruct its overall shape, or determine whether it once bore painted design. However, it was likely undecorated since Tayinat kraters lacking rim decoration are usually plain overall. This is borne out by the fact that almost every undecorated rim fragment that preserves the rim and a significant portion of the body bears no painted design elsewhere on the vessel. Such rim types may have been applied to vessels that fulfilled a variety of functions, such as mixing, serving, or storage (cf., heavy rolled rims at Sarepta; Anderson 1988: 184, plate 48).

Several handle fragments warrant inclusion in this miscellaneous krater group, and provide further information on the nature of the Mycenaean assemblage (Pls. 8.7, 8, 10.10, 12, 13; 12.9; 13.12). These handle sherds are too large to belong to deep bowls. More likely they were bell krater handles, or perhaps hydria, though none of the latter have yet been identified at Tayinat. Hatching motif (Pls. 10.10, 12, 13) was not
uncommon on handles, examples of which are found at Tarsus (Mountjoy 2005a: fig. 7.145), and Ekron Str. VIIA (Dothan et al. 2006: fig. 3.11.22). Handles bearing solid paint on the topside (Pls. 8.7, 12.9) are found on Phase I bell kraters at Ras Ibn Hani (du Piéd 2008: fig. 7). A notable morphological feature of this collection is the “stubby” shape found in a majority of surviving examples (Pls. 8.7; 10.13; 13.12, etc.), which recall “stub” handles found in the assemblage of deep bowls, what appears to be a unique local feature. In sum, this group of large horizontal handles provides further evidence of the Mycenaean character of the assemblage at Tayinat, one which adopted its own particular traits to suit local tastes.

4.3.5.4 Carinated Fragments

Several body sherds in the krater assemblage preserve carination (Pls. 7.1 possibly, 8.15; 11.2; 12.4; 13.4, 8). In Cyprus, carinated vessels were popular in the Late Bronze Age, and continued into the LC IIIA period at Enkomi (Kling 1989: 127, fig. 3d). Examples from Cyprus predate those found in Mainland sequences, where they first appear during the LH IIIC Middle 1 (Developed) period at Mycenae (Mountjoy 2007b: 222, fig. 2.4). These observations have led Kling to suggest that the carinated form originated in the east (1989: 127).

Carinated kraters were well-established in the Levant prior to the Iron Age, occurring at Late Bronze Age Tarsus (Goldman 1956: 391.1352), Tell Atchana (Woolley 1955: pl. CXVIII), and Tell Afis in Phase V (Venturi 2007: fig. 49.9). Early Iron Age examples of carinated vessels have been found at Hama Périodes I–IV (Riis 1948: fig. 56–58), Ras Ibn Hani Phase II (du Piéd 2008: figs. 10, 11), and Tell Afis Phase IV and III
Moreover, the only two kraters illustrated from the Syrian-Hittite Expedition also bear carination, the example from the Amuq Phase O showing that the shape survived into the Iron II period (Swift 1958: figs. 23, 38). What all these vessels have in common, in addition to their carination, is Levantine style decoration, such as latticed triangles, stacked zigzag, and solid-painted triangles. Although the overall body shape for most of these rim styles at Tayinat cannot be discerned, with one possible exception (Pl. 7.1), the prehistory of carination in the region and the predominance of Levantine decoration suggests that carinated body shape can safely be classified as native to the Near East.

4.3.5.5 Summary Observations

Aspects of fabric and firing of the krater assemblage at Tayinat can be characterized as follows (see Table 11): Tempering agents include a variety of materials: chaff (28%), chaff and lithic (22%), lithic alone (19%), and shell (8%). A substantial number of vessels (23%) are finely-levigated and show few if any inclusions of any kind. A strong majority of kraters (70%) are well-fired and oxidized in section, whereas the remainder (30%) are underfired and to one degree or another exhibit a darkened core. These numbers are consistent across all field phases and apply equally to plain and decorated categories.
The morphological analysis of krater forms has illustrated several aspects of the assemblage. First, it reveals that local potters did not adhere to standardized production. Instead, a wide range of shapes and sizes prevailed. Many styles can be traced to regional forerunners from the Late Bronze and Early Iron Ages (KR-1, 2, 5, 6), whereas others are strongly associated with amphoroid shapes (KR-3), and are linked to bell and carinated versions (KR-4). Other forms are variously classified as kraters or pithoi (KR-7), and were most often left undecorated. The painted repertoire of the Tayinat krater assemblage includes explicitly Aegean-inspired motifs, but also contains Levantine patterns and syntax applied to Mycenaean shapes, evidence that local artisans felt free to mix local and foreign styles. The following section will more fully explore specific aspects of decoration.
Secondly, in terms of body shape, examples of both bell (FS 282) and amphoroid kraters (FS 42–45) can be discerned from the sherd material, as well as carinated shapes. The latter may have been inspired by Aegean or Cypriot antecedents, but might also reflect local traditions deriving from Late Bronze Age biconical forms from the Near East. It appears there may be a wide variety of body types to match the multiplicity of rim styles at Tayinat. Only recovery of restorable vases will provide definitive correlations between the two.

4.3.5.6 Decoration

4.3.5.6.1 Introduction

One of the questions this study attempts to answer is that of how much Mycenaean pottery was produced relative to the whole assemblage, a figure which is often cited as a measure of Aegean influence or as evidence for the presence or absence of western population elements. As much of the krater analysis demonstrates, however, this is not so easily answered, given the local custom of merging various styles of form and decoration. As part of Swift’s definition of Phase N ceramics, it was reported that 90–95% of excavated pottery was painted, a figure difficult to verify since the retrieval methods of the expedition are not known (Swift 1958: 64).

Swift’s catalogue of vessel types appears in Chapter IV (1958: 66–69). The numbers report the quantity of whole pots recovered, which is supplemented by the illustrations in the appendix depicting the “the most typical” shapes. However, Swift does not offer an explanation of the collection strategy used by the excavators. Were all intact vessels kept, or predominantly the painted ones? His estimate that 90-95% (Swift 1958:
64) of the total Phase N assemblage was represented by painted ware appears to apply only to recorded whole vessels.

As it pertains to krater forms, of the seven such vessels cited by Swift in the text, six were painted (88%), which approaches the quoted figure of roughly nine in ten. However, only two of these were illustrated, one each from Phases N and O (figs. 23 and 38, respectively). It should be borne in mind that the ceramic collection of the Syrian-Hittite Expedition, as represented by the Swift analysis, combined the pottery assemblages from three sites in the Amuq: Chatal Höyük, Tell Judaidah, and Tell Tayinat, such that even if the percentages from the renewed excavations do not correspond precisely, they might be expected to approximate the collective figure given by Swift if the three sites had equivalent ceramic assemblages, which admittedly remains unproven.

As noted earlier, the krater assemblage produced by the TAP excavations consists largely of sherd material. No complete forms have yet been recovered. However, the remains still allow a fairly precise estimate as to the ratio of painted to undecorated krater forms (see Table 12). That number over time shows a rise and decline over the course of the Early Iron Age at Tell Tayinat. Field Phase 6 collectively witnessed a low number of painted examples, lower in fact than any subsequent phase, only 29%. During Field Phase 5, painted vases reached a peak of 65%, and then declined to 53% as the Iron II period approached (Amuq Phase O). Undecorated kraters also had larger rim diameters on average than painted examples (30.7 cm to 27.5 cm, respectively).

55 The krater analysis includes only one sherd from the recently isolated Field Phase 6c, which bears a spiral motif (Pl. 7.9).
56 This figure is comprised of the total from Field Phases 4 and 3 for the sake of constituting a statistically significant sample.
The numerical results do not show a transition from painted ware to red-slipped ware, as would be expected at the end of Phase N. Since large amounts of the latter have been found in other areas of the mound, it suggests that the Phase N-O transition is missing in Field 1. Further excavation will be required to determine whether this is a site-wide phenomenon or simply an idiosyncrasy of Field 1. Furthermore, the numbers extrapolated from Field 1 do not corroborate Swift’s high percentage of painted ware, at least with respect to kraters. Despite the high mark for painted kraters in Field Phase 5, in which 65% of the rim sherds bore paint, the overall rate for the Early Iron Age amounted to a more modest 50%. This is substantially less than the Swift figure, which seems to indicate that undecorated pottery was largely discarded by the excavators in favor of intact painted vessels, resulting in a distorted description of the painted assemblage in the Amuq Valley.
The discrepancy is even more significant given the fact that kraters as a class were the one of the most popular vessel types for painted decoration. Of course, since we do not know precisely how the original excavators defined their krater group, the comparison may still lack validity. Their vessel category may have been more or less strictly defined than the one use here, for example, by rim morphology, or simply on the basis of whether the vessels bore painted decoration, factors that may have inflated the overall numbers. Unfortunately we cannot be certain. With these qualifications in mind, the old figure of 90–95% as a comparative measure, cited and recycled by modern scholars, should be discarded.

It has long been known that identifying Mycenaean pottery is inextricably linked to the presence of painted decoration. However, Mycenaens were not the only ones who produced painted ware. There were longstanding local painted traditions in the Near East predating the Early Iron Age (cf. Ünlü 2005; Gates 2010; Hansen and Postgate 2007: 345), not to mention a history of Mycenaean and Cypriot imports during the Late Bronze Age. Like the task of discerning intrusive from indigenous rim shapes, the following study will attempt to parse local, non-local, and imported painted traditions on the basis of comparative examples from around the region. A more thorough discussion of the relative amounts of native versus Aegean painted styles at Tell Tayinat, and how they compare to others in the region is presented in Chapter 5. With regards to the Tayinat assemblage, it is possible to divide painted style into three groups: 1) vessels displaying decoration in friezes or registers 2) individual motifs preserved on body sherds, and 3) pictorial designs.
4.3.5.6.2 Levantine Panel Style

Fritz Schachermeyr, in his analysis of 12th century relations between the islands of Crete and Cyprus, discerned the presence of a painted tradition he believed was derived from the Near East, to which he applied the term “Levantinian Style,” now commonly called Levantine Panel Style. First observed on pottery from Enkomi and Kition, it was characterized by vertical and horizontal panels arranged in a crowded fashion that left few open spaces. Motifs included those also common to the Mycenaean repertoire, such as checkerboard, zigzag, chevrons, but employed in a different manner—as central and dominant in the overall composition. Solid-painted triangles were the most conspicuous aspect of these designs. Schachmeyr suggested that the style was inherited from traditions of carpet weaving in the Near East that were subsequently transferred to Cyprus and Crete (1979: 211–12, figs. 4–6, pl. XXVIII. 1–3).

Porphyros Dikaios discussed the Levantine Panel Style at some length in reference to Myc IIIC:1b kraters at Enkomi in Level IIIA. He suggested the motifs were derived from the Mycenaean repertoire, except applied in broad panels reminiscent of contemporary Levantine pottery that originated in an unspecified area under strong Mycenaean influence. To this locally produced group he gave the name Close Style.\(^57\) Therefore, in Dikaios view, the shapes and design characteristics belonged to a well-established tradition that made Cyprus a logical production center for such pottery (Dikaios 1969b: 267–70). The range of shapes and motifs suggest a date in the LC IIIA period, and may have presaged greater elaboration in painted design in Mainland sequences (Sherratt 1990: 117–18).

\(^{57}\) The decoration Dikaios called Close Style is actually Pleonastic Style, a term originally coined by Schachermeyr (1979: 206). Close Style is properly defined as a miniature style found only in Mainland contexts thus far (see discussion in Mountjoy 2005b: 127).
Barabara Kling has outlined several variants of Levantine Panel Style found in Cypriot assemblages—Elaborate, Frieze, and Simple—all of which occur in LC IIIA and IIIB. The Elaborate Style combines motifs painted in horizontal or vertical rows or panels in oftentimes irregular patterns. In addition to checkerboard, zigzag, and chevron motifs noted by Schachermeyr, the decorative repertoire includes cross-hatching, joined semicircles, scale pattern, and vertically oriented straight and wavy lines (Kling 1989: 124).

The Frieze Style uses many of the same motifs as the Elaborate Style, but arranges them in a horizontal fashion rather than in irregular panels, and also employs occasional pictorial designs. The Simple Style is far less geometric than the other two and comprises a still smaller range of motifs, such as vertical wavy line, joining semicircles, checkerboard, and cross-hatched lozenge. Despite the fact that parallels for individual motifs of the Levantine Panel Style have been found in regions to the east and west of Cyprus (in the Aegean as well as the Levant), exact parallels for the overall style have not yet been identified outside of Cyprus. This has led to Kling’s suggestion that the style was a local development of the LC IIIA period, whose motifs were derived from a variety of areas (Kling 1989: 124; 2000: 286). She cites the example of cross-hatched triangles, which have a long history in Cyprus, but which can also be found in both Mainland and Levantine assemblages (Kling 1989: 125).

4.3.5.6.3 Regional Parallels to the Levantine Panel Style

Recent excavations at Ashdod show the Levantine Panel Style was frequently applied to kraters (Ben-Shlomo 2005: figs. 3.16–19f), but far less frequently at Ekron
Some examples belong to the Elaborate Style and others to the Frieze Style. However, the Philistine sites seem to be the exception in the Levant. Indeed, it is difficult to identify any assemblage in the Early Iron Age outside the principal Philistine cities that can be associated with the Levantine Panel Style, a fact that supports the idea of an early cultural link between Cyprus and Philistia.

In the Amuq Valley, isolated elements of both Frieze and Simple Styles can be discerned in the collection of body sherds from the Syrian-Hittite Expedition (Swift 1958: fig. 27). Examples include bird motif (27A), solid-painted triangles (27A and C), semicircles in horizontal register (27D), fringed semicircles (27E and F), and checkerboard in a metope of vertical lines (27J). Other motifs are analogous to the Frieze Style, such as spirals (27H and I) and a pattern comprised of alternating solid-painted and latticed triangles (Swift 1958: fig. 23). Unfortunately, the fragmentary nature of the material prevents an assessment of their syntactical employment in the overall composition of individual vessels. Recent findings from Chatal Höyük are largely devoid of Levantine Panel Style (Pucci in press).

It should come as no surprise that Kling’s three-fold division in Cyprus is difficult to apply to the painted repertoire at Tell Tayinat. That being said, a style akin to the Frieze Style seems to prevail in the local assemblage. It is characterized by a restricted range of motifs arranged most often in neatly stacked horizontal registers. Only rarely is decoration separated by panels into metopes, and they usually run continuously around the shoulder zone of the vessel (for example, Pls. 7.1; 8.10; 10.1; 12.7).
While the absence of Elaborate Style is quite evident, the frequent occurrence of frieze decoration is indisputable. However, amongst the list of ornaments associated with the Frieze Style in Cyprus (by Schachermeyr and others), only solid-painted triangles are found at Tayinat with any degree of regularity. The local repertoire lacks so much as even the elements of the Simple Style, consisting as it does of a quite limited range of motifs. The use of checkerboard motif is another feature of all three styles. But the way in which it is used in Cyprus—exclusively as panel decoration—is wholly unrelated to the lone example of the motif found at Tayinat (Pl. 9.1). The Simple Style is also far less geometric than Elaborate or Frieze Styles, a quality that quite literally defines the Mycenaean corpus at Tell Tayinat. In sum, the local repertoire is only loosely related to Levantine Panel Style generally. Instead, it seems to represent an artistic expression of local tradition.

4.3.5.7 Krater Decoration at Tell Tayinat

The decorative inventory of kraters at Tell Tayinat can be subdivided into three groups: frieze style ornamentation, individual motifs, and pictorial decoration. The first group consists of motifs that are arranged in horizontal registers usually painted across the shoulder zone of the vessel. It was a style popular during various periods of time on painted ware and certainly not exclusive to the Early Iron Age Levant or Aegean. Nonetheless it represents the most conscious attempt to conceptualize decoration syntactically as part of a larger composition applied to the available surface area of the vessel. Motifs such as stacked zigzag (sometimes in the form of OMDS design), solid triangles, cross-hatch/latticed triangles, Wavy Line Style, spirals, concentric circles, and
combinations thereof are characteristic of frieze style decoration. The second grouping is comprised of miscellaneous types of individual motifs including bands, monochrome, rosette, triglyph, sea anemone, and double axe, as well as plain or undecorated vessels. Such devices do not normally constitute the central element in the overall composition, but rather serve as supplemental or filling motifs. It is hypothetically possible that some such motifs once formed part of larger schemes, but their fragmentary nature often precludes that conclusion. Pictorial decoration makes up the third group of motifs. Although examples in this category are quite rare at Tayinat, it includes both zoomorphic and anthropomorphic type representations.

4.3.5.7.1 Frieze-Style Decoration

Stacked Zigzag (some OMDS) (FM 61)

Zigzag (FM 61) is the most common motif employed in frieze-style decoration at Tell Tayinat. It takes the form of multiple parallel or leaning lines, and is usually referred to as *stacked zigzag* in the Aegean (Mountjoy 1986: 136–37, fig. 166.21). With few exceptions, the stacked version of the zigzag motif is the norm in the local repertoire. Stacked zigzag is found in all field phases but, as with deep bowls, is most popular in Field Phase 5. But whereas the motif was only infrequently applied to skyphoi, it was much more popular on kraters. As such, the krater was far and away the vessel of choice for the stacked zigzag. Examples at Tayinat consist primarily of single- and triple-stacked versions (95% of all such motifs), though double and quadruple zigzag are also present. The stacked zigzag is most often employed as the central decoration in the shoulder zone.

58 Undecorated sherds are included in the second group since their plain status is presumed to be meaningful in some respect. It is also true that plain body sherds may have once belonged to otherwise decorated vessels. Hence, only plain rim sherds are included in this analysis.
of the vessel (Pls. 7.1, 9.6, 10.6, etc.), but sometimes consists of horizontal registers vertically arranged in tandem with other motifs, such as Wavy Line (Pl. 8.14), concentric semicircles (Pl. 10.1), and necklace (Pl. 12.3). It also occurs in an alternating horizontal pattern alongside solid-painted triangles (Pls. 8.14, 10.2, 15), where it in effect acts as a supplementary decoration framing the central motif.

The stacked zigzag has antecedents in the decorative tradition of the Amuq from the Middle and Late Bronze Ages, as noted previously in Chapter 4, with respect to deep bowls, such as at Alalakh (Gates 1981: fig. 5d; Woolley 1955: pl. CXI.25), Tell Judaidah (Swift 1958: fig. 1), and Chatal Höyük (Pucci in press). The motif is also well-attested at numerous Anatolian sites such as Kilise Tepe (Postgate 2005: fig. 5; Hansen and Postgate 1999: figs. 6–10), Çadir Höyük (Ross 2010: fig. 12d), Tarsus (Goldman 1956b: fig. 391.1352), Boğazköy (Genz 2003: figs. 2.5; 3.1, 2; 4.4, 7), and Kaman-Kalhöyük (Matsumura 2008: fig. 2). Moreover, it has been found in Syria, both at coastal sites like Tell Kazel (Badre et al. 2005: fig. 5.1), and at inland sites such as Tell Afis (Venturi 1998: fig. 4.2; Mazzoni 1998: fig. 16.8) and Hama (Riis 1948: fig. 130A.10–12).

With few exceptions, examples of the zigzag motif in Cyprus bear no relation to the Anatolian or Syrian versions which, like the Tayinat decoration, are usually more carefully drawn and positioned as a central element in the decoration. An exception to that general rule at Tayinat is a motif similar to the Cypriot version (these typically resemble a tight wavy line), which was found on a Tayinat krater (Pl. 9.5). The tightly drawn decoration could just as easily be classified as wavy line style.

Stacked zigzag is almost completely absent from the Philistine repertoire (Dothan and Zukerman 2004: 40). There, the decoration is of an entirely different nature,
consisting as it does of motifs divided into metopes rather than aligned continuously in a horizontal frieze style (Gilboa 2008: 219, n. 9). Much the same applies to Mainland assemblages, where isolated renditions can be found employing the zigzag as the central element. But these motifs usually accessorize the main design element, and are syntactically arranged in metopes (Mountjoy 1993: 51, 98, 117).

Ayelet Gilboa has recently discerned a variation of the stacked zigzag that is closely associated with amorphoroid kraters in the northern Levant. It consists of parallel diagonal lines that overlap one another, or the horizontal bands that enclose them, which Gilboa calls OMDS, for Overlapping Multiple Diagonal Strokes (Gilboa 2008: figs. 4–6). OMDS decoration is attested in Late Bronze Age assemblages in the southern Levant, but was more common in the north at Ugarit and in the Early Iron Age successors of its territory (see Gilboa 2008: 223 for references). It has also been found in Early Iron Age levels at Tell Kazel (Badre et al. 2005: fig. 5) and Ras Ibn Hani (du Piêd 2008: figs. 10, 11). Gilboa has further elaborated on a stylistic nexus between the sites of Dor and Megiddo in the south, and others in northern Syria and Cyprus, which she suggests may provide a link to the Sea Peoples phenomenon in the southern Levant, however vague that link may be at present (Gilboa 2008: 233–4).

Examples of OMDS design appear to be present in the Tayinat assemblage on several vessels (Pls. 7.1; 9.6; 10.1; 11.2; possibly 8.14; 10.15; 12.4). The motif is most often applied to carinated and bell shapes, but perhaps also on an amorphoroid krater (Pl. 8.14, and possibly on an Amuq Phase O carinated krater.\(^{59}\) See Swift 1958: fig. 38). However, the Tayinat version of OMDS is not always painted in red, as is the custom

\(^{59}\) It is not clear that the double zigzag pattern here is in fact OMDS, since it does not overlap itself or the bands which enclose the motif.
elsewhere. The local versions bear a variety of colors: brown and black, as well as red. Although these features may be evidence of some connection to the OMDS phenomenon in the Levant and Cyprus, further research will be necessary to establish any meaningful linkage.

In summary, the zigzag motif at Tell Tayinat is employed in a variety of fashions on a variety of body shapes, most commonly on carinated vessels, but also on bell and amphoroid kraters. Local decoration differs from Cypriot and Aegean versions in that it usually forms the central design element, sometimes in combination with other motifs, such as Wavy Line, concentric semicircles, and in an alternating pattern with solid triangles, arranged in a horizontal frieze. Occasionally, zigzag serves a secondary role in the composition as a framing device. Some stacked zigzag decoration at Tayinat can be classified as OMDS, as much as we understand the strict definition of the motif. As for the stacked zigzag motif in general, it usually appears painted in black, brown, various shades of red, and very rarely in bichrome (Pl. 8.11).

Solid-Painted Triangles

As noted by Schachermeyr and others, solid-painted triangles are a conspicuous feature of the Levantine Panel Style (Pls. 7.3; 8.14; 10.2, 15; 12.7). Tayinat kraters bearing solid triangle decoration are rendered in different syntactic arrangements: in a horizontal row below the rim as the central design element, or alternating with groups of leaning lines or stacked zigzag as a secondary feature. The motif was most popular at Tayinat in Field Phases 6 and 5, most often painted in red, but occasionally in black or brown.

Fig. 13.7 also contains solid-painted triangles, but as part of a double axe motif (FM 35:14).
Solid-painted triangle decoration was very popular in the Levant during the Late Bronze Age, which led Schachermeyr to locate its origin there, from which he believed it disseminated to Cyprus and regions beyond (Schachermeyr 1979: 167). Kling concurs with the idea that the source of solid triangle, as well as cross-hatched panel decoration, is to be found in the Late Bronze Age Levant, just as she has for small opposed pairs of solid triangles, otherwise known as double axe motif (see “Double Axe” below, section 4.3.5.7.2). Although the motif was found in Cyprus, hatched and cross-hatched versions of the triangle were more prevalent there (Kling 1989: 114–15). Dikaios had previously cited forerunners of the solid triangles motif in the Eastern Aegean that appeared as early as the LH IIIA:2 period (Dikaios 1969b: 268–9). Surprisingly, given the eastern orientation of the solid-painted triangle, it is virtually absent from the Philistine repertoire (Dothan and Zukerman 2004: 40), where ethnic identity may have precluded its adoption.

Cross-Hatched Triangles (FM 61)

Lattice or cross-hatched triangles are among the most popular decorations on kraters at Tell Tayinat (Pls. 7.4, 11; 8.10, 13, 15; 9.18; 11.4). Like the Wavy Line Style, it is found primarily on shapes in Field Phases 6 and 5. And like stacked zigzag, lattice triangles is a popular motif on carinated vessels, but is also found on amphoroid and local krater shapes. All preserved fragments bear red paint on a pink slip (ROP tradition) and usually form the central element of the design. For example, it comprises the main decoration on an amphoroid krater (Pl. 7.4), situated between two wavy line registers in the handle zone. On another vessel, as part of an interesting confluence of motifs, it
supplements the repeating silhouette of a fish, suggesting a net (Pl. 8.10; see Fish Pictorial (TAP) below, section 4.3.5.7.3).

Philistine cross-hatched triangles are quite unrelated to the version found at Tell Tayinat. Instead, the Philistine motif functions as vertical decoration or panels, usually consisting of several stacked versions of cross-hatched triangles more closely resembling lozenges (Ben-Shlomo 2005: figs. 3.19, 20, 44, 47ff; Dothan and Zukerman 2004: 40; Stager et al. 2008: fig. 15.11).

In Cyprus, the cross-hatched triangle motif was popular in the Bronze Age in White Painted Wheelmade I pottery, and later appeared in the Mycenaean repertoire during the LH IIIC period (Kling 1989: 102), factors which have led Sherratt to propose a Cypriot origin for the motif (Sherratt 1981: 583). However, these versions do not correspond to Tayinat lattice triangles, as the Cypriot types are often used as filling motifs. An exception to this broad trend is found at Rhodes, where the cross-hatch triangle was quite popular in earlier periods, where it was applied to the shoulder zone on a variety of LH IIIA2 vessels, and as such comprised the central element of the composition (Mountjoy 1998: fig. 2.1–4).

Examples of the cross-hatched triangles motif analogous to Tayinat are much more commonly found at inland sites across Syria and Anatolia: at Chatal Höyük in Phase N (Pucci in press; Swift 1958: fig. 23), on numerous vessels at Hama in Périodes I and II (Riis 1948: figs. 24, 28, 41, 58, 130A.17–19), Tell Afis Phases IV and III (Venturi 2007: figs. 58.9; 64.16; 73.11; 1998: fig. 4.6), Tarsus (Goldman 1963: figs. 56, 59, 60; 1956: fig. 333), Çadir Höyük (Ross 2010: fig. 12f), Tille Höyük in levels belonging to the
Late Bronze and Early Iron Ages (Summers 1993: fig. 37), and at Kilise Tepe during the Iron Age transition in Level II (Hansen and Postgate 1999: figs. 11–13, 19–21).

The cross-hatched triangle motif is widespread in the Levant during the Early Iron Age. Few directly analogous examples are found in Aegean assemblages, with the possible exception of Rhodes. Only in Syrian and Anatolian assemblages do we find numerically significant comparisons to the version found in the Amuq Valley, suggesting that the design was primarily eastern in origin. At Tayinat, the latticed triangle enjoyed a brief popularity in Field Phases 6 and 5, before largely passing out of use in Phases 4 and 3. It was most often applied to carinated shapes, which further attests to its Levantine character, and is only occasionally found on amphoroid kraters.

Wavy Line Style (FM 53)

The Wavy Line style was discussed at length with respect to deep bowls, where it was most prominent in Field Phases 6 and 5 at Tell Tayinat, after which it was phased out. Similarly, it was most popular during the early field phases in the krater assemblage (Pls. 7.4, 7; 8.14; 12.8; 13.13). Single wavy line versions of the motif comprise 75% of all examples of Wavy Line decoration in the Tayinat assemblage. Moreover, aside from the large number of unidentified body sherds, kraters and bowls are the preferred vessel form for Wavy Line decoration. The nature of the style ranges from loosely flowing to tightly rendered versions. On a well-preserved amphoroid krater, two separate single wavy line motifs frame a horizontal frieze of cross-hatched triangles (Pl. 7.4). On a possible amphoroid shape, the decoration consists of a flowing double wavy line that forms the main decorative element beneath an alternating solid triangle and stacked
zigzag design (Pl. 8.14). A bichrome vessel bears what appears to be a single red wavy line below a black rim band (Pl. 12.8). In a finely rendered composite design, the decoration features double concentric semicircles below a single wavy line at the rim, applied to a large unstratified amphoroid shape (Pl. 13.13). Two examples of Wavy Line Style from Chatal Höyük have recently been published: one on a deep bowl and the second on a straight-sided bowl (Pucci in press).

The Wavy Line Style, as previously discussed, is associated with the so-called Granary Class pottery excavated from the Granary at Mycenae above the LH IIIC Middle destruction, and belongs primarily to the LH IIIC Late period, in Aegean terminology, but has been found as early as LH IIIC Middle 2 (Advanced) on bell kraters at Tiryns (Wace 1921–3: figs. 9, 12; Mountjoy 2005b: 157; Stockhammer 2009: 349–50, fig. 4.2). In Mainland Greece, it typically consists of reduplicated lines (numbering from 1–5) painted horizontally in the upper body zone. Opinions vary as to the origins of the style in the Aegean repertoire (see Chapter 4: section 4.2.1.1.2). Some examples of wavy line motif in Early Iron Age Levantine contexts may have local derivations (at Kinet Höyük, Gates 2010: 71; in the Amuq, Swift 1958: 111, table 7; at Tarsus, Ünlü 2005: 146, 151).

If the inspiration for the Wavy Line Style at Tayinat is to be found in Aegean prototypes, as I believe it is, then the motif may constitute a valuable chronological marker for the assemblage as a whole. This is made clear in the Amuq repertoire by the prominence of the motif on explicitly Aegean forms such as the deep bowl, which makes its first appearance in the Amuq during Phase N.
Stemless Spiral (FM 51)

There are several varieties of the spiral motif in the Aegean repertoire, including antithetical, running, stemmed, and unstemmed, some containing dot centers and others relatively open in the middle. Thus far at Tell Tayinat, the fragmentary nature of sherds bearing spiral design precludes their being assigned as a group to any specific version. The few well-preserved pieces, for example, on a large closed form discussed in Chapter 4: section 4.4.3.1 (see Pl. 15.2–3), indicate they may belong to a variety known as the stemless spiral (FM 51: 27). Small hints discerned amongst krater pieces are consistent with this attribution. The spirals are typically rendered with open centers, except in rare cases (see Pls. 9.9, 10.16, probably 13.8), when they contain various filling motifs. The spirals usually consist of three loops, but occasionally have more (Pls. 8.12; 10.16; possibly 11.5; 12.13; 13.3). The color of choice for almost all spirals was dark red on a pink slipped background in the ROP tradition.

The Syrian-Hittite Expedition produced two or three spiral fragments (Swift 1958: fig. 27). They belong to a stemmed or running version (27G), an unknown type with four tightly drawn loops around a small dot center (27H), and a fragmentary antithetical spiral (27I). A newly published deep bowl from Chatal Höyük also bears a fragmentary spiral, in what appears to be an antithetical pattern (Pucci in press).

Mainland examples of the stemless spiral first appear in the LH IIIC Middle period, and become popular in IIIC Late, particularly on closed forms (Mountjoy 1986: fig. 200.17, 158; fig. 235.11, 183). Prior to LH IIIC, the spiral had functioned primarily as an accessory to other design elements (Furumark 1941a: 367). The closest stylistic parallels to spirals in the Tayinat repertoire are found on hydria, amphorae and trefoil-
mouthed jugs at Tiryns (Podzuweit 2007: 148, pl. 76.2), Mycenae (Wace 1921–23: 51, pl. 10d), and Perati (Iakovidis 1969/70: 219, fig. 100.7). The Mainland spirals take two forms: those that descend beneath handles, and those suspended on the shoulder, both of which are rendered in symmetrical pendant fashion typical of LH IIIC ornamentation (Furumark 1941a: 369).

In Cyprus spiral decoration did not become dominant until the LC IIIA period in the 12th century, where few if any examples of stemless spirals were produced (Kling 1989: 100). In the southern Levant, examples of Philistine spirals, which are mostly antithetical and applied to deep bowls, bear no resemblance to the Tayinat style of the motif (For examples, see Dothan and Zukerman 2004: fig. 6.19, 8.1, Ben-Shlomo 2005: figs. 3.2.6, 13; 3.10.24; 3.15.5, 7, 11, 13, 14; Mazar 1985: figs. 13.2, 7; 16.7, 9, 18; 29.11–17). Occasional examples of running spiral motif are found on bell kraters (Dothan and Zukerman 2004: fig. 16.1–3).

Along the north Syrian coast at Tell Kazel spirals are rare, perhaps limited to Late Bronze II imports (Badre 2006: fig. 10.7). At Ras Ibn Hani they were painted on the surfaces of bell kraters and inside deep bowls (Bounni 1979: fig. 25). These versions are all quite different from the open stemless version of the spiral that seems to predominate in the Tayinat assemblage.

Spiraliform decoration in all its diverse forms is clearly an Aegean-inspired motif that developed into a central design element during the 12th century in LH IIIC assemblages. Moreover, a short survey of Mycenaean spirals shows that the open stemless version is fairly exceptional in Aegeanizing assemblages found in the Levant. Few direct parallels on kraters can be cited for the particular variety found at Tell

61 Thanks to Dr. Reinhard Jung for drawing these parallels to my attention.
Tayinat, particularly in the Near East at sites where they might be expected. However, stylistically similar designs are found on the shoulders of trefoil-mouth jugs and large closed shapes at Mainland sites in the Argolid beginning in LH IIIC Middle 2 (Advanced), and become more common in the LH IIIC Late period.62

Checkerboard (FM 56)

Views diverge on the origin of the checker motif. Furumark believed it developed from a lattice square device found in Mainland Greece and Cyprus (1941a: 378). Sherratt traces its source to LC II pictorial pottery from Cyprus, from which it spread westward to the Aegean (1981: 575). According to Kling, the origins are to be found in Cypriot White Slip Ware, where it often functioned as a filling device between animal motifs (1989: 109). The checkerboard motif served the same purpose in Mainland assemblages during LH IIIC Middle, as supplemental to the central motif (Mountjoy 1986: 158).

The chessboard decoration is rarely found on Philistine pottery (Dothan and Zukerman 2004: 40). Only isolated examples were produced, such as at Qasile Str. XII on a bichrome fragment (Mazar 1985: fig. 15.32; 102, table 10). Ekron produced no published examples, but Ashdod has several pieces in bichrome (Ben-Shlomo 2005: fig. 3.16.1; 3.27.8ff). These are all employed in the same vein, as secondary elements that supplement the central motif.

It is not clear just how popular checker pattern was in the Late Bronze Age southern Levant (Kling 1989: 109), as only one example was published by Amiran, on a jar from the Late Bronze I period (1969: 142, pl. 44.1). Decoration on the shoulder zones

62 A more detailed analysis of the Tell Tayinat spirals is found in the following chapter on closed forms; “Frieze-Style Decoration” (section 4.4.3.1).
of vessels certainly became more popular in the period leading up to the Iron Age, but the degree to which it included the checkerboard motif is not certain. What is most relevant about the LB I motif published by Amiran is the syntax of the composition. Like the Tayinat krater motif (Pl. 9.1), it features a checker pattern that blankets the decorative zone and functions as the main decoration.

Although the Tayinat motif (Pl. 9.1) is not fully preserved, the fragmentary checkerboard pattern would certainly appear to be central to the decorative scheme of the vessel, filling as it does the entire shoulder zone of the krater. Among the largest of its kind found thus far, the shape of the krater was earlier compared to the amphoroid vessel found by the Syrian-Hittite Expedition (Swift 1958: fig. 23),63 on a krater that also features an elaborate decoration.

A find from the western Cypriot site of Bamboula (near Kourion) provides the closest analogue to the Tayinat piece, on a vessel judged to be of “certain Syrian provenance” (Benson 1960: 68, fig. 9b). Its amphoroid profile, concave shoulder, and T-shaped rim make it a striking morphological parallel to the Tayinat krater (Pl. 9.1). Moreover, it bears a decidedly Levantine rendering of a stag, latticed triangles and a chessboard motif applied to the handle zone, all of which evoke an unmistakable Near Eastern impression. Although it appears that the checker pattern is enclosed in a panel, it is not clear how far the motif extends beyond the break, possibly as part of a frieze decoration. Moreover, these examples, like those in the Tayinat composition, are oversized, unlike square motifs used in panel decoration. The Cypriot krater was found in

63 The Chicago excavations also revealed a checker motif on a fragmentary jar piece from Chatal Höyük, which bears the design in a panel arrangement beside a triglyph (Swift 1958: fig. 27J).
an early 12th century context (Daniel 1938: 270–71, fig. 11A). A similar checker design on the neck of a jug was found at Shechem (Grant and Wright 1938: pl. XXXI.4), which further supports the suggestion that the Bamboula piece was imported from the Levant and that the Tayinat krater is of indigenous origin.

4.3.5.7.2 Miscellaneous Individual Motifs and Surface Treatments

Plain, Bands and Monochrome Decoration

As noted previously, the high rate of plain undecorated kraters was significant during all Field Phases at Tayinat, but particularly so in Field Phase 6, where such vessels comprised a sizeable majority of the assemblage (71%). The relative percentages in Field Phase 5 are virtually the reverse (only 35% plain and 65% decorated), a trend that continues into Field Phase 3 (38% plain, 62% decorated). Furthermore, unpainted kraters do not coincide with any particular rim shape. Rather, they encompass a wide selection of forms, further illustrating the non-standardized nature of ceramic production on the site (Pls. 7.2, 5, 6, 8; 8.1–3; 9.8 ff).

Simple banding constitutes the most common and nondescript surface treatment found at Tayinat. On kraters it frequently supplements more complex geometric designs, acting as a framing device for the main composition, though a minority of examples display simple bands alone, as much as can be discerned from surviving rim fragments (Pls. 9.7, 10; 10.4, 7; 12.1, 5). Banded decoration on the top of rims usually takes the form of cross hatching, which was quite popular and found on numerous vessels (Pls. 9.3,

64 In an interesting coincidence, the excavator at Bamboula consulted with the excavation director of the time at Tell Tayinat, in whose view the vessel in question was estimated to date closer to 900 BC (Daniels 1938: 271, n. 1). However, the presence of a 12th century cylinder seal in association with LC III pottery confirms its earlier 12th century date.
4, 6; 10.1, 2, etc.). Occasionally rims were painted with circular bands around the circumference of the rim (Pls. 10.7; 12.8), and solid paint applied to the top of rims was not uncommon (Pls. 7.4; 9.7; 10.5; 13.15).

The krater assemblage also contains several examples of monochrome decoration in smaller vessels (18–23 cm), most of which also bear interior bands (Pls. 9.4; 12.15; 13.1, 5). Monochrome decoration has been found thus far only on the exteriors of kraters. However, since these are only fragmentary pieces, we must admit to the possibility that the decoration is not monochrome, but may actually comprise a thick band below the rim, such as the small shape (Pl. 10.4), which preserves enough of the neck to show the limit of the band and confirm its identity as non-monochrome. In general terms, monochrome decoration elsewhere was far less commonly applied to kraters than it was to deep bowls, as discussed in Chapter 4: section 4.2.1.1.2. In terms of bowls, monochrome decoration was most popular in western Cyprus during the LH IIIC Late period, in Mainland terms (see “Linear/Monochrome” in Chapter 4: section 4.2.1.1.2).

Rosette (FM 17)65 and Triglyph (FM 75)

An unpublished krater from the Syrian-Hittite Expedition (Pl. 13.13) bears a rosette with dotted rim (FM 17: 11) beside a paneled pattern or triglyph (FM 75). The rosette (FM 17) is an ornament often used as an accessory. The triglyph is a patterned panel motif that serves to delineate individual or groups of ornaments in metope-style decoration. The vessel has a flat triangular rim (KR-3b) with a near vertical stance. The motif is very carefully drawn. Indeed, it is distinguished from the vast majority of Tayinat

65 The rosette (FM 17) and sea anemone (FM 27) are related motifs. Therefore versions of the motifs overlap at times as they appear in publications. The numbers assigned here are based on the closest analogues in Furumark’s catalogue.
decoration in its precision and attention to detail, which more closely resembles the export quality of LH IIIB pottery in its artistry, even while it lacks the lustrous paint and highly fired traits of its forerunners. Of special note is the fine dotted circle and the stems or hubs on the ends of the rosette spokes, the latter of which give the motif the appearance of a wheel as depicted on chariot kraters, examples of which, like the Tayinat rosette, also consist of four spokes (Littauer and Crouwel 1982: 183). The triglyph is comprised of a vertical zigzag framed on either side by lines and vertically-aligned semicircles. Of the several such rosette designs found at Tayinat, none resembles this unique composition.

Only one rosette motif was illustrated from the Syrian-Hittite Expedition (Swift 1958: 76, fig. 27C). It is composed of a small eight-spoked rosette next to a pair of horizontally-opposed solid triangles, or double axe motif, separated by a double vertical line. Both motifs are placed in small panels that appear to be part of a larger scheme in a frieze composition very unlike that of (Pl. 13.13). A second unpublished rosette from the Expedition is composed of eight spokes (Pl. 13.9), and acts as a filling motif for an open spiral (FM 17: 35). Two examples of rosettes being used as fillers for spiral motifs have been found on Philistine monochrome kraters at Ekron Str. VII (Dothan et al. 2006: fig. 3.21.1) and Ashdod Str. XII (Ben-Shlomo 2005: fig. 3.11.4). Tell Qasile has produced a simple version on a Str. XII skyphos, which functions as the central element of the decoration (Mazar 1985: fig. 17.11).

The rosette motif is one of the most ancient designs in the Aegean repertoire, having originated in Minoan art (Furumark 1941a: 282). Its floruit was the LH IIIB and IIIC periods, when the device was typically arranged syntactically to complement the
central design and serve as a separating element. It is difficult to strictly assign triglyphs to specific chronological or stylistic phases because similar examples occur at different points within the various periods (Leonard 1994: 188). That being said, panel decoration similar to Tayinat (Pl. 13.13) featuring vertically-aligned zigzag enclosed by vertical lines and semicircles was common in Mainland sequences throughout the LH IIIC period: during the LH IIIC Early period (Mountjoy 1986: 137, fig. 166.27), Middle (Mountjoy 1986: 160, fig. 166.27), and Late (Mountjoy 1986: 184, fig. 200.30), particularly on deep bowls and kraters in IIIC Early and Middle, and primarily kraters in IIIC Late.

While rosettes were rare in Philistia, paneled motifs that compare to (Pl. 13.13) have been found in monochrome and bichrome at Ashdod (Ben-Shlomo 2005: figs. 3.2.18; 3.12.1; 3.16.1; 3.20.2) and Ekron (Dothan et al. 2006: figs. 3.21.4, 6, 10; 3.27.5; 3.29.7), where they consist of vertical zigzag and lines but never in combination with semicircles. Much the same applies to the Cypriot repertoire, where the closest comparisons are found in the so-called Sinda Style decoration at eastern island sites (Schachermeyr 1979: fig. 2.b; Kling 1989: fig. 23.a, d). These motifs occasionally include semicircles (Mountjoy 2005b: figs. 4.1, 6.17, 8.22). In western Cyprus, Maa-Palaeokastro has produced triglyphs similar to those from Philistia, usually comprised of zigzag and lines but typically lacking semicircles (Karageorghis and Demas 1988b). Examples there also include an eight-spoke rosette device with dotted rim (fig. CCX.576).

The rosette decoration is not a Levantine phenomenon. It does not appear in the published repertoire at Hama (Riis 1948: fig. 130A), Tell Afis (Venturi, Bonatz 1998), Ras Ibn Hani (du Piêd 2008), or Tell Kazel (Badre et al. 2005; Badre 2006). However,

66 Figs. CCVII.45/1; CCX.11.2; CCXXIV.324; CCXLVII.705.
comparanda for the rosette and triglyph are found amongst the Mycenaean assemblage at Tarsus on a series of deep bowls bearing spiraliform decoration: on several rosette motifs that are dotted but which lack internal spokes (Mountjoy 2005a: figs. 8.165–70), and on triglyph designs, most of which contain only isolated components of the Tayinat scheme (Mountjoy 2005a: figs. 9, 11). Only one triglyph motif at Tarsus combines vertically-aligned semicircles with vertical zigzag like the composite motif at Tayinat (Mountjoy 2005a: fig. 9.190).

Sea Anemone (FM 27) 67

The sea anemone (FM 27) is a motif that derives from the rosette in Minoan art (Furumark 1941a: 147, 316). Like its prototype, it often functioned as an accessory motif or filling ornament in pictorial scenes. Levantine examples from the Late Bronze Age consist of simple variations (Leonard 1994: 161). An example from the Syrian-Hittite Expedition (Swift 1958: fig. 27B) consists of a simple and sloppily-rendered ornament of two lines crisscrossed and overlapping a circle (FM 27: 2), as part of a larger arrangement of undefined spirals or loops.

A more complex example of the sea anemone motif (FM 27: 36), which was found on a krater from the renewed excavations, acts as a filling ornament for a spiral (Pl. 9.9). It features a solid-painted circle surrounded by small dots inside three (perhaps more) spirals, and as such is the only one of its kind found thus far. Comparable spirals are documented in the Mycenaean repertoire, some of which are filled with rosettes, though they are dissimilar to the Tayinat example of the motif (Furumark 1941a: figs. 63:

67 The rosette (FM 17) and sea anemone (FM 27) are related and therefore versions of the motifs overlap at times as they appear in publications. The numbers assigned here are based on the closest analogues in Furumark’s catalogue.
7, 25). The local variant from Tell Tayinat appears to be unique, as close parallels from other Aegean assemblages on the Levantine coast are lacking.

Together, the rosette, triglyph, and sea anemone reveal Aegean influence in the local corpus. The paneled decoration of (Pl. 13.13) is one of the finest and well-executed examples of Mycenaean painted pottery in the entire assemblage. Parallels can be found for separate elements of the scheme in various Aegeanizing assemblages, for example at Ekron, Ashdod, and Tarsus. But none of these ornaments merge the dotted rosette with spokes and triglyph comprised of vertical zigzag and semicircles as in (Pl. 13.13). Unfortunately, this decoration is less informative for dating, as examples can be found throughout the LH IIIC period at other sites with Aegean-style ceramics. However, an exception is the eight-spoke motif found at Tayinat (Pl. 13.9), which is reminiscent of similar versions found in mid-12th century Philistine assemblages.

Double Axe (FM 35)

The double axe motif (FM 35: 14) typically consists of two mutually opposed solid-painted triangles that resemble an hourglass or butterfly. The motif may be employed as an isolated element or as part of a larger complex scheme. Several examples of this motif were found by the Syrian-Hittite Expedition. A repeating pattern of double axe decoration forms part of a secondary frieze on a carinated shape from Phase N at Chatal Höyük (Swift 1958: fig. 23). Additional motifs were found on two body fragments: one resembling an hourglass with scale pattern fill, situated beside a bird figure (Swift 1958: fig. 27A), and another on a small jar sherd in which a horizontal double axe sits opposite a rosette device (Swift 1958: fig. 27C). A double axe motif
adorns a sherd from a carinated vessel found in the renewed Tayinat excavations, which consists of alternating vertical and horizontal elements aligned in a frieze, bounded by further fragmentary designs (Pl. 13.8). Tell Afis has produced a repeating double axe design on the shoulder of a Phase IVa jar (Venturi 2007: fig. 65.8).

The double axe motif is virtually absent from the Philistine repertoire. The closest comparisons resemble cross-hatched or simple solid-painted triangles, which differ syntactically from the hourglass or butterfly design that defines the double axe design elsewhere (Dothan and Zukerman 2004: 40).

Mountjoy has proposed that the motif as found in the Aegean is the result of Minoan inspiration (1999a: 55), and Furumark had earlier traced a continuous pattern of development from realistic renderings to increasingly schematic ones, which culminate in simple solid-painted triangles (1941a: 329–30; see FM 35: 14). The double axe occurs on a wide range of Cretan vessels in LM I through LM IIIB, such as Palace Style jars and larnakes (Mountjoy et al. 2003: 56; 67, fig. 4.7.74; 80; 94, fig. 4.19.258). The Minoan version of the ornament, however, is quite different from examples found in the Levant or Cyprus. These pictorial motifs are quite ornate and realistic, down to the detailed depictions of shafts, and are clearly meant to represent actual weaponry (Betancourt 1985: 156, pl. 25A; 162, pl. 27B). Other versions are juxtaposed with horns of bulls, which also known to occur in Minoan metalwork, suggesting cultic use (Betancourt 1985: 139, pl. 19D; 126, pl. 26G). Some depictions include “sacral knots” revealing further religious connotations (Mountjoy et al. 2003: 79; 95, fig. 4.20.270). In the end, the Minoan double axe seems unrelated to eastern examples of the decoration, despite its early occurrence in essentially Middle Bronze Age contexts. There is little sign of the
schematic portrayal, often used as an accessory to a larger geometric composition, as commonly found in the Near East. Moreover, such depictions in Crete often resemble the curved crescent shapes of actual axe blades.

According to Kling, the origins of the double axe motif, like those of the solid-painted triangle, are to be found in the Levant (1989: 110, 114–15). Indeed, Schachermeyr had suggested Levantine inspiration for the Cypriot version (1979: 211–12). Ample evidence for the double axe is found in the vicinity of the Amuq Valley, for example, at Ugarit, where examples are attested in the Middle and Late Bronze Age (Schaeffer 1949: fig. 50.9, 15; Courtois 1978: figs. 4.4; 11.9; 14.1; 16.13ff). The motif is also documented in the southern Levant (Amiran 1969: pl. 47.10). Therefore, it would appear that inspiration for the double axe motif at Tell Tayinat and the Amuq can reasonably be traced to regional antecedents from the Bronze Age.

4.3.5.7.3 Pictorial Decoration

The krater assemblage at Tell Tayinat is characterized by a limited range of mostly linear and geometric designs, as the study of frieze-style decoration and individual motifs has demonstrated. The repertoire of motifs on such vessels is very much like that of the deep bowls, which as a class most closely resembles the Granary Style decoration. The few exceptions to that trend consist of several pictorial depictions: three birds, one fish, and one human figure, each of which merits special attention in the following analysis.
The renewed Tayinat excavations have revealed a single pictorial example of a bird (Pl. 10.14). It was found in Field Phase 5, was painted in the familiar red paint on pink slip (ROP), and once belonged to a krater. The fragmentary figure depicts a bird at rest with folded wings, which are filled with cross-hatching. What little is preserved of the body indicates a filling motif composed of horizontal lines. The upright neck is unpainted, and the head is plain and lacking facial features, except what appears to be a feather angling diagonally away from the rear of the head. A series of parallel vertical lines descends from above and behind the figure, the purpose of which in the overall scene is unknown.

At nearby Tarsus, a bird representation very similar to the Tayinat figure was originally published in a separate article and later included in a catalogue of Mycenaean-style pottery in the assemblage (Mountjoy 2005: 92, fig. 3.42; Goldman 1939: 2–5). The zoomorphic figure was painted on the shoulder of a strainer jug in a horizontally repeating pattern that depicts the full body of the bird with upraised wing, the latter of which is filled with cross-hatching. Not all the birds in the composition are identical—two have long necks filled with bars and another is unfilled. The head contains a dot eye and the beak is simple, plain and sharp. The overall profile of the animal—its cross-hatched wing, long straight neck, and head shape—bears a very close resemblance to the bird from Tayinat. It has been tentatively dated to the LH IIIC Early period by Mountjoy, based on similarities to Cypriot representations (2005a: 92).

Tarsus produced several other examples of birds, one of which bears a likeness to the repeating birds on the strainer jug, and which may be the product of a common
workshop (Mountjoy 2006: 118, fig. 8.21). The motif once adorned a krater and shares a similar oval-shaped, undecorated body, and narrow head atop a long neck. However, it lacks wings and its neck and head are painted solid, unlike the others. Resemblance to a pair of birds painted on a deep bowl from Maa-Palaeokastro (Cyprus) led to Mountjoy’s dating of the strainer jug bearing the repeating bird pattern (Karageorghis and Demas 1988b: pl. CCXLIII.250). Although the open body and overall shape are traits common to both the Tarsus repeating birds and Cypriot motifs, the latter by contrast have a well-defined flaring tail, cross-hatched triangular wing, and solid-painted neck and head. In sum, the Tarsus birds are stylistically closer to the Tayinat bird than they are to the Cypriot versions. The context of the Tarsus piece, found as it was amongst sherds with spiraliform decoration, still supports a LH IIIC Early date on stylistic grounds, notwithstanding the mixed stratigraphy at the site.

Bird devices in Philistia, more frequently in bichrome than monochrome, form one of the hallmarks of pictorial decoration in the Philistine repertoire (Dothan 1982: 198). The typical outspread wing and head turned back, in a posture that suggests the tending of its feathers, among other traits, were standardized and reflect local stylistic development (Ben-Shlomo 2010: 132–5, figs. 3.74, 3.75). The bird figures most often bear wings and bodies with various filling motifs. Similarly, Mainland conventions used during the LH IIIC period on the necks of birds typically employed fill using bar motifs (Mountjoy 2011: 484). Such decoration in the Aegean on bird depictions bears little if any resemblance to the Tayinat example, which despite incorporating familiar elements, suggests that the artist catered to local or regional preferences.
Swift published only one sherd bearing a bird decoration, which appeared on a Phase N krater found at Chatal Höyük (Swift 1958: 75, fig. 27A; also see Lehmann 2007: fig. 8.1 for a hypothetical reconstruction of the vessel). According to the report, it was the only such depiction discovered in the Syrian-Hittite excavations of the Amuq Valley (Swift 1958: 75; but see fish depiction found by TAP below). Following Furumark’s theory that all bird motifs originated in Minoan painted traditions, Swift’s comparanda included two examples: one from the LM IIIB period, and another from a Myc IIIC:1 Mainland assemblage (1958: fig. 27A’). A salient aspect of the composition is its use of the Elaborate Levantine Panel or Frieze Style, featuring solid-painted triangles and scale patterns alongside the intricately detailed bird, which is only partially preserved. The opposed triangles, or double axe motif, coupled with a scale pattern is reminiscent of a LH IIIC Middle amphoroid krater from Kition (Karageorghis 1981: pl. XIII). The Kition decoration also depicts an elaborately rendered bird and a group of fish on either side of the triangle design, in a prototypical example of the “Levantinian” style (Schachermeyr 1979: fig. 6; 1971: fig. 2).

However, the Kition bird more closely relates to a second Amuq bird motif found by the Syrian-Hittite excavations, but which does not appear in the Swift volume. The zoomorphic figure, appearing on a krater sherd, is rendered in black paint on a white slip (BOW tradition), with a single band on the interior of the vessel (Pl. 13.11). The surviving portion of the fragmentary image preserves a solid-painted body, upraised cross-hatched plumage, a long neck, a small circular head with a single dot eye, and a long tubular beak. Unfortunately the stratigraphic context of the sherd is unknown. The
Tayinat bird has stylistic affinities to the bird motif from Kition, particularly with respect to its solid-painted neck and head with a dot eye, along with its unusually rendered wings, the latter of which are represented by parallel arcing lines extending behind the neck. The major difference between the two figures is in their respective wings. Those of the Tayinat bird are cross-hatched with the lines penetrating the lower margin, whereas those of the Kition bird are filled with another parallel line (Mountjoy 2008: see fig. 4 for a reconstruction of the motif). In addition, the Kition bird is portrayed looking backward, while the Tayinat bird gazes forward, and its beak is short and solid-painted, versus the long beak of the Tayinat bird, which is represented by two parallel lines.

The various styles of bird motifs represented at Tayinat and in the Amuq Valley bear no resemblance to the Philistine style as described above. Moreover, the local versions are entirely different from contemporary Syrian examples found at Hama, which typically consist of simple silhouettes drawn in various standing postures (Riis 1948: fig. 130B). Solid-painted or silhouetted birds have long been recognized as a characteristically Levantine trait (Kling 1989: 119; at Ugarit see Shaeffer 1949: fig. 81.5), a fact that is abundantly clear at Hama, but which is not borne out in the Amuq, where local development took precedence. While Tayinat birds contain isolated elements found elsewhere in the region, direct parallels are difficult to locate, with the exception of the bird from the renewed excavations (Pl. 10.14). Collectively, the three bird motifs from the Amuq Valley, two of which were found at Tayinat, are best understood as local renditions of the Mycenaean pictorial style, adapted to suit the tastes of the local community.
Fish Pictorial (TAP)

One of the largest kraters yet found at Tell Tayinat (60 cm in diameter) features a repeating fish motif (FM 20) below the rim, and cross-hatched triangles or net design hanging below (Pl. 8.10). It is unique in being one of the few non-geometric motifs in the assemblage, and the only one portraying a fish. The fragmentary depiction preserves the forequarter of one animal swimming left to right behind what appears to be an identically rendered figure, of which only the hindquarter remains, all of which is rendered in monochrome dark red matte paint on a pinkish self-slip (ROP), with a wet-smoothed surface treatment. The fish is drawn in silhouette and has a feathery appearance, mouth agape, two dorsal and two ventral fins, and a long wispy group of tail fins. Based on the size and spacing of the preserved motifs, the original composition would have consisted of between twelve and fifteen such figures encircling the neck.

A repeating fish motif, though of a very different nature, was found at Ashdod Str. XII (Ben-Shlomo 2005: 88, fig. 3.11.10; cf. fig. 3.16.7, 8). Fish are only rarely found in Philistia, far less frequently than birds. Several examples appear on vessels from Ekron, Azor, Tell el-Farah (S), Tell ‘Eton (Dothan 1982: 203–4), and most recently Ashkelon (Stager and Mountjoy 2007: figs. 4–5). These versions of the motif differ from the Tayinat design, in that their bodies are often filled with horizontal wavy lines meant to resemble scales, in contrast to the solid-painted Tayinat fish.

As for parallels from the Amuq Valley, the Syrian-Hittite Expedition noted the presence of the fish motif on kraters in Phase M, similar to examples found at Ugarit I (Braidwood 1937: 6). Such fish were usually depicted in silhouette throughout the Late

68 It is not clear what precisely constitutes “Ugarit I,” except that the dates given for “Cultural Period VI” in the Tell Judaidah chronology table (1600–1200 BC) correspond to Niveau I at the site (Schaeffer 1949: 135).
Bronze Age, as numerous examples attest (Schaeffer 1949: figs. 50.2, 94; Courtois 1978: figs. 9.8, 11.4). By contrast, fish motifs on Mycenaean vessels imported to Ugarit clearly demonstrate a more complex style of zoomorphic representation, whose bodies typically consist of various filling motifs (Courtois 1978: fig. 41.1, 2, 6). Unfortunately, none of the painted kraters with fish cited by Braidwood were published. However, Pucci has recently published a krater with bird decoration from the Late Bronze-Iron Age transitional level II_10 at Chatal Höyük (Pucci in press). It is unclear whether the figure forms a repeating decoration like the Tayinat fish, but it is likewise solidly-painted and forms part of a frieze in the decorative zone of the vessel. Judging from its concave neck, it may have once adorned an amphoroid shape. Unfortunately, the sherd is broken too high to determine whether a lower register of decoration existed similar to the net device on the Tayinat krater (Pl. 8.10). The rim style of the krater from Chatal Höyük is comparable to the KR-3a class at Tayinat.

Several examples of fish motif have been found at Hama (Riis 1948: fig. 130B). They are characterized by oval-shaped bodies with two dorsal and two ventral fins, and triangular flaring tails. Filling motif usually consists of cross-hatching. Whether they originally comprised repeating compositions or larger pictorial scenes is unknown. Hama also produced decoration consisting of four fish stacked vertically (Ingholt 1940: pl. XXI.1), a composition identified as typical of Levantine style, along with painting in silhouette (Benson 1960; Kling 1989: 119).

Fish motifs were common in Mainland assemblages during the LH IIIC Middle period, as with other elaborate pictorial decoration, and were often used as filling ornaments on kraters and stirrup jars (Mountjoy 1986: 158). Most often they were
rendered in outline form and filled with various patterns such as wavy lines (Crouwel 2006b: 243). In contrast, fish decoration in the Amuq appears to correspond to the Levantine style, particularly with respect to the practice of rendering figures in silhouette, which had a local history in the Amuq in the Late Bronze Age. Moreover, the Tayinat fish decoration was central to the composition, unlike the standard Mycenaean style, in which it fulfilled a secondary role.

Anthropomorphic Pictorial (TAP)

A krater body sherd from Tell Tayinat, found in Field Phase 5, partially preserves a rather poorly rendered human figure in the ROP color tradition (Pl. 9.15). It is possible to discern the upper torso of the body, including the head and arms, the latter of which appear to be unnaturally elongated. This could be the result of careless or sloppy drawing, or an attempt to represent arms grasping implements of some kind, perhaps a set of reigns for a team of horses, each hand holding a pair of straps, which suggests the possibility of a chariot scene. Similar portrayals are abundant on decorated chariot kraters, and the confluence of arms and reigns finds particular parallel in Syrian glyptic art, where chariot scenes such as the “enemy beneath the hooves” has a long history (Crouwel 2005: 41, pls. 4d, e). Alternatively, the Tayinat figure could be wielding a whip similar to chariot riders on two seal stones from Crete (Evans 1935: 820, fig. 799, 823, fig. 803; Littauer and Crouwel 1982: 183, 185).

There is a small fragmentary motif in the lower right hand side of the sherd that may have been attached to the reigns or extended arms of the human figure. It bears some resemblance to the mane of a horse, representations of which tended to vary widely.
However, if this were a typical chariot depiction, the space allotted between horse and rider on the scene would be insufficient to allow for the body length of the animal itself. Perhaps the device represents the tail of the horse. If this be the case, then the rather narrow empty space would suffice, if similar depictions found elsewhere are taken as a guide. Such a depiction is found on a krater from Mycenae, wherein the arms of the rider extend to the tail of the horse (Güntner 2000: pl. 2). The example from Mycenae also shows that the unusually low level of the rider’s shoulders in relation to the horse—approximately even with the top of the animal’s rear—is plausible, albeit uncommon, if the enigmatic feature in the lower right hand corner of the Tayinat sherd is taken to be a tail.

Alternatively, the enigmatic device may simply comprise a filling motif. Many Cypriot chariot scenes during the LH IIIB period display filling ornaments above and below the reigns, consisting of chevrons, wavy lines or quirks (Vermeule and Karageorghis 1982: IV.1, IV.12, V.6). But it is clear the unidentified Tayinat motif does not bear a close resemblance to these ornaments.

Another possible scenario for the Tayinat depiction is suggested by a less common version of the chariot rider motif, one in which a single individual rides standing on the horse bareback. Several examples of bareback riders have been found in Cyprus, as well as at Minet el-Beida (Vermeule and Karageorghis 1982: V.17, V.26; Shaeffer 1949: figs. 61.A, C) and Tiryns (Güntner 2000: pl. 2), in which riders stand directly atop the animal’s back. Such an interpretation at least theoretically accounts for the close proximity of the human figure to the putative horse mane in the Tayinat composition. In chronological terms, the practice of horseback riding is attested elsewhere in late 2nd
millennium contexts, such as at the Battle of Kadesh, where several armed scouts from both the Egyptian and Hittite armies are portrayed as such, even if they do not serve as examples of standing riders (Vermeule and Karageorghis 1982: 40; Nelson 1986: pl. 35).

However, alternative explanations are not limited to horse and rider scenes. It may be that our figure is an archer, in the act of drawing a simple bow, as opposed to a composite bow. Such a depiction is found on a krater from the site of Pyrgos-Livanates in central Greece, identified as Homeric Kynos (Dakoronia 1996: 171, fig. 9). It shows an archer with his arm drawn back behind his head and above his shoulders, in a pose reminiscent of Ramses III on his battle reliefs at Medinet Habu (Wachsmann 1998: fig. 7.16B, 137; 8.1; Crouwel 2006a: 19, fig. 8). In contrast to such composite bow depictions, according to Wachsmann, ancient battle scenes show simple bows being drawn to the body, which might account for the posture of the Tayinat individual.69 Perhaps only the recovery of further pieces of the composition in future excavations will provide definitive answers as to the activity of the anthropomorphic figure.

The most conspicuous aspect of the Tayinat composition, however, is the distinctive headgear or hairstyle worn by the figure, which consists of fingerlike extensions that radiate outward from the forehead to the back of the neck. Such depictions have been discovered elsewhere on a variety of media. A similar headdress appears on three LH IIIC sherds from Kynos (Dakoronia 1990: 117–22; Wachsmann 1998: 131-4, fig. 7.8). The first piece (Kynos A) comprises the most detailed depiction ever found of a Late Helladic or Mycenaean ship, with the possible exception of the recent find at Bademgediği Tepe (Wachsmann 1998: 176). Three individuals appear on the deck of the ship, two of which are clearly warriors and a third serving as the

69 I thank Dr. Shelley Wachsmann for these suggestions.
helmsman. The standing figures carry two types of shields, one of which is round and the other a “Hittite” type with incurved edges (Dakoronia 2006: 24, fig. 1; Snodgrass 1964: 59; Lorimer 1950: 163, fig. 15). Both marines wear body armor and appear ready to hurl javelins (Wachsmann 2000: fig. 6.13). All three wear headgear or feathered helmets similar to the Tayinat figure.

A second fragment of the Kynos krater (Kynos B) portrays a lone warrior with the same spiked headdress, standing at the ready with shield in hand and wielding a javelin (Wachsmann 2000: fig. 6.14). The prow of the ship on Kynos B, which Wachsmann calls a “water-bird device,” bears a striking resemblance to those of the Sea Peoples’ ships carved on the mortuary temple of Ramses III at Medinet Habu (Wachsmann 2000: fig. 6.2). A similar depiction on a LM IIIC sherd from Phaistos (Crete) shows a pair of helmsmen with the same feathered helmets worn by the Kynos seamen (Wachsmann 1998: 142, fig. 7.27).

The great land and sea battle depicted on the walls of Ramses III’s temple at Medinet Habu are renowned for their dramatic and graphic portrayal of the putative defeat of the Sea Peoples at the hands of pharaoh (Nelson 1928‒31). The coalition allied against him consisted of five groups: Peleset (Philistines), Tjekker, Shekelesh, Danyen, and Weshesh (Redford 1992: 251).70 A group of Peleset and Denyen captives are depicted wearing feathered headdresses analogous to those from Kynos and Tayinat, suggesting that the feathered helmet may not have been exclusive to a particular ethnic element. In fact, as noted by Sandars (1985: 165, fig. 113), the only figure specifically

70 It should be noted that only three of the five named groups are given the epithet “of the sea” (Sherden and Washesh) or “of the countries of the sea” (Eqwesh) in Papyrus Harris. The Sherden and Eqwesh are named on Merneptah’s list, but not on that of Ramses III. Modern commentators have tended to conflate the groups of both lists into the collective term “Sea Peoples” (Redford 1992: 243, n. 14, table 1). Also see discussion in Killebrew 2005:237, n. 23.
identified as Peleset is a bound kneeling chieftain, who sports a beard and wears a flat top cap very unlike the spikey helmet of the Peleset-Denyen soldiers.

It must be conceded, however, that the reliability of the Medinet Habu records (both written and pictorial) as historical sources is a legitimate concern. Attaching too much credibility to the nuanced portrayals of ethnic subgroups may be presumptuous. Too many discrepancies in the written and pictorial accounts would seem to betray a greater interest on the part of the authors than simply presenting a precise historical account—that of projecting the image of a mighty king vanquishing all foreign lands and bringing them under his subjection (Redford 2000: 11–12). The reliefs are undoubtedly a highly valuable resource, but the tendency to parse them too closely will be avoided here. Given these limitations, it would seem prudent to consider the feathered headdress as indicative of a generic “Sea Person,” at least as portrayed by the Egyptians (Killebrew 2005: 237, n. 26). Perhaps future discoveries will allow scholars to attribute specific traits to particular ethnic subgroups of the collective Sea Peoples contingent.

At Mycenae, a LH IIIC krater fragment bears the image of two warriors riding a chariot, the driver holding the reigns, and the second figure poised with a spear (Vermeule and Karageorghis 1982: 220, fig. XI.1B). Both charioteers sport armor on their upper torsos and wear feathered headdresses stylistically indistinguishable from those worn by the Kynos seamen and by marching infantrymen on the famous Warrior Vase, also from Mycenae (Sandars 1978: 188). In addition, a finely rendered chariot scene dated to LH IIIC Middle 2 (advanced) from Tiryns shows two realistically portrayed soldiers with round shields and familiar spikey helmets (Güntner 2000: pl. 7).

71 Egyptian iconography offers another parallel in depictions of the god Bes, whose feathered crown in some cases bears a resemblance to those of the Sea Peoples (see Altenmüller 1975: 722).
A carnelian sealstone from Knossos (Crete) of unknown date features a scene of dueling warriors, one of which thrusts a long dagger toward a shielded defender (Morgan 1988, 102, pl. 150). The attacker wears a kilt similar to the warriors on the Ramses III reliefs. But most notable is his head, which is adorned with “spikey hair.”

Two intriguing depictions of warriors from the island of Cyprus bear a very close resemblance to Sea People warriors. Both examples were found at the site of Enkomi and dated generally to the 12th century. The first example is cut on a conical stone seal and depicts a soldier cowering behind a large pointed shield (Dikaios 1969a: pl. 184.19). His headgear features upraised shafts or feathers tethered to a headband, and decorated with circles. The same type headdress appears to adorn a warrior figure carved on the side panel of an ivory gamebox, also from Enkomi (Porada 1971: 801-2). He is dressed in a knee-length kilt and walks behind a chariot, while he carries an upraised hatchet. The man sports a beard and a headdress identical to the dueler on the conical stone seal (Murray et al. 1900: 12, fig. 19, pl. 1; Dothan 1992: 95). The scene portrayed on the side of the gamebox appears to consist of a ritual hunt, with a bull and a number of deer depicted as quarry.

The site of Bademgediği near Ephesus in western Turkey has produced fragments of a remarkable pictorial scene in which warriors wearing feathered helmets of the “hedgehog” type prepare for battle on the deck of a ship with rowers shown below. The prow of the ship preserves an ornate version of Wachsmann’s so-called water-bird device (Mountjoy 2005c: pl.XCVI). The maritime depiction is very much like those from Kynos, but rendered in greater detail and realism. For example, the warriors are not stylized as mere silhouettes, but have actual facial features, while the rowers are
personified rather than represented by half-moon motifs. The krater is dated on stylistic criteria to the Transitional LH IIIB2-IIIC Early period, and stands as graphic testimony to the vibrant Mycenaean maritime culture that existed along the Ionian coast of Anatolia at the dawn of the Iron Age.

Fragments of a krater bearing an elaborate pictorial scene have recently been discovered at Ashkelon in Phase 18 (late 12th–early 11th century), the first level in which Philistine bichrome decoration prevailed (Stager and Mountjoy 2007: 50). One fragment (Side A), belonging to a bell krater (FS 282) with a heavy T-shaped rim similar to Tayinat KR-1a, bears the upper torso of a human figure wearing a feathered helmet comparable to those worn by the Kos (Morricone 1972–73: 358, 360, fig. 357.a–b) and Bademgediği Tepe warriors (Mountjoy 2005: pl. XCVI). Side B portrays an enigmatic scene featuring a seated figure holding an upraised cup, interpreted by the authors as a funeral procession (Mountjoy 2007: fig. 4). The individual wears what appears to be a spikey headdress. However, other interpretations are possible. For example, the seated individual may be a goddess, a reasonable assumption given similar portrayals on “Ashdoda” figurines, and on a seal found at Ashdod in Str. XI (Ben-Shlomo 2005: 165–6, fig. 3.66; T. Dothan and M. Dothan 1992: pl. 11), as suggested by Yasur-Landau (2008: 220). This depiction of two human figures is all the more remarkable given that such pictorial representations are virtually absent from Philistine assemblages in the Early Iron Age.

72 According to Mountjoy, the dating of the composition hinges on the stylistic traits of the rowers, whose faces, flat caps and narrow waists “cannot be any later” than LH IIIB (2005c: 425, n. 18). The rationale for this judgment seems to me unclear and too rigidly stylistic. The best parallels for the hedgehog helmets of the warriors are found on LH IIIC Middle depictions from the Mainland, and there seems to be no good reason why the rowers cannot be dated likewise. In the end it serves to illustrate the somewhat subjective criteria for dating pictorial representations stylistically.
The nature and composition of the spiked helmet or headdress has been the subject of much speculation. Edith Porada followed Galling’s view that the headgear did not consist of feathers attached to a band, but was instead constructed of a wide headband that tied to or forced the hair to stand upright (1971: 802; Galling 1966: 155, n. 2). Support for this interpretation was provided by terracotta busts from Crete dated to Middle Minoan I, which depicted upright hair supported by wide headbands (Bossert 1937: 28, fig. 286). The Minoan examples may have been stylistic forerunners, but the very high and wide bands with curly hair sprouting from below seem distantly related to the familiar later versions.

Vermeule and Karageorghis have suggested, on the basis of hedgehog helmets worn by figures on the Warrior Vase from Mycenae (LH IIIC Middle), that the caps are constructed of stiff leather or metal pieces clamping a spray crest between the two halves (1982: 132, XI.42). Mountjoy accepts the crest theory, but has proposed that stiff leather, rather than metal made up the clamping pieces (2005c: 426). Helmets of this style or design were already in use by the 13th century. However, it is not clear whether the hedgehog helmet actually corresponds to the spiked helmets described above from elsewhere in the region, such as in Cyprus, Philistia, Egypt, and the Aegean. If the objects are indeed crests, then the Egyptian portrayals present a challenge, since they show feathers frontally across the entire forehead. It may be, as suggested by Mountjoy (2005c: 426), that these representations are artistic conventions that were created in such a way as to fully display the face (2005c: 426).

An insight as to the makeup of these helmets may be provided by a seal dating to the Late Bronze-Iron Age transition at Tell el-Farah (S), which features two standing
figures in a cultic scene, one of which wears a helmet surmounted by what are clearly feathers of a sort (Noort 1994: 140, fig. 47). Whether this relates to Aegean-style headdress is by no means clear, but the precise detail of the image is nonetheless suggestive. In any case, the precise nature of the helmet or headdress of the Sea People is not a question that can be resolved by current evidence. We are left to speculate unless and until actual specimens are found, or more detailed depictions are discovered.

Unfortunately, few pictorial representations of Aegean peoples in the Mediterranean Basin have been found in stratigraphically secure contexts, and those that can be dated range across most of the 12th century, from the reliefs at Medinet Habu dating to year eight of Ramses III, to as late as the beginning of the 11th century at Ashkelon. Most ceramic depictions are assigned to the LH IIIC Middle period on stylistic grounds. The compositional themes often revolve around naval combat, but also include land warfare, dueling scenes, ritualistic hunting, and funerary-cultic activities.

As for the Tayinat depiction, too little of the original scene is preserved to place a high level of confidence in any single interpretation. Nonetheless, several possibilities have been suggested, such as a classic chariot scene, a standing horse rider, a bowman or archer, and a maritime battle scene. Without further pieces coming to light, we cannot be certain. Regarding the more clearly rendered headdress, we can be more confident. Although the precise composition of such headdresses is open to speculation, the style itself is familiar and is closely associated with Aegean or Aegeanizing cultures across the eastern Mediterranean Sea. While questions about the interpretation of the Tayinat scene remain, its true significance lies in the fact that it is the only “self-portrait” of an Aegean-

Curiously, no Aegean-style imported pottery (LH IIIA and IIIB) or locally-made LH IIIC was reported from the 13th century BC levels or later at Tell el-Farah (S) (Petrie 1930–32: pls. LXIII, LXXII, LXXXIX).
type individual yet discovered at the site, and the first and only such depiction found anywhere in the northern Levant.

4.3.6 Summary Observations

Scholars know perhaps more about ancient kraters than they do about any other vessel type. Their mention in the Linear B corpus, associated sealings, and preclassical texts combine to give the impression that they were the featured vessel of an ancient wine drinking culture, as described by Homer and as depicted in wall paintings, frescos, metalwork, and signet rings. Indeed, the term krater derives from the word “to mix,” and testifies to the practice of blending wine with water for festive occasions. Residue analysis corroborates the use of these vases as receptacles for various fermented beverages.

Mycenaean krater shapes group primarily into three forms: stemmed, bell-shaped, and amphoroid. These three styles characterized Mycenaean assemblages during the LH IIIC period across the Aegean basin, including Cyprus. The stemmed version has not yet been identified in the Levant. However, the amphoroid shape was particularly popular as an import item in the Late Bronze Age Levant and Cyprus, where it was often elaborately decorated with chariot scenes. However, the disintegration of the palace economies led to the disruption of trade patterns, a cessation of imports, and the emergence of local production centers for Mycenaean pottery. At this point in time, the picture becomes more complex. Bell kraters were produced virtually everywhere that Aegeanizing cultures have been found, at the same time that amphoroid shapes were limited mostly to Cyprus and the northern Levant, including the Amuq Valley.
The analysis of krater rim styles produced at Tell Tayinat during the Early Iron Age has shown that production was anything but standardized. Moreover, the results provide evidence that such activity involved limited organization, perhaps at the level of individual workshop industry or even household industry, as initially articulated by van der Leeuw (1977, 1984; Peacock 1981, 1982: 8–10; see also discussion in Rice 1987: 184). That observation is further reinforced by the wide range of overall shapes and sizes that prevailed in the local assemblage. The typological study of rims suggests the likelihood that amphoroid, bell and carinated kraters were manufactured at Tayinat. On the basis of comparanda, it is clear that many of these forms were descended from Late Bronze Age Near Eastern antecedents, whereas others are closely paralleled by amphoroid and bell shapes found elsewhere during the Early Iron Age, many of which continued to be produced into the 11th century at sites in the region.

A surprisingly high number of kraters in the earliest Iron I phases at Tell Tayinat were left undecorated. Subsequently, however, paint was applied at an increasing rate to the extent that approximately half of all such vessels were decorated in Phase N. But whereas a wide range of rims styles prevailed, the repertoire of motifs applied to kraters drew from well-established traditions, both native and foreign. Close analysis of the painted decoration has shown that the Levantine Panel Style, with its densely-packed panel designs, is not present in the assemblage. However, the Frieze Style decoration was quite popular, particularly in the initial phase of settlement at Tayinat. It consisted of Aegean-type elements like the Wavy Line Style and spiraliform motifs, alongside ornaments employed in a typical Levantine fashion, such as the stacked zigzag, latticed triangles, solid triangles, double axe, and semicircles. The OMDS design, as yet
hypothetical, may also reflect western influence, and represent a link to Aegeanizing elements that arrived in the coastal vicinity of northern Syria and southeastern Anatolia during the Early Iron Age, possibly by way of Cyprus.

In the Tayinat assemblage, the Frieze Style decoration became less common after the initial field phases, and was at least partially supplanted by a number of individual motifs such as rosettes, triglyph, sea anemone, and lozenge, all of which can be traced to Mycenaean and Minoan prototypes. This development may reflect a new phase in which local potters were less willing to rely on traditional designs arranged in horizontal registers, and were more willing to employ independent patterns. Moreover, local artisans were not reluctant to apply Near Eastern style decoration like solid triangles, stacked zigzag and cross-hatched triangles to the surfaces of Aegean-style vessels.

Pictorial decoration, though rare in the Tayinat repertoire, further adds to the composite portrait of the ceramic assemblage. Unfortunately, the relatively infrequent use of such depictions does not allow for a clear chronological correlation with elaborate Close or Pleonastic Styles as found in the Aegean, Cyprus and Philistia that comprise LH IIIC Middle style. While some motifs clearly employ Near Eastern artistic techniques, such as the zoomorphic representations rendered in silhouette, others reveal a western orientation, most graphically in the case of the anthropomorphic figure, the only one of its kind yet found in the Amuq Valley and the Northern Levant. Numerous parallels confirm its Aegean identity, even if its date cannot be determined beyond a general LH IIIC horizon.

Together, the morphological and ornamental characteristics of the krater assemblage reflect a mixing of local and exotic elements into a hybrid style, similar to
what has been observed elsewhere in coastal Syria and Philistia, and one also evident in the deep bowl assemblage at Tayinat. Many aspects cannot be dated with greater precision than the Late Bronze–Iron Age transitional period, which in many cases can be extended well into the 11th century. Without placing too much emphasis on the occurrence of individual motifs, the best estimate for dating the assemblage stylistically comes by way of the Wavy Line Style and stemless open spirals, both of which occur with regularity at Tayinat, were inspired by Aegean prototypes, and can be dated to LH IIIC Middle 2 (Advanced) at the earliest, but more comfortably in LH IIIC Late, given the absence of Pleonastic Style in the repertoire. The general descriptive term of Granary Style remains relevant to the local assemblage, characterized as it is by simple linear decoration.

The presence of many surviving forms from the Late Bronze Age is not unexpected or unusual, nor does it create a chronological difficulty. To the point, it would seem to illustrate a pattern that emerges with continuing research in the northern Levant, namely that continuity prevailed at many sites in the north later than it did in the south, well into the 12th century, and perhaps the early 11th century, if we include the Phoenician coastal sites and Cyprus (Iacovou 1994: 159; 2005: 20–23).

Recent investigations at the nearby sites of Chatal Höyük and Tell Atchana appear to corroborate this conclusion. At the former site, the transition to the Early Iron Age has been dated to the last quarter of the 12th century, equivalent to LH IIIC Middle 2 (Advanced) in Aegean terms (Pucci in press). Similarly, the small assemblage of Aegean-type material found at Atchana has also been assigned (preliminarily) to LH IIIC Middle.

74 Cypriot White Slip II (see Tayinat bowl fragments Pls. 2.14, 6.15) and Base Ring, considered traditional LC IIIC wares, have been found in virtually all LC IIIA contexts in Cyprus, which suggests they continued in use later than previously thought (Kling 2000: 289), as late as 1125/1100 BC (Bikai 1978: 64).
These correlations give added support to a late dating of the Tayinat assemblage (specifically Field Phases 5–3, and perhaps 6b and 6a), and provides evidence for the coterminous nature of the two sites of Tell Atchana and Tell Tayinat—during part of this period—suggesting occupational periods that either overlapped or closely followed one another.

75 The very few pieces from Field Phase 6c included in this study are insufficient to provide conclusions based on stylistic analysis, but preliminary petrographic findings suggest they may be imported.
4.4 Aegean-Style Amphorae and Jars

4.4.1 Introduction

The amphora, much like the deep bowl and the krater, played an integral role in ancient Mycenaean wine service, and like the open shapes, their large surface areas were often decorated in elaborate fashion. Amphorae functioned as domestic vessels, ideal for the pouring of liquids, and useful for storage and transport. Scenes painted on ancient vessels themselves portray amphorae as receptacles for wine, oil, and water. In classical sources, amphorae are described variously as containers for “red and fragrant wine” (Aristophanes), milk (Euripides), and even pickled slices of dolphin (Xenophon). Jars filled with oil were awarded as prizes at the Panathenaic festival in Athens, which were staged every four years (Richter and Milne 1935: 3).

Amphorae are also distinguished in the ancient ceramic corpus as one of the few vessels identified in the Linear B tablets by its ideogram (\(a\)-\(p\)-\(i\)-\(p\)-\(o\)-\(r\)-\(e\)-\(w\); Gr. ἀμφιφορεύς), along with its corresponding drawing, leaving no doubt about the shape to which it refers. That the ideogram actually signifies a ceramic vessel is confirmed by the lack of a sign for bronze, as associated with other vessels, and by the very large numbers of such objects reported on the ration lists (Ventris and Chadwick 1973: 324). The Linear B tablets also corroborate the written form of the word found in Homeric literature. For example, the term appears in the Odyssey, in a scene in which Athena advises
Telémachos to “pour wine into the two-handled amphorae,” as the young man prepares for the journey to find his father Odysseus (Odyssey II.290).76

Two LH IIIB amphorae found at Mycenae (13th century BC), subjected to residue analysis, revealed organic deposits proving they once held wine (Tzedakis and Martlew 1999: 153–4). Even more intriguing was the context of the finds in the midst of a cult center, which reinforces the important role played by wine consumption in ancient religious ritual. The practice of banqueting was also engaged by elites in the Levant, as shown by excavations at Tell Kabri, where analysis of a large Chocolate-on-White amphora found in a palace context indicated the presence of wine (Yasur-Landau et al. 2012: 22).77

4.4.2 Morphology of the Tayinat Assemblage

An immediate challenge emerges with the amphorae and jar assemblage at Tell Tayinat, much as it does with kraters, specifically the large amount of sherd material and lack of complete vessels found in the collection. It should thus be borne in mind that the studied assemblage may well include vessels that were not, such as other jar types, pithoi, and jugs. In these cases, rim morphology alone is often incapable of distinguishing the difference, for example, between amphorae and hydriae (FS 128), where only the presence of a single handle or side handles can identify the latter (Mountjoy 1986: 138). Moreover, a functional analysis of LH IIIB shapes at Mycenae shows that, even within

77 It is perhaps not coincidental that excavations at Tell Kabri have also produced Aegean-style wall and floor paintings, unique among Middle Bronze Age Canaanite sites. For recent discussions of this material and additional references, see Cline and Yasur-Landau (2007), and Yasur-Landau, Cline, and Pierce (2008).
the amphora assemblage (FS 67, 69, 70)78, there were a large number of variations in body type (Tournavitou 1992: 188, fig. 2.b, c). The catalogue of shapes developed by Furumark does not begin to encapsulate the large number of variations found at Mycenae, even within this relatively limited context. Nonetheless, the goal remains to create a typology that relies primarily on rim shape, in spite of the limitations imposed by the fragmentary nature of the surviving assemblage.

The typologies developed by the excavators at Tell Afis and Sarepta were once again most helpful in this endeavor, and served as models for the system devised herein. They were all the more valuable for their geographical proximity, their contact with Aegean culture, and because they represent two contrasting approaches, one lumping and the other splitting, respectively. A combination of the two is reflected in the Tayinat typology.

Given the limitations and ambiguities in the process of identifying sherd remains, the general designation \textbf{AJ}, representing amphorae and jars, is used to describe the rim styles in this study. It applies to shapes with a constricted mouth, more or less cylindrical neck, and rim diameter measuring between 9 and 16 cm (12 cm avg.). Though the scheme admittedly lacks the precision of isolating distinct body type (except where such vessels are preserved), it assumes that a common style of rim was applied to the general class of closed forms described above, one that is both archaeologically and culturally significant. This presupposition is warranted by the wide variety of shapes published in Mainland sequences that often bear the same rim style, but which cannot be

78 The difference between FS 69 and FS 70 is in the attachment point of the vertical handle. The former bear handles from rim to shoulder whereas FS 70 is a neck-handled amphora (See Mountjoy 1986: 162, figs. 206 and 239 for illustrations). Neck-handled forms are not commonly found in the Aegean until the LH IIIC Late period (See further discussion below).
Table 13. Amphorae/Jar Size

<table>
<thead>
<tr>
<th>Rim (cm)</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>FP 5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>FP 4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>FP 3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
</tbody>
</table>

Table 14. Amphorae/Jar Rim Size Distribution

distinguished apart from their complete body shape. The fact that this grouping represents a coherent assemblage at Tayinat is also supported by the rim size distribution, which resembles a bell curve (see Tables 13, 14)

The fabric groupings of the amphorae/jar assemblage are characterized by their heterogeneity. As depicted in (Table 15), chaff is the most common tempering agent (34%), followed by fine grit, either dark or white (24%), shell (11%), and lithic (11%). A sizeable portion (20%) is very well-levigated—no inclusions are detectable
macroscopically. The diversity of temper within a common category of vessels illustrates the lack of standardized production at the site, a trend also noted at nearby Ras Ibn Hani (du Piêd 2008: 173). The nonstandardized nature of the group is further highlighted by the wide variety of colors represented in the painted repertoire, such as ROP, BOW, Brown-on-White, bichrome, and others.

4.4.2.1 Rim Typology

The Phase N amphorae and jar assemblage at Tayinat consists of seven rim styles, each of which is further sub-divided according to their vertical and everted stances (a=vertical, b=everted; see Table 16). All categories are defined strictly by the shape of the rim. Although the scheme consists of seven types, the most four most common (AJ-1 through AJ-4) comprise fully 87% of the total assemblage. Everted or flared rim shapes
makeup far and away the greatest at 73% of the corpus overall, though the rate declines over time. The following scheme applies to the amphorae and jar assemblage at Tayinat:

<table>
<thead>
<tr>
<th>Typological Designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJ-1. Oval (a-vertical, b-everted)</td>
</tr>
<tr>
<td>AJ-2. Triangular</td>
</tr>
<tr>
<td>AJ-3. Profiled</td>
</tr>
<tr>
<td>AJ-4. Hollow</td>
</tr>
<tr>
<td>AJ-5. Rounded</td>
</tr>
<tr>
<td>AJ-6. Simple</td>
</tr>
<tr>
<td>AJ-7. Flat</td>
</tr>
</tbody>
</table>

Table 16. Amphorae/Jar Typology, Tell Tayinat (2:1)

<table>
<thead>
<tr>
<th>AJ-1a</th>
<th>AJ-2a</th>
<th>AJ-3a</th>
<th>AJ-4a</th>
<th>AJ-5a</th>
<th>AJ-6a</th>
<th>AJ-7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJ-1b</td>
<td>AJ-2b</td>
<td>AJ-3b</td>
<td>AJ-4b</td>
<td>AJ-5b</td>
<td>AJ-6b</td>
<td>AJ-7b</td>
</tr>
</tbody>
</table>
AJ-1 Oval

Oval-shaped rims (AJ-1) are the most common type found at Tell Tayinat, comprising 31% of all stratified fragments (Pls. 14.6, 18.3, 20.8, etc; see Table 17). Most examples of this class are very well-levigated with a minimum of inclusions. The remainder employ chaff and shell as agents. Most AJ-1 vessels are thoroughly fired, with no visible core. Roughly half of the rims are decorated, and half plain. Among the painted group, 75% bear red paint on pinkish self-slip (ROP). AJ-1 rims occur most frequently in the earliest field phases—almost 75% are found in Field Phases 6 and 5. A notable feature of the oval-style rim is the relatively high number of vertical stances (as opposed to everted or flared), which constitute 40% of the whole (see further discussion below and Table 18). This stands in contrast to the overall rate of only 27% for vertical or upright vessels. The AJ-1 type also has the smallest average rim diameter (slightly over 10 cm). Walls average .6 cm thick.
The closest equivalent to the AJ-1 type in the Aegean is found in so-called *long lips* that are typical of the LH IIIC Late, Submycenaean, and Protogeometric periods, examples of which have been documented at Perati and Asine (Mountjoy 1986: figs. 209, 212 and 239.3, respectively), Lefkandi Phases 1 and 3 (Popham, Schofield and Sherratt 2006: 180, fig. 2.14.1; Popham and Milburn 1971: figs. 1.7; 7.4), and Chios (Hood 1982: fig. 272.2839). They are also found at Bademgediği Tepe, on the Ionian coast of Anatolia (Meriç and Mountjoy 2002: figs. 3.4–6). The absence of hollow rims in the Bademgediği assemblage suggests that the long lip rims may be chronologically later in the LH IIIC sequence, perhaps belonging stylistically to LH IIIC Late (Meriç and Mountjoy 2002: 86, n. 18), since hollow shapes are characteristic of the Early and Middle phases of IIIC.

Oval-shaped rims with exterior thickening and high flaring neck were common at Sarepta (SJ-1 through SJ-5), beginning in the Late Bronze II period and continuing until the late 12th century, at which point upright standing necks became dominant. Upright stances remained in use until the late 11th century (Anderson 1988: 189–90, pl. 49). The developmental trend at Sarepta was a transition from flaring or everted stances to more upright and vertical, the latter style being typical of the Early Iron Age. Although the rim types are morphologically similar, the Sarepta storage jars differ from the Tayinat AJ-1 style in their size, with an average rim diameter of nearly 12 cm (versus 10 cm).

The exterior thickened rim type at Tell Afis (GR1B) is similarly divided into flaring and vertical versions. However, in this case, upright rims, well-attested in Phase Vb, decrease progressively until the flared type prevails by Phase III. Moreover, all early vessels are undecorated, which indicates the continuation of Late Bronze Age potting traditions in the area that persisted until the late 12th century. Not until Phases IV and III
were jars at Tell Afis painted in significant numbers, beginning c. 1120 BC (Venturi 2007: 252–4, figs. 50, 58, 70, 74).

The excavations at Hama have produced examples of oval-shaped style, one of which appears on a plain neck-handled amphora from Période I (1200–1075 BC; Riis 1948: fig. 48). The rim type is also attested at Tille Höyük in the Burnt Level, which was constructed throughout much of the 12th century and which terminated in a conflagration c. 1100 BC (Blaylock 2009: xx). Oval-shaped rims were applied there to undecorated rim-handled storage jars (Summers 1993: figs. 52.5; 54.1).

Oval-shaped rims abound at the Philistine sites of Ashdod (Ben-Shlomo 2005: 74, 113, 156) and Ekron (Dothan et al. 2006: 74, 78). They are almost exclusively undecorated and are strongly associated with the Late Bronze Age Canaanite commercial storage jar, whose descendant survived well into the Early Iron Age. At Ashdod, they have been recovered in Str. XIII–XI (Ben-Shlomo 2005: figs. 3.6; 3.31; 3.59), and at Ekron in Str. VIII–V (Dothan et al. 2006: figs. 3.2, 4, 9, 12, 13, 30), after which time their numbers decline.

One of the more salient features of the Philistine assemblages is the relative dearth of closed forms in general, particularly large vessels. Aside from a small number of mostly strainer jugs and stirrup jars, there is a virtual absence of Mycenaean amphorae or hydriae, both in Philistine monochrome and bichrome. (Ben-Shlomo 2005: 89, 101–3, 136–37, 155–56; Dothan et al. 2006: 87, 91). This phenomenon also holds true at Tell Qasile (Mazar 1985: except fig. 30.12, Str. XI). The absence of large closed forms may be due to the fact that Canaanite amphorae continued to be used, suggesting that

Examples of AJ-1 rims at Tayinat, none of which preserve the overall form, along with parallels from the region, suggest that this particular style served a utilitarian function, perhaps as a storage vessel. The fact that many examples bear painted bands, both inside and outside, does not argue against this notion, as similar shapes used for storage elsewhere were painted similarly. In what appears to constitute a site-wide trend, the assemblage at Tayinat seems to reflect a mixture of surviving Late Bronze Age traditions and new decorative innovations introduced in the Early Iron Age, rendering their dating difficult.

However, two chronological markers allow us to speculate on the date of AJ-1 style at Tell Tayinat. First is their similarity to decorated examples found in Phases IV and III at Tell Afis, which were produced from the last quarter of the 12th century to the end of the 10th century. Secondly is the advent of a similar rim style in the Aegean during the LH IIIC Middle period, becoming more prevalent in LH IIIC Late and Submycenaean, which coincides with their appearance in the decorated assemblage at Tell Afis late in the 12th century.

AJ-2 Triangular

Another popular style at Tell Tayinat was the triangular-shaped rim (Pls. 16.6, 19.2, 20.12, etc.). The overwhelming majority of this class (AJ-2) has everted profiles. AJ-2 rims have the largest average rim diameter (13 cm), and a wall thickness averaging
.7 cm. Most examples are well-fired and most often are tempered with organic matter, but occasionally utilize shell, lithic, or fine grit.

The AJ-2 type rim constituted approximately 18% of all stratified rim types, as well as being the most frequently decorated class at 67% (75% when unstratified pieces are included). The group also contained a relatively high number of vessels rendered in bichrome (black and red). As with other rim styles, red paint applied to pink slip was the most popular color tradition (ROP), followed by black and brown. Curiously, the vast majority of AJ-2 type rims were found in Field Phase 5, with an equal number coming from Phase 3 pits, which suggests that they too originated in earlier levels.

Triangular-shaped rims similar to those found at Tayinat were uncommon in the Aegean (Mountjoy 1999a) and in Cyprus (Kling 1989: 148, figs. 11b; 12b). However, several examples have been published from Ekron Str. VII–V (Dothan et al. 2006: figs. 3.9.16; 3.12.11; 3.25.15; 3.33.25), among the collection of Canaanite storage jars, some of which bear painted bands, while others are plain. AJ-2 class rims would seem to represent a Near Eastern form, as they are found in assemblages at 11th century Ain Dara (Stone and Zimansky 1999: figs. 71.413, 416; 76), in the Amuq on a decorated neck-handled amphora from Phase N (Swift 1958: fig. 24), and at Tell Afis in Phases Vb–III (GR1D style), where they are left largely undecorated until Phase III in the 11th century (Venturi 2007: figs. 50; 70; 73–75).
AJ-3 Profiled

Profiled class rims (AJ-3) consist of exterior thickened rim forms, often irregular or complex in cross section, and resemble a double or compound shape (Pls. 16.1, 20.11, 21.7, etc.). The AJ-3 type was one of the most popular overall at Tell Tayinat, and developed along lines similar to jars at Sarepta, with flared shapes prevailing in Field Phases 6 and 5, followed by upright stances that were dominant in Phase 3. Over a third of the amphorae and jars from Phase 6 belong to the AJ-3 class (35%). Rim diameter averaged 12 cm. and walls .6 cm. thick. The temper of the AJ-3 type rim is similar to other groups, with chaff, lithic, and dark grit the most frequently used agents. However, they were not uniformly fired—40% have black cores in section. Perhaps these vessels served a different function, since as a group it was the one most often left undecorated (nearly 60% plain). Of the decorated versions, it was the ROP tradition that prevailed. Well-preserved fragments indicate that triangular-shaped rims often had long upright necks with vertical handles attached at the rim or the neck (Pls. 15.1; 16.1; 19.1; 20.11), all of which are plain.

Sites in Mainland Greece have produced very few rims analogous to the AJ-3 type (Chios, Hood 1982: fig. 275.2887), nor are they found in Cyprus (Mountjoy 2005b: figs. 31–33; Kling 1989: 148). The Late Bronze Age Levantine character of the profiled style is illustrated at Ashdod Str. XIII–XI (Ben-Shlomo 2005: fig. 3.6.2), and at Ekron Str. VIIB (Dothan et al. 2006: fig. 3.9.10–12), both of which contain undecorated storage jars in the Canaanite tradition (Ben-Shlomo 2005: figs. 3.31.5, 7; 3.59.4).

Profiled shapes were not foreign to the northern Levantine interior either, as examples have been found at Tell Afis Phases IV and III (Venturi 2007: figs. 73.2; 74.10;
1998: figs. 12.4, 5), and at Tille Höyük in the Burnt Level (Summers 1993: fig. 47.1). The form survived into the Iron II period in the Amuq Phase O (Swift 1958: fig. 39), Hama Période IV (Riis 1948: figs. 68, 70), and Sarepta C2 (type SJ-15A; Anderson 1988: pl. 49).

In sum, it would seem that AJ-3 style represents a regionally popular style that originated in the Near East during the Late Bronze Age Near East as the dominant form of storage vessel, and continued to be manufactured in the Early Iron Age, when it was occasionally decorated with simple designs. Among the rim styles at Tayinat, it has the most tenuous connection to the Aegean world. Perhaps, like the oval-shaped style of AJ-1, it is best understood as a utilitarian shape.

AJ-4 Hollow

The hollow lip (AJ-4), as exemplified by (Pl. 20.6), bears a distinctive concave shape on the interior lip. One of the four dominant amphorae types at Tell Tayinat, it was produced in greatest numbers during Field Phase 3, where it made up 37% of all stratified rims in the vessel category. Very few AJ-4 rims have been found in the early Field Phases. AJ-4 class rims also tend to be large—nearly 12 cm on average in diameter—and were tempered with the usual complement of materials led by chaff. Fully oxidized cross sections were by far the norm, and half were decorated, two-thirds in the ROP tradition. The best preserved amphora recovered at Tayinat thus far bears a hollow rim on a decorated neck-handled shape from Field Phase 5 (Pl. 17.1).

In the Aegean during the LH IIIC Early period, amphorae, as well as jugs, jars, and hydriae continued to be produced in shapes derived from preceding LH IIIB period.
However, now they often contain a slightly hollow lip or channeled rim, a characteristic trait of this vessel class in LH IIIC (Mountjoy 1986: 134; 1993: 90). Development of this rim type continued throughout the period, as rims became most hollow during the LH IIIC Middle and Late periods (Mountjoy 1993: 109, figs. 307, 310; 1986: 134, 155).

Hollow rims in Cyprus have been reported at Enkomi in Level IIIB Late, contemporary with LH IIIC Late in the Aegean (Mountjoy 2005b: fig. 33). They are quite uncommon in Philistia. However, the only published examples consist of undecorated Canaanite storage jars from Ekron Str. VIII and VII (Dothan et al. 2006: figs. 3.2.20; 3.9.15). Isolated parallels were found at Tarsus in the Early Iron Age (Goldman 1963: fig. 115.133), and painted neck-handled amphorae with hollow rims appear at Tell Afis in Phase IV (Venturi 1998: figs. 4.4, 5).

In sum, the AJ-4 type is morphologically comparable to Aegean styles in the LH IIIC Middle and Late periods. Moreover, it is similar to decorated material from LH IIIC Late in Cyprus and to amphorae at Tell Afis dating to the end of the 12th and beginning of the 11th century. If it is possible to isolate Aegean morphological traits in the local amphorae and jar corpus, then the AJ-4 class rim provides the best example at Tell Tayinat.

AJ-5 Rounded; AJ-6 Simple; AJ-7 Flat

Three distinct rim styles have been discerned, but have not yet been excavated in large enough numbers at Tell Tayinat to constitute a meaningful sample: AJ-5 class is defined by simple rounded thickening at the lip (Pls. 14.2, 16.4, etc.), AJ-6 rims lack any
thickening or shape at all (Pls. 17.2, 21.1), and a flat top characterizes the group designated AJ-7 (Pls. 14.9, 11).

Rounded rims (AJ-5) occur only in Field Phases 6 and 5. They are large, avg. 13 cm, and are typically decorated (Pls. 14.2; 16.4, etc.). Rims with similar shape but with slightly greater exterior thickening are confined to Phase Vb at Tell Afis, on undecorated shapes that evidently served as storage vessels (Venturi 2007: figs. 50.18–20). Jars with similar rounded rims occur in Late Bronze levels at Sarepta (type SJ-3B; Anderson 1988: 191, pl. 49) and Tyre (Bikai 1978: figs. 42.17; 49.5), as well as the inland site of Hama in Périodes I and II (Riis 1948: fig. 42).

The AJ-5 rim type occurs in the Aegean and Cyprus, but is rare, appearing at Mainland sites during LH IIIC Middle (Mountjoy 1986: fig. 206.2; Hood 1982: fig. 271.2828), and in Cyprus during LC IIIB (Kling 1989: fig. 11b; Mountjoy 2005b: fig. 32.74). In Philistia, rim shapes comparable to AJ-5 are almost non-existent (Dothan et. al. 2006: fig. 3.33.24). The evidence for rounded rim style does not point to any specific tradition or function, as both painted and non-painted vessels have been found, in Mycenaean and Levantine assemblages alike. The chronological horizon for these pieces cannot be narrowed beyond a general 13th–12th century timespan.

Rim type AJ-6 (Pls. 17.2; 21.1), which is a simple rim, is not unlike AJ-5, in that it does not comprise a prevalent style at Tayinat. Elsewhere, examples have been found at sites such as Tarsus (Mountjoy 2005a: fig. 3.27), Tell Sukas on a “typical LB II amphora” (Riis et. al. 1996: fig. 21.3254), and at Ras Ibn Hani (du Piéd 2008: fig. 12), where is predominated during the Early Iron Age. In the Aegean, the simple rim type is
reported at Mycenae (Mountjoy 1986: fig. 176.1) and Chios (Hood 1982: fig. 3.2). Such rims have only rarely been found in Philistia (Dothan et. al. 2006: fig. 3.17.20).

Parallels to the flat rim style at Tell Tayinat, designated AJ-7 (Pls. 14.9, 11), were produced in significant numbers at Tell Afis (GR1C), where they are among the painted ware in Phase IV (Venturi 2007: figs. 56.13; 58.6). Moreover, flat rims are found at Hama throughout the Early Iron Age (Riis 1948: figs. 43, 45). Unfortunately, at this early stage, little can be concluded from the limited data set comprising rim styles AJ-5, 6, and 7 at Tell Tayinat.

4.4.2.2 Aspects of Amphorae and Jar Forms

Three morphological traits of the amphorae and jar assemblage at Tayinat merit further consideration: the chronological development of their stance, handle placement and overall shape, aspects of which have been briefly mentioned above. These factors shed light on the temporal range of the group, even if they are only applicable in general terms. Naturally, such criteria, examples of which are often drawn from outside the area, may not specifically relate to a regional sequence like the Amuq Valley. However, the results of comparison in this case prove otherwise, that in broad strokes, parallel trends can be discerned.

For example, the relative frequency of flared versus upright necks on large closed forms, which was earlier noted in the discussion of Tayinat AJ-1 style rims, provides a good illustration (see Table 18). The trend at Sarepta was development from flared to vertical in the Late Bronze Age II and Early Iron Ages. The transition took place late in the 12th century, and continued until the late 11th century (Anderson 1988: 488, table 9A).
At Tell Tayinat, though the overall ration number of vertical to flared necks was relatively low (27% to 73%), the trend over time shows an increase in vertical necks in relative percentages by field phase (18-19-50-42, in Field Phases 6-5-4-3, respectively), and a concomitant decrease in flared forms (82-81-50-58, in Field Phases 6-5-4-3, respectively). The Late Bronze Age counterpart to the high flaring necks of the Phoenician coast in the Amuq Valley would seem to be present Tell Atchana, among a similar class of vessels (Woolley 1955: 335, pl. CXV.64–66). The high incidence of everted necks in the earliest levels at Tayinat are understood here as reflecting a continuity of Late Bronze Age forms, reinforcing the notion that conservative potting traditions persisted well into the 12th century in the Amuq Valley and the region.

The second morphological trait pertains to the placement of handles on the bodies of amphorae, where a trend of a different sort is found. Unfortunately, identification of large horizontal handles is subject to the same ambiguity that applies to rims and vertical
handles—they could theoretically belong to amphorae, hydriae or bell kraters. In reality, very few hydriae have been found in Near Eastern contexts thus far. Recently, the only example of FS 128 from the southern Levant was found at Ashkelon (Master and Aja 2011: fig. 5), and none have yet been confirmed at Tayinat. It bears repeating, that only complete restorable shapes can provide definitive answers to questions of body type.

That being said, a feature with potential chronological value is the placement of handles. As explained earlier, whether the attachment point of the vertical handle is at the rim or on the neck is the determining factor in whether the overall shape is designated FS 69 or FS 70. In the Aegean, rim-handled amphorae prevail until the LH IIIC Late period, at which time the handles tend to drop below the rim and typically attach along the upper neck. These latter neck-handled shapes largely replace the former version (Mountjoy 1986: 162, 181; 1993: 109, fig 307), a trajectory that continues into the Submycenaean period (Mountjoy 1993: 114, fig. 329). Along the same lines, Susan Sherratt has interpreted FS 70 as a later development of FS 69, primarily occurring in LH IIIC Middle and LH IIIC Late, at which point it is found at numerous Aegean sites, including Lefkandi (Euboea) (Popham, Schofield and Sherratt 2006: 199), the Argolid, Attica, Chios, and Crete (Sherratt 1981: 569).

In Cyprus, FS 69 and FS 70 are found at Enkomi in the LC IIIB Late period (equivalent to LH IIIC Late and Submycenaean), examples of which bear both rounded and slightly hollow lips (Kling 1989: 148, figs. 11b, 12b; Mountjoy 2005b: figs. 32, 33). Hollow rims characterize examples of FS 69 at Hala Sultan Tekke and Enkomi during LC

79 The vessel was excavated from a domestic structure containing a unique house shrine (Bldg. 572). The neck and rim of the hydria was severed, and the vessel had evidently been reused. Mountjoy has dated it stylistically to LH IIIC Middle, based on parallel decoration in the Argolid (Master and Aja 2011: 134, n. 7; see Mountjoy 1999a: 162–64, figs. 43, 44).
IIIA and IIIB, respectively (Kling 1989: 148, fig. 12b). Large closed shapes in the southern Levant, by contrast, are quite rare.

The Syrian-Hittite Expedition illustrated only two amphorae: from Chatal Höyük and Tell Judaidah, respectively, both of which are neck-handled versions (FS 70; Swift 1958: figs. 24, 39), the latter belonging to Amuq Phase O. They are quite similar to the only such shape recently published from Chatal Höyük (Pucci in press).

At Tayinat, most rim-handled amphorae (FS 69) from secure contexts are found in the earliest Field Phases 6 and 5 (Pls. 14.8, 16.1). Overall, however, 67% of fragments that preserve both rim and handle belong to the neck-handled version (FS 70), which suggests, at the earliest, LH IIIC Middle 2 (Advanced), when similar styles first appear in Mainland sequences, or LH IIIC Late, when they become dominant (Mountjoy 1986: 162). This of course, presumes a degree of correlation between Mainland development and regional sequences like that of the Amuq Valley. At Tell Afis, only rim-handled shapes are found in Phase Vb, the earliest 12th century stratum. Thereafter, however, rim- and neck-handled versions are divided nearly evenly (Venturi 2007: figs. 49–78).

4.4.3 Decoration

Collectively, nearly 60% of amphorae and jar rims at Tell Tayinat bear painted decoration (see Table 19). The dominant color far and away is red on pink self-slip (ROP), which accounts for 65% of all painted pieces. Black and red bichrome comprises 18%, many of which adorn the triangular rim type (AJ-2). The remaining sherds bear either black or brown coloration. Also, like the krater assemblage, Field Phase 6 contains the lowest rate of decorated vessels, at 47%. Thereafter, the percentages increase to
approximately 60% in subsequent phases.¹ We might note again the relatively low rate of decoration in a major vessel category, which falls significantly short of the 90% figure tabulated by Swift. To reiterate, however, the comparison is tempered by the fact that the definition of vessel type and collection criteria of the Syrian-Hittite excavations may have differed from the present study. (see Chapter 5: section 5.4, for a discussion of these figures as they compare to other sites in the region.)

![Table 19. Plain/Decorated Amph/Jars (53 rim sherds)](image)

The repertoire of motifs in the amphorae and jar assemblage is considerably more restricted than that of kraters. Decoration is again divided into two groups: (1) a **frieze style**, consisting of wavy lines, latticed triangles, and spirals, and (2) **individual motifs**, such as rim hatch, necklace, herringbone, rosette, triglyph, and an array of handle ornaments. Unfortunately, the relative fragility of this type of vessel often results in a

1. This figure uses a combined total for Field Phases 4 and 3, in order to constitute a statistically significant sample.
poor state of preservation, compared to the more robust krater form. Accordingly, with few exceptions, surviving decoration is much more fragmentary.

Field Phase 6 contains the greatest variety of motifs, while at the same time having a lower overall percentage of painted ware. Not only is the range of decoration wider, but a number of examples do not continue in the later levels at all, such as rim hatching, necklace, herringbone, and latticed triangles. An exception is the spiraliform design, which is most popular in Field Phase 6, but occurs to one degree or another in all subsequent phases. That Field Phase 6 contains a greater repertoire of motifs, while at the same time comprising the lowest rate of decoration might appear contradictory. In effect, it amounts to a greater range of ornamentation on a smaller number of painted vessels during the initial phase of settlement at Tayinat, after which the trend was a more restricted range of motifs applied to a greater number of vessels.

4.4.3.1 Frieze-Style Decoration

Only two sherds in the closed form assemblage bear Wavy Line design (Pls. 20.1, 15), both of which consist of single loosely flowing lines that supplement the primary motif. The first is rendered on the fragment of an unknown vessel with rather unusual contours (Pl. 20.1). The upper body piece preserves a fine line group on the neck above a single wavy line. The main ornament of the composition, painted on the belly of the vessel, appears to be a repeating spiral pattern containing of a minimum of four loops.

The Wavy Line Style at Tayinat, as demonstrated previously, was more prominent in the deep bowl and krater assemblages. In the Mainland, the style occurs in Granary Class pottery stylistically assigned to the LH IIIC Late period (Wace 1921–3:...
figs. 9, 12; Mountjoy 2005b: 157). Moreover, there may be a regional version of the Wavy Line Style that relates to the material from the Amuq (Gates 2010: 71; Swift 1958: 111, table 7; at Tarsus, Ünlü 2005: 146, 151).

Cross-Hatched Triangles (FM 61)

The analysis of cross-hatched triangles, or latticed triangles in the krater assemblage revealed that it was among the most popular decorations at Tayinat, and that it was found primarily in Field Phases 6 and 5. The motif as employed at Tayinat was further determined to have its origins in the Near East rather than the Aegean world. Like kraters, stratified examples of closed forms bearing the motif occur only in the earliest phases. Similar ornamentation in Cyprus and the southern Levant was found to be unrelated to the tradition at Tayinat. In those regions the motif serves a secondary role to the central decorative element, either as a panel ornament or a lozenge.

The latticed triangles illustrated in (Pls. 14.11) and (14.14) are distinct from examples found on kraters and other closed vessels in several ways. While all these vessels utilize a very common pinkish fabric, the clay from (Pls. 14.11, 14) is tempered with lithic material, which comprises only 11% of closed forms overall. Moreover, as opposed to standard ROP tradition, (Pl. 14.11) is rendered in brown, and (Pl. 14.14) consists of a bichrome scheme of black and red.

The cross-hatched triangle decoration in (Pl. 14.14) is also artistically unique. Most all other such motifs at Tayinat are analogous to the those in (Pl. 14.11), with the borders of the triangles consisting of normally drawn or slightly thickened lines, with no space separating them from the interior hatching they enclose (see Pls. 7.4; 8.10, 15). However, the composition in (Pl. 14.14), not only has excessively thickened border lines...
but a thick open space inside, which has the effect of enhancing the cross-hatched triangles inside by providing a blank space of separation around it. The triangles are aligned horizontally side-by-side and upside down, similar to the “fish krater” (Pl. 8.10). A fragmentary vertical semicircle triglyph is visible, which envelopes a broken handle stub, the latter of which is not illustrated. The two curving lines undoubtedly relate to the missing handle, and comprise a type of hook or tail ornament. The horizontal frieze of triangles is neatly framed by a black horizontal band and at least two red bands beneath it. The handle zone is accentuated by the triglyph and a thick red vertical stripe. The overall impression is of a well-conceived and rendered metope composition, drawn in an aesthetically appealing bichrome scheme, which exceeds the typical artistic standard found at Tell Tayinat.

In another cross-hatched triangle motif, a unique neck sherd (Pl. 20.15), excavated by the Syrian-Hittite Expedition but unpublished (OI-A132756), bears a single loosely-flowing wavy line placed over a horizontal register of cross-hatched triangles. Although the vessel type is uncertain (its rim is missing), its use of complex decoration in frieze style in the neck zone is unusual at Tell Tayinat. However, parallels using similar decoration on closed shapes are found in Cyprus, Hama, and Tell Afis. At Enkomi and Alaas in Cyprus, single wavy lines were applied to neck-handled amphorae (FS 70) belonging to LH IIIC Late (Mountjoy 2005b: figs. 32, 33; Kling 1989: 148). In the northern Levant, examples of latticed triangles on necks of amphorae have been found in Levantine-style decoration from Hama Périodes I–III (Riis 1948: figs. 28, 41). Designs consisting of cross-hatch, latticed triangles, and zigzag adorn the necks of Phase V–IV vessels at Tell Afis (Venturi 2007: figs. 56.2; 57.9; 58.5, 13). On balance, the overall
character of the ornamentation in (Pl. 20.15) would appear to be more Levantine than Aegean.

Herringbone (FM 58: 28–31)

The two-handled amphorae features decoration (Pl. 14.11), in addition to standard rim banding, that combines latticed triangles with two other relatively rare motifs, the necklace and herringbone, found exclusively in the early field phases at Tell Tayinat. Rim hatching is a feature also confined to the early phases, occurring only in Field Phase 6 on closed forms. The zonal decoration features mutually-opposed latticed triangles in a “butterfly” alignment beside a herringbone motif in a larger repeating pattern. The so-called butterfly shape, a rare version of the latticed triangle motif at Tayinat, contrasts with (Pl. 14.14), but compares well to other examples found on kraters from Tayinat (see Pl. 11.4), Chatal Höyük (Swift 1958: fig. 23; Pucci 2011: fig. 4.14), Tell Afis (Venturi 2007: fig. 58.9; 73.11), and Hama (Fugmann 1958: fig. 269.6B 389). The composition on the amphora (Pl. 14.11) is somewhat sloppily drawn. But enough is preserved to speculate that the pattern repeats around the shoulder without regard for the handle attachment points. This is borne out by the absence of panel decoration or symmetrical motifs, which usually highlight or set apart the handles, as seen in (Pl. 14.14). In (Pl. 14.11), the motif is displayed with the handle centered so as to illustrate this fact.

Motifs analogous to the herringbone or herringbone tree are recorded at Hama, where they are designated “trees or similar” (Riis 1948: fig. 130B.99). A herringbone motif appears alongside a stemmed or running spiral design on a jar from the Amuq, found by the Syrian-Hittite Expedition (Swift 1958: fig. 27.G). Another example appears
alongside a stag on a body sherd from Early Iron Age Chatal Höyük (Pucci in press). The herringbone motif lacking enclosing vertical lines has been found at Ras el-Bassit (du Pièd 2008: fig. 6b). Herringbone also appears in the Early Iron Age at Kilise Tepe Phase IIc, employed both as a panel device and as primary decoration, the latter of which provides a close parallel to (Pl. 14.11), as it abuts a latticed triangle motif (Hansen and Postgate 1999: figs. 15, 21). Similar examples have also been found at Early Iron Age Çadir Höyük in Anatolia (Ross 2010: fig. 5a.h).

A herringbone motif has been published from Tell Afis Phase IVc (Venturi 2007: fig. 57.11). Sarepta has produced a similar motif in Stratum F in the 12th century (Anderson 1988: pl. 30.24). Herringbone decoration was found at Tell Sukas as part of a panel motif (Buhl 1983: pl. XVI.272). The enclosed herringbone usually comes in the form of a panel decoration, whereas the herringbone without such lines is most often employed as an independent element. However, the design in (Pl. 14.11) is both enclosed by lines and is juxtaposed alongside latticed triangles in a horizontally repeating pattern, which is quite unusual and lacking direct parallel. Other examples of herringbone have been found at Tayinat on random fragments, whose vessel type is uncertain (see Pls. 24.5, 6, 9, 12).

Furumark traced the origin of herringbone design to the Cypriot Rude Style in the LC IIC period, which he postulated had derived from Near Eastern prototypes of the “tree of life” motif (1941a: 464, 467). The earliest manifestations of the herringbone design are derived from the well-known “tree of life” motif in ancient Near Eastern art, which often takes the form of the familiar “palm tree and ibex” decoration as found on ceramics (Amiran 1969: 161; Ben-Shlomo 2010: 153). The motif was particularly popular in the
Late Bronze Age. Examples are found at Megiddo as early as Str. X in the Middle Bronze Age (Loud 1948: pl. 45.19), and continue to be produced as late as Str. VI in the 11th century BC (Loud 1948: pl. 84.6). Some versions juxtapose herringbone triglyphs beside ibex figures (Loud 1948: pl. 58.1), while other examples position the animals on both sides of realistic palm motifs, in effect illustrating the thematic link between the two decorative elements. At Megiddo, the herringbone design was also applied to the vertical handles of decorated jugs (Loud 1948: pls. 49, 64.5).

In Cyprus, Kling has catalogued examples from Enkomi and Kition belonging to LC IIIA and IIIB, while noting its initial appearance in Cypriot White Painted Wheelmade I Ware (1989: 122, 127). These Late Bronze Age piriform jugs are decorated in one instance with herringbone used independently, and in another as panel design (Åström 1972: 271, fig. LXXIII.1, 3), both of which resemble Tayinat ornaments. Mountjoy delineates two possible origins of herringbone design in Cyprus: WS II “milk bowls,” where the motif first appeared as an abstract ornament (Eriksson 2007: 131, fig. 31), and LB I White-Painted Ware from Enkomi Level IB, which depicts a tree with willowy herringbone-type branches (Mountjoy 2010: 7, fig. 6.2).

In his report on the LC IIIA settlement at Bamboula, Cyprus, J. L. Benson cites parallels to the “tree” or “leaf” design found on a krater to Near Eastern parallels from Megiddo Str. VIII and VII (1960: 68, fig. 8). He accurately discerned the panel motif from Bamboula as “peculiarly Near Eastern,” and argued that it could no longer be asserted that such decoration was not applied to Cypriot pottery. Examples have been shown to occur as early as the Cypriot Bronze Age, where they are sometimes depicted beside zoomorphic representations of various types (Kling 1989: 122).
The herringbone motif is rarely found in the Philistine repertoire. A monochrome bell krater from Ekron Str. VIIB bears a herringbone used as a filling ornament to supplement the primary decoration in the form of stemmed spirals (Dothan and Zukermann 2004: fig. 16.1). A second example found on a Str. VIA bell krater features a “tree of life” motif in a Levantine Panel-style composition (Dothan and Zukermann 2004: fig. 18.8; see also Dothan et al. 2006: figs. 3.16.13; 3.20.19). Such designs stand in contrast to examples in the Canaanite assemblage, to which the motif is native (Ben-Shlomo 2010: 153). The significance of the “tree of life” or “sacred tree” to religious symbolism in the Levant and Mesopotamia is well-documented and was employed frequently in a variety of contexts and media (Yasur-Landau 2008: 224; Keel and Uehlinger 1998: 56–68, 72–4).

In the northern Levant, the herringbone design was very popular at Ugarit, and is found on various objects from the Middle and Late Bronze Ages. Ceramic incense burners from Moyen I (2100–1900 BC) bear incised herringbone markings (Schaeffer 1949: fig. 99.1–6, 13–17), linking the motif to cultic activity. In addition, numerous cylinder seals feature enthroned divine figures holding leafy branches similar to herringbone, in scenes reminiscent of Mesopotamian fertility rites (Schaeffer 1949: fig. 35). It should thus come as no surprise that such a meaningful symbol would be represented in ceramic art, examples of which are attested as early as Moyen II (1900–1750 BC), and continuing to the end of the Late Bronze Age in Récent III (1365–1200 BC). Herringbone motifs at Ugarit included naturalistic variations and other examples that were more stylistic (Schaeffer 1949: figs. 106.15; 50.8, 14; Courtois 1978: fig. 10.2).
A fragment from Field Phase 6 (Pl. 14.11) provides one of the only stratified examples of herringbone found at Tayinat thus far. It exemplifies the employment of the motif as a repeating composite ornament (with latticed triangle) in a frieze-style arrangement, that is quite rare. Unfortunately, other sherds at Tayinat bearing the herringbone design are too fragmentary to indicate the larger context of the decoration (Pls. 24.5, 6, 9, 12).

However, an incised herringbone motif (Pl. 24.12) has recently been found in Field Phase 7, belonging to the Early Bronze Age IVa (Amuq Phase J). Unfortunately, the motif is too fragmentary to ascertain its function in the decoration, nor is it possible to identify the type of vessel it once adorned. It does, however, show that the herringbone ornament has a very long history in the Amuq Valley and recalls similar incised decoration found on incense burners at Ugarit in Moyen I discussed earlier (Schaeffer 1949).

In sum, the history of the herringbone motif attests to its deep roots in Levantine, and ultimately Mesopotamian art, which represents its most likely antecedent. From its inception as a symbol of fertility, its manifestations eventually became more abstract and schematic, and in Early Iron Age pottery served primarily as panel decoration. Tayinat herringbone decoration demonstrates a link to earlier artistic traditions in the Near East, providing an example of continuity from the Bronze Age, which appears to have long predated its occurrence in the Aegean repertoire. At the same time, the Tayinat motif (Pl. 14.11) also represents a unique local adaptation of the well-known design in the Amuq Valley. Based on what few examples have survived, it would seem that by the Early Iron
Age the motif had become detached from its original thematic context and was employed merely as a supplemental device.

Spiraliform Decoration (FM 51)

There are two, and possibly three types of spiraliform design found in the amphorae and jar assemblage at Tell Tayinat: stemless, stemmed, and running, all of which are characterized by open centers. Examples are found in all phases, but were most popular in Field Phases 6 and 5. Antithetical spirals, the dominant form of the motif in Cyprus, as well as the Levantine coast and Philistia, have thus far not been identified in the Tayinat assemblage. Moreover, Philistine spirals often contain a filling motif, such as a dot or Maltese cross, elements virtually absent at Tayinat (Dothan 1982: 204). Versions of spiral decoration clearly in evidence in the local repertoire include stemless (Pls. 15.2, 3: possibly 16.11), stemmed (Pl. 21.16, possibly 16.12; cf. Swift 1958: fig. 27G), and running (Pl. 20.14). Remaining examples of spiral motif are unfortunately too fragmentary to classify (Pls. 14.10, 13; 15.11, 13; 16.9; 17.6; 19.7; 20.1; 21.15). Almost without exception, the Tayinat spirals are painted in the ROP tradition, tempered with chaff, and exhibit well-fired sections.

In general, while running spirals like (Pl. 20.14) are found in all phases of LH IIIC in the Aegean, open running spirals were produced mainly in the LH IIIC Middle and Late phases (Mountjoy 1986: fig. 226.2), while open stemless spiral motifs resembling (Pls. 15.2, 3) are primarily limited to LH IIIC Late (Mountjoy 1986: 187, fig. 244.1, 2). Closely analogous spirals are often found on trefoil-mouthed jugs (Mountjoy 1999a: figs. 51, 227–29). Further parallels are reported from sites in the East Mainland-

81 See Chapter 4: section 4.3.5.7.1, for a related analysis of spirals.
Aegean koine, such as Emporio, Perati, Mycenae, and Athens (Mountjoy 2009: figs. 3–6, 16), which are similarly assigned to LH IIIC Late.

With respect to large closed forms such as (Pls. 15.2 and 3), the closest comparisons to the Tayinat version of the spiral motif are found on hydria, amphorae and trefoil-mouthed jugs in the Argolid—at Tiryns (Podzuweit 2007: 148, pl. 76.2), Mycenae (Wace 1921–23: 51, pl. 10d), and Perati (Iakovidis 1969/70: 219, fig. 100.7). Additional IIIC Late parallels for the loosely flowing spirals have been found at Salamis and Asine (Mountjoy 1988: fig. 18). Some of these vessels are assigned to the LH III Middle 2 (Advanced) phase, but most are found in LH IIIC Late contexts. Mainland spirals take two forms: those that descend beneath handles and those suspended on the shoulder.

The symmetrical pendant style was common in LH IIIC decoration generally, as noted earlier with respect to krater decoration (Furumark 1941a: 369). The Tayinat repertoire includes both types, and the vessel depicted in (Pl. 15.3) is a good example. The fragmentary handle motif preserves the right half of a presumed pair of spirals, while the adjacent register in the handle zone bears a pair of connecting loops, one of which attaches to a group of three bands below, and a second that hangs from the neck band.

A unique composite decoration (Pl. 16.11) warrants further comment. The composition consists of an open spiral (possibly stemless) joined to an eight-spoked rosette or wheel motif (FM 17), in what is a unique and singular motif at the sitet. An eight-spoke rosette was reported from the Syrian-Hittite Expedition (Swift 1958: fig. 27.C). However, it was of an entirely different nature. The rosette ornament is small used as a panel device, whereas the motif in (Pl. 16.11) is large and forms the central element.

82 I thank Reinhard Jung for this observation.
of the decoration. A fragmentary motif found in Field Phase 6 (Pl. 14.13) resembles a four-spoked rosette or wheel design. Rosette devices were often used as filling motifs, such as found on a Tayinat krater, where it is placed inside a spiral or loop (Pl. 13.8). Unfortunately, the piece illustrated in (Pl. 16.11) is too fragmentary to discern whether it originally formed part of a repeating horizontal pattern or simply stood alone. However, the three bands painted above the central decoration indicate it once comprised a frieze-style composition. As for the rosette motif, it cannot be considered native to the region and is clearly Mycenaean in character. Together, the juxtaposed pair of motifs is not only unique to Tayinat, but is without direct parallel anywhere in the Levant or the Aegean.

In summary, the spiraliform decoration in the Tayinat repertoire reflects unmistakable Aegean influence. Although the motif was produced in significant numbers throughout the LH IIIC period in the Mediterranean, stemless open spirals—the most diagnostic of the local versions—are most commonly found in LH IIIC Late contexts. These spirals in the Tayinat repertoire are distinguished from other versions found in Cyprus and the Levant, which mainly consisted of antithetical versions. At the same time, regional assemblages lacked the open stemless type of spiral described herein. The Tayinat motif most often appears on large open forms, and is also notably lacking on deep bowls, a vessel type on which it is featured in Philistia, coastal Syria, Cilicia, and Cyprus (see Chapter 4: Pl. 2.8). Together these unique elements would seem to represent a local adaptation in the ceramic industry at Tell Tayinat and in the Amuq Valley.
4.4.3.2 Individual Motifs

At Tell Tayinat, there are numerous occurrences of the necklace motif (FM 72: 11–14), all of which are found in Field Phases 6 and 5. Interestingly, they are painted mostly in shades of brown and black rather than the otherwise predominant red. Such decoration is found on several closed forms (Pls. 14.11, 15), while most examples derive from unidentified sherds (Pl. 22.7–10). The necklace motif, which Furumark called the *Tassel Pattern*, was a pendant design applied most often to the necks or handle zones of jugs, amphorae, and hydriai (1941a: 409, fig. 71). At Enkomi and Alaas in Cyprus, the design appears on trefoil-mouth jugs during LH IIIC Late (Mountjoy 2005b: fig. 34.79, 80; 35.84; Kling 1989: 130, 153). A fine collection of such jugs was found in tomb deposits at Palaepaphos-Skales, dating to the CG I period, equivalent to Submycenaean in Aegean terms (Karageorghis 1983: fig. CIV).

In the Aegean, necklace ornaments are first noted in LH IIIC Middle, became very popular on closed forms in LH IIIC Late, and continued to be produced in the Submycenaean period (Mountjoy 1993: 98, 110, 117). The necklace decoration was widely applied throughout Mainland and island sites during the period (Sherratt 1981: 579), and is often associated with Granary Style (Mountjoy 2007b: fig. 8.2). The motif is counted among the limited repertoire of motifs in the *East Mainland-Aegean koine*, a region reaching across the Cyclades to coastal Anatolia at Bademgediği Tepe, and is valuable for identifying LH IIIC Late assemblages at sites lacking clear stratigraphy (Mountjoy 2009: 290, 293, fig. 3.8).
The necklace decoration is much less frequently found in the Early Iron Age Levant, with only isolated examples reported at Tarsus (Mountjoy 2005a: fig. 3.34) and Tell Afis Phase IIIba (Venturi 2007: fig. 73.6). However, it was found at Megiddo Str. XIV in the Middle Bronze Age (Loud 1948: pl. 11.20, 21), and was quite popular at Ugarit, particularly on trefoil-mouth jugs, where it is well-represented in Moyen 2 (1900–1750 BC; Schaeffer 1949: pls. 99.22, 23; 100.12–16; 130.6, 13).

Although the necklace decoration is a common feature in Aegean assemblages, particularly in LH IIIC Late, it has very ancient roots in the northern Levant that might explain its popularity at Tell Tayinat. Unfortunately, there is little in the syntax or style of this ornament that can help to distinguish between the Levantine and Aegean versions. Artistic transmission of the necklace motif may well have originated in the east, and subsequently disseminated westward.

The triglyph or panel decoration (FM 75) was a standard feature of Aegean-inspired pottery, and adorned a variety of shapes (see related analysis in Chapter 4: section 4.3.5.7.2). The two examples of this motif found in the Tayinat amphora assemblage consist of vertical semicircles (Pl. 14.14) and vertical zigzag (Pl. 17.1). Both decorations are combined in a single composite panel ornament in (Pl. 13.13), on a krater fragment discussed previously. The semicircle triglyph (Pl. 14.14) compares to examples found at Tarsus (Mountjoy 2005a: fig. 9.188, 190, 191, 194), Ashdod on bichrome vessels (Ben-Shlomo 2005: figs. 3.16.1; 3.20.3, 5, 8; 3.48.1; 3.49.2, 4, 8), and Ekron (Dothan et al. 2006: fig. 3.27.5). However, the Tayinat device differs from these in its relative simplicity. In other examples, the semicircle triglyph typically comprises only a portion of more complex combinations of semicircles, zigzag, and vertical lines, whereas
the Tayinat design (Pl. 14.14) stands alone as a single element, serving as a framing ornament for the missing handle.

The decorated amphora (Pl. 17.1) features vertical zigzag enclosed by two lines. Since the entire vessel is preserved, it is possible to see that the motif is part of a somewhat austere decoration consisting of bands and handle hooks. Analogues for the relatively simple local design were most popular in Mainland contexts during LH IIIC Middle (Mountjoy 1986: 160, figs. 224.2; 225.2). However, Aegean examples of the semicircle triglyph are typically more complex and fuse several different motifs together.

A decorative element that appears to be confined to the earliest Iron Age level on closed forms at Tell Tayinat is **rim hatching**, which is a familiar feature of Late Bronze and Early Iron Age pottery in the region (Stone and Zimansky 1999: 27). A notable local aspect of this design is its appearance only on rim styles considered rare at Tayinat, such as AJ-5 and AJ-7 (Pls. 14.5, 9, 11; cf. Swift 1958: fig. 23). The pattern is more frequently found on kraters than it is on amphorae and jars (for example, see Pls. 9.3, 4, 6; 10.1, 2; 12.3; 13.5, 7). Rim hatching is unusual in Aegean pottery, as relatively few examples are attested (Mountjoy 1993: figs. 273, 278). The decoration is virtually unknown in Cyprus (Karageorghis 1981: pl. IX.18), and is largely absent from the Philistine repertoire.

On the other hand, rim hatching is well represented in the Early Iron Age throughout the northern Levant, where it has been found at numerous sites, such as Ras Ibn Hani (Bounni 1979: fig. 25.1, 7, 8; Badre 1983: fig. 2c), Tell Afis (Venturi 2007: figs. 58.1, 6, 13; 65.7; 70.9, 19; 78.4, 5; Mazzoni 1998: fig. 16.5, 8), Ain Dara (Stone and Zimansky 1999: fig. 27.2, 10), Tille Höyük (Summers 1993: figs. 35.6; 38.2–4, 6–8), Tarsus (Goldman 1963: figs. 55.7; 56.39a; 58.84; 59.119), Kilise Tepe (Hansen and
Postgate 1999: figs. 11, 12, 15). In Anatolia, examples of rim hatching are attested at Boğazköy (Genz 2003: figs. 2.6, 7; 3.1).

At Late Bronze Age Ugarit, rim hatching was particularly popular in local ware (Schaeffer 1949: figs. 50.8; 62.19; 78A; 81.5; Courtois 1978: figs. 10.2, 3; 11.1; 14.1, 17; 15.1–3; 16.1), but also appears on imported Mycenaean vessels (Courtois 1978: fig. 36.12, 13; Karageorghis 2000: figs. 1.3, 4; 5.37; 6.38; 11.75–77). However, there is a marked contrast between the local and imported version of the decoration. The Mycenaean version was rendered with notably greater precision than was its local counterpart. In sum, rim hatching, though it is found in Mainland and Cypriot assemblages, is quite rare and unrelated to its Near Eastern equivalents. Examples found at Tell Tayinat are strongly reminiscent of regional variations that have Late Bronze Age antecedents.

Handle decoration is quite common on large closed shapes at Tell Tayinat. It consists of stripes painted longitudinally on vertical handles with single, double, or triple parallel lines. One version takes the form of interlocking bands, which is also the most popular of the handle motifs (Pls. 15.3, 16.4, etc.). Most surviving decoration is fragmentary, but the few well-preserved pieces are enough to demonstrate that the motifs often continued below the handle and formed antithetical tails or spirals (Pls. 15.3, 17.1; 21.14). In what was evidently a popular local style, long pendant tails were produced throughout Phases N and O in the Amuq Valley (Swift 1958: figs. 23, 24; see also Pucci in press).

Similar examples of handle striping have been found at Tell Afis Phases IV–II, dating from the end of the 12th century until the end of the 11th century BC (Venturi
2007: figs. 57.12; 74.14; 78.8). For example, long hooking tails closely resembling those from the Amuq appear in Phase III/dc on the shoulder of a large jar with vertical zigzag panel decoration (Venturi 2007: fig. 70.21). Fragments of handle hooks similar to Tayinat (Pl. 21.14) attest to the long-lived popularity of the motif at Tell Afis, which continued to be produced until late in the Early Iron Age sequence (Venturi 2007: figs. 73.4; 74.16; Mazzoni 1998: fig. 19.2).

Long antithetic tails that descend from vertical handles on jars are characteristic of East Aegean decoration (Mountjoy 1998: fig. 10.3–5), and bear a close resemblance to the long curling tails of the Amuq Valley. Examples of such decoration appear on piriform jars found at Rhodes, stylistically assigned to the LH IIIC Early and LH IIIC Middle 1 (Developed) phases (Mountjoy 1999a: fig. 420.125–27; 437.1067). A long tail particularly similar to Tayinat (Pl. 17.1) is dated to LH IIIC Middle 2 (Advanced) (Mountjoy 1993: fig. 437.263). Like the Tayinat ornament, it consists of a double line on the handle which intersects a ring around the base, while crossing a double body band that encircles the shoulder.

4.4.4 Summary Observations

The amphora, like the krater, served an important role in the ancient Mycenaean world, as a receptacle for all manner of important liquids and solids, some of which were infused with religious symbolism. The shape was manufactured in antiquity using a variety of materials, such as metallic and ceramic. It was also one of the few ancient vessels whose name is clearly attested (in its ceramic form) in Linear B archives. Therefore, it should come as no surprise that amphorae are mentioned by Homer as being significant components of ancient feasting. However, the adoption of Aegean behavioral
patterns by Levantine populations cannot be assumed, as suggested by Yasur-Landau with respect to Canaanite society (2005: 171–4). Bearing this in mind, the true function of the amphora (or any other formal type) at Tell Tayinat can only be inferred, unless and until such time that chemical residue testing is undertaken.

The typology developed for the amphora is highly dependent on the nature of the surviving assemblage, consisting as it does of mostly body sherds and rim fragments. A precise and accurate classification of this shape is further hindered by the fact that rims of this type were produced for a variety of body shapes, such as hydriae, jugs, and storage jars. Despite the plethora of rim styles applied to this class, nearly 90% of amphorae and jar rims at Tayinat can be divided into four sub-types: oval, triangular, profiled, and hollow, which are further subdivided according to their vertical and everted stances.

Fabrics used in the amphorae and jar assemblage at Tayinat testify to its heterogenous nature. A plurality of the vessels is tempered with chaff. Other agents include lithic, both black and white fine grit, and shell. A sizeable percentage (20%) contains no visible inclusions at all. In contrast to the wide variety of tempering agents in the corpus, decoration consists largely of red or reddish-brown paint, which is applied to two-thirds of the decorated assemblage. Other colors were also employed, including black, brown, and bichrome design consisting of black and red. While decorated vessels are the highlight of the collection, undecorated shapes constitute a significant portion of the whole—initially over 50%, but later dropping to 40% by the end of the Early Iron Age.

The typological analysis indicates that the potters borrowed both from local and Aegean traditions. Some examples of which derive from Late Bronze Age forerunners,
such as triangular class (AJ-2), while others occur primarily in Iron Age contexts, such as AJ-4 class, whose hollow style is generally characteristic of LH IIIC pottery in the Aegean. The oval-shaped rim (AJ-1) was fairly universal, and while usually applied to storage vessels, cannot be ascribed to any particular temporal or geographical horizon. Profiled style (AJ-3) is clearly identified as Levantine, while its roots are traced to the Bronze Age.

Several morphological aspects of the amphorae and jar assemblage may have chronological value. Hollow rims, while typical of the LH IIIC period generally, appeared in significant numbers in Mainland sequences only at the end of LH IIIC Middle and in LH IIIC Late, a period that corresponds to their occurrence at nearby Tell Afis in Phase IV, beginning in the last quarter of the 12th century BC. The transition in neck stances from flared to mostly vertical took place at approximately the same time at Sarepta, which might serve to raise the date for the local assemblage, presuming parallel development, since a similar switch took place only after Field Phase 5 at Tayinat. Moreover, it was noted that handle placement on the neck of amphorae (as opposed to the rim) was a feature of LH IIIC Late in the Aegean, at the end of the 12th century, which roughly coincides with Tell Afis Phase IV, the point at which a similar transition occurred.

Decoration on large closed forms at Tayinat was characterized by a repertoire more limited than that of kraters. Yet Frieze Style designs like the Wavy Line, latticed triangles, and spirals are still attested. Latticed triangles aligned in horizontal registers side by side reflects a syntax strongly associated with the Near East, while Wavy Line Style is most likely inspired by western prototypes, particularly given the Mycenaean
character of the assemblage overall. The Tayinat spiral collection, consisting mostly of open centers and lacking stems, is most closely paralleled by Mainland versions as early as the end of LH IIIC Middle, but primarily LH IIIC Late. The linear nature of Wavy Line and spiral design in the Tayinat repertoire can be stylistically equated generally to Granary Style decoration of the LH IIIC Late period in the Aegean.

Individual motifs further characterize the nature of the assemblage. The presence of the herringbone motif highlights the conservative potting traditions of the Near East. It can be traced back at least as early as the 3rd millennium and would seem to be related to the “tree of life” theme, which often takes the form of the “palm tree and ibex” on Near Eastern pottery. Rim hatching exemplifies another motif with strong regional associations in the Bronze and Early Iron Ages. Necklace decoration is found in Aegean pottery, where it was produced in the LH IIIC Late phase, but which was shown to have deep roots in the Levant at least as far back as the Middle Bronze Age. The few occurrences of rosette ornaments further reveal Aegean influence, and the long handle hooks are strongly reminiscent of East Aegean style assigned to LH IIIC Late.

In conclusion, the assemblage of large closed shapes at Tayinat reflects a style that incorporated both Levantine aspects of shape and decoration, and others clearly dependent on Aegean prototypes. The result was a regional style that developed according to local traditions, a fusion of Levantine and Mycenaean styles. The regional character of the Tayinat assemblage makes correlation with Mainland sequences difficult. However, chronological clues can be discerned, enough to suggest a period for the beginning of the assemblage near the end of the 12th century, equivalent to LH IIIC Middle 2 (Advanced) or LH IIIC Late in Aegean terms.
4.5 Miscellaneous Forms and Sherds

4.5.1 Introduction

The following analysis is focused on two assemblages. The first group consists of a number of forms that have not yet been excavated in great numbers. The second group includes decorated body sherds that cannot be correlated to defined shapes with a high degree of certainty, such as with bowls or kraters. It is necessary to carefully delineate and define not only what was dependent on Mycenaean prototypes but also what owes more to local or regional traditions. Vessel types in this category include the trefoil-mouth jug (FS 137), feeding or spouted bottle (FS 159–162), pilgrim flask (FS 186–188), pot-stand, mug or goblet, and Aegean-style cookware. The methodology will again involve an examination of the shape and its ornamentation, tracing its ancestry and comparanda, in order to arrive at a satisfactory evaluation of its cultural and temporal relevance.

It should be borne in mind that the use of Furumark shape numbers herein does not imply Mycenaean inspiration. Whether the vessel or decoration shows eastern or western orientation is precisely the point in question and remains to be proved. The Furumark designations are useful in at least two respects: in organizing the forms into a preexisting framework, and to test the local assemblage for its true source of inspiration on the basis of Aegean prototypes. The decorated body sherds include some motifs that have been examined more fully in previous chapters, and others that have not. Overall, the following chapter supplements the portrait of Aegean pottery at Tell Tayinat begun in the previous chapters on bowls, kraters, and closed forms.
4.5.1.1 Trefoil-mouth jug (FS 137)

The trefoil-mouth shape was an innovation that appears to have been introduced in the Aegean during the LH IIIC Middle period (Dothan et al. 2006: 86–7; Mountjoy 1993: 97; 1986: 155), but which was particularly popular in LH IIIC Late, and continued to be used in Submycenaean (Mountjoy 1986: Table III). Sherratt has noted the popularity of FS 137 and its wide distribution in the region, including the Argolid, the Aegean, and Crete (1981: 573). In Cyprus, the relatively early appearance of trefoil forms has been related to LH IIIB Mycenaean imports with long cylindrical necks (Kling 1989: 150; fig. 13b; Killebrew 2000: 242). The shape has been found in Philistia in contexts that predate those in the Aegean, such as at Ekron Str. VIIB and Ashdod Str. XIII, where it was relatively rare (Dothan et al. 2006: 86–87; Dothan and Zukerman 2004: 22). These factors have led Killebrew to suggest a Levantine origin for the Mycenaean version of the trefoil-mouth jug (2000: 242).

The renewed Tayinat excavations have produced a well-preserved neck piece of a decorated trefoil-mouthed jug (Pl. 22.1). The sherd is intact to a point just below the vertical handle attachment on the shoulder, and is painted with a series of thick horizontal bands on the neck and upper body. The rim is hatched with stripes radiating outward from the mouth. The handle bears horizontal stripes enclosed by two vertical stripes in a motif resembling a ladder, all of which is rendered in the ROP paint scheme.

However, the trefoil-mouth jug is not new to the Amuq Valley in Phase N. A painted vessel from Tell Judaidah was reported from Phase L bearing Levantine-style decoration consisting of cross-hatched triangles and a stag or ibex in silhouette (Swift 1958: fig. 2). Woolley published several undecorated trefoil-mouth shapes from Late
Bronze Age Tell Atchana (1955: pl. CXV.69–71). Moreover, two versions of the trefoil-mouth were found in Phase O, evidence of the long lifespan of the shape in the local area (Swift 1958: figs. 41, 42). The latter example also bears a long handle tail that recalls analogous ornaments on Phase N amphorae from Tayinat (see Chapter 4: section 4.4.3.2). In terms of shape, the neck of the Phase O jug closely resembles the wide and concave neck of (Pl. 22.1), in what might reflect a peculiar local morphology.

The Philistine trefoil-mouth jug is characterized by a long vertical neck and everted rims (Dothan and Zukerman 2004: 22, figs. 27.10, 11; Dothan et al. 2006: figs. 3.23, 18, 19; 3.25.14), very much unlike jugs in the Canaanite tradition (Mazar 1985a: fig. 41.10; Killebrew 1998: fig. 3.10). In contrast, as much as the few examples found thus far indicate, the Amuq Phase N variant has a short thick concave neck. The closest forerunners are found at Late Bronze Age Tell Atchana (Woolley 1955: pl. CXV.69, 70), and at Ugarit, the latter appearing among a collection of plain jugs (Récent 3 and 2; Schaeffer 1949: figs. 118.11; 119.3, 4). The decoration on the Tayinat jug (Pl. 22.1), however, bears little resemblance to Philistine, Cypriot, or Aegean styles. However, a local tradition of thick bands on necks of trefoil-mouth jugs can be traced to Ugarit, where it was quite popular on vessels dating to Moyen 2 (1900–1750), and early Moyen 3 (1750–1600), many of which also bear a similar ladder motif on the handles. Morphologically, the jars from Ugarit differ from (Pl. 22.1) in their mostly long vertical necks (Schaeffer 1949: figs. 100.21, 25, 27; 104.27; 105.37; 131.3, 4, 7, 8, 13, 15). In sum, though the trefoil-mouth jug at Tell Tayinat is classified as FS 137 in the Furumark system, in actuality it owes more to regional Levantine traditions, both morphologically and ornamentally.
4.5.1.2 Feeding/Spouted Bottle (FS 159–162)

The earliest examples of the feeding bottle in the Mainland appear in LH IIB, and may well have been used to serve liquids to small children, while large variants may have functioned as hot beverage receptacles (Mountjoy 1993: 63, 123). However, it did not become a standard vessel in the Mycenaean repertoire until LH IIIA1, after which it continued in use through the Protogeometric period (Mountjoy 1986: Table III). The feeding bottle made its initial appearance in the southern Levant in the early 12th century, and was subsequently adopted into Philistine ceramics. The plain ornamentation, typical of Mycenaean decoration in the earliest phase of LH IIIC, lacked more elaborate Philistine motifs, usually consisting of simple horizontal bands (Dothan 1982: 155–57). Overall, however, the vessel is rare in Philistine assemblages.

The feeding bottle is more common in Cyprus, where it first appeared in the LC IIIA and LC IIIB periods. The origin of this shape has long been disputed. Erik Sjöqvist argued that the Cypriot versions were based on Mycenaean forerunners in LH IIIA (1940: 74). Arne Furumark traced the feeding bottle to Cyprus, where he noted the unique handle placement at right angles to the spout, a feature absent in Mycenaean examples, which was also the preferred style in the southern Levant (1944: 236–38). Subsequent investigations vindicated Sjökvist, as the earliest right angle versions were found primarily at East Aegean sites (Kling 1989: 160). The East Aegean view was adopted by T. Dothan (1982: 157), and subsequently endorsed by Killebrew (2000: 240; 2005: 222). A close link between the Philistine version of the feeding bottle and Cyprus has recently been suggested by Dothan and Zukerman (2004: 28).
The Syrian-Hittite Expedition reported eight examples in painted ware of the feeding bottle, or spouted jug (Swift 1958: 68; fig. 25). Two variants of the shape were noted. The first example features a vertical handle from rim to shoulder, and the second variant has a basket handle that arches over the top of the mouth. The vessels are usually decorated with narrow bands—as seen in the single illustrated example from Chatal Höyük—but occasionally bore other designs on the neck or shoulder. The illustrated example from the Amuq (Swift 1958: fig. 25) features a basket handle perpendicular to the spout, which was the preferred version in the Levant.

The presence of this shape in the assemblage from the renewed excavations is indicated by several fragments: an upper body piece bearing painted horizontal bands and parallel leaning lines around the missing spout (Pl. 22.5), and a fragmentary spout (Pl. 22.6), which appears to be painted in a fashion similar to the Syrian-Hittite vessel described above. A single undecorated feeding bottle published by Woolley, with similar shape and proportions to the Syrian-Hittite example, reveals a Bronze Age ancestor of the form in the Amuq (Woolley 1955: pl. CXVI.72b). Mycenaean imported versions of the shape during the Late Bronze Age in the Levant were rare and largely confined to the north, specifically at Ras Shamra and Minet el-Beida (Leonard 1994: 44–45). In sum, it would seem the feeding bottle in the Amuq Valley was inspired by Aegean prototypes, which was evidently adopted earlier in the northern Levant than it was in Cyprus or the southern Levant. The regional version of the vessel was typically decorated in the locally-popular Simple Style.
4.5.1.3 Pilgrim Flask (FS 186–188)

The pilgrim flask was one of the more popular vessels in the southern Levant during the Late Bronze and Early Iron Ages. Sometimes called the lentoid flask due to its shape in section, its decoration often took the form of concentric circles, particularly in the Early Iron Age, when the bands were drawn broader and were more closely-spaced. Flasks in the Iron Age were also smaller and had different proportions than their Late Bronze Age antecedents (Amiran 1969: 166–67, pl. 51).

The Syrian-Hittite Expedition recovered five examples of painted flasks, which were decorated with concentric circles and solid center, much like parallels from the southern Levant (Swift 1958: 68, fig. 26). Some examples have handles attached parallel to the plane of the body. Others had perpendicular handles, as in the lone illustrated flask from the Expedition, whose decorative scheme matches the only confirmed example yet found in the renewed excavations at Tayinat (Pl. 22.2). The fragmentary piece preserves a 3-loop spiral enclosing a solidly-painted core in the ROP tradition. Unfortunately, the body sherd lacks neck, handles, or base, making any further observations impossible. The Tayinat motif differs from the illustrated Syrian-Hittite example in that is consists of a spiral or loop rather than concentric circles. Amongst spiraliform decoration, its dot center makes it rather exceptional in the Tayinat repertoire. This may relate to the fact that it belongs to a group of sherds from Field Phase 6c that has been petrographically identified as imports (see brief discussion of this material in Chapter 5).

The assemblage of Philistine flasks from Ashdod Str. XIII contains a mix of forms. Some flasks resemble Late Bronze Age shapes with V-shaped necks, while other examples belong to the smaller Iron I version (Ben-Shlomo 2005: 77, fig. 3.7.3–4;116,
fig. 3.32.2–6;158, fig. 3.59.16–18). The Iron I forms come to dominate the later Early Iron Age levels at the site. The same mix of LB and Iron I forms was found at Ekron Str. VIIB (Dothan et al. 2006: 79, fig. 3.25.16). However, flasks from Str. VB and later are quite small and lentoid in shape (Dothan et al. 2006: 89, fig. 3.35.15; 3.36.2). At Tell es-Safi, a vessel with concentric circle decoration resembling the Tayinat flasks was found in “Temporary Str. 6” in the late Iron I period (Maeir 2006: fig. 2.5).

Tell Qasile produced a complete collection of Iron I flask types beginning in Str. XII (c. 1150 BC) until the 10th century, when they were discontinued. *Type FL 1* most closely approximates the Tayinat vessels in its small size and concentric circle ornamentation. From Str. XII through X, the shape shows no discernible development, and its simple decoration stands in contrast to more elaborately painted Philistine flasks from the same period (Mazar 1985: 71–77).

The version of FS 186 found in the Amuq Valley at Chatal Höyük (Swift 1958: fig. 26) and Tell Tayinat (Pl. 22.2) is classified according to Furumark’s Aegean system, but its form clearly derives from the east, where it is well-attested far earlier than it is in the Greek Mainland or Cyprus. Examples have been found at Late Bronze Age Megiddo, Beth Shean, Tell Abu Hawam, and Ras Shamra (Leonard 1994: 79–80). The local versions of the flask in the Amuq, both in terms of shape and decoration, are squarely within the parameters of the Early Iron Age in the region, as shown by examples from the transitional levels in Philistia. However, the recently excavated flask from Tayinat is a good example of a hybrid vessel, fusing a well-known Near Eastern form with Aegean-type decoration.
4.5.1.4 Pot-stand

The regular pot-stand, as opposed to its cultic variant, is a form absent from the Mycenaean repertoire, but was far more common in the Levant. The Syrian-Hittite Expedition recorded two stands from Phase N (Swift 1958: 68). They were large and decorated in elaborate Levantine fashion, employing latticed triangles, lozenges, semicircles and wavy lines. In decorative terms they resembled the illustrated amphoroid krater (Swift 1958: fig. 23). A pot-stand found by the renewed Tayinat excavations features a thick and rounded everted rim (Pl. 22.4). Its decoration consists of two horizontal friezes similarly filled with single zigzag, framed by a series of bands. The lower set of zigzag is drawn in a rather haphazard manner, such that the lines intersect and cross, perhaps intentionally as part of an OMDS pattern. It is rendered in standard ROP tradition, contained lithic temper, and was thoroughly fired.

Pot-stands are quite rare at the principle Philistine sites. The few that were produced do not belong to the Aegean-style assemblage and probably derive from local Late Bronze Age potting traditions (Yasur-Landau 2010: 260, fig. 7.110). Only two stands were published from Tell Qasile, neither of which bears any resemblance to the Tayinat vessel. Both examples are are undecorated. One is fenestrated, possibly serving as a cult object (Mazar 1985: figs. 32.12; 45.1). At Ashdod, four stands have been published, all of which are undecorated, and two of which are fenestrated (Ben-Shlomo 2005: 117–18, figs. 3.34.6–9).

A very simple undecorated stand has been found at Early Iron Age Tell ‘Acharneh (Cooper 2006: fig. 14.4). But perhaps the closest comparisons to the Tayinat stand were excavated at Tell Afis Phase IV (Venturi 1998: 129, fig. 4.6–7). Their shapes
seem to be higher and more elongated, but this may simply be due to the fragmentary nature of Tayinat piece. The first vessel bears familiar rows of cross-hatched triangles interspersed with opposing solid triangles in two separate registers. The second stand is decorated in a manner strongly reminiscent of the Late Bronze Age palm-tree and ibex motif (Amiran 1969: 161, pl. 50), which is painted below a row of incised marks and single zigzag. The fragmentary palm-tree resembles the herringbone design discussed at length in the previous chapter (Chapter 4: section 4.4.3.1). In sum, the Tayinat stand represents a Levantine form decorated in typical Levantine fashion.

4.5.1.5 Mug/Goblet (FS 224–228)

The renewed excavations have recovered a well preserved mug (Pl. 22.3), decorated in BOW paint scheme. It is adorned with rim hatch and triple stacked zigzag between two thick bands in a freize arrangement, possibly related to the OMDS design (cf. Gilboa 2008). The rim of the mug is thickened on the exterior and flares out slightly. The walls are concave, and a vertical handle runs from belly to shoulder. The lower body is carinated and tapers to a conical base. It is the only such vessel found thus far, but rim sherds are quite similar to those of small kraters (KR-3a class), and can easily be mistaken.

In the Aegean, the mug first appears in the LH IIIA1 period, and survives into LH IIIC Early, after which it falls out of use (Mountjoy 1986: Table III). Although the Aegean version of the mug shares the cylindrical body, long concave walls, and vertical handle of the Tayinat mug, the former is stemless with a simple rim, in contrast to the
low pedestal and exterior thickened rim of the Tayinat version. Local imitations of the Aegean shape in the Near East are found primarily in the Late Bronze Age.

The profile of the Tayinat mug, on the other hand, is quite clearly Near Eastern, as demonstrated by numerous contemporary parallels. These include examples at Hama Période I (Riis 1948: fig. 78), Kinet Höyük Period 12 (Venturi 2007: figs. 25.15, 17; Gates 2013: fig. 7.3), Malatya Level III (Pecorella 1975: fig. 8.1), Tell Afis Phases IVa and IIIb (Venturi 2007: 65.6, 73.9, respectively), and Chatal Höyük Level 9 (Pucci in press). The mug fragment from Kinet Höyük bears a complex zigzag motif resembling Tayinat (Pl. 24.10). Examples found at Tell Afis and Chatal Höyük are particularly valuable for shape comparisons. The Phase IIIb vessel from Afis, though missing its base, is decorated in typical Levantine style with double axe, latticed butterflies, and stacked zigzag, arranged in two horizontal registers (Cecchini 2005: fig. 64.3). The rim is hatched and the carinated shape with concave walls and handle attachment is virtually identical to the Tayinat mug (Pl. 22.3).

The same can be said of the mug from Chatal Höyük Level 9, which is also missing its base and handle (Pucci in press). A rare vessel type at the site, it bears quadruple stacked zigzag, possibly related to OMDS ornamentation, quite like the Tayinat mug, which is supplemented by a narrow horizontal strip of cross hatch motif. The Afis mugs were found in Phases IVb and IIIb (c. 1090 and c. 1000, respectively; Venturi 2007: 301). The vessel from Chatal Höyük is from Level 9, the first to contain significant amounts of Aegean-style pottery, and judged by Pucci to be contemporary to Afis Phase IV, equivalent to LH IIIC Middle 2 (Advanced) in the Aegean.

83 Venturi classifies this vessel as a krater. However, it could as well be a mug, for its rim diameter (15 cm) lies outside the parameters for kraters at Tayinat (min 18 cm).
Late Bronze Age examples of the mug demonstrate both the antiquity and Levantine origin of the shape. Tell Atchana produced a LB I plain mug (Level V) with dimensions very similar to the Tayinat vessel (Woolley 1955: pl. CXX.117b). An undecorated “goblet” with a pedestal base from Lachish shows that distribution of such vessels was not limited to the north (Amiran 1969: pl. 40.9).

At Ugarit Récent 3, mugs painted in Near Eastern fashion were popular (Shaeffer 1949: figs. 55.16; 80.26). The mug collection at Ugarit clearly illustrates the contrast in shape between Mycenaean imitations and local versions (Shaeffer 1949: fig. 128). Additionally, Late Bronze Age shapes resembling the Tayinat mug (Pl. 22.3) have been found in Anatolia at Malatya Level IV (Pecorella 1975: fig. 8.1) and the transitional LB-Iron Age level at Norsun Tepe (Korbel 1985: 127). The evidence from the Northern Levant shows that the Tayinat mug is unrelated to Mycenaean style. Instead, it clearly represents the continuation of a regional Bronze Age tradition, in both shape and decoration.

4.5.1.6 Aegean-style Cooking Pot

Only a handful of Aegean-style cooking pot fragments have been found at Tell Tayinat, which coincidentally includes the only complete cookware vessels of any type recovered thus far (Pls. 24.1–4). The pieces comprise an inconsequential portion of the overall cooking pot assemblage—less than 5% of all diagnostic rims. They feature an ovoid body, rounded shoulder, short everted neck, simple rim, disc base, and a single loop handle from rim to shoulder. Rim diameter averages 13 cm. and the walls are .6–.7 cm thick. Their fabric varies in color from pink to light reddish brown, contains shell and
chaff as tempering agents, and bear soot marks on the exterior of the vessel at various points, which indicates a particular cooking technique, evidently involving close contact with the cooking flame.

In contrast to the simple everted rims of Aegean-type cooking pots, the majority of cooking vessels at Tayinat consist of inverted rims with triangular and thickened profiles, usually tempered with shell often supplemented with chaff, which may reflect the easy availability of such material in the marshy environs of the ancient landscape (Batiuk 2007: 56). Shell temper was also common in Late Bronze Age cookware at nearby Tell Atchana. This observation corroborates similar findings of the Syrian-Hittite Expedition, whose Phase N report noted the use of “clay heavily tempered with crushed shell” (Swift 1958: 65). The liberal use of shell temper seems to have been a valley-wide phenomenon in the Early Iron Age Amuq, as similar findings have recently been reported at Chatal Höyük. In addition to its ready availability in the ancient landscape, shell temper was superior to other tempers in filling cracks caused by thermal expansion and contraction (Hoard et al. 1995: 829).

Coarse-ware cooking jugs, strictly speaking, are not classified as Late Helladic pottery, but they often appear alongside Aegeanizing assemblages across the Mediterranean. They were first produced in the Aegean in the late 13th century and continued to be used throughout the 12th century at major sites in the region, such as Mycenae, Tiryns, Perati, Lefkandi, and Phylokapi (see Dothan and Zukerman 2004: 28 for references). In Cyprus, Aegean-style cooking pots appeared in small quantities during LC IIC, then in greater numbers alongside Mycenaean assemblages in LC IIIA contexts of the 12th century at Kition (Karageorghis and Demas 1985: pl. XXXIII.318), Enkomi
(Dikaios 1969a: pl. 106.3), Athienou (Dothan and Ben-Tor 1983: fig. 50.7–8), Kourion (Daniel 1937: pls. II–III.V), and Maa-Palaeokastro (Karageorghis and Demas 1988: pls. 183.578, 211.677A, etc). They have also been found at 12th century Tarsus, on the Cilician coast, though their relative numbers are not indicated (Goldman 1956b: pl. 324.1220–21).

In Philistia, Aegean cookware initially appears at Ekron alongside Mycenaean pottery in Str. VIIB, and continues with no significant development until Str. VC–VB, after which it is replaced by Canaanite-style cooking vessels (Dothan and Zukerman 2004: 30). Str. VA at Ekron is dominated by Philistine 3 pottery, defined as “debased Philistine ware,” which significantly excludes Philistine cookwares (Dothan et al. 2006: 72, n. 5). The disappearance of Aegean cooking pots equates chronologically to c. 1050 BC (Dothan et al. 2006: 75, table 3.1). The trend is less clear at Ashdod due to insufficient quantitative data. But the cooking vessels nonetheless first appear in Str. XIII and continue in use until Str. XI in the second half of the 11th century, after which they are no longer produced, (Ben-Shlomo 2005: 70, 151). At both Ekron and Ashdod, the Aegean-style coarse-ware cooking vessels outlasted Mycenaean fineware, perhaps not surprising as they are understood to represent conservative culinary customs that acted as ethnic boundary markers (Killebrew and Lev-Tov 2008:339; Master 2005: 342; Ben-Shlomo et al. 2008: 229).

As for the Tayinat cooking pots, they most closely resemble Philistine Type 2 vessels as recently defined and classified (Ben-Shlomo et al. 2008: 226: fig. 3a-c). They also closely compare to cookware from Cyprus (Karageorghis and Demas 1988b: pls. 183:578; 211:677A, etc; Dothan and Ben-Tor 1983: fig. 50.7–8) and Tarsus (Goldman
No examples of Aegean cookware have been found in the earliest Iron Age level at Tayinat (Field Phase 6c). They all occur in Field Phases 6b and 5a. However, this could merely be a function of the relatively small amount of material so far assigned to Field Phase 6c.

In the southern Levant, Killebrew has thoroughly documented the unique technological aspects of the Philistine cooking vessel, from clay preparation, formation methods, and firing, all of which are distinguished from indigenous production (1998: 400–401). Aegean cooking pots were thrown on a fast wheel, as opposed to Canaanite vessels, which were handmade (Ben-Shlomo et al 2008: 226). Secondly, tempering agents used in indigenous pots consisted primarily of shell and limestone, whereas the Philistine vessels were marked by their lack of shell (Killebrew 1999: 97–98). At Tell es-Safi/Gath, the fabric of Aegean-style cookpots has been found to be highly variable, and during the latter stages of the Iron I period returned to recipes typical of Canaanite traditions in cookware (Ben-Shlomo 2012: 408–10).

The Aegeanizing cookware from Tayinat, unlike its Philistine equivalent, does not differ from local ware in terms of technology. Aegean cooking pots, like the indigenous vessels, were tempered with shell and chaff, formed using the coil method, and turned on a fast wheel. Further petrographic study may reveal differences in clay source and nuances in fabric. However, the relatively inconsequential number of such vessels at Tayinat makes them statistically insignificant in the larger scheme. That they occur in such small numbers is surprising, given their presence among an otherwise strongly Aegeanizing assemblage. Perhaps their absence can be explained in temporal terms, as the assemblage might reflect a point in time when Aegean cooking forms had largely
passed out of use, perhaps equivalent to “debased” Philistine 3 Ware at Ekron or Ashdod Str. X. This would run counter to the trend for Philistine jugs, however, which actually outlived Aegean fineware, as noted above.

On the other hand, the relative absence of Aegean cookware may have a geographical explanation; as such assemblages seem to cluster along the northern Levantine coast. The absence of such ware has been noted at Ras el-Bassit, Ras Ibn Hani (du Piéd 2008: 163–67), and possibly Ras Shamra, Tell Tweini, and Tarsus, all of whose early 12th century Aegean assemblages are well-established. In the Amuq, we can add to this list the site of Chatal Höyük, where no Aegean cookware has yet been observed. 84 All these sites have reported considerable amounts of Aegean material, while they lack Aegeanizing cookware. Perhaps it best illustrates the concept of “fragmentation” proposed by Gilboa, specifically that each Mycenaean assemblage, particularly in the Levant, is unique and requires careful attention to its idiosyncrasies (2008: 234). It would seem that the Sea Peoples phenomenon took on local characteristics wherever it occurred, and the Tayinat ceramic record appears to testify to that fact, particularly with respect to cookware.

4.5.1.7 Unidentified Body Sherds

The zigzag motif in the Mycenaean repertoire includes a number of variations (FM 61). Most examples at Tayinat are relatively simple, consisting of between one and four lines. However, a far more complex version has been found on a small fragment bearing small triangles filled with leaning lines, densely packed in an alternating pattern,

84 M. Pucci personal communication, April 21, 2011.
possibly interspersed with solid triangles (Pl. 24.10). Decoration similar to this unique design is rare in the Aegean, the few examples appearing on LH IIIC Middle stirrup jars (Mountjoy 1986: 168, fig. 216.6), and as panel ornaments on kraters (Mountjoy 1986: 174, fig. 225.4). The elaborate zigzag pattern has also been found in Cyprus at Enkomi Level IIIB, where it serves as tryglyph motifs on kraters (Dikaios 1969a: pl. 95.18; Mountjoy 2005b: fig. 41.103), as well as on a random number of unidentified sherds (Dikaios 1969a: pls. 53.8, 76.33).

In Philistia, stirrup jars were the shape selected for elaborate zigzag design, which were arranged in horizontal registers, some of which interspersed with solid triangles (Dothan 1982: 214, fig. 71.4–7). These Philistine zigzag motifs are closely related to Mycenaean versions and are used as the primary element of the decoration.

Anatolian parallels can be found on a cylindrical mug from Zinjirli as part of a frieze decoration (Andrae 1943: 43, abb. 34), and on another mug of similar shape from Kinet Höyük Period 12, which bears a striking resemblance to the Tayinat motif (Gates 2013: fig. 7.3; Venturi 2007: fig. 25.15). Both mug forms are close relatives of the Tayinat mug (Pl. 22.3). The similarity in decorative style and form would seem to point to a local origin for the motif. The mug form itself has Late Bronze Age antecedents, but the few extant examples of this unique motif preclude determining whether it can be traced to the Late Bronze Age.

Several other examples of zigzag decoration supplement the Tayinat repertoire, found amongst random fragments, including a triple stacked version (Pl. 24.7), and a five-line motif sloppily drawn with overlapping strokes similar to OMDS design (Pl.
Additionally, a Levantine-style composition consisting of a solid triangle, possibly alternating with zigzag, appears on a small sherd (Pl. 24.8).

A number of other individual motifs have been discussed at length elsewhere, such as the necklace (Pls. 22.7–10), wavy line (Pls. 23.1–4), latticed triangle (Pls. 23.5–10), spiral (Pls. 23.13, 14; 24.5), long handle hooks (Pls. 23.12, 15), and herringbone (Pls. 24.5, 6, 9, 12). No further analysis will be added here, except to comment on a unique composite design (Pl. 24.5 after Swift 1958: fig. 27G). Excavated by the Syrian-Hittite Expedition, the composition juxtaposes two elements on an unidentified vessel form, one of which consists of a prototypical Near Eastern herringbone, and the other an Aegean-style stemmed spiral. It would seem appropriate to conclude this section with a composition that so epitomizes the blending of east and west at Tell Tayinat, in a motif that well represents the painted ware assemblage as a whole.

4.5.2 Summary Observations

The analysis of infrequent shapes and random painted sherds has further clarified the Aegean character of the Tayinat assemblage. Several forms were found to be local or regional in origin, such as the trefoil-mouth jug, pot-stand, and mug. Others, such as the feeding bottle and Aegean cooking pot, owe more to western inspiration. The pilgrim flask exemplifies a merging of local and imported styles. Many forms represent continuations of Late Bronze Age potting traditions in both shape and decoration, indicative of conservative styles that survived into the 12th and 11th centuries in the Amuq Valley. However, independent local development, for example in cookware, shows that wholesale adoption of Mycenaean ceramic elements cannot be assumed. Rather, it must
be demonstrated. The presence of tableware does not always appear as a package with Aegean-type cookware. The fusion of east and west must be carefully parsed at Tell Tayinat, as elsewhere.
5. Cultural Transition in the Northern Levant during the Early Iron Age as Reflected in the Aegean-Style Pottery at Tell Tayinat

The basic goal of this study was to elucidate the Aegean ceramic repertoire at Tell Tayinat in terms of its cultural roots, internal development and temporal position, based on the assumption that this pottery was the result of local industry and reflects an intrusive western culture otherwise alien to the region. The exception appears to be the earliest traces of material in Field Phase 6c, which preliminary petrographic analysis suggests may be imported. This initial deposit contains certain stylistic eccentricities and appears to be mirrored by findings at nearby Chatal Höyük, where small amounts of LH IIIC material discovered in the earliest Iron Age deposit (Level 10_fil) have been identified as imports (Pucci in press; see Chapter 3: section 3.2.2, for discussion).

Furthermore, the phenomenon of initial imports finds parallel at sites in the northern Levant, such as at Ras Ibn Hani (Bell 2006: 94) and Tell Kazel (Badre et al. 2005: 36), as well as a number of southern sites, including Sarepta (Koehl 1985: 25–6, 146–7), Tyre (Bikai 1978: 65–6), Acco (D’Agata et al. 2005: 373–4), Tell Keisan (Balensi 1981; Gunneweg and Perlman 1994: Gilboa 2005: 57), and Beth-Shean (D’Agata, et al. 2005: 371–81; Mazar 2007: 572; Mommsen, et al. 2009: 510–18). Some of these vessels are petrographically linked to areas in Cyprus, while others cannot be determined with certainty (see Warren and Hankey 1989: 162–5 for summary). However, in contrast with sites in the Amuq and Ras Ibn Hani, these other
assemblages do not feature large amounts of Aegean-style pottery, and most likely represent the last remnants of the Bronze Age trade networks.

The corpus for this study consisted primarily of stratified pottery excavated from Field 1 at Tell Tayinat, which represents the most complete Early Iron Age deposit found at the site thus far. Using an intensive typological and stylistic analysis consisting of shape and decoration, the assemblage was further delimited to Aegeanizing pieces as defined by comparable Mainland and regional sequences across the Mediterranean Basin. The context of this subset was discerned as much as possible within both its stratigraphic position and relationship to indigenous potting traditions, in order to avoid the fallacy of evaluating the entire assemblage on the basis of exotic or imported ware. However, as the study has demonstrated, distinguishing what is intrusive from what is local is not always self-evident, particularly in assemblages exhibiting unique regional development such as Tell Tayinat.

Despite the extensive excavations conducted by the Syrian-Hittite Expedition in the Amuq Valley over seventy-five years ago, the only analysis of Early Iron Age produced thus far has been an unpublished dissertation written by Gustavus Swift over fifty years ago (1958). This study represents an attempt to begin to fill that longstanding lacuna at Tell Tayinat and in the Amuq Valley. Thanks to the efforts of the AVRP and the TAP, investigations at the sites of Chatal Höyük, Tell Judaidah, Tell Tayinat, and Tell Atchana have been renewed, making the prospects for research in the Amuq more promising than ever.

A survey of the history of Mycenaean pottery in Chapter 1 revealed that research goes back over a century and a half, to the time of Heinrich Schliemann in the
1860s, who first identified and excavated the ancient city of Troy, as well as engaging in extensive investigations at other key sites, including Mycenae, Tiryns, and Ithaka. Perhaps the greatest contribution to the scholarly study of Aegean ceramics was made by Arne Furumark. To his enduring credit, the system of classification he developed in the 1940s, based on the stylistic analysis of shape and decoration, remains the standard scheme in use by specialists even to the present day.

Many scholars have advanced the study of Aegean-style pottery, but the work of Penelope Mountjoy has become integral to all such efforts. Her meticulous classification of the stylistic development of Aegean ceramics throughout Mainland Greece, the Aegean, Cyprus and more recently the Levant has further refined the system devised by Furumark, and it has resulted in the publication of several volumes that have become standard references for the field. The tripartite arrangement of the stylistic phase most relevant to this study, LH IIIC, has been further subdivided on the basis of the work of Mountjoy, as well as new refinements by Elizabeth French (and P. Stockhammer) from the excavations at the key sites of Mycenae and Tiryns.

The production of local Mycenaean pottery in the Levant is obviously of paramount importance to this analysis. The best known of these assemblages are found in the Philistine cities of Ashkelon, Ashdod, Ekron, and Gath, all of which either have been or are presently being investigated. However, with the benefit of several recent final reports, it is becoming increasingly clear that the Sea People phenomenon of the 12th century was not limited to the south. Several important sites on the Syrian and Anatolian coast, in addition to Cyprus, have yielded important Aegeanizing deposits.

Despite recent refinements to the Furumark system of stylistic classification,
however, it does not come without certain problems. The application of parallels over considerable distances constitutes one of its limitations. It is the view here, however, that comparing the Tayinat assemblage to sites as far as the Greek Mainland is justified, given the well-established evidence for trade and commerce between the two regions, particularly during the preceding Late Bronze Age, and the apparent derivative quality of its pottery in the Early Iron Age. Nonetheless, it is important to note that the existing system of classification is based on developments in style that are not always anchored in stratigraphic reality, nor is it clearly understood to what degree the application of Mainland standards is relevant to regional sequences in the east. Finally, it must be conceded that ceramic innovation, long thought to originate at sites in the Argolid, may have been at times inaugurated elsewhere in the Aegean, perhaps even Cyprus and the Levant. Nonetheless, the traditional approach to form and painted ornamentation remains highly valuable and still forms the foundation for all pottery analysis.

Chapter 2 consisted of a comprehensive review of sites in the region yielding LH IIIC pottery. Its purpose was to provide a broad and detailed comparative context for the Tayinat assemblage. In addition to the ceramic, cultural, and historical data contained therein, several observations emerged as a result: Wavy Line decoration, which is a prominent feature of the Tayinat repertoire, appears to be a tradition virtually exclusive to the Northern Levant and Cyprus, and represents a later stage of Aegean style, dating primarily to the LH IIIC Late phase in Aegean terms. A second finding was that the stemless open spiral motif typical of the Tayinat repertoire may well represent a later development of longrunning spiraliform
decoration, which became popular subsequent to the antithetical version of the design commonly found in LH IIIC Early and Middle style in Mainland sequences.

Chapter 3 was comprised of an examination of the archaeology of the Amuq Valley, including an analysis of settlement patterns in the area. The long decades of scholarly neglect are finally being reversed by intensive investigations and publications from past and ongoing projects. The new data shows that the valley experienced decline during the Late Bronze Age, as measured by the number of sites and overall settled area, possibly as a result of mass deportations imposed by the Hittite Empire in the late 14th century. However, this occupational interlude was not uniform throughout the area as many Phase M sites, such as Chatal Höyük, continued to be inhabited in the Iron Age, even though some of these may have consisted of mere village level settlement. The two-century hiatus first proposed by Swift appears to have been not only shorter, but more complex and uneven than originally conceived.

The Late Bronze–Iron Age transition (Amuq Phase M to Phase N) witnessed a dramatic increase in sites bearing Aegean-type ceramics. Whereas in Phase M, LH IIIA/B material was reported at only three locations, Phase N sites with LH IIIC pottery numbered at least twenty-three, and as many as twenty-nine, as part of an overall increase in the number of settled Iron Age sites. Thanks to renewed excavations, new light is also being shed on the relationship between Tell Atchana and Tell Tayinat, closely related twin settlements, as their occupational sequences alternated and may have even overlapped during the Phase M–N transition.

Chapter 4 comprised the core of the thesis, with the typological descriptions proceeding from open to closed forms. The Aegean-style deep bowl is one of the most
common vessels in the Tayinat assemblage, and was marked by a wide range of shapes and sizes and a low degree of standardization. The group shows strong signs of regional development, including short rims, stub handles, and a tendency towards carinated shapes. The closest affinities to the Tayinat bowls are found on the island of Cyprus, particularly at the sites of Enkomi (Levels IIIB Late and IIIC) and Kition (Floors III–I). These in turn were linked to Mainland examples of the Wavy Line Style, which first appeared at Mycenae during LH IIIC Late. Wavy Line decoration is strongly associated with the Granary Style, which consists largely of simple linear motifs. In sum, the deep bowl assemblage at Tayinat generally corresponds stylistically to the LH IIIC Middle 2 (Advanced), LH IIIC Late, and Submycenaean phases.

Kraters were the centerpiece of the Mycenaean drinking set, and were often the focal point of civic gatherings where they were used to mix water with wine. Not surprisingly, examples of these vessels often bore elaborate painted scenes to suit such occasions. They were truly the palette of choice for ceramic artisans of the Late Bronze and Early Iron Ages. Shapes from the Aegean repertoire found across the Mediterranean Basin included primarily three: stemmed, bell-shaped, and amphoroid, the latter of which was particularly popular in Cyprus and the Northern Levant. The krater analysis demonstrated the presence of two of these three types in the Tayinat assemblage—the bell krater and the amphoroid krater—amongst a number of others that descended from Late Bronze Age antecedents, such as the carinated krater. The typological study of rims also showed that, much like the deep bowl group, production of kraters at the site was anything but standardized, and reflects ceramic industry at a low level of organization, likely corresponding to individual workshop
or household production.

Though kraters were often left undecorated in the earliest phases, the painted style became more commonplace over time and the repertoire drew from a well-established collection of motifs, both native and foreign. In general terms, the most popular was the Frieze Style decoration consisting of Aegeanizing elements like the Wavy Line Style and the spiraliform design, along with ornaments employed in a typical Levantine fashion, such as stacked zigzag, latticed triangles, solid triangles, double axe, and semicircles. OMDS compositions in the Tayinat assemblage, as yet hypothetical, may also represent a link to western population elements that arrived in northern coastal areas of the Levant, possibly from Cyprus.

Although several prominent examples of pictorial decoration were found at Tell Tayinat, as a class it comprises a relatively insignificant portion of the painted assemblage, the exception being a single anthropomorphomorphic depiction, which is the only one of its kind yet discovered in the Northern Levant. The absence of any sign of Pleonastic Style or Close Style in the Tayinat repertoire—elaborate styles typical of LH III Middle on the Mainland also found in Cyprus and Philistia is telling, and has important chronological implications. These factors situate the assemblage late in the Aegean stylistic sequence beginning around the end of the LH IIIC Middle (Advanced) period.

The morphological and ornamental characteristics of the krater assemblage together reflect a mixing of local and imported traits into a hybrid style, similar to what has been observed elsewhere in coastal Syria and Philistia, which is not surprising for an assemblage undergoing independent local development. The most diagnostic
features available for dating are found in the Wavy Line Style and stemless open spirals, both of which occur with regularity at Tayinat and were clearly inspired by Aegean prototypes beginning in LH IIIC Middle 2 (Advanced) and more frequently in LH IIIC Late on the Mainland.

Like the krater, amphorae also served an important role in the ancient Mycenaean world, as a receptacle for all manner of important liquids and solids, some of which were infused with symbolic or religious meaning. While decorated vases are the highlight of the group, undecorated shapes constitute a significant portion of the whole—initially over 50%—but later dropping to 40% by the end of Field Phase 3. Decoration on large closed forms at Tayinat is characterized by a repertoire more limited than that of kraters. Yet Frieze Style designs like Wavy Line, latticed triangles, and spirals are still present. The Tayinat spiral collection, comprised mostly of examples with open centers and lacking stems, finds its nearest parallel in Mainland examples from the end of LH IIIC Middle and primarily LH IIIC Late.

The typological analysis revealed that the potters borrowed from both local and Aegean shapes, some of which derived from Late Bronze Age antecedents, such as the triangular rim style, while others had Iron Age origins, like the hollow form characteristic of LH IIIC pottery in the Aegean. Several of these morphological factors may have chronological value. Hollow rims, while typical of the LH IIIC period generally, appeared in significant numbers in Mainland sequences only at the end of LH IIIC Middle and during LH IIIC Late, a period that corresponds to their occurrence at nearby Tell Afis in Phase IV, beginning in the last quarter of the 12th century BC. In addition, a transition in neck profile from flared to vertical, documented
at Sarepta late in the 12th century, similarly occurred at Tayinat after Field Phase 5. Moreover, it was established that handle placement on the neck of amphorae (versus attached at the rim, a trait that prevailed up until that time) was a feature of LH IIIC Late in the Aegean, coinciding with Tell Afis Phase IV, at which point a similar switch took place.

The Tayinat assemblage also includes a number of miscellaneous shapes and sherds. These are considered important not only to supplement the Aegean repertoire, but in order to demonstrate some of the distinctions between foreign and native traditions. Some forms, such as the trefoil-mouth jug, pot-stand, and mug, were found to be local or regional in origin. Others, like the feeding bottle and Aegean cooking pot, owe more to western inspiration. The pilgrim flask fuses a well-known Levantine form with typical Aegean-type decoration. Many forms in the assemblage represent continuations of Late Bronze Age potting traditions in both shape and decoration—conservative styles that survived into the 12th and 11th centuries in the Amuq Valley. However, the local production of cookware, for example, shows that wholesale adoption of Mycenaean stylistic elements in local assemblages cannot merely be presumed, as Aegean-style cooking pots are surprisingly rare in the collection excavated at Tell Tayinat to date. This further serves as an example that the ample presence of Aegean tableware does not always appear as a package alongside these utilitarian vessels. The fusion of east and west must be carefully parsed at Tell Tayinat, as elsewhere.
5.1 A Mercantile Phenomenon?

As discussed in Chapter 1, Susan Sherratt has proposed a socio-economic theory to explain the presence of Aegean elements in Levantine cultural assemblages, particularly the use of pottery as a barometer for population change. It was also noted that virtually all scholars working in Philistia have rejected the socio-economic or mercantile theory to explain the Philistine phenomenon, preferring instead the traditional migration model (Barako 2000, 2003; Mazar 2007: 578–9; Yasur-Landau 2003b, 2010; Dothan and Zukerman 2004; see also discussion in Singer 2012: 435–40).\(^8^5\)

While the situation in the southern Levant seems clear, it is nonetheless valid to ask whether the paradigm might be relevant to Tell Tayinat and the Amuq Valley. One of the strongest arguments against Sherratt’s import substitution theory in Philistia (see discussion in Chapter 1: section 1.2) is the relative absence of imported objects of any kind, particularly pottery (Yasur-Landau 2003b: 590). Present evidence suggests a similar disruption of commerce into the Amuq Valley during the Early Iron Age, as few if any such items have been recorded at Tayinat, Chatal Höyük, or Tell Judaidah. The Syrian-Hittite Expedition reported only five imported potsherds in Phase N (Swift 1958: 64–5), leading Swift to comment that the relative lack of imports in contrast to Phases M and O was “conspicuous” (1958: 120). The finds from the TAP excavations are thus far consistent with those earlier observations.

In fact, the evidence for commercial isolation would seem to extend back to

\(^8^5\) Barako notes that the mercantile paradigm incorporates elements of economic theory associated with capitalist systems (2000: n. 1). It remains an open question whether such modern notions can be applied to the Mediterranean society of the Late Bronze and Early Iron Ages.
the point in time at which the Kingdom of Mukish fell under Hittite domination in the late 14th century, perhaps as a result of a trade embargo imposed by Hattuša. If emulation of the Aegean style by Levantine elites was the method of cultural transmission, then it would appear that, as it relates to the elite of the Amuq, there was very little to emulate, given the absence of evidence for commercial exchange in the valley during the 13th and early 12th centuries. This fact poses a problem for the mercantile theory as applied locally.

Several specific points further argue against the import substitution model as it relates to Tell Tayinat: Yasur-Landau noted the prevalence of deep bowls at Philistinie sites, a vessel that was rarely traded during the LH IIIB period, and the virtual absence of the stirrup jar, the “Mycenaean vase par excellence” (Papadimitriou 1988: 240), which was far and away the most commonly imported vessel during that time (Yasur-Landau 2010: 263). Swift noted some of these same trends in the Amuq, calling the deep bowl a “favorite” in Phase N, while the stirrup jar was non-existent (1958: 116, 119). These observations of the Syrian-Hittite Expedition parallel those of the TAP, where deep bowls are numerous and stirrup jars are quite rare in the Early Iron Age ceramic sequence. Moreover, aside from a small amount of imported LH IIIC found at Tell Tayinat, the vast majority of such material was manufactured locally.

As in Philistia, the preponderance of table and kitchen ware forms found in the Amuq demonstrates that the pottery was made for internal consumption, contrary to what the mercantile theory proposes (Dothan and Zukerman 2004: 45). Generally speaking, the range of shapes is quite unlike Late Bronze Age imported assemblages found elsewhere, which further argues against the socio-economic paradigm, that
posits that such pottery was manufactured to satisfy demand for Mycenaean imports following the breakdown of international trade (see Chapter 2: section 2.4.4). Notwithstanding other lines of evidence for intrusive cultural presence (see below), the ceramic case against the emulation theory is compelling, and strongly supports the traditional immigration model.

5.2 The Result of Cypriot and/or Cilicia-Linked Migration

Whereas this analysis provides little support for the socio-economic paradigm (see discussion in Chapter 1: section 1.2), it does suggest the possibility that the Amuq Valley participated in a “Cypriot-linked phenomenon” during the 12th century, as proposed by Sherratt (2003: 50). The LC IIC and IIIA periods of the 12th century comprise the terminal phase of the Bronze Age on the island, and were marked by the replacement of traditional Cypriot Base Ring and White Slip tablewares with locally produced Myc IIC (Iacovou 2008: 630). However, more profound cultural changes on the island did not actually materialize until the LC IIIB, when mass abandonments are evident at all the major urban sites except Kition and Palaepaphos. It was also at this time that fully developed Mycenaean chamber tombs were introduced and the Greek language was established (Kling 2000: 289; Iacovou 1999: 7; Knapp 1997: 69).

The social and economic crisis evidently dispersed the urban population into the few remaining settlements or into the countryside, possibly into rural settlements that surveys have so far been unable to identify (Iacovou 1994: 159). Cypriot scholars have been left to speculate on the nature and pattern of resettlement (Iacovou 2005: 22). Did the entire refugee population remain on the island, or could some groups
have fled or migrated elsewhere? Could events in Cyprus have reverberated along the Levantine coast? Gilboa has recently linked the founding of Iron Age Dor to the calamity in Cyprus, contemporary with the LC IIIB period and the bichrome phase in Philistia (Gilboa 2008: 213; 2005: 50). It is not unreasonable to suggest that the widespread disruptions in urban life across Cyprus may have led portions of these groups to seek refuge in nearby northern Levantine areas such as the Amuq Valley.

Another potential link to Aegean groups in the area is suggested by the recent discovery of the Çineköy inscription, a monumental bilingual text found near modern Adana (Tekoğlu and LeMaire 2000). The 7th century author, Warika, fashions himself the king of Hiyawa (Hieroglyphic Luwian) or DNNYM (Phoenician). The former term has been linked to the well-known Bronze Age Kingdom of Ahhiyawa, equated by most scholars to Mycenaean Greece, while the latter is associated with the ethnicon danuna in Phoenician. By contrast, in the Karatepe inscription, DNNYM corresponds to Adanawa (Hawkins 2009: 166).

The figure of Mopsos/Muksas (Phoenician/Luwian), heretofore of legendary fame, is named by Warika as the founder of a ruling dynasty from which he claims descent. The origin of the name Mopsos is disputed; some asserting an Anatolian and others a Greek derivation (see Hawkins 2009, Oettinger 2008, and Jasink-Marino 2007 for differing opinions). Whichever the case, the inscription lends historical credibility to the tale of Mopsos, a Greek seer who, according to Greek literary traditions, emigrated a year before the onset of the Trojan War with his followers to found cities in Pamphylia and a kingdom in Cilicia. The latter group is believed to be synonymous with Homer’s Achaioi and Herodotus’ Hypachaioi (The Histories VII: 91)—forerunners
of the latter day Cilicians. 86

What emerges from these accounts is the memory of a story of a migration of a group of Aegeanizing settlers who established a state in the Cilician Plain during or after the 12th century. The circumstances of its founding are as yet unknown, but it was of such prominence and duration that it was remembered many centuries later by kings in the region and its name attached to the land for many centuries after. It has been suggested that the phenomenon of the Sea Peoples was more complex and fragmented than formerly believed. The various permutations of the Mopsos story contained in the Greek literary sources may very well preserve memories of the movements of western peoples to the Levant, one of which finds the Greek seer migrating all the way to Ashkelon, where he finally perishes (Singer 2012: 445; Finkelberg 2007: 33). Given these various literary traditions and their geographical proximity, it would not be hard to imagine some of these groups finding their way to the Amuq Valley.

5.3 How Much LH IIIC is in the Tayinat Assemblage?

It should be borne in mind once again that this research is in its preliminary stages, and is ongoing. One of the research questions posed by this study is the relative amount of Aegean-style pottery contained in the Tayinat assemblage. Such percentage figures have been cited elsewhere as ethnic markers, and in the southern Levant as an indication of the extent of Philistine settlement during stage 1, whose boundaries were defined by ceramic assemblages with over 25% Myc IIIC, or

86 These Greek literary traditions are part of an epic genre called Nosti, or Returns. They describe the migration of heroic figures from the wars of Thebes and Troy to found settlements across the Mediterranean, including Asia Minor, Cyprus, and the Levant. See Finkelberg (2007: 31–44) for a discussion of these accounts in the context of Philistine settlement.
Philistine Monochrome Ware (Stager 1998: 161). Recent reports allow us to refine some of these numbers for the sake of comparison (see Table 20). At Ashdod, for example, the relative percentage of LH IIIC progressively increased during the first three Philistine strata (Str. XIII, XII, and XI), from 24 to 47 to 58, respectively (Ben-Shlomo 2005: 70, 120, 132). Ekron shows a more consistent progression (Str. VIIA/B, VIB, and VIA), varying little from 50 to 50 to 41, respectively (Dothan and Zukerman 2004: 5, table 1; Dothan et al. 2006: 93).

At a slightly later phase (equivalent to Stager’s phase 2 or bichrome pottery) in Philistine chronology, Tell Qasile contains somewhat lower percentages (Str. XII, XI, and X), reporting 24, 14, and 15, respectively (Mazar 1985a: 104–5, table 11). In the north at Ras Ibn Hani, the Aegean component of the assemblage in Phases I and II comprises between 50%–60% of the total (du Piéd 2008: 181, n. 17). Although these various reports cite precise percentage figures, however, it is not always clear whether the calculations discern local painted traditions and discounted them from the LH IIIC assemblage totals.

The distinction in painted styles is important when comparison is attempted with the Tayinat ceramic repertoire. As the present study has shown, Aegean-style decoration existed alongside native traditions. Moreover, local potters were not averse

87 The three phases are not presented for chronological correspondence, but rather to show progression through the primary strata in which LH IIIC has been found. The graphs representing Tell Tayinat are subdivided to include both local painted and Aegean-style painted numbers, including 46 krater rims and 53 amphorae/jar rims, for a total of 99 rim sherds. Only stratified rim sherds from Square G4.55 were included. For Ras Ibn Hani, since only a generic 50%–60% figure is given for all the Early Iron Age levels, the average of 55% is applied to all three strata in the table.

88 The figures given here are a combination of Philistine Monochrome and Bichrome, since both are widely accepted as representing Philistine culture.
to fusing the two styles when it suited them. With respect to the Aegean bowl assemblage at Tayinat, virtually all such vessels were decorated. But the bowl group was preselected precisely due to its Aegean influence, and so cannot be used as an objective measure. All krater and amphorae/jar forms, however, were subjected to analysis. Hence their numbers can be considered reliable for statistical purposes. The ratios of plain versus painted were established by the tallies from these earlier chapters (see Tables 12 and 19). The relative percentage of painted ware amongst kraters is 29, 65, and 53 in Field Phases 6, 5, and 4/3, respectively (Table 12). Similarly, the rate amongst amphorae and jars is 47, 62, and 60, respectively (Table 19). The numbers for kraters and amphorae were combined to create composite figures. These percentages are represented in Table 20, which equate to 39, 63, and 57 percent for their respective field phases.

The low rate of painted ware at Tayinat in Field Phase 6 may be significant—a
number which is reflected respectively in both the krater and amphora assemblages. It would seem to represent continuity with the relatively lower proportion of painted traditions that had prevailed in the area during the Late Bronze Age (Phase M), and indeed represents a continuation of the production of Local Plain Ware as noted previously. This situation may have persisted for a time when Aegean pottery was “not yet well developed,” until the newcomers began to incorporate more decoration into their ceramic repertoire. Understood in this way, it parallels the situation in Ekron Str. VIIB, before the “establishment of substantial buildings and industrial installations when Philistine pottery production flourished” (see below and Dothan et al. 2006: 93).

However, as this study has amply demonstrated, parsing foreign shapes and motifs from what is rooted in local tradition is not a straightforward task. For the purposes of this comparison, Aegean style is defined primarily by spiraliform and wavy line decoration, whereas local traditions are comprised of stacked zigzag, cross-hatched triangle, and solid triangle motifs. When these factors are discerned in the Tayinat painted assemblage, the Aegean component is reduced to roughly half the total of decorated sherds—equivalent to about a quarter of the assemblage overall. While it must be borne in mind that these percentages apply only to the vessel categories chosen for the study, the totals show that the relative amounts of Aegean-style decorated ware in the Tayinat assemblage are clearly on par with those of other Levantine sites in which the presence of a foreign population is widely acknowledged. Such is the case whether comparing the painted total or merely the estimated Aegean portion (solid black and cross-hatched graph sections). This caveat is necessary given the fact that local painted traditions may not be adequately appreciated in the analyses of other
Levantine assemblages, which might have the effect of inflating the overall numbers, a
tendency that was noted by Swift long ago.\(^8\) This stylistic analysis of the Tayinat corpus
has attempted to account for the distinction, but ultimately the comparison of
assemblages should be tempered by the possibility of the conflation of styles.

5.4 Historical and Archaeological Synthesis

The Early Iron Age in the Amuq Valley and Northern Levant has until recently
remained largely elusive to scholars. Scant written testimony survives that relates to
the events that followed the disintegration of Hittite hegemony in the former Kingdom
of Mukish, and which eventually led to the formation of appanage or rump states in the
Iron II period, particularly the Syro-Anatolian city-states of southeast Anatolia and
northwest Syria such as the Kingdom of Patina/Unqi. However, recent epigraphic
developments in the understanding of Hieroglyphic Luwian have established the
existence of a heretofore unknown Kingdom of Palistin, the forerunner to the later
Iron Age II principality of Patina, with its capital at Tell Tayinat (Hawkins 2011: 53;
Harrison 2009a; Hawkins 2005: 289, 2009: 171; Rieken and Yakubovich 2010). The
implications of these new readings, which reflect changes in the written language
during the Late Bronze–Iron Age transition, suggest the outlines of an Luwian-
Aegean polity of considerable size and importance, which may have extended from the
Bay of Iskenderun in the north to the ancient city of Hama in Syria, and eastward
to Aleppo—boundaries which approximate the combined Bronze Age kingdoms of
Mukish, Niya, and Nuhašše, including Aleppo (Kohlmeyer 2009: 197–8; Harrison
\(^8\) Swift early on recognized the tendency to lump together local with Mycenaean decoration in the Philistine

The purpose of this thesis was to investigate the Aegean or Mycenaean nature of the ceramic assemblage at Tell Tayinat in order to fill a longstanding lacuna in the Amuq Valley. As such it has attempted to make the case on the basis of ceramic analysis alone. The analysis leads inevitably to the conclusion that the valley experienced a migration of western elements into the area at the dawn of the Iron Age, supplementing a preexisting but likely diminished indigenous population (Horowitz in press; Fink 2010: 121). The reoccupation of the site in the 12th century may have been presaged by an ephemeral Phase M settlement, possibly contemporary with occupation at nearby Tell Atchana. Continuity of settlement to a greater or lesser extent at Atchana (?), Chatal Höyük, Tell Judaidah and elsewhere in the valley comprised a sufficient vehicle for the transmission of conservative local traditions in pottery production, which proceeded to intermix with those imported from areas to the west.

Subsequent research at key sites may be able to establish the size and extent of the foreign influx, to determine whether it was a valley-wide phenomenon sufficient to account for the many new sites which evidence LH IIIC pottery, or was confined to Tell Tayinat, in which case it may have formed the beachhead for the further diffusion of new ceramic styles throughout the area. The political and social matrix into which the intrusive Aegean component was introduced, therefore, was one of relative decentralization and fragmentation, perhaps even amongst the transplanted community itself. In some ways this scenario is analogous to the earliest Philistine settlements, which were characterized by nonurban construction consisting of thin-walled mudbrick
domestic structures and a virtual absence of palaces, temples, or administrative complexes, which belies the commonly accepted notion of immediate urban imposition (Dothan, Gitin, and Zukerman 2006: 93; Yasur-Landau 2010: 341–2; but see Maeir 2012: 19 for the urban character of the settlement at Tell es-Safi).

Although the record of events in the region is still quite obscure, it would appear that the transformed human landscape of the Amuq Valley did not coalesce into a state-ordered polity for several generations as the amalgam of peoples negotiated their newfound reality, one that ultimately emerged in history as the Kingdom of Palistin which, on the surface seems to have fused distinct ethnic identities—Aegean and Syro-Anatolian—and which over time culminated in the Syro-Anatolian state of Patina/Unqi.

The fact that the earliest epigraphic evidence from Iron Age Tayinat consists of a Hieroglyphic Luwian seal impression supports the notion that these disparate elements coexisted at an early stage (see Harrison et al. in press). Historical evidence suggests that the dominant cultural paradigm in the area during the 12th century was Luwian, with some lingering Hurrian admixture, given the prevailing ethnic affiliation in nearby Kizzuwatna, and Hittite administration of the Kingdom of Mukish since the late-13th century (Dinçol et al. 2012: 191–5; Waal 2011: 26, 28; Payne 2008: 119; Yakubovich 2008: 124; Bryce 2005: 353; Watkins 1986: 46; Güterbock 1956: 138). These factors constitute the cultural link between the polities of the Bronze Age and the Syro-Anatolian kingdoms of the later Iron Age. However, much like the Philistines in the southern Levantine coastal area, the dearth of epigraphic or textual data from this key transitional period prevents us from making more than tentative assertions about the intervening Aegean cultural intrusion, or from postulating its origins.
In summary, this study has documented the transformation from a Syro-Anatolian culture, which prevailed in the Late Bronze Age, toward one bearing a strong Aegean flavor, beginning late in the 12th century and continuing through the 11th century. The chronological findings equate the initial settlement of Early Iron Age Tell Tayinat to the latter LH IIIC Middle 2 or LH IIIC Late in Mainland terms, continuing through the Submycenaean period. The composite nature of the local culture reflects precisely what one would expect of a “mixed multitude.” The Aegean component of this heterogeneous culture evolved along independent lines of regional development, exhibiting signs of contact with Cyprus, the Aegean, and perhaps western Anatolia, which subsequently led to the formation of the Kingdom of Palistin. This polity was evidently assimilated and finally superseded by the Syro-Anatolian Kingdom of Patina/Unqi, which eventually met its own demise late in the 8th century when it was conquered and dispersed by the Neo-Assyrians.

The findings of this focused ceramic study, which argues for the traditional migration model and against the socio-economic paradigm, finds further reinforcement and validation when combined with an array of additional cultural markers, such as Aegean-style loomweights (Harrison 2009a: 183; Janeway 2008: 138–9), clay figurines, Cypro-Minoan potters marks (Harrison 2010a: 90), faunal data (Harrison et al. in press; Welton et al. 2011: 163; Lipovitch 2008), and epigraphic information. The convergence of multiple lines of disparate material factors proves more effective in defining ethnicity in the archaeological record than single lines of artifactual evidence (De Corse 1994: 138; Niemeyer 1999: 550). The combined data provide a compelling case for the existence of a kingdom established by Aegean settlers in the Northern Levant during the advent of the Early Iron Age, with its capital located at Tell Tayinat.
Abbreviations

AA- Archäologischer Anzeiger. Yearbook of the German Archaeological Institutes
AASOR- Annual of the American Schools of Oriental Research
AJA- American Journal of Archaeology
ANES- Ancient Near Eastern Series
AOAT- Alter Orient und Altes Testament
AS- Anatolian Studies
ASOR- American Schools of Oriental Research
BA- The Biblical Archaeologist
BAR- British Archaeological Reports
BAR- Biblical Archaeology Review
BSA- Annual of the British School in Athens
BYZAS- Veröffentlichungen des Deutschen Archäologischen Insituts Istanbul
CChEM- Contributions to the Chronology of the Eastern Mediterranean. Vienna.
CLUEB- Cooperativa Libraria Universitaria Editrice Bologna
CSMS- The Canadian Society for Mesopotamian Studies
IAA- Israel Antiquities Authority
IEJ- Israel Exploration Journal
Jdl- Jahrbuch Des Deutschen Archäologischen Instituts
JSOT- Journal for the Study of the Old Testament
MDOG- Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin
NEA- Near Eastern Archaeology
OpArch- Opuscula Archaeologica
OpAth- Opuscula Atheniensia
Or- Orientalia
PEF- Palestine Exploration Fund
QDAP- The Quarterly of the Department of Antiquities in Palestine
RB- Revue Biblique
RDAC- Report of the Department of Antiquities, Cyprus
SIMA- Studies in Mediterranean Archaeology
SM- Scripta Mediterranea
SMS- Syrian-Mesopotamian Studies
SSEA- Journal of the Society for the Study of Egyptian Antiquities
TA- Tel Aviv
UF- Ugarit-Forschungen
Åkerström, A.

Altenmüller, H.

Amiran, R.

Anderson, W. P.

Artzy, M.

2006 The Carmel Coast during the Second Part of the Late Bronze Age: A Center for Eastern Mediterranean Transshipping. *BASOR* 343: 45–64.

Asaro, F. and Perlman, I.

Åström, P.

Badre, L.

Badre, L., Boileau, M.-C., Jung, R., Mommsen, H.

Badre, L. et al.

Balensi, J.

Balmuth, M., ed.

Barako, T. J.
2003 One if by Sea…Two if by Land: How Did the Philistines Get to Canaan. BAR 29/2: 24–33, 64, 66, 67.

Batiuk, S.

Batiuk, S., Harrison, T., and Pavlish, L.
Bauer, A. A.

Beckman, G., Beal, R., and McMahon, G. eds.

Bell, C.

Bennett, E. L. ed.

Ben-Shlomo, D.

Ben-Shlomo, D., Shai, I., Zukerman, A., and Maeir, A.

Benson, J. L.

Bergoffen, C.
Betancourt, P.
1987 Research Notes and Application Reports Dating the Aegean Late Bronze Age with Radiocarbon. *Archaeometry* 29: 45–49.

Betancourt, P. ed.

Betancourt, P., Karageorghis, V., Laffineur, R., and Niemeyer, W.-D. eds.

Bietak, M. ed.

Bietak, M. and Czerny, E. eds.

Bikai, P.M.

Birmingham, J.

Blaylock, S.

Blegen, C. W.
Bliss, F.J. and Macalister, R.A.S.

Bonatz, D.

Bonatz, D., Czichon, R., and Kreppner, F. eds.

Bounni, A., Lagarce, J. and E., Saliby, N., and Badre, L.

Bourriaud, J.

Braidwood, R. J.

Braidwood, R. J. and Braidwood, L. S.

Braun-Holzinger, E. A. and Matthaus, H. eds.

Bretscheider, J. and Van Lerberghe, K.
2008 Tell Tweini, Ancient Gibala, Between 2600 BCE and 333 BCE. Pp. 12–66 in J. Bretscheider and K. Lerberghe, eds. In Search of Gibala: An Archaeological and Historical Study Based on Eight Seasons of

Casana, J.

Casana, J. and Gansell, A.

Casana, J. and Wilkinson, T.

Catling, H. W., Jones, R. E., and Millet, A.
1978 Composition and Provenance Problems in Some Late Bronze Age Pottery Found in Cyprus. *RDAC*. 70–90.

Catling, H. W., Richards, E. E., and Blin-Stoyle, A. E.

Cecchini, S. M.

Cecchini, S. M. and Mazzoni, S. eds.

Chadwick, J.

Chapman, S.V.
Charaf, H.

Charaf, H. ed., in collaboration with C. Doumet-Serhal, A. Rabate, and A. Resek

Chiti, B.

Çilingiroğlu A. and G. Darbyshire, eds.

Cline, E. and Yasur-Landau, A.

Cline, E. ed.

Collins, B. J., Bachvarova, M., and Rutherford, I. eds.

Collins, B. J., Bachvarova, M., and Rutherford, I.
Cooper, L.

Courtois, J.-C.

Crawford, S. W. ed.

Cross, F. M. and Stager, L. E.

Crouwel, J. H.
Crouwel, J. H. and Morris, C.
1995 Pictorial Pottery of Late Minoan II–IIIA2 Early from Knossos. BSA 90: 157–82.

Dakoronia, F.

D’Alfonso, L. and Killebrew, A.
2011 A New Anatolian Hieroglyphic Seal Impression from Dağılbağ Höyük, Bay of Iskenderun, Turkey. NEA 74/2: 113–15.

Daniel, J.
1937 Two Late Cypriot III Tombs from Kourion. AJA 41: 56–85.
1938 Excavations at Kourion: The Late Bronze Age Settlement- Provisional Report. AJA 42: 261–75.

Davis, E. N. ed.

Daviau, P. M. M, Wevers, J. W., and Weigl, M. eds.

De Corse, C. R.

Deger-Jalkotzy, S. and Bächle, A. E. eds.
2009 LH III C Chronology and Synchronisms III: LH IIIC Late and the Transition to the Early Iron Age. Proceedings of the International

Deger-Jalkotzy and Zavadil, M. eds.

Desborough, V. R. d’A.
1972 The Greek Dark Ages. London: Ernest Benn Ltd.

Dever, W. G. and Gitin, S. eds.

Dikaios, P.

Dinçol, A., Dinçol, B., and Peker, H.

Dion, P.-E.
Dornemann, R.

2012 The Qarqur Challenge: Middle Islamic through Iron Age. NEA 75/3: 162–76.

Dothan, M.

Dothan, M. and Ben-Shlomo, D. eds.

Dothan, T.

Dothan, T. and Ben-Tor, A.

Dothan, T. and Dothan, M.

Dothan, T., Gitin, S., and Zukerman, A.
W.F. Albright Institute of Archaeological Research and Institute of Archaeology, Hebrew University of Jerusalem.

Dothan T. and Zukerman, A.

Dothan, M. and Ben-Shlomo, D. eds.

Doumet-Serhal, C.

Doumet-Serhal, C. ed., in collaboration with V. Karageorghis, H. Loffet, and N. Coldstream

du Piêd, L.

Dussaud, R.

Evans, A.J.
Falconer, S.

Fink, A.

Finkelberg, M.

Fischer, B., Genz, H., Jean, É., and Köroğlu, K. eds.

Fortin, M. ed.

Franken, H. J.

French, E. B.

French, E. B. and Stockhammer, P.

French, E. B. and Wardle, K. A. eds.

Fugmann, E.

Furtwängler, A. and Löeschcke, G.

Furumark, A.

Furumark, A. and Adelman, C.

Gates, M. H.

Gelb, I.

Genz, H.

Gilboa, A.
2005 Sea Peoples and Phoenicians along the Southern Phoenician Coast—A Reconciliation: An Interpretation of Sikila (SKL) Material Culture. BASOR 337: 47–78.
Gitin, S., ed.

Gitin, S. and Dever, W.G. eds.

Gjerstad, E.

Glatz, C., ed.
In press *Plain and Simple? The Production, Use and Social Significance of Plain Pottery Traditions in the Early Complex Societies of the East Mediterranean and Near East*. Walnut Creek, CA: Left Coast Press.

Gödecken, K.

Goldman, H.
1939 A Note on Two Painted Sherds from Tarsus with Representations of Birds. *BASOR* 76: 2–5.

Gorman, V. B.
Grant, E. and Wright, G. E.

Greaves, A. M.

Griggs, C. and Manning, S.

Gunneweg, J. and Perlman, I.

Güntner, W.

Güterbock, H. G.

Haines, R.

Hallager, B.

Hallager, E. and Hallager, B. eds.

Hankey, V.

Hansen, C. K. and Postgate, J. N.

Harrison, T.

Harrison, et al.

In press Shifting Networks and Community Identity at Tell Tayinat in the Iron 1A-B (ca. 12th-Mid 11th Cent. BCE).

Harrison, T. ed.

Hausleiter, A. and Reiche, A. eds.

Hautpmann, H.

Hawkins, J. D.

Herbordt, S.

Herman, G. and Shatzman, I, eds.
2007 Greeks Between East and West: Essays in Greek Literature and History in Memory of David Asheri. Jerusalem: The Israel Academy of Sciences and Humanities.

Higham, T., Ramsey, C. B., and Owen, C. eds.

Hoard, R. J., O’Brien, M. J., Khorasgany, M. G. and Gopalaratnam, V. S.

Hood, S.
Horowitz, M.

Howard, H. and Morris, E., eds.

Iakovidis, S. E.

Iacovou, M.

Ibach, R.

Ingholt, H.

James, F. W.

Janeway, B.

Jasink, A. M. and Marino, M.

Jung, R.

Jung, R. and Weninger, B.

Kaniewski, D., Van Campo, E., Van Lerberghe, K., Boiy, T., Vansteenhuyse, K., Jans, G., Nys, K., Weiss, H., Morhange, C., Otto, T., and Bretschneider, J.

Kapitan, T., ed.

Karageorghis, V.

1990a The End of the Late Bronze Age in Cyprus. Nicosia: Pierides Foundation.

Karageorghis, V. ed.

Karageorghis, V. and Demas, M.

Karageorghis, V. and Kouka, O. eds.

Karageorghis, V. and Muhly, J. D. eds.

1984 *Cyprus at the Close of the Late Bronze Age*. Nicosia: Leventis Foundation.

Keel, O. and Uehlinger, C.

Keel, O., Shuval, M., and Uehlinger, C., eds.

Killebrew, A.

Killebrew, A. and Lehmann, G. eds

Killebrew, A. and Lev-Tov, J.

Kinzl, K. H. ed.

Kitchen, K.

Klengel, H.
Kling, B.

Knapp, B.

Knappett, C. and Kilikgoglou, V.

Koehl, R. B.

Kohlmeyer, K.
2009 The Temple of the Storm God in Aleppo During the Late Bronze and Early Iron Ages. *NEA* 72/4:190–202.

Kopcke, G.

Korbel, G.

Kyparissi-Apostolika, N. and Papakonstantinou, M. eds.

Laffineur, R. and Greco, E. eds.

Lagarce, J. and Lagarce, E.

Lapp, N. ed.

Lauinger, J.

Lehmann, G.

Leonard, A.

1994 An Index to the Late Bronze Age Aegean Pottery from Syria-Palestine. Jonsered: P. Åströms Förlag.

Levy, T. ed.

Levy, T. and Higham, T. eds.

Lipovitch, D.

Littauer, M. A. and Crouwel, J. H.

Loud, G.

Magness-Gardiner, B.

Maeir, A.

Maeir, A. ed.

Maeir, A. and Miroshedji, P. eds.

Manning, S. W.

Manning, S. W., Ramsey, C. B., Kutschera, W., Higham, T., Kromer, B., Steier, P. and Wild, E. M.
2006 Chronology for the Aegean Late Bronze Age 1700–1400 B.C. Science 312: 565–69.

Master, D.

Master, D. and Aja, A.

Mathers, C. and Stoddart, S. eds.

Matsumura, K.
2008 The Early Iron Age in Kaman-Kalehöyük: The Search for Its Roots. Pp. 41–50 in D. Bonatz, R. Czichon, and F. Janoscha, eds. Fundstellen :

Matthiae, F. Pinncock, L. Nigro, and N. Marchetti, eds.

Mazar, A.
1997 Four Thousand Years of History at Tel Beth-Shean: An Account of the Renewed Excavations at Tel Beth-Shean. BA 60/2: 62–76.

Mazzoni, S.

Mazzoni, S. ed.

McClellan, T.
McEwan, C. W. 1937 The Syrian Expedition of the Oriental Institute of the University of Chicago. AJA 41: 8–16.

Montchambert, J.-Y.

Morricone, L.

Morris, C. E and Crouwel, J. H.

Morris, S. and Laffineur, R. eds.

Mountjoy, P. A.
2005b The End of The Bronze Age at Enkomi, Cyprus: The Problem of Level IIIB. BSA 100: 125–214.

Mühlenbruch, T. M.

2009 Die Synchronisierung Der Nördlichen Levante Und Kilikiens Mit Der Ägäischen Spätbronzezeit. Wien: Verlag Der Österreichischen Akademie Der Wissenschaften.

Mühlenbruch, T. M., Sterba, J. H., and Sürenhagen, D.

Muhly, J. D.

Müller-Karpe, A.

Myres, J. L.

Nelson, H. H.

Niemeyer, W.-D.

Niemeyer, W.-D. and Niemeyer, B.

Noort, E.

Oberheid, R.

Öbrink, U.
Oettinger, N.

Oren, E.

Oren, E. ed.

Osborne, J.

Osborne, R. and Cunliffe, B, eds.

Özyar, A., ed.

Pamir, H.

Panitz-Cohen, N. and Mazar, A. eds.

Papadimitriou, A.

Payne, A.

Peacock, D.

Pecorella, P. E.

Peden, A. J.

Petrie, W. M. F.
1928 Gerar. London: British School of Archaeology in Egypt.

1930–32 Beth Pelet I (Tell Fara). London: British School of Archaeology in Egypt.

Petter, T.

Pilides, D. and Boileau, M.-C.

Podzuweit, C.

Popham, M. and Milburn, E.
1971 The Late Helladic IIIIC Pottery of Xeropolis (Lefkandi), A Summary. BSA 66: 333–52.
Postgate, J. N.

Postgate, J. N. and Thomas, D. eds.

Pritchard, J. B.

Pruss, A.

Pucci, M.

Redford, D.

Rice, P.

Rice, P. ed.

Richter, G. M. and Milne, M. J.

Rieken, E. and Yakubovich, I.

Riis, P. J.

Riis, P. J., Jenson, J., Buhl, M.-L., and Otzen, B.

Ritner, R.

Ross, J.

Ruppenstein, F.
Rutter, J.

Rystedt, E. and Wells, B. eds.

Schachermeyr, F.

Schaeffer, F.-A.

Schaeffer, F.-A., ed.
Schloen, D. ed.

Schwartz, G. and Falconer, S. eds.

Shai, I. Uziel, J. and Maeir, A.

Shaw, I. ed.

Sherratt, S.

Sherratt, S. and Crouwel, J. H.

Singer, I.

Singer, I. ed.
2010 *Luwian and Hittite Studies Presented to J. David Hawkins on the Occasion of His 70th Birthday*. Tel Aviv: Tel Aviv University.

Sinopli, C. ed.

Sjöqvist, E.

Stager, L.

Stager, L. and Mountjoy, P.

Stager, L., Schloen, D., Master, D., Press, M., Aja, A.

Stager, L., Schloen, D., and Master, D. eds.
Stampolidis, N. C., Maner, Ç., and Kopanias, K., eds. *NOSTOI. Indigeneous Culture, Migration, Integration in the Aegean Islands and Western Anatolia during the Late Bronze Age and Early Iron Age.*

Steel, L.

Stein, D.

Steiner, G.

Stern, E.

Stern, E. ed.

Stockhammer, P.

Stone, E. and Zimansky, P.

Stubbings, F. H.
Styrenius, C.-G.

Summers, G. D.

Sürenhagen, D.

Swartz Dodd, L.

Swift, G. F.

Taylor, J. P.

Tekoğlu, R. and LeMaire, A.

Thalmann, J.-P.

Tournavitou, I.

Tsipopoulou, M.
Tufnell, O.

Tzedakis, Y. and Martlew, H. eds.

Uehlinger, C.

Ünlü, E.

In press Late Bronze–Early Iron Age Painted Pottery from the Northeastern Mediterranean Settlements. In N. C. Stampolidis, Ç. Maner, and K. Kopanias, eds. *NOSTOI. Indiginous Culture, Migration, Integration in the Aegean Islands and Western Anatolia during the Late Bronze Age and Early Iron Age.*

Ussishkin, D.

Van Beek, G.

van der Leeuw, S.

Vansteenhuyse, K.

Vansteenhuyse, K. and Bretschneider, J.

Ventris, M. and Chadwick, J.
1973 Documents in Mycenaean Greek. 2nd ed. Cambridge: Cambridge University Press.

Venturi, F.
2007 La Siria nell’età delle trasformazioni. Bologna: CLUEB.

Venturi, F. ed.
2010 Societies in Transition: Evolutionary Processes in the Northern Levant between Late Bronze Age II and Early Iron Age. Bologna: CLUEB.

Vermeule, E.
Vermeule, E. and Karageorghis, V.

Verstraete, J. and Wilkinson, T. J.

Villing, A. ed.

Waal, W.

Wace, A. J. B.
1921–3 Excavations at Mycenae. BSA 25: 1–125.

Wace, A. J. B. and Blegen, C. W.
1917 The Pre-Mycenaean Pottery of the Mainland. BSA 22: 175–89.

Wachsmann, S.

Ward, W. A. and Joukowsky, M. S. eds.

Warren, P. and Hankey, V.

Watkins, C.

Welton, L., Batiuk, S. and Harrison, T.
Weninger, B. and Jung, R.

Wiener, M. H.

Woolley, L

Yadin, Y.

Yakubovich, I.

Yamada, S.

Yasur-Landau, A.
2003b Why Can’t We Find the Origin of the Philistines? In Search of the

2010 The Philistines and Aegean Migration at the End of the Late Bronze Age. New York: Cambridge University Press.

Yasur-Landau, A., Cline, E., and Pierce, G.

2008 Middle Bronze Age Settlement Patterns in the Western Galilee, Israel. Journal of Field Archaeology 33: 59–83.

Yener, A.

Yener, A., Edens, C., Harrison, T., Verstraete, J., and Wilkinson, T. J.

Yener, A., Schloen, D., and Fink, A. S.

Yener, A. ed.

In press Across the Border: Late Bronze-Iron Age Relations Between Syria and Anatolia. Proceedings of a Symposium held at the Research Center of
Anatolian Studies, Koç University, Istanbul May 31-June 1, 2010.
Amsterdam: Peeters.

Yon, M.

Yon, M., Karageorghis, V., and Hirschfeld, N., eds.

Zukerman, A.

Zukerman, A., Lev-Tov, J., Kolska-Horwitz, L., and Maeir, A.

Zukerman, A. and Maeir, A.
APPENDIX A

Pottery Plates 1-24

(Tell Tayinat Field Phases 6-5-4-3)
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>TT08.G4.56.370.30</td>
<td>6c</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>bands</td>
</tr>
<tr>
<td>1.02</td>
<td>TT06.G4.55.233.2</td>
<td>6b</td>
<td>284</td>
<td>cup</td>
<td>11</td>
<td>bands</td>
</tr>
<tr>
<td>1.03</td>
<td>TT08.G4.56.370.24</td>
<td>6c</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>bands</td>
</tr>
<tr>
<td>1.04</td>
<td>TT08.G4.56.368.2</td>
<td>6b</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>bands int and solid circle int</td>
</tr>
<tr>
<td>1.05</td>
<td>TT08.G4.56.378.11</td>
<td>6b</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>plain</td>
</tr>
<tr>
<td>1.06</td>
<td>TT07.G4.55.238.6</td>
<td>6b</td>
<td>284</td>
<td>deep bowl</td>
<td>16</td>
<td>monochrome int and ext</td>
</tr>
<tr>
<td>1.07</td>
<td>TT07.G4.55.238.11b</td>
<td>6b</td>
<td>284</td>
<td>handle</td>
<td>na</td>
<td>handle band</td>
</tr>
<tr>
<td>1.08</td>
<td>TT06.G4.55.224.2</td>
<td>6b</td>
<td>284</td>
<td>cup</td>
<td>11</td>
<td>bands</td>
</tr>
<tr>
<td>1.09</td>
<td>TT07.G4.55.238.4</td>
<td>6b</td>
<td>284</td>
<td>deep bowl</td>
<td>16</td>
<td>bands</td>
</tr>
<tr>
<td>1.10</td>
<td>TT07.G4.55.240.2</td>
<td>6b</td>
<td>na</td>
<td>basin</td>
<td>22</td>
<td>bands</td>
</tr>
<tr>
<td>1.11</td>
<td>TT04.G4.55.48.1</td>
<td>6a</td>
<td>284</td>
<td>deep bowl</td>
<td>13</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>1.12</td>
<td>TT07.G4.55.258.2</td>
<td>6b</td>
<td>284</td>
<td>deep bowl</td>
<td>13</td>
<td>bands, solid handle</td>
</tr>
<tr>
<td>1.13</td>
<td>TT06.G4.55.232.4</td>
<td>6a</td>
<td>284</td>
<td>deep bowl</td>
<td>17</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>1.14</td>
<td>TT06.G4.55.224.1</td>
<td>6b</td>
<td>284</td>
<td>deep bowl</td>
<td>16</td>
<td>bands, wavy line</td>
</tr>
<tr>
<td>1.15</td>
<td>TT06.G4.55.219.7</td>
<td>6a</td>
<td>284</td>
<td>cup</td>
<td>11</td>
<td>bands</td>
</tr>
</tbody>
</table>
Plate 1. Bowls, Tell Tayinat, Field Phase 6
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>TT06.G4.55.219.2</td>
<td>6a</td>
<td>284</td>
<td>deep bowl</td>
<td>na</td>
<td>bands, tassel/wavy lines</td>
</tr>
<tr>
<td>2.02</td>
<td>TT06.G4.55.162.1</td>
<td>6a</td>
<td>284</td>
<td>cup</td>
<td>10</td>
<td>bands, solid handle</td>
</tr>
<tr>
<td>2.03</td>
<td>TT04.G4.55.62.8</td>
<td>6a</td>
<td>284</td>
<td>handle</td>
<td>na</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>2.04</td>
<td>TT06.G4.55.231.3</td>
<td>6a</td>
<td>na</td>
<td>deep bowl</td>
<td>17</td>
<td>bands</td>
</tr>
<tr>
<td>2.05</td>
<td>TT04.G4.55.62.1</td>
<td>6a</td>
<td>284</td>
<td>cup</td>
<td>10</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>2.06</td>
<td>TT06.G4.55.195.7</td>
<td>6a</td>
<td>284</td>
<td>cup</td>
<td>10</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>2.07</td>
<td>TT04.G4.55.41.18</td>
<td>6a</td>
<td>na</td>
<td>deep bowl</td>
<td>12</td>
<td>bands</td>
</tr>
<tr>
<td>2.08</td>
<td>TT06.G4.55.226.9</td>
<td>6a</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>spiral int, base band ext</td>
</tr>
<tr>
<td>2.09</td>
<td>TT04.G4.55.52.79</td>
<td>6a</td>
<td>284</td>
<td>deep bowl</td>
<td>15</td>
<td>bands, wavy line, vertical strokes</td>
</tr>
<tr>
<td>2.10</td>
<td>TT06.G4.55.226.26</td>
<td>6a</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>bands</td>
</tr>
<tr>
<td>2.11</td>
<td>TT06.G4.55.218.41</td>
<td>6a</td>
<td>284</td>
<td>deep bowl</td>
<td>16</td>
<td>bands</td>
</tr>
<tr>
<td>2.12</td>
<td>TT06.G4.55.225.2</td>
<td>6a</td>
<td>295</td>
<td>SAB</td>
<td>16</td>
<td>bands</td>
</tr>
<tr>
<td>2.13</td>
<td>TT06.G4.55.226.10</td>
<td>6a</td>
<td>na</td>
<td>bowl</td>
<td>14</td>
<td>bands</td>
</tr>
<tr>
<td>2.14</td>
<td>TT07.G4.55.274.3</td>
<td>6b</td>
<td>na</td>
<td>bowl</td>
<td>na</td>
<td>WS II, Parallel Line style, lozenge</td>
</tr>
</tbody>
</table>
Plate 2. Bowls, Tell Tayinat, Field Phase 6
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>TT06.G4.55.184.1</td>
<td>5b</td>
<td>284</td>
<td>deep bowl</td>
<td>21</td>
<td>stacked zigzag, bands</td>
</tr>
<tr>
<td>3.02</td>
<td>TT05.G4.55.130.26</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td></td>
<td>wavy line, bands, unidentified motif</td>
</tr>
<tr>
<td>3.03</td>
<td>TT06.G4.55.228.2</td>
<td>5b</td>
<td>242</td>
<td>conical</td>
<td>11</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>3.04</td>
<td>TT05.G4.55.130.25</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>20</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>3.05</td>
<td>TT06.G4.55.212.1</td>
<td>5b</td>
<td>284</td>
<td>deep bowl</td>
<td>14</td>
<td>bands</td>
</tr>
<tr>
<td>3.06</td>
<td>TT06.G4.55.163.13</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>15</td>
<td>bands</td>
</tr>
<tr>
<td>3.07</td>
<td>TT06.G4.55.235.8</td>
<td>5b</td>
<td>na</td>
<td>bowl</td>
<td>15</td>
<td>bands</td>
</tr>
<tr>
<td>3.08</td>
<td>TT05.G4.55.133.50</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>20</td>
<td>bands</td>
</tr>
<tr>
<td>3.09</td>
<td>TT06.G4.55.203.2</td>
<td>5b</td>
<td>284</td>
<td>deep bowl</td>
<td>17</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>3.10</td>
<td>TT06.G4.55.183.5</td>
<td>5a</td>
<td>295</td>
<td>SAB</td>
<td>18</td>
<td>bands</td>
</tr>
<tr>
<td>3.11</td>
<td>TT05.G4.55.135.1</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>28</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>3.12</td>
<td>TT05.G4.55.132.19</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>16</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>3.13</td>
<td>TT06.G4.55.161.11</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>14</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>3.14</td>
<td>TT05.G4.55.132.20</td>
<td>5a</td>
<td>294</td>
<td>SAB</td>
<td>21</td>
<td>bands</td>
</tr>
<tr>
<td>3.15</td>
<td>TT04.G4.55.22.5</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>19</td>
<td>mostly monochrome ext, reserve band int</td>
</tr>
</tbody>
</table>
Plate 3. Bowls, Tell Tayinat, Field Phase 5
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.01</td>
<td>TT04.G4.55.28.57</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>15</td>
<td>wavy line, solid handle band, monochrome int</td>
</tr>
<tr>
<td>4.02</td>
<td>TT05.G4.55.133.48</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>19</td>
<td>bands, monochrome int, reserve band</td>
</tr>
<tr>
<td>4.03</td>
<td>TT06.G4.55.188.29</td>
<td>5a</td>
<td>295</td>
<td>SAB</td>
<td>16</td>
<td>bands</td>
</tr>
<tr>
<td>4.04</td>
<td>TT04.G4.55.28.26</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>13</td>
<td>monochrome ext, solid handle band, bands</td>
</tr>
<tr>
<td>4.05</td>
<td>TT05.G4.55.136.6</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>13</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>4.06</td>
<td>TT06.G4.55.163.35</td>
<td>5a</td>
<td>na</td>
<td>basin</td>
<td>24</td>
<td>bands</td>
</tr>
<tr>
<td>4.07</td>
<td>TT06.G4.55.158.2</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>17</td>
<td>wavy line, multiple bands ext, solid handle band</td>
</tr>
<tr>
<td>4.08</td>
<td>TT06.G4.56.243.95</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>18</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>4.09</td>
<td>TT06.G4.55.200.14</td>
<td>5a</td>
<td>na</td>
<td>base</td>
<td>na</td>
<td>bands, concentric bands int</td>
</tr>
<tr>
<td>4.10</td>
<td>TT06.G4.56.276.16</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>15</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>4.11</td>
<td>TT06.G4.55.163.74</td>
<td>5a</td>
<td>284</td>
<td>deep bowl</td>
<td>16</td>
<td>bands, loop motif, handle band</td>
</tr>
<tr>
<td>4.12</td>
<td>TT06.G4.55.185.35</td>
<td>5a</td>
<td>na</td>
<td>bowl</td>
<td>16</td>
<td>bands, tassel motif</td>
</tr>
<tr>
<td>4.13</td>
<td>TT06.G4.55.175.6</td>
<td>5a</td>
<td>284</td>
<td>cup</td>
<td>10</td>
<td>bands, vertical lines motif</td>
</tr>
<tr>
<td>4.14</td>
<td>TT05.G4.55.133.46</td>
<td>5a</td>
<td>284</td>
<td>cup</td>
<td>8</td>
<td>wavy line, bands</td>
</tr>
</tbody>
</table>
Plate 4. Bowls, Tell Tayinat, Field Phase 5
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.01</td>
<td>TT06.G4.56.185.44</td>
<td>4</td>
<td>284</td>
<td>deep bowl</td>
<td>12</td>
<td>band ext, solid handle band</td>
</tr>
<tr>
<td>5.02</td>
<td>TT04.G4.55.65.24</td>
<td>4</td>
<td>284</td>
<td>deep bowl</td>
<td>18</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>5.03</td>
<td>TT04.G4.55.65.15</td>
<td>4</td>
<td>284</td>
<td>cup</td>
<td>?</td>
<td>band</td>
</tr>
<tr>
<td>5.04</td>
<td>TT05.G4.55.119.6</td>
<td>4</td>
<td>na</td>
<td>cup</td>
<td>13?</td>
<td>vertical bands, horizontal band</td>
</tr>
<tr>
<td>5.05</td>
<td>TT06.G4.56.201.87</td>
<td>4</td>
<td>284</td>
<td>deep bowl</td>
<td>15</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>5.06</td>
<td>TT05.G4.55.79.4</td>
<td>4</td>
<td>na</td>
<td>cup</td>
<td>10</td>
<td>bands</td>
</tr>
<tr>
<td>5.07</td>
<td>TT05.G4.55.102.1</td>
<td>4</td>
<td>284</td>
<td>deep bowl</td>
<td>21</td>
<td>bands, solid handle band</td>
</tr>
</tbody>
</table>
Plate 5. Bowls, Tell Tayinat, Field Phase 4
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>FS</th>
<th>Shape</th>
<th>Dia</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>TT04.G4.55.15.1</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>14</td>
<td>bands, solid handle band</td>
</tr>
<tr>
<td>6.02</td>
<td>TT05.G4.55.116.2</td>
<td>3</td>
<td>na</td>
<td>bowl</td>
<td>23</td>
<td>bands</td>
</tr>
<tr>
<td>6.03</td>
<td>TT04.G4.55.13.26</td>
<td>3</td>
<td>284</td>
<td>handle</td>
<td>na</td>
<td>handle band</td>
</tr>
<tr>
<td>6.04</td>
<td>TT05.G4.55.112.15</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>15</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>6.05</td>
<td>TT05.G4.55.117.35</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>20?</td>
<td>bands, unidentified motif</td>
</tr>
<tr>
<td>6.06</td>
<td>TT04.G4.55.12.16</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>15?</td>
<td>bands, wavy line</td>
</tr>
<tr>
<td>6.07</td>
<td>TT05.G4.55.112.6</td>
<td>3</td>
<td>na</td>
<td>bowl</td>
<td>20</td>
<td>bands, rim hatch</td>
</tr>
<tr>
<td>6.08</td>
<td>TT04.G4.55.11.7</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>18</td>
<td>bands</td>
</tr>
<tr>
<td>6.09</td>
<td>TT04.G4.55.11.12</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>18</td>
<td>bands</td>
</tr>
<tr>
<td>6.10</td>
<td>TT04.G4.55.17.50</td>
<td>3</td>
<td>na</td>
<td>bowl</td>
<td>21</td>
<td>monochrome ext, band int</td>
</tr>
<tr>
<td>6.11</td>
<td>TT04.G4.55.18.35</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>18</td>
<td>bands</td>
</tr>
<tr>
<td>6.12</td>
<td>TT04.G4.55.11.44</td>
<td>3</td>
<td>284</td>
<td>deep bowl</td>
<td>15?</td>
<td>zigzag, bands</td>
</tr>
<tr>
<td>6.14</td>
<td>TT07.G4.65.235.1</td>
<td>2</td>
<td>na</td>
<td>deep bowl</td>
<td>20</td>
<td>bands, wavy line, handle band</td>
</tr>
<tr>
<td>6.15</td>
<td>TT06.G4.55.147.12</td>
<td>2</td>
<td>na</td>
<td>bowl</td>
<td>16</td>
<td>WS II, LLDR=Latticed Ladder Dotted Row style</td>
</tr>
<tr>
<td>6.16</td>
<td>TT04.G4.55.3.31</td>
<td>1</td>
<td>295</td>
<td>deep bowl</td>
<td>14</td>
<td>bands, solid handle band, zigzag</td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>7.01</td>
<td>TT06.G4.55.233.1</td>
<td>6b</td>
<td>oval</td>
<td>4</td>
<td>stacked zigzag (OMDS)</td>
<td></td>
</tr>
<tr>
<td>7.02</td>
<td>TT07.G4.55.255.2</td>
<td>6b</td>
<td>misc</td>
<td>misc</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>7.03</td>
<td>TT07.G4.55.241.2</td>
<td>6b</td>
<td>oval</td>
<td>4</td>
<td>solid triangles</td>
<td></td>
</tr>
<tr>
<td>7.04</td>
<td>TT08.G4.56.381.49</td>
<td>6b</td>
<td>misc</td>
<td>misc</td>
<td>wavy line, latticed triangles</td>
<td></td>
</tr>
<tr>
<td>7.05</td>
<td>TT06.G4.55.233.4</td>
<td>6b</td>
<td>inverted</td>
<td>6</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>7.06</td>
<td>TT07.G4.55.266.1</td>
<td>6b</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>7.07</td>
<td>TT08.G4.56.369.16</td>
<td>6b</td>
<td>body sherd</td>
<td>na</td>
<td>wavy line, vertical strokes</td>
<td></td>
</tr>
<tr>
<td>7.08</td>
<td>TT07.G4.55.251.6</td>
<td>6b</td>
<td>square/rect</td>
<td>2</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>7.09</td>
<td>TT08.G4.56.376.28</td>
<td>6c</td>
<td>body sherd</td>
<td>na</td>
<td>spiral, open, bands</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>TT07.G4.55.242.2</td>
<td>6b</td>
<td>body sherd</td>
<td>na</td>
<td>spiral, open intersecting bands</td>
<td></td>
</tr>
<tr>
<td>7.11</td>
<td>TT07.G4.55.258.1</td>
<td>6b</td>
<td>body sherd</td>
<td>na</td>
<td>cross hatch, bands</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----</td>
<td>------------</td>
<td>------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>8.01</td>
<td>TT06.G4.55.210.3</td>
<td>6a</td>
<td>everted</td>
<td>5a</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.02</td>
<td>TT04.G4.55.51.7</td>
<td>6a</td>
<td>triangular</td>
<td>3a</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.03</td>
<td>TT06.G4.55.226.2</td>
<td>6a</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.04</td>
<td>TT04.G4.55.66.46</td>
<td>7/6b</td>
<td>triangular</td>
<td>3a</td>
<td>band</td>
<td></td>
</tr>
<tr>
<td>8.05</td>
<td>TT06.G4.55.213.44</td>
<td>6a</td>
<td>triangular</td>
<td>3b</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.06</td>
<td>TT06.G4.55.231.12</td>
<td>6a</td>
<td>triangular</td>
<td>3a</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.07</td>
<td>TT06.G4.55.222.4</td>
<td>6a</td>
<td>handle</td>
<td>simple</td>
<td>bands</td>
<td></td>
</tr>
<tr>
<td>8.08</td>
<td>TT07.G4.55.249.5</td>
<td>6a</td>
<td>misc</td>
<td>misc</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>8.09</td>
<td>TT06.G4.55.220.1</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>band</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>TT06.G4.56.249.145</td>
<td>6a</td>
<td>square/rect</td>
<td>2</td>
<td>fish, latticed triangles</td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>TT08.G4.56.293.20</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>bichrome zigzag</td>
<td></td>
</tr>
<tr>
<td>8.12</td>
<td>TT06.G4.55.218.37</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>spiral</td>
<td></td>
</tr>
<tr>
<td>8.13</td>
<td>TT06.G4.55.225.1</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>latticed triangles</td>
<td></td>
</tr>
<tr>
<td>8.14</td>
<td>TT06.G4.55.153.9</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>wavy line, stacked triangles, solid triangles</td>
<td></td>
</tr>
<tr>
<td>8.15</td>
<td>TT06.G4.55.222.1</td>
<td>6a</td>
<td>body sherd</td>
<td>na</td>
<td>latticed triangles</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>9.01</td>
<td>TT04.G4.55.36.9</td>
<td>5b</td>
<td>T-shaped</td>
<td>1a</td>
<td>checkerboard</td>
<td></td>
</tr>
<tr>
<td>9.02</td>
<td>TT05.G4.55.131.1</td>
<td>5b</td>
<td>rounded</td>
<td>7</td>
<td>solid-painted interior</td>
<td></td>
</tr>
<tr>
<td>9.03</td>
<td>TT06.G4.55.183.3</td>
<td>5a</td>
<td>T-shaped</td>
<td>1a</td>
<td>rim hatch</td>
<td></td>
</tr>
<tr>
<td>9.04</td>
<td>TT04.G4.55.22.21</td>
<td>5a</td>
<td>triangular</td>
<td>3a</td>
<td>rim hatch, bands</td>
<td></td>
</tr>
<tr>
<td>9.05</td>
<td>TT04.G4.55.33.58</td>
<td>5b</td>
<td>everted</td>
<td>5a</td>
<td>wavy line, band</td>
<td></td>
</tr>
<tr>
<td>9.06</td>
<td>TT06.G4.56.229.2</td>
<td>5b</td>
<td>everted</td>
<td>5b</td>
<td>rim hatch, stacked zigzag (OMDS)</td>
<td></td>
</tr>
<tr>
<td>9.07</td>
<td>TT04.G4.55.32.5</td>
<td>5b</td>
<td>T-shaped</td>
<td>1b</td>
<td>solid rim band</td>
<td></td>
</tr>
<tr>
<td>9.08</td>
<td>TT07.G4.55.243.7</td>
<td>5b</td>
<td>misc</td>
<td>misc</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>9.09</td>
<td>TT05.G4.55.126.22</td>
<td>5a</td>
<td>body sherds</td>
<td>na</td>
<td>spiral, dots around solid dot center</td>
<td></td>
</tr>
<tr>
<td>9.10</td>
<td>TT04.G4.55.32.6</td>
<td>5b</td>
<td>oval</td>
<td>4</td>
<td>band</td>
<td></td>
</tr>
<tr>
<td>9.11</td>
<td>TT06.G4.55.201.6</td>
<td>5a</td>
<td>body sherds</td>
<td>na</td>
<td>spiral</td>
<td></td>
</tr>
<tr>
<td>9.12</td>
<td>TT07.G4.55.243.18</td>
<td>5b</td>
<td>everted</td>
<td>5a</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>9.13</td>
<td>TT04.G4.55.36.13</td>
<td>5b</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>9.14</td>
<td>TT05.G4.55.126.21</td>
<td>5a</td>
<td>body sherds</td>
<td>na</td>
<td>spiral, open</td>
<td></td>
</tr>
<tr>
<td>9.15</td>
<td>TT04.G4.55.30.1</td>
<td>5b</td>
<td>body sherds</td>
<td>na</td>
<td>anthropomorphic figure</td>
<td></td>
</tr>
<tr>
<td>9.16</td>
<td>TT06.G4.55.161.12</td>
<td>5a</td>
<td>body sherds</td>
<td>na</td>
<td>stacked zigzag, band</td>
<td></td>
</tr>
<tr>
<td>9.17</td>
<td>TT04.G4.55.26.xx</td>
<td>5b</td>
<td>body sherds</td>
<td>na</td>
<td>spiral, open</td>
<td></td>
</tr>
<tr>
<td>9.18</td>
<td>TT07.G4.55.243.25</td>
<td>5b</td>
<td>body sherds</td>
<td>na</td>
<td>cross hatch</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>10.01</td>
<td>TT05.G4.65.68.1</td>
<td>5a</td>
<td>oval</td>
<td>4</td>
<td>rim hatch, semicircles, stacked zigzag (OMDS)</td>
<td></td>
</tr>
<tr>
<td>10.02</td>
<td>TT06.G4.55.178.2</td>
<td>5a</td>
<td>everted</td>
<td>5c</td>
<td>rim hatch, stacked zigzag, solid triangles</td>
<td></td>
</tr>
<tr>
<td>10.03</td>
<td>TT06.G4.55.185.37</td>
<td>5a</td>
<td>triangular</td>
<td>3a</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>10.04</td>
<td>TT06.G4.55.197.14</td>
<td>5a</td>
<td>triangular</td>
<td>3a</td>
<td>band</td>
<td></td>
</tr>
<tr>
<td>10.05</td>
<td>TT06.G4.55.192.9</td>
<td>5a</td>
<td>triangular</td>
<td>3b</td>
<td>solid rim band</td>
<td></td>
</tr>
<tr>
<td>10.06</td>
<td>TT06.G4.55.185.32</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>stacked zigzag, bands</td>
<td></td>
</tr>
<tr>
<td>10.07</td>
<td>TT05.G4.55.141.21</td>
<td>5a</td>
<td>T-shaped</td>
<td>1b</td>
<td>bands</td>
<td></td>
</tr>
<tr>
<td>10.08</td>
<td>TT04.G4.55.21.16</td>
<td>5a</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>10.09</td>
<td>TT06.G4.55.201.2</td>
<td>5a</td>
<td>square/rect</td>
<td>2</td>
<td>plain</td>
<td></td>
</tr>
<tr>
<td>10.10</td>
<td>TT05.G4.55.126.20</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>bands, handle hatch</td>
<td></td>
</tr>
<tr>
<td>10.11</td>
<td>TT06.G4.55.158.1</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>wavy line, bands</td>
<td></td>
</tr>
<tr>
<td>10.12</td>
<td>TT04.G4.55.30.5</td>
<td>5b</td>
<td>body sherd</td>
<td>na</td>
<td>bands handle hatch</td>
<td></td>
</tr>
<tr>
<td>10.13</td>
<td>TT06.G4.55.185.39</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>band, handle hatch</td>
<td></td>
</tr>
<tr>
<td>10.14</td>
<td>TT05.G4.55.133.49</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>bird, vertical strokes</td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td>TT06.G4.55.163.29</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>stacked zigzag, solid triangles (OMDS)</td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>TT04.G4.55.21.1</td>
<td>5a</td>
<td>body sherd</td>
<td>na</td>
<td>spiral, dot center</td>
<td></td>
</tr>
</tbody>
</table>
Plate 10. Kraters, Tell Tayinat, Field Phase 5
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.01</td>
<td>TT05.G4.55.79.1</td>
<td>4</td>
<td>inverted</td>
<td>6</td>
<td>plain</td>
</tr>
<tr>
<td>11.02</td>
<td>TT05.G4.55.104.2</td>
<td>4</td>
<td>body sherd</td>
<td>na</td>
<td>stacked zigzag (OMDS), bands</td>
</tr>
<tr>
<td>11.03</td>
<td>TT05.G4.55.107.11</td>
<td>4</td>
<td>everted</td>
<td>5b</td>
<td>plain</td>
</tr>
<tr>
<td>11.04</td>
<td>TT05.G4.55.134.1</td>
<td>4</td>
<td>body sherd</td>
<td>na</td>
<td>latticed triangles</td>
</tr>
<tr>
<td>11.05</td>
<td>TT05.G4.55.119.2</td>
<td>4</td>
<td>body sherd</td>
<td>na</td>
<td>spiral, bands</td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>12.01</td>
<td>TT04.G4.55.23.5</td>
<td>3</td>
<td>triangular</td>
<td>3b</td>
<td>band</td>
</tr>
<tr>
<td>12.02</td>
<td>TT05.G4.55.78.2</td>
<td>3</td>
<td>misc</td>
<td>misc</td>
<td>plain</td>
</tr>
<tr>
<td>12.03</td>
<td>TT04.G4.55.13.15</td>
<td>3</td>
<td>triangular</td>
<td>3a</td>
<td>rim hatch, hanging semicircles</td>
</tr>
<tr>
<td>12.04</td>
<td>TT04.G4.55.13.2</td>
<td>3</td>
<td>misc</td>
<td>misc</td>
<td>rim hatch, stacked zigzag</td>
</tr>
<tr>
<td>12.05</td>
<td>TT04.G4.55.11.16</td>
<td>3</td>
<td>misc</td>
<td>misc</td>
<td>band</td>
</tr>
<tr>
<td>12.06</td>
<td>TT05.G4.55.87.1</td>
<td>3</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
</tr>
<tr>
<td>12.07</td>
<td>TT04.G4.55.17.18</td>
<td>3</td>
<td>T-shaped</td>
<td>1a</td>
<td>solid triangles, bands</td>
</tr>
<tr>
<td>12.08</td>
<td>TT04.G4.55.17.9</td>
<td>3</td>
<td>misc</td>
<td>misc</td>
<td>rim band, wavy line, band</td>
</tr>
<tr>
<td>12.09</td>
<td>TT05.G4.55.116.22</td>
<td>3</td>
<td>body sherd</td>
<td>na</td>
<td>handle band</td>
</tr>
<tr>
<td>12.10</td>
<td>TT05.G4.55.95.9</td>
<td>3</td>
<td>triangular</td>
<td>3a</td>
<td>stacked zigzag, band</td>
</tr>
<tr>
<td>12.11</td>
<td>TT04.G4.55.61.2</td>
<td>3</td>
<td>everted</td>
<td>5a</td>
<td>plain</td>
</tr>
<tr>
<td>12.12</td>
<td>TT05.G4.55.116.3</td>
<td>3</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
</tr>
<tr>
<td>12.13</td>
<td>TT04.G4.55.13.24</td>
<td>3</td>
<td>body sherd</td>
<td>na</td>
<td>spirals, open, bands</td>
</tr>
<tr>
<td>12.14</td>
<td>TT05.G4.55.116.1</td>
<td>3</td>
<td>oval</td>
<td>4</td>
<td>plain</td>
</tr>
<tr>
<td>12.15</td>
<td>TT05.G4.55.78.18</td>
<td>3</td>
<td>triangular</td>
<td>3a</td>
<td>rim hatch, bands</td>
</tr>
</tbody>
</table>
Plate 12. Kraters, Tell Tayinat, Field Phase 3
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.01</td>
<td>TT06.G4.55.144.5</td>
<td>2</td>
<td>triangular</td>
<td>3a</td>
<td>bands</td>
</tr>
<tr>
<td>13.02</td>
<td>TT05.G4.55.122.1</td>
<td></td>
<td>balk T-shaped</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>13.03</td>
<td>TT04.G4.55.63.12</td>
<td>1</td>
<td>body sherd</td>
<td>na</td>
<td>spiral, open, bands</td>
</tr>
<tr>
<td>13.04</td>
<td>TT04.G4.55.63.7</td>
<td></td>
<td>body sherd</td>
<td>na</td>
<td>stacked zigzag, bands</td>
</tr>
<tr>
<td>13.05</td>
<td>TT06.G4.55.145.31</td>
<td>2</td>
<td>triangular</td>
<td>3a</td>
<td>rim hatch, bands</td>
</tr>
<tr>
<td>13.06</td>
<td>TT04.G4.55.64.5</td>
<td></td>
<td>balk rounded</td>
<td>7</td>
<td>plain</td>
</tr>
<tr>
<td>13.07</td>
<td>OI.A.108825</td>
<td>na</td>
<td>oval</td>
<td>4</td>
<td>rim hatch, wavy line, semicircles</td>
</tr>
<tr>
<td>13.08</td>
<td>OI.A.108377</td>
<td>na</td>
<td>body sherd</td>
<td>na</td>
<td>double axe</td>
</tr>
<tr>
<td>13.09</td>
<td>OI.A.104983</td>
<td>na</td>
<td>body sherd</td>
<td>na</td>
<td>8-spoke rosette</td>
</tr>
<tr>
<td>13.10</td>
<td>OI.A.104592</td>
<td>na</td>
<td>body sherd</td>
<td>na</td>
<td>cross lozenge</td>
</tr>
<tr>
<td>13.11</td>
<td>OI.A.104652</td>
<td>na</td>
<td>body sherd</td>
<td>na</td>
<td>bird</td>
</tr>
<tr>
<td>13.12</td>
<td>OI.A.108364</td>
<td>na</td>
<td>body sherd</td>
<td>na</td>
<td>unidentified</td>
</tr>
<tr>
<td>13.13</td>
<td>OI.A.141288</td>
<td>na</td>
<td>triangular</td>
<td>3b</td>
<td>4-spoke rosette, triglyph</td>
</tr>
</tbody>
</table>
Plate 13. Kraters, Tell Tayinat, Secondary contexts (1-6), Syrian-Hittite Expedition (7-13)
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01</td>
<td>TT07.G4.55.245.8</td>
<td>6b</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>plain</td>
</tr>
<tr>
<td>14.02</td>
<td>TT07.G4.55.254.2</td>
<td>6b</td>
<td>everted</td>
<td>rounded</td>
<td>5b</td>
<td>plain</td>
</tr>
<tr>
<td>14.03</td>
<td>TT07.G4.55.242.3</td>
<td>6b</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>14.04</td>
<td>TT07.G4.55.245.5</td>
<td>6b</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>plain</td>
</tr>
<tr>
<td>14.05</td>
<td>TT07.G4.55.242.15</td>
<td>6b</td>
<td>everted</td>
<td>rounded</td>
<td>5b</td>
<td>bands, rim hatch</td>
</tr>
<tr>
<td>14.06</td>
<td>TT06.G4.55.229.2</td>
<td>6b</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>14.07</td>
<td>TT07.G4.55.241.7</td>
<td>6b</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>plain</td>
</tr>
<tr>
<td>14.08</td>
<td>TT07.G4.55.260.1</td>
<td>6b</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>bands</td>
</tr>
<tr>
<td>14.09</td>
<td>TT07.G4.55.238.9</td>
<td>6b</td>
<td>everted</td>
<td>flat</td>
<td>7b</td>
<td>bands, rim hatch</td>
</tr>
<tr>
<td>14.10</td>
<td>TT07.G4.55.238.11a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spiral, open</td>
</tr>
<tr>
<td>14.11</td>
<td>TT08.G4.56.406.1</td>
<td>6b</td>
<td>everted</td>
<td>flat</td>
<td>7b</td>
<td>necklace, herringbone, latticed triangles</td>
</tr>
<tr>
<td>14.12</td>
<td>TT07.G4.55.237.7</td>
<td>6b</td>
<td>everted</td>
<td>flat</td>
<td>7b</td>
<td>parallel handle lines</td>
</tr>
<tr>
<td>14.13</td>
<td>TT07.G4.55.242.18</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>rosette, spiral (?)</td>
</tr>
<tr>
<td>14.14</td>
<td>TT08.G4.56.382.3</td>
<td>6c</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>latticed triangles</td>
</tr>
<tr>
<td>14.15</td>
<td>TT07.G4.55.242.11</td>
<td>6b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>necklace</td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Stance</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>15.01</td>
<td>TT04.G4.55.45.1</td>
<td>6a</td>
<td>vertical</td>
<td>profiled</td>
<td>3a</td>
<td>plain</td>
</tr>
<tr>
<td>15.02</td>
<td>TT06.G4.55.204.1b</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spirals, open</td>
</tr>
<tr>
<td>15.03</td>
<td>TT06.G4.55.204.1a</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spirals, open, interlocking handle bands</td>
</tr>
<tr>
<td>15.04</td>
<td>TT06.G4.55.225.3</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>wavy handle band</td>
</tr>
<tr>
<td>15.05</td>
<td>TT05.G4.55.52.22</td>
<td>6a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>plain</td>
</tr>
<tr>
<td>15.06</td>
<td>TT04.G4.55.62.7</td>
<td>6a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>band</td>
</tr>
<tr>
<td>15.07</td>
<td>TT06.G4.55.231.2</td>
<td>6a</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>bands</td>
</tr>
<tr>
<td>15.08</td>
<td>TT06.G4.55.199.1</td>
<td>6a</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>15.09</td>
<td>TT06.G4.55.213.62</td>
<td>6a</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>bands</td>
</tr>
<tr>
<td>15.10</td>
<td>TT04.G4.55.52.72</td>
<td>6a</td>
<td>everted</td>
<td>rounded</td>
<td>5b</td>
<td>bands</td>
</tr>
<tr>
<td>15.11</td>
<td>TT06.G4.55.232.1</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spiral, bands</td>
</tr>
<tr>
<td>15.12</td>
<td>TT06.G4.56.249.143</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>handle hook</td>
</tr>
<tr>
<td>15.13</td>
<td>TT06.G4.55.151.2</td>
<td>6a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>handle hook</td>
</tr>
</tbody>
</table>
Plate 15. Amphorae/Jars, Tell Tayinat, Field Phase 6
Amphorae and Jars

<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01</td>
<td>TT07.G4.55.243.26</td>
<td>5b</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>plain</td>
</tr>
<tr>
<td>16.02</td>
<td>TT06.G4.55.209.2</td>
<td>5b</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>plain</td>
</tr>
<tr>
<td>16.03</td>
<td>TT04.G4.55.33.53</td>
<td>5b</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>16.04</td>
<td>TT04.G4.55.50.1</td>
<td>5b</td>
<td>vertical</td>
<td>rounded</td>
<td>5a</td>
<td>interlocking handle bands, bands</td>
</tr>
<tr>
<td>16.05</td>
<td>TT04.G4.55.31.74</td>
<td>5b</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>bands</td>
</tr>
<tr>
<td>16.06</td>
<td>TT04.G4.55.35.4</td>
<td>5b</td>
<td>everted</td>
<td>oval</td>
<td>1a</td>
<td>bands</td>
</tr>
<tr>
<td>16.07</td>
<td>TT04.G4.55.35.1</td>
<td>5b</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>16.08</td>
<td>TT04.G4.55.35.57</td>
<td>5b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spirals? interlocking handle bands</td>
</tr>
<tr>
<td>16.09</td>
<td>TT04.G4.55.31.59</td>
<td>5b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spiral</td>
</tr>
<tr>
<td>16.10</td>
<td>TT06.G4.55.184.8</td>
<td>5b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>bands</td>
</tr>
<tr>
<td>16.11</td>
<td>TT06.G4.56.228.56</td>
<td>5b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>rosette and spiral, open</td>
</tr>
<tr>
<td>16.12</td>
<td>TT06.G4.55.227.1</td>
<td>5b</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>stemmed spiral, open</td>
</tr>
<tr>
<td>Plate</td>
<td>Registration</td>
<td>FP</td>
<td>Stance</td>
<td>Shape</td>
<td>Type</td>
<td>Motif</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>17.01</td>
<td>TT04.G4.55.29.55</td>
<td>5a</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>bands, handle hooks, triglyph</td>
</tr>
<tr>
<td>17.02</td>
<td>TT04.G4.55.29.10</td>
<td>5a</td>
<td>everted</td>
<td>simple</td>
<td>6b</td>
<td>bands</td>
</tr>
<tr>
<td>17.03</td>
<td>TT04.G4.55.24.73</td>
<td>5a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>bands</td>
</tr>
<tr>
<td>17.04</td>
<td>TT04.G4.55.20.39</td>
<td>5a</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>bands</td>
</tr>
<tr>
<td>17.05</td>
<td>TT06.G4.55.175.8</td>
<td>5a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>plain</td>
</tr>
<tr>
<td>17.06</td>
<td>TT05.G4.55.129.2</td>
<td>5a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spiral, open</td>
</tr>
<tr>
<td>17.07</td>
<td>TT06.G4.55.192.10</td>
<td>5a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>band</td>
</tr>
</tbody>
</table>
Plate 17. Amphorae/Jars, Tell Tayinat, Field Phase 5
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.01</td>
<td>TT05.G4.55.140.11</td>
<td>5a</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>plain</td>
</tr>
<tr>
<td>18.02</td>
<td>TT04.G4.55.24.53</td>
<td>5a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>plain</td>
</tr>
<tr>
<td>18.03</td>
<td>TT04.G4.55.22.1</td>
<td>5a</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>18.04</td>
<td>TT06.G4.55.183.1</td>
<td>5a</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>18.05</td>
<td>TT05.G4.55.136.1</td>
<td>5a</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>18.06</td>
<td>TT04.G4.55.21.17</td>
<td>5a</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>plain</td>
</tr>
<tr>
<td>18.07</td>
<td>TT05.G4.55.126.9</td>
<td>5a</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>18.08</td>
<td>TT04.G4.55.28.4</td>
<td>5a</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>18.09</td>
<td>TT04.G4.55.24.29</td>
<td>5a</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>bands</td>
</tr>
<tr>
<td>18.10</td>
<td>TT06.G4.55.161.4</td>
<td>5a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>interlocking handle bands</td>
</tr>
<tr>
<td>18.11</td>
<td>TT05.G4.55.136.19</td>
<td>5a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>interlocking handle bands</td>
</tr>
<tr>
<td>18.12</td>
<td>TT06.G4.55.161.1</td>
<td>5a</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>interlocking handle bands</td>
</tr>
</tbody>
</table>
Plate 18. Amphorae/Jars, Tell Tayinat, Field Phase 5
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.01</td>
<td>TT06.G4.55.181.1</td>
<td>4</td>
<td>vertical</td>
<td>profiled</td>
<td>3a</td>
<td>plain</td>
</tr>
<tr>
<td>19.02</td>
<td>TT06.G4.55.172.1</td>
<td>4</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>plain</td>
</tr>
<tr>
<td>19.03</td>
<td>TT04.G4.55.65.13</td>
<td>4</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>bands</td>
</tr>
<tr>
<td>19.04</td>
<td>TT05.G4.55.138.2</td>
<td>4</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>19.05</td>
<td>TT06.G4.55.182.2</td>
<td>4</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>bands</td>
</tr>
<tr>
<td>19.06</td>
<td>TT05.G4.55.142.2</td>
<td>4</td>
<td>vertical</td>
<td>hollow</td>
<td>4a</td>
<td>bands</td>
</tr>
<tr>
<td>19.07</td>
<td>TT05.G4.55.119.3</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>band, spirals, open</td>
</tr>
<tr>
<td>19.08</td>
<td>TT05.G4.55.142.3</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>interlocking handle bands</td>
</tr>
<tr>
<td>19.09</td>
<td>TT05.G4.55.104.34</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>stripes</td>
</tr>
<tr>
<td>19.10</td>
<td>TT05.G4.55.119.9</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>parallel lines</td>
</tr>
<tr>
<td>19.11</td>
<td>TT05.G4.55.104.5</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>interlocking handle bands</td>
</tr>
<tr>
<td>19.12</td>
<td>TT06.G4.56.190.8</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>parallel lines</td>
</tr>
</tbody>
</table>
Plate 19. Amphorae/Jars, Tell Tayinat, Field Phase 4
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01</td>
<td>TT05.G4.55.121.2</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>bands, wavey line, spiral</td>
</tr>
<tr>
<td>20.02</td>
<td>TT05.G4.55.94.6</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>20.03</td>
<td>TT05.G4.55.94.25</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>20.04</td>
<td>TT05.G4.55.68.25</td>
<td>3</td>
<td>everted</td>
<td>profiled</td>
<td>3b</td>
<td>bands</td>
</tr>
<tr>
<td>20.05</td>
<td>TT04.G4.55.11.5</td>
<td>3</td>
<td>vertical</td>
<td>hollow</td>
<td>4a</td>
<td>band</td>
</tr>
<tr>
<td>20.06</td>
<td>TT05.G4.55.81.1</td>
<td>3</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>20.07</td>
<td>TT04.G4.55.15.27</td>
<td>3</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>bands</td>
</tr>
<tr>
<td>20.08</td>
<td>TT05.G4.55.92.1</td>
<td>3</td>
<td>everted</td>
<td>oval</td>
<td>1b</td>
<td>bands</td>
</tr>
<tr>
<td>20.09</td>
<td>TT06.G4.55.174.7</td>
<td>3</td>
<td>everted</td>
<td>profile</td>
<td>3b</td>
<td>bands</td>
</tr>
<tr>
<td>20.10</td>
<td>TT05.G4.55.81.2</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>20.11</td>
<td>TT05.G4.55.83.24</td>
<td>3</td>
<td>vertical</td>
<td>profiled</td>
<td>3a</td>
<td>plain</td>
</tr>
<tr>
<td>20.12</td>
<td>TT05.G4.55.100.30</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>plain</td>
</tr>
<tr>
<td>20.13</td>
<td>TT04.G4.55.11.9</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>bands, parallel handle bands</td>
</tr>
<tr>
<td>20.14</td>
<td>OI.A104651</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spirals, running open, bands</td>
</tr>
<tr>
<td>20.15</td>
<td>OI.A132756</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>wavy line, cross hatch triangles</td>
</tr>
</tbody>
</table>
Plate 20. Amphorae/Jars, Tell Tayinat, Field Phase 3, Unstratified (14, 15)
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>FP</th>
<th>Stance</th>
<th>Shape</th>
<th>Type</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.01</td>
<td>TT05.G4.55.91.40</td>
<td>3</td>
<td>everted</td>
<td>simple</td>
<td>6b</td>
<td>bands, handle band</td>
</tr>
<tr>
<td>21.02</td>
<td>TT05.G4.55.83.34</td>
<td>3</td>
<td>vertical</td>
<td>triangular</td>
<td>2a</td>
<td>bands</td>
</tr>
<tr>
<td>21.03</td>
<td>TT05.G4.55.95.88</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>21.04</td>
<td>TT04.G4.55.11.8</td>
<td>3</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>bands</td>
</tr>
<tr>
<td>21.05</td>
<td>TT04.G4.55.13.22</td>
<td>3</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>21.06</td>
<td>TT04.G4.55.11.26</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>21.07</td>
<td>TT04.G4.55.11.27</td>
<td>3</td>
<td>vertical</td>
<td>profiled</td>
<td>3a</td>
<td>plain</td>
</tr>
<tr>
<td>21.08</td>
<td>TT04.G4.55.13.23</td>
<td>3</td>
<td>everted</td>
<td>triangular</td>
<td>2b</td>
<td>bands</td>
</tr>
<tr>
<td>21.10</td>
<td>TT06.G4.55.164.4</td>
<td>3</td>
<td>vertical</td>
<td>hollow</td>
<td>4b</td>
<td>band</td>
</tr>
<tr>
<td>21.11</td>
<td>TT04.G4.55.12.18</td>
<td>3</td>
<td>vertical</td>
<td>oval</td>
<td>1a</td>
<td>plain</td>
</tr>
<tr>
<td>21.12</td>
<td>TT05.G4.55.112.9</td>
<td>3</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>21.13</td>
<td>TT05.G4.55.125.2</td>
<td>2</td>
<td>everted</td>
<td>hollow</td>
<td>4b</td>
<td>plain</td>
</tr>
<tr>
<td>21.14</td>
<td>TT05.G4.55.101.13</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>handle hook</td>
</tr>
<tr>
<td>21.15</td>
<td>TT04.G4.55.13.46</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>spiral</td>
</tr>
<tr>
<td>21.16</td>
<td>TT04.G4.55.64.12</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>stemmed spiral, open</td>
</tr>
</tbody>
</table>
Plate 21. Amphorae/Jars, Tell Tayinat, Field Phase 3
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>Type</th>
<th>FP</th>
<th>Color</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.01</td>
<td>TT06.G4.56.217.39</td>
<td>trefoil jug</td>
<td>6a</td>
<td>ROP</td>
<td>bands, handle hatch</td>
</tr>
<tr>
<td>22.02</td>
<td>TT08.G4.56.382.8</td>
<td>pilgrim flask</td>
<td>6c</td>
<td>ROP</td>
<td>concentric circles</td>
</tr>
<tr>
<td>22.03</td>
<td>TT08.G4.56.317.1074</td>
<td>goblet/mug</td>
<td>6b</td>
<td>BOW</td>
<td>stacked zigzag (OMDS)</td>
</tr>
<tr>
<td>22.04</td>
<td>OI.A107652</td>
<td>pot-stand</td>
<td>na</td>
<td>ROP</td>
<td>stacked zigzag (OMDS)</td>
</tr>
<tr>
<td>22.05</td>
<td>TT05.G4.55.84.32</td>
<td>feeding bottle</td>
<td>3</td>
<td>ROP</td>
<td>bands</td>
</tr>
<tr>
<td>22.06</td>
<td>TT06.G4.55.235.99</td>
<td>feeder spout</td>
<td>5b</td>
<td>ROP</td>
<td>bands</td>
</tr>
<tr>
<td>22.07</td>
<td>OI.A104928</td>
<td>body sherd</td>
<td>na</td>
<td>ROP</td>
<td>necklace, bands</td>
</tr>
<tr>
<td>22.08</td>
<td>TT05.G4.55.126.23</td>
<td>body sherd</td>
<td>5a</td>
<td>bichrome</td>
<td>necklace, bands</td>
</tr>
<tr>
<td>22.09</td>
<td>TT06.G4.55.149.47</td>
<td>body sherd</td>
<td>2</td>
<td>BROW</td>
<td>necklace, bands</td>
</tr>
<tr>
<td>22.10</td>
<td>OI.A132757</td>
<td>body sherd</td>
<td>na</td>
<td>ROP</td>
<td>necklace, bands</td>
</tr>
</tbody>
</table>
Plate 22. Miscellaneous Forms and Sherds, Tell Tayinat

Syrian-Hittite Expedition (OI-107652)
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>Type</th>
<th>FP</th>
<th>Color</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.01</td>
<td>TT05.G4.55.133.47</td>
<td>body sherd</td>
<td>5a</td>
<td>BOW</td>
<td>wavy line, bands, mono int</td>
</tr>
<tr>
<td>23.02</td>
<td>TT04.G4.55.61.12</td>
<td>body sherd</td>
<td>3</td>
<td>ROP</td>
<td>wavy line, bands</td>
</tr>
<tr>
<td>23.03</td>
<td>TT04.G4.55.22.2</td>
<td>body sherd</td>
<td>5a</td>
<td>ROP</td>
<td>wavy lines, bands</td>
</tr>
<tr>
<td>23.04</td>
<td>TT05.G4.55.130.27</td>
<td>body sherd</td>
<td>5a</td>
<td>BrOW</td>
<td>vertical wavy line, handle hook</td>
</tr>
<tr>
<td>23.05</td>
<td>TT04.G4.55.51.49</td>
<td>body sherd</td>
<td>6a</td>
<td>ROP</td>
<td>cross-hatch</td>
</tr>
<tr>
<td>23.06</td>
<td>TT04.G4.55.33.68</td>
<td>body sherd</td>
<td>5b</td>
<td>ROP</td>
<td>latticed triangle</td>
</tr>
<tr>
<td>23.07</td>
<td>TT06.G4.55.198.1</td>
<td>body sherd</td>
<td>5b</td>
<td>ROP</td>
<td>latticed triangle</td>
</tr>
<tr>
<td>23.08</td>
<td>TT04.G4.55.62.2</td>
<td>body sherd</td>
<td>6a</td>
<td>ROP</td>
<td>latticed triangle</td>
</tr>
<tr>
<td>23.09</td>
<td>TT05.G4.55.116.4</td>
<td>body sherd</td>
<td>3</td>
<td>BrOW</td>
<td>latticed triangle</td>
</tr>
<tr>
<td>23.10</td>
<td>TT06.G4.55.231.5</td>
<td>body sherd</td>
<td>6a</td>
<td>ROP</td>
<td>latticed triangle</td>
</tr>
<tr>
<td>23.11</td>
<td>TT05.G4.55.130.28</td>
<td>body sherd</td>
<td>5a</td>
<td>BOW</td>
<td>rosette?</td>
</tr>
<tr>
<td>23.12</td>
<td>TT05.G4.55.77.2</td>
<td>body sherd</td>
<td>1</td>
<td>BOW</td>
<td>handle hook</td>
</tr>
<tr>
<td>23.13</td>
<td>TT05.G4.55.98.1</td>
<td>body sherd</td>
<td>4</td>
<td>ROP</td>
<td>spiral, open</td>
</tr>
<tr>
<td>23.14</td>
<td>TT04.G4.55.35.37</td>
<td>body sherd</td>
<td>5b</td>
<td>BrOW</td>
<td>spiral, open</td>
</tr>
<tr>
<td>23.15</td>
<td>TT06.G4.55.151.1</td>
<td>body sherd</td>
<td>6a</td>
<td>ROP</td>
<td>bands, handle hook</td>
</tr>
</tbody>
</table>
Plate 23. Miscellaneous Forms and Sherds, Tell Tayinat
<table>
<thead>
<tr>
<th>Plate</th>
<th>Registration</th>
<th>Type</th>
<th>FP</th>
<th>Color</th>
<th>Motif</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.01</td>
<td>TT06.G4.66.95.458</td>
<td>cooking pot</td>
<td>5a</td>
<td>pink</td>
<td>na</td>
</tr>
<tr>
<td>24.02</td>
<td>TT06.G4.66.129.1</td>
<td>cooking pot</td>
<td>5a</td>
<td>pink</td>
<td>na</td>
</tr>
<tr>
<td>24.03</td>
<td>TT05.G4.55.142.1</td>
<td>cooking pot</td>
<td>4</td>
<td>light brown</td>
<td>na</td>
</tr>
<tr>
<td>24.04</td>
<td>TT04.G4.55.33.32</td>
<td>cooking pot</td>
<td>5b</td>
<td>pink</td>
<td>na</td>
</tr>
<tr>
<td>24.05</td>
<td>Swift.fig.27G</td>
<td>body sherd</td>
<td>na</td>
<td>unknown</td>
<td>stemmed spiral, herringbone</td>
</tr>
<tr>
<td>24.06</td>
<td>OI.A105096</td>
<td>body sherd</td>
<td>na</td>
<td>ROP</td>
<td>herringbone</td>
</tr>
<tr>
<td>24.07</td>
<td>TT04.G4.55.18.2</td>
<td>body sherd</td>
<td>3</td>
<td>ROP</td>
<td>stacked zigzag (OMDS)</td>
</tr>
<tr>
<td>24.08</td>
<td>TT05.G4.55.121.3</td>
<td>body sherd</td>
<td>3</td>
<td>BOW</td>
<td>solid triangle</td>
</tr>
<tr>
<td>24.09</td>
<td>OI.A108127</td>
<td>body sherd</td>
<td>na</td>
<td>BOP</td>
<td>herringbone</td>
</tr>
<tr>
<td>24.10</td>
<td>TT05.G4.55.134.2</td>
<td>body sherd</td>
<td>4</td>
<td>BrOW</td>
<td>alternating hatch</td>
</tr>
<tr>
<td>24.11</td>
<td>TT04.G4.55.26.10</td>
<td>body sherd</td>
<td>5a</td>
<td>BrOW</td>
<td>stacked zigzag (OMDS)</td>
</tr>
<tr>
<td>24.12</td>
<td>TT11.G4.56.727.16</td>
<td>body sherd</td>
<td>7</td>
<td>pink</td>
<td>herringbone (incised), EB</td>
</tr>
</tbody>
</table>
Plate 24. Miscellaneous Forms and Sherds, Tell Tayinat