Protocol Parameter Optimization and Characterization of Superconducting Nanowire Single Photon Detector

by

He Xu

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright © 2014 by He Xu
Abstract
Protocol Parameter Optimization and Characterization of Superconducting Nanowire Single Photon Detector

He Xu
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto
2014

The unconditional security of QKD is based on quantum physics. However, unconditional security, which relies on reasonable assumptions, is not the same as absolute security, which make no assumptions, and QC protocols can be breached by means of side channels. Recently, Measurement Device Independent QKD (MDI-QKD) has been proposed to remove the side channels.

In parallel to improving performance by optimization, superconducting Nanowire Single Photon Detector (SNSPD) has emerged among others as a promising technology. In this thesis, we present a characterization procedure of SNSPD, and we report the important finding of the phenomenon of afterpulse”, which is a clustered detection event at 180ns after a first event in a chain. Then, we postulate that the origin of this afterpulse is from the limited bandwidth of the amplifier. By replacing the amplifiers with those with a larger bandwidth, the phenomenon of afterpulse disappears.
Acknowledgements

First, I thanks my supervisor Professor Hoi-Kwong Lo, who guided me and provided me with the resources enabling the publication of this thesis. Over the years of my M.A.Sc degree, his continuing support has transformed me from a mediocre student to an into-the-field person.

The second token of thank goes to a collection of my prestige colleagues: Viacheslav Burenkov, Feihu Xu and Zhiyuan Tang. The have offered support in a number of facets to my thesis.

Next, I would like to thank my old committee members, Professor Joyce Poon and Professor Lacra Pavel and a new committee member, Professor Amr S. Helmy. From the beginning of my proposal to the end of my thesis, their spiritual help to me has been a indisposabale support to aid me going forward.

Last but not least, I would like to thank my family and all those who helped me getting through. I have left out many individuals who supported me, but I greatly appreciate their assistance.
Contents

1 Introduction 1
 1.1 Motivation 1
 1.2 Quantum Key Distribution in General . 2
 1.3 Measurement Device Independent QKD . 2
 1.4 Protocol Optimization 4
 1.5 SSPD as a Better Device 4
 1.6 Significance and Outline 5
 1.7 Publications Related to This Work 6

2 Basics of Quantum Key Distribution (QKD) 8
 2.1 BB84 Protocol 8
 2.2 Decoy States 10
 2.3 Decoy State MDI-QKD 13
 2.4 Convex Optimization 15
 2.4.1 Exhaustive Search 16
 2.4.2 Local Search 17
 2.5 Superconducting Nanowire Single Photon Detector . 19
 2.5.1 Detection Efficiency 19
 2.5.2 Dark Count Rate 19
 2.5.3 Dead Time 20
 2.5.4 Timing Jitter 20
 2.5.5 Afterpulsing 20
 2.5.6 Number Resolving Detector VS. Threshold Detector . 21

3 Protocol Parameter Optimization 22
 3.1 Convex Topology 23
 3.2 Computational Resource 23
List of Tables

2.1 BB84 protocol Demonstration of the BB84 at each of the stages. Bit Sequence are classical information encoded onto the rectilinear or diagonal basis of the polarization qubits. The sifted data are again classical information resulting from classical postprocessing of raw data .. 12

3.1 Parameters and Constants, η_d: detection efficiency; e_d: misalignment error; Y_0: background rate; f_e: efficiency of error correction; ϵ: security parameter; N: number of signal; Parameters are from QKD experiment [1]. In the experiment, two SPDs are used. We assume four SPDs in MDI-QKD have identical η_d and Y_0 .. 22

3.2 Speed and Accuracy Comparison, Simulation is on MDI-QKD with two decoy-state numerical approach on a standard desktop computer. A full optimization on eight dimension (intensity and probability) is performed. ω is fixed at a near optimal $\omega=0.0005$. The grid for exhaustive search is 10 points per dimension for a total of 10^7 iteration. ©2014 APS 24

3.3 Comparison of parameters at 50km standard fiber. More general comparison results are shown in Fig. 3.3. The 2nd column is the optimal parameters after a full parameter optimization. The 3rd and 4th columns are respectively the parameters from Refs. [2] and [3]. We can see that full optimization can improve the key rate R over one order of magnitude over the non-full-optimization of Refs. [2, 3]. This improvement mainly comes from optimizing the choices of intensities and probabilities. Notice that for the smallest decoy-state ω, modulating the optimal value of around 10^{-6} is usually difficult in decoy-state QKD experiments [4, 5, 6, 7]. However, we find that as long as the intensity of ω is below 1×10^{-3}, the key rate is very close to the optimum. ©2014 APS ... 26
3.4 Key rate values with different basis choices. The key rates are simulated with two decoy states and numerical approach. Unbiased denotes the standard protocol with equal basis choice; Simplified denotes the simplified choice with the (biased) basis choice independent of intensity choice; Optimal denotes the optimal choice with the (biased) basis choice depending on intensity choice. In a large data-set of 10^{18} (approaching asymptotic case), the key rates with optimal choice are around 300% higher than those of unbiased choice and close to those of simplified choice. In a reasonable data-set (10^{12} to 10^{14}), the key rates with optimal choice are around 300% higher than those of unbiased choice and around 200% higher than those of simplified choice. This shows that the optimal choice can significantly increase the key rates in a practical setting with finite data-set. ©2014 APS

3.5 Optimal key values under different number of decoy states. With finite data-set, the key rates with two decoy states are around one order of magnitude higher than the ones with one decoy state. Three decoy states cannot help to improve the key rates. Hence, two decoy states can achieve a near optimal key rate. In the case of two decoy states, the numerical method (Num) can only improve the key around 2% over the ones using our analytical method (Ana). This shows that the two decoy-state analytical method presented in Appendix B can also result in a near optimal estimation. ©2014 APS
List of Figures

2.2 **Flow of BB84 Protocol** Alice and Bob each produce a randomly generated basis sequence, and a randomly generated/measured bit sequence. after sifting, they share a common bitstream 9

2.3 **Setup of MDI-QKD Protocol** WCP: weak coherent pulse; Pol-M: polarization modulator; Decoy-IM: intensity modulator; BS: beam splitter; PBS: polarizing beam splitter; Dx: photo detectors ©2012 Physical Review letters 13

2.4 **Error Contour** e1,e2: one of the dimensions of the optimization. All points on the same ellipse have the same error, where the error of a point is quantified by how far (in Euclidean distance) the point is from the theoretical optimal point. The larger the radius of the ellipse, the larger the error, (again) quantified by the Euclidean distance away from the optimality, the dot represent 0 error or optimality 16

2.5 **Exhaustive Search** e1,e2: one of the dimensions of the optimization. A two dimensional grid as illustration, this algorithm evaluate objective on all of the interior points of the search space 17

2.6 **Local Search** e1,e2: basis of optimization. A two dimensional descent sequence. The error contour structure allow the optimization to evaluate only a small subset of the search space. Here we shown that this subset lies on the descent path of the algorithm ©2014 APS 18

2.7 **Effect of Timing Jitter** The uncertainty of edge transition take away a portion of the period. The actual (useful) period is smaller than the nominal (ideal) period 20
3.1 **Convexity of key rate function**, topology is mapped by sweeping μ and ν, and optimizing other parameters ©2014 APS

3.2 **Key rate comparison with infinite data-set**. The dotted black curve is the perfect key rate with infinite decoy states. The blue solid curve is our optimized key rate using the numerical approach with two decoy states, where the intensities are $\omega=0.0005$, $\nu=0.01$ and optimized μ. For comparison purpose, we present the non-optimized and partially-optimized key rates using the methods and parameters of Refs [2, 3, 9]: the black dashed curve is using [3] with $\omega=0$, $\nu=0.01$ and optimized μ; the red dashed curve is using [9] with $\omega=0.01$, $\nu=0.1$ and $\mu=0.3$; the green dashed curve is using [2] with $\omega=0$, $\nu=0.1$ and $\mu=0.5$. Notice that if the parameter optimization is also applied to Refs [2, 9], all the key rates are almost the same. In the asymptotic case, parameter optimization is simple, as only the intensities are required to be optimized and a smaller value of decoy-state intensity can in principle result in a better estimation. Parameter optimization can still increase the key rate and extend the secure distance. ©2014 APS

3.3 **Practical key rate comparison (with statistical fluctuations)**. The optimal parameters and key rate in the distance of 50km (standard fiber) are shown in Table 3.3. All the key rates are simulated with $N=10^{12}$. The blue solid and red dashed-dotted curves (almost overlapped) are respectively our optimized key rates (after a full optimization) using the numerical (Appendix A) and analytical (Appendix B) methods with two decoy states. The black dashed curve is using the method of Ref. [3], where only partial parameters (ie, the intensities) are optimized. The green dashed curve is using the method of Ref. [2], where some typical parameters are assumed without optimization. Without full parameter optimization, the key rates in Refs [2, 3] are around one order of magnitude lower than ours across different distances. Our method can enable secure MDI-QKD over 25km longer than [2, 3]. These results highlight the importance of parameter optimization in practical decoy-state MDI-QKD. ©2014 APS
3.4 (Color online) Asymptotic key rates with different number of decoy states. The solid curve is the one with infinite decoy states. The dashed, dashed-dotted, dotted curves are respectively the one, two, three decoy-state results using numerical methods (see Appendix A). The signal state μ is optimized in all cases, while some reasonable values of decoy states are adopted: for one decoy state, $\nu=0.0005$; for two decoy states, $\nu=0.01$ and $\omega=0.0005$; for three decoy states, $\nu_1=0.1$, $\nu_2=0.01$ and $\omega=0.0005$. We emphasize that the key rates with analytical methods of Appendix B are almost overlapped with the ones presented in this figure, which shows that the analytical approaches provide a highly good estimation. The estimation using two decoy states gives a nearly similar key rate to the one with three decoy states and is higher than one decoy-state case. Therefore, two decoy states can already result in a near optimal estimation and more decoy states cannot improve the key rate. ©2014 APS

3.5 (Color online) Secret key rate in logarithmic scale as a function of the distance under different number of decoy states. The main figure is for data-set $N=10^{12}$ and the inserted figure is for $N=10^{14}$. The key rates are obtained using numerical methods with one (dashed curve), two (solid curve), three (dashed-dotted curve) decoy states. The key rates with two and three decoy states are almost overlapped. In simulation, we perform a full parameter optimization for all cases. Our results show that after a full parameter optimization, the two decoy-state method can give an almost optimal key rate, which is higher than the one with one decoy state. Three decoy states cannot help to increase the key rate. ©2014 APS

3.6 (b) Key rate as a function of the decoy state ω. As long as the intensity of ω is below 1×10^{-3}, the key rate is very close to the optimum. A perfect vacuum ($\omega=0$) is not essentially required in practical decoy-state QKD experiments. ©2014 APS

3.7 **comparison of the 3 choice of parameter:** simplified, symmetric and fully-optimized the simplified choice results in identical 0 key rate. the symmetric case is close to the fully-optimized result but should be the one adopted in practice. ©2014 APS
4.1 **Physical Mechanism of SNSPD:** An incoming photon results in a local hotspot. The hotspot propagates until the whole nanowire has made a transition from a superconducting state to a normal resistive state. The quenching of the current allows subsequent detections. From [10] ©2013 IOP.

4.2 Schematic set-up of the Superconducting Nanowire Single-Photon Detector (SNSPD) and associated components. Dashed red lines represent optical fiber; solid black lines represent electrical connections. An attenuated polarization-controlled laser provides the optical input to the detector chip. A battery powered voltage source and a 100 kΩ resistor is used to bias the nanowire just below its critical current through one branch of the bias tee. The output electrical signal from the SNSPD is read out using the other branch of the bias tee, and is amplified by the amplifier chain before being detected. The SNSPD is maintained at a stable temperature of 2.4 K inside a closed-cycle refrigerator (Sumitomo RDK101D cold head and CNA11C compressor). The length of the cable between the SNSPD and tee piece for the 50 Ω shunt, and between the SNSPD and the bias tee is about 1.5 m of coaxial cable, almost all of which is inside the cryocooler. PC: polarization controller, BS: beam-splitter, TIA: Time Interval Analyzer.

4.3 Output pulse shape of a single detection click, starting at 30 ns, as observed on an oscilloscope (rugged green line). The observed shape shown is the average of ten pulse shapes to reduce appearance of random noise, but the individual pulse shapes are nearly identical to each other. The dotted black line shows the discrimination voltage level used by the TIA to register a detection event.

4.4 Histogram of waiting time between dark count clicks. An exponential decay fit (blue line) is superimposed on the data points (red dots). The acquisition time was approximately 3 s giving 10,000 detection events in total. The error bars shown are given by the square root of the number of detection events. The first 15 bins are shown. $I_b = 25.0 \mu A$. $I_c = 25.3 \mu A$.

4.5 Histogram of waiting time between dark count clicks, for the first 500 ns after an initial click. Bias current = 25 µA. 100, 000 events total, bin width = 4 ns. $I_b = 25.0 \mu A$. $I_c = 25.3 \mu A$.
4.6 Total DCR and corrected DCR versus bias current. About 10,000 total clicks were acquired for each bias point. At higher bias, the two deviate more due to more prevalent afterpulsing. The error bars for each point are smaller than the size of the marker. $I_c = 25.3 \, \mu A$.

4.7 Afterpulse probability vs bias current. The afterpulsing effect quickly becomes negligible at the bias is reduced away from the very high value of $25.2 \, \mu A$. I_c is about $25.3 \, \mu A$.

4.8 This figure shows how the observed afterpulses start to appear in multiples of clicks as the bias is increased towards the critical value, of about $25.3 \, \mu A$. The $n = 6$ column represents “6 or more” pulses.

4.9 Ratio of $n = 2$ (two clicks with the second being an afterpulse click) to $n = 1$ (single click) in $P(n)$ vs n graphs of Fig. 4.8, at different bias values. $I_c = 25.3 \, \mu A$.

4.10 Histogram of time interval between the laser pulse signal and detection click. Number of total clicks is just over 17 million, almost all of which are concentrated in the first peak at $t = 0$, which corresponds to the detection time of the laser pulses. Laser repetition rate is 0.5 MHz. Photon number $\mu = 10$ photons/pulse. Bin size is 20 ns. $I_c = 24.8 \, \mu A$.

4.11 Detection efficiency recovery graph of our SNSPD. The delay between the two pulses ranges from 80 ns to 1000 ns. Each point is obtained by setting the TIA acquisition time to 30 seconds, resulting in about 400,000 instances of the first laser pulse being detected. The detection efficiency recovery is not monotonic. The error bars for each point only take into account the statistical fluctuations, defined by $\pm 3 \sqrt{\text{number of events}}$. The bias point of the SNSPD was 24.4 μA (the critical current at the time was about 24.8 μA).

4.12 Histogram of waiting time between dark count clicks. There are approximately 450,000 events in total. The bin size is 20,000 ns. $I_c = 24.8 \, \mu A$. Afterpulsing is no longer present.
C.1 **Simulink Model** The model partitions into 3 main sections: Source, circuit and Read-out parts. 1) source section models the incoming photon as a nonlinear transition of SSPD. 2) circuit section models the normal state as a resistor and superconducting state as a non-dissipative wire. 3) read-out parts models the radio-frequency (RF) amplifier and filter by gain and transfer functions.
Chapter 1

Introduction

1.1 Motivation

The twenty-first century is an era of information, and the exponential growth in the generation of data by the Internet and the World Wide Web (WWW) can lead to information black holes in organizations servers and even in home computers. Such an astonishing amount of information must be stored electronically for ease of manipulation and distribution. As a by-product of the use of electronic information, the concept of cyber-security has become a recurring issue.

Ever since the invention of the Caesar cipher it spurred an arm race between communicating parties and potential adversaries. The simplicity of using substitution schemes as ciphers is only capable of foiling the most simple-minded adversaries. The advent of the Ron Rivest, Adi Shamir and Leonard Adleman (RSA) algorithm [11] brought us computational security as opposed to unconditional security. The security of the RSA is based on the presumed difficulty of factoring a large product of two primes efficiently. Hence, the approach of computational security only shifted the arm race from a search for algorithms to a search for computational power.

Shannon’s proof of information theoretic security created the interest in the scheme of One Time Pad (OTP) [12]. The OTP is impossible to crack and provides information theoretical security as proved by C. Shannon [13]. While conceptually pleasing, the OTP is not practical because it requires a key as long as the message. This need of distributing the long key can be as difficult as distributing a message itself. Then, the open question is: Can this snowballing arm race be ended?

In contrast to all its predecessors, quantum cryptography holds the promise of un-
Chapter 1. Introduction

However, at the time of writing, the technology of quantum cryptography is still at its infancy, much inter-disciplinary work would have to be done to bring quantum cryptography to commercial products. However, Quantum Key distribution (QKD) protocols, among many other quantum cryptographic protocols, can be implemented with the components of current technology. Coincidentally, the requirements for distributing the long key from the OTP can be done via QKD [17, 18, 19]. The distribution of keys as long as the message with QKD followed by the OTP is the right combination that leverages the state-of-the-art of both classical and quantum communication technologies.

1.2 Quantum Key Distribution in General

Quantum cryptography was born when Stephen Wiesner proposed around 1970 the idea of quantum money that cannot be counterfeited. Stephen Wiesner’s paper remained unpublished for more than a decade [17]. In 1984, Bennett and Brassard invented quantum key distribution (QKD), the most well-known application of quantum cryptography [18]. Their protocol BB84 remains the best-known protocol for QKD.

At the heart of the BB84 is its encoding of information on quantum states, such as polarization of a photon or spin of an electron. By virtue of the famous “quantum no-cloning” theorem and its related consequences, “information gain implies disturbance” [20, 21], the BB84 guarantees that: by encoding the information on one of many quantum states from a set of distinct non-orthogonal states, no information can be leaked without disturbing the states. While a potential adversary can still do eavesdropping on the states, she must reveal herself to the communication parties. As will be seen later, this revelation is manifested in a increased Bit Error Rate (BER) at the receiver.

QKD, among other quantum cryptography protocols, is the most technological feasible protocols. Much to be expected, QKD networks have been successfully deployed in Africa [22], China [23] and Tokyo [24].

1.3 Measurement Device Independent QKD

The BB84 and its relatives provide theoretical unconditional security, but there is a large gap between theory and practice. In practice, the adversaries’ attack is not usually on the protocol itself, but rather on the implementation technologies such as sources, detectors
and modulators.

On the source side, a true Single Photon Source (SPS) is completely missing, and the laboratory practice is to use a heavily attenuated classical coherent source such that the probability of emitting two or more photons is small. The finite probability of emission of two or more photons gives rise to a well-known photon-number-splitting (PNS) attack [25, 26]. For example, when it is possible to split a classical pulse, the adversary will have as much information as the receiver; rendering the quantum protocol useless. Fortunately, the PNS can be foiled by phase-randomization [27] and decoy states [28, 29, 30] techniques.

Also, on the modulator and detector sides, practical implementations are rarely without jitters and dead time. Jitters, also known as the uncertainty of the pulse arrival time, provide timing information on when the detectors are likely to mix the current and the next bit in the bit stream. Dead time, also known as the inability of detector to recover instantaneously, provides timing information on when the detectors are likely to have low detection efficiency. Moreover, practical detectors can only tell the absence or presence of a photon stream, but cannot tell the exact number of photons in the stream. It has been shown that these "timing cues" or loopholes can leak significant amount of information to evesdroppers, and the time-shift attack [31, 32], the blinding attack [33] and the phase-remapping attack [34] have exploited it. Therefore, a big question in the quantum cryptography is the following: are practical QKD systems really secure?

To close the gap, there is a strong desire to have a loophole-free QKD protocol. The proposed device-independent (DI-QKD) [35] closes all these loopholes [31, 32, 34], but it places strong requirements on the implementation technologies; for example, the required near-unity detection efficiency is not practical. Furthermore, the extremely low rate at practical distance [36] also refrains the users’ from adopt the protocol. Are side channels unavoidable?

The Measurement-Device-Independent QKD (MDI-QKD) [37] answers this question negatively. This principle that underlies MDI-QKD is the fact that most of the attacks are on the detector side, or most of the loopholes can be closed with perfect measurement devices. At the same time, the more stringent requirement of MDI on state preparation [38] (or source) can be done with current state-of-the-art technology. Incidentally, many recent experiments on MDI-QKD [39, 40, 41, 42, 43, 44] have demonstrated the realizability of MDI-QKD.
1.4 Protocol Optimization

The protocols of MDI-QKD only dictate the operation of the communication, but there is no prescription for how the parameters are chosen \[16, 37\]. Well chosen parameters set for a protocol can result in a much shorter run-time and much simpler implementation \[45, 3, 46, 2\]. On the other hand, an MDI-QKD experiment with a bad parameter set can result in so low a key rate that efforts are wasted in to improve resolution of electronic and optical equipments.

The importance of parameters optimization of protocols cannot be over-emphasized. It is the aim of this thesis to provide a systematic framework for the optimization of parameters. The end results of the optimization procedure are values of parameters that can be implemented in devices controlling the operation of the protocol.

1.5 SSPD as a Better Device

The imperfections of detectors such as jitter and dead time cannot be eliminated completely, but it is possible to improve the detectors and minimize the impacts of these imperfections.

Solid-state Single-Photon Avalanche Diode (SPAD) is able to detect single photons in reverse-biased mode \[47\]. An incoming photon creates electron-hole pair by impact ionization \[48\]. This process continues and manifests itself as a macroscopic current, which is able to be picked up by a conventional detector.

Superconducting Nanowire Single Photon Device (SNSPD) is an emerging technology that offers superior performance than SPAD, for example: a shorter dead time and low jitter \[49\]. However, such technology has yet to be understood completely in terms of its responses to single photon and/or multi-photons excitations. However, it is known that SNSPD consists of a nanowire of superconducting material. A single photon hits the detector and creates a propagating hotspot until the whole segment is no longer superconducting. The resulting voltage pulse generated from the transition is detected after amplification, and subsequent detection is enabled by active quenching.

The characterization of SNSPD cannot be done in isolation from other parts of the system. Realistically, the SNSPD will likely be enclosed in a DC Biasing network and an RF readout network (detailed later in chapter 4). It is the finding of this thesis that the imperfections of these peripheral circuitries can be even more detrimental than the imperfections of the SNSPD device itself.
1.6 Significance and Outline

The aim of the thesis is to provide some guidelines in characterization of SNSPD and in parameter optimization of MDI-QKD. The recurring themes are the improvement and characterization of performance of device and/or protocol by optimizing the influential parameters. To accomplish this exposition, the remaining thesis is organized as follows:

- Chapter 2 lays the foundations for QKD and MDI-QKD for the rest of the thesis. Main ingredients are:
 - Sec 2.1 is a description of BB84 protocol
 - Sec 2.2 introduction to the idea of “decoy state”
 - Sec 2.3 description of MDI-QKD protocol
 - Sec 2.4 introduction to Convex Optimization
 - Sec 2.5 introduction to SNSPD

- Chapter 3 introduce the optimization procedure and its role in cryptography protocols. Chapter 3 also presents main results on parameter optimization and its significance to practical implementations:
 - Sec 3.1 explains convex topology and their advantages of optimization efficiency.
 - Sec 3.2 is a comparison of computational resources of different algorithms.
 - Sec 3.3 highlights the key rate increase due to optimization
 - Sec 3.4 suggests a way to choose the number of parameters in consideration in the optimization
 - Sec 3.5 recommends a guideline on the choice of protocol
 - Sec 3.6 links to practice by explains how to do decoy when the practical modulators cannot handle too small a modulation level.
 - Sec 3.7 generalizes the work from a symmetric setup to a more realistic asymmetric setup.

- Chapter 4 introduce SNSPD and its peculiarities, and also introduce main results and characterization of SNSPD
– Sec 4.1 introduces the SNSPD as a novel device for Quantum Information (QI) experiments
– Sec 4.2 explains our experiment setup and all equipments and devices involved
– Sec 4.3 introduces the phenomenon of AfterPulse and explains its statistical distribution
– Sec 4.4 gives a model of afterpulse in experiments
– Sec 4.5 is on the experiment where afterpulse is not solely due to dark count, but partly to dark count and the rest attributes to real detection events.
– Sec 4.6 confirms our hypothesis on the connection of afterpulse phenomenon and the spurious increase of detection efficiency at recovery time
– Sec 4.7 provides an experimental method for elimination of the afterpulse

• Chapter 5 concludes the thesis and provide perspectives

Our works on protocol optimization and device characterization enables other QKD researchers to better understanding of the origins and potentials of the protocol, e.g a prescription on how the parameters are chosen. The results of our work presented here allow other researchers to better cope with the non-idealities of practical device and the underlying communication protocols. In particular, the 200 % increase in secure key rate can significantly reduce the running time of the QKD experiments, or, conversely, can boost the transmission distance given a fixed data acquisition time. Also, the claimed superior performance of SNSPD can practical shift the burden of data post-processing from digital software to the front-end detector; for example, the improvement in detection efficiency can potentially compensate for the detrimental photon loss rate in fiber link, and thus increase the transmission distance.

1.7 Publications Related to This Work

Details: 9 pages, double-column. Additional supplementary material online.

My contribution: I am the second author of the paper. I proposed to use the Local Search Algorithm. I also performed most of the simulations and make-up
most of the pictures in the paper. Feihu Xu derived the analytical expressions for simulation, and participated in writing of the paper. Hoi-Kwong Lo played a supervisory role, and contributed trouble-shooting for the paper.

 Details: 11 pages, double-column.

 My contribution: I am the second author of the paper. There are three major parts of the project: 1) Afterpulse experiment, 2) Laser-on experiment and 3) recovery curve experiment. Prior to my joining to the project, 1) is done. I have participated in 2) mainly to help on the post-processing of data. I am directly involved 3) in experimentation and in post-processing of the data. My roles in 2) and 3) are focused on speeding-up the existing software and make the programming more autonomous. Viacheslav Burenkov discovered the presence of the afterpulsing effect, performed most of the experiments. Bing Qi assisted with some experiments and contributed to trouble-shooting, discussions, and the writing of the paper. Robert Hadfield provided insights regarding the detector, which was made in his lab. Hoi-Kwong Lo played a supervisory role, and contributed to trouble-shooting, discussions and the writing of the paper.
Chapter 2

Basics of Quantum Key Distribution (QKD)

Quantum information Processing is an interdisciplinary field that brought together the fields of Applied Mathematics, Physics, Computer Science and Engineering. The impact of Quantum Information (QI) have been demonstrated in the Quantum Network developed in USA, Europe, China and Japan [22, 23, 24]. It is the aim of this chapter to develop the background material for the subsequent progressions.

2.1 BB84 Protocol

The basic setup or model of the BB84 is in Fig 2.1, the setup indicates that the modulation format is polarization modulation. Hence, the stream of quantum carriers’ state are made indistinguishable except for the polarization.

Figure 2.1: setup of BB84 Protocol [8] Source: single-photon source; RNG: random number generator; PC: polarization controller; PBS: polarization beam splitter; D0/D1: single-photon detectors, from published thesis [8]
To send a single photon from Alice to Bob, Alice and Bob cooperate by following a 2 phased (Quantum communication phase followed by Classical communication phase) 7 steps [18] illustrated in Fig: 2.2.

Quantum communication Phase:
1. Alice first randomly chooses a basis between rectilinear (\(|H\rangle, |V\rangle\)) and diagonal (\(|45\rangle, |135\rangle\)) and encodes one bit onto the polarization according to:

 \[
 \begin{align*}
 \text{rectilinear}0 &= |H\rangle \\
 \text{rectilinear}1 &= |V\rangle \\
 \text{diagonal}0 &= |45\rangle \\
 \text{diagonal}1 &= |135\rangle
 \end{align*}
 \]

 Where the bra \(\langle|\) and \(|\rangle\) notations follow standard textbooks, such as [52]

Figure 2.2: **Flow of BB84 Protocol** Alice and Bob each produce a randomly generated basis sequence, and a randomly generated/measured bit sequence. After sifting, they share a common bitstream

2. Bob receives the bit stream and does measurements in his own chosen basis.

Classical communication Phase:
3. Alice and Bob publish their basis selections and agree on the basis by discarding all mismatched basis bits. At this point, roughly half of the bits are discarded, and the rest
are called raw keys.

4. Alice and Bob choose a fraction of remaining bits, and broadcast the bits’ positions and polarizations. Then, Alice and Bob compute and compare the QBER of these bits. If the QBER is larger than a (suitably chosen) threshold value, they abort the process.

5. If the QBER is acceptable, Alice and Bob then perform error correction and privacy amplification to generate final secure keys.

Eve has no power to acquire the basis information of Alice and Bob. Hence, on average, she will have 50 percent chance of getting the right basis. Otherwise, for 50 percent of the time, Eve will choose the wrong basis. So, this protocol can detect the presence of Eve at the QBER computation and comparison phase by the following dichotomy:

1. If Eve chooses the correct basis, no error will be introduced by Eve.

2. If Eve chooses the wrong basis, the basis choice of Eves and Bob will be uncorrelated. Hence, Eve will introduce $50\times50 = 25$ percent QBER in the comparison stage.

In conclusion, the 25 percent extra QERB cannot be hidden by Eve, and the BB84 can reveal the presence of a passive evesdropper, which is a mission impossible for classical information.

2.2 Decoy States

The BB84 protocol requires the source to be a truly single photon source. However, a truly single photon source is still not realized with today’s technology. As a substitute, heavily attenuated coherent sources, a.k.a. weak coherent state are used instead.

A weak coherent state is described by:

$$|\alpha\rangle = e^{-|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \quad (2.1)$$

If the phase, θ, of alpha is uniformly randomized, i.e. $\theta = |\alpha| e^{i\theta}$ where θ is random, then we get a density matrix of the following form:

$$\rho_A = \frac{1}{2\pi} \int_0^{2\pi} \langle |\alpha| e^{i\theta} | \rangle \langle |\alpha| e^{i\theta} | \rangle$$

$$= \frac{1}{2\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\alpha|^{n+m} e^{-|\alpha|^2} |n\rangle \langle m| \int_0^{2\pi} d\theta e^{i(n-m)\theta}$$

$$= \sum_{n=0}^{\infty} \frac{\mu^n}{n!} e^{-\mu} |n\rangle \langle n| \quad (2.4)$$
This density matrix contains not only single photon components, but also an arbitrary, n, photon number states with a probability:

\[P(n) = \frac{\mu^n}{n!} e^{-\mu} \]

(2.5)

I remark here that, for the BB84 protocol, only single photon states can eventually contribute to secure key rate, and the finite probability of multi-photon states opens up to Eve the possibility of PNS attack. In this attack, Eve could keep all single photon states in memory and split parts of multi-photon states to Bob to perform measurement on kept parts of the multi-photon states. Only after Alice and Bob publicly announce their basis, then will Eve perform measurements on single photon states to extract all of the information.

The idea of decoy state is to overcome this limitation of weak coherent pulse by introducing other sets of states besides the signal states. These extra decoy states have average photon numbers \(\nu \neq \mu \). The purposes of these extra states are not to generate secure key rate, but only to reveal the presence of eavesdropping. In an actual key distribution, the bit streams are encoded onto signal and decoy state randomly. Only after Alice and Bob publicly announce their basis, Alice informs Bob the real indices of his signal states. Since Eve has no way a-priori to distinguish the decoy to signal states, his presence will be revealed via the increase of QBER.

To facilitate the subsequent discussion, the following definitions and relations are in order:

- \(P_i \), state probability, of i-photon state is the probability that exactly i photon are in the coherent states. mathematically: \(P_i = \frac{\mu^i}{i!} e^{-\mu} \)

- \(Y_i \), Yield, of i-photon state is the conditional probability of a detection event at Bob given that Alice sent i photons.

- \(Q_i \), gain, of i-photon state is the probability that Alice’s i photons sent is registered as detection at Bob.

- \(Q_\mu \), overall gain, of a coherent pulse with mean photon \(\mu \) is the probability that the entire coherent state is registered as detection

- \(e_i \), QBER, of i-photon state is the probability that Alice’s i photons sent is err at Bob
Table 2.1: **BB84 protocol** Demonstration of the BB84 at each of the stages. Bit Sequence are classical information encoded onto the rectilinear or diagonal basis of the polarizatoin qubits. the sifted data are again classical information resulting from classical postprocessing of raw data

<table>
<thead>
<tr>
<th>Alice’s bit sequence</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice’s basis</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Alice’s polarization</td>
<td>(\uparrow)</td>
<td>(\rightarrow)</td>
<td>(\uparrow)</td>
<td>(\rightarrow)</td>
<td>(\leftarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>Bob’s basis</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bob’s measurement</td>
<td>(\uparrow)</td>
<td>(\rightarrow)</td>
<td>(\downarrow)</td>
<td>(\rightarrow)</td>
<td>(\leftarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>Bob’s raw data</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bob’s sifted data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(E_\mu\), overall QBER, of a coherent pulse with mean photon \(\mu\) is the probability that the entire coherent state sent is err at Bob
- \(Q_i = Y_i P_i = Y_i \frac{\mu^i}{i!} e^{-\mu}\), this relation put together Prior probability \(P_i\) and conditional probability \(Y_i\) to give a posterior probability \(Q_i\)
- \(Q_\mu = \sum_{i=0}^{\infty} Y_i \frac{\mu^i}{i!} e^{-\mu}\), this relation describe the observable \(Q_\mu\) in experiments and how implicitly can it be used to define non-observable \(Y_i\)
- \(E_\mu = \frac{1}{Q_\mu} \sum_{i=0}^{\infty} e_i Y_i \frac{\mu^i}{i!} e^{-\mu}\), this relation describe the observable \(E_\mu\) in experiments and how implicitly can it be used to define non-observable \(e_i Y_i\).

As previously explained, Eve cannot distinguish a decoy state from a signal state, as they are indistinguishable except for the intensity. Hence the observables \(Q_\mu\) and \(E_\mu\) implicitly constrain the value of \(Y_i\) and \(e_i\). Although understrained by only one equation, it is conceivable that if enough decoy states are used, the synergy of many equations will constrain the value of \(Y_i\) and \(e_i\) uniquely.

To summarize, decoy state QKD can improve the security and performance, and, at the same time, foil many attacks [4, 53, 54]. In practice, experimentalists use 1-3 decoy states as a compromise of theoretic rigor and ease of experimentation. The estimation procedures for decoy state can be done either analytically via Gaussian elimination or numerically via linear programming [App A].
2.3 Decoy State MDI-QKD

Decoy State BB84 can foil the PNS attack [55], but cannot close the loop holes from the side channel attacks. As explained previously, most side channel attacks involve detectors or can be mitigated if detectors are secure. This fact motivated the idea of decoy state MDI-QKD.

Fig 2.3 shows the setup of MDI-QKD using polarization modulated encoding. Here, instead of an asymmetric configuration in Fig 2.1 where Alice is the sender and Bob is the receiver, the MDI setup assumes a symmetric configuration where both Alice and Bob are senders and the receiver is an untrusted relay. Eve controls the relay, but cannot influence the laboratories of Alice and Bob’s.

![Setup of MDI-QKD Protocol](image)

Figure 2.3: Setup of MDI-QKD Protocol WCP: weak coherent pulse; Pol-M: polarization modulator; Decoy-IM: intensity modulator; BS: beam splitter; PBS: polarizing beam splitter; Dx: photo detectors ©2012 Physical Review letters

At the transmitters end (Alice and Bob), The WCP source is polarization modulated to encode information onto the source. Following the polarization modulation, the intensity modulation aims to produce decoy states. Once the photon reaches the relay’s end, a Bell measurement is done, and the coincident measurement results are publicly
announced to Alice and Bob.

The astute readers will notice that MDI foils the detector side channels. To see why, we recognize that Bell measurements only result in the correlation of the bit streams, but Eve cannot gain information because the message of logic bit 1 and logic bit 1 respectively from Alice and Bob respectively is as correlated as the message of logic bit 0 and logic bit 0 respectively from Alice and Bob respectively.

The secure key rate of MDI-QKD in the asymptotic case is given by [37]:

$$R \geq P_{11}^Z Y_{11}^Z[1 - H_2(\epsilon_{11}^X)] - Q_{\mu \mu}^Z f_e(E_{\mu \mu}^Z) H_2(E_{\mu \mu}^Z) \tag{2.6}$$

Here the superscript Z or X indicates rectilinear basis or diagonal basis. P_{11}^Z is the probability of single photon states in Z basis. $H_2(x) = -x \log_2(x) - (1 - x) \log_2(1 - x)$ is the binary entropy functions. $Q_{\mu \mu}^Z$ and $E_{\mu \mu}^Z$ denote the gain and QBER in the Z basis. $f_e \geq 1$ is the error correction inefficiency function. μ is the optimal intensity of the signal state in the asymptotic case.

Notice that compared to BB84, in MDI-QKD, the gain is not a detection probability, but rather it is a co-incident registration probability. Also, Z basis is used for key generation [56], whereas X is for testing purpose only [2, 46, 9, 3, 45].

As a summary, in MDI-QKD, the decoy state equations become [40, 37]:

$$Q_{q_a,q_b}^\lambda = \sum_{n,m=0} e^{-(q_a + q_b)} \frac{q_a^n q_b^m}{n! m!} Y_{nm}^\lambda, \tag{2.7}$$

$$Q_{q_a,q_b}^\lambda E_{q_a,q_b}^\lambda = \sum_{n,m=0} e^{-(q_a + q_b)} \frac{q_a^n q_b^m}{n! m!} Y_{nm}^\lambda e_{nm}^\lambda$$

where $\lambda \in X, Z$ denotes the basis choice, $q_a (q_b)$ denotes Alice’s (Bob’s) intensity setting, $Q_{q_a,q_b}^\lambda (E_{q_a,q_b}^\lambda)$ denotes the gain (QBER) and $Y_{nm}^\lambda (e_{nm}^\lambda)$ denotes the yield (conditional probability) (error rate) given Alice Bob send n-photon and m-photon respectively.

The tasks of decoy state MDI-QKD are to estimate a lower bound for Y_{11}^Z and an upper bound for ϵ_{11}^X using these linear equations. the optimal bound results are denoted $Y_{11}^{Z,L}$ and $\epsilon_{11}^{X,U}$.

The goal of my M.A.Sc work is to improve the key rate of MDI-QKD protocols, and this can be done in two ways. First, given the technological constraints, we want to extract the most performance out of the current generation of the technology. My first project on parameter optimization of the protocol focused on improving key rate without modifying technology. Secondly, we can achieve higher key rate by using a better technology. My second project on device characterization focused on purposing a better
technology without the specification of how the technology is used. Together, the two combined methodology will allow the achievement of highest key rate by exploiting the best performance out of the most advanced technology.

2.4 Convex Optimization

All communication protocols involve some parameters. In the famous Internet Protocols (IP) suite, the important parameters are packet size, number of hop, fragment offset and etc. QKD as a physical layer protocol requires parameter optimization. In particular, a decoy state MDI-QKD protocol is parameterized by:

- \(\mu \), the signal intensity
- \(\nu, \omega, \ldots \), decoy states intensity
- \(P_{\mu} \), the probability of signal state
- \(P_{\nu}, P_{\omega}, \ldots \), probability of decoy states
- \(P_{\mu|Z}, P_{\mu|X} \), probability of basis in signal states
- \(P_{\nu|Z}, P_{\nu|X}, P_{\omega|Z}, P_{\omega|X}, \ldots \), probability of basis in decoy states
- \(N \), the total number of signal sent by both Alice and Bob; this parameter affects the statistical fluctuation in experiment.
- \(d \), the length of the fiber from Alice or Bob to the relay; this parameter in turn determines the number of loss photon

with constraints:

- \(P's \geq 0, P's \leq 1 \)
- \(P_{\mu} + P_{\nu} + P_{\omega} = 1 \)
- \(P_{\mu|Z} + P_{\mu|X} = 1 \)
- \(P_{\nu|Z} + P_{\nu|X} = 1 \)
- \(P_{\omega|Z} + P_{\omega|X} = 1 \)
The optimization procedure is effectively a search over these parameters. Depending on how the optimization is done, the key rate as objective and/or the computation resource requirements can be very different. The goal is to come close to the optimal objective point, and the equal error contour (fig 2.4) is an effective way of visualizing the progress we made as searching. The points on the same elliptical contour represent the set of points with the same achieved objective value of Eqn 2.7. The contour is usually elliptical is due to the use of Euclidean Norm.

Figure 2.4: Error Contour e_1, e_2: one of the dimensions of the optimization. All points on the same ellipse have the same error, where the error of a point is quantified by how far (in euclidian distance) the point is from the theoretical optimal point. The larger the radius of the ellipse, the larger the error, (again) quantified by the euclidean distance away from the optimality, the dot represent 0 error or optimality.

There are two well established methods in searching: exhaustive search and local search [57].

2.4.1 Exhaustive Search

The exhaustive search is the most primitive methodology to search the entire search space point-by-point. fig 2.5 shows that an exhaustive search is equivalent to laying out a multi-dimensional grid and evaluating the objective at each point.

Prior to our publication in [45], all other optimizations [3, 46, 2] are done using exhaustive search, and there are two salient drawbacks of this approach: On one hand, if the search is too coarse, we may miss out the details completely and get a low key rate. On the other hand, if the search is too fine, the search may take too long and become
Chapter 2. Basics of Quantum Key Distribution (QKD)

Figure 2.5: **Exhaustive Search** e1,e2: one of the dimensions of the optimization. A two dimensional grid as illustration, this algorithm evaluate objective on all of the interior points of the search space infeasible in practical.

The problems to exhaustive search is that: there is no way to optimally lay out a grid a priori without knowing the scaling features of the underlying topology. The niche to be filled is a systematic and methodical procedure to traverse the search space and automatically adopt to the scale of underlying topology.

2.4.2 Local Search

Local search is a suite of algorithms that aim to expedite the speed of the search by only traversing the search that are “relevant”. This suite includes the well-known steepest descent (SD) algorithm and others such as conjugate descent algorithms. Here, I proposed to use a non-derivative approximation to SD, the Coordinate Descent (CD) algorithm. The non-derivative nature of the CD comes with many advantages in protocol optimization. Firstly, protocol optimization involves simulations of the experiment. Hence, the key rate as an objective is often an implicit function of the parameters and the actual finding of the Gradients and Hessians of SD cannot be done easily. CD converges to the same optimal point as SD, but may involve more iterations than SD.

To reduce both computational time and storage space requirements, I proposed to use a combination of Coordinate Descent (CD) with Backtrack Search (BS) algorithm [57]. The search trajectory of this particular local search algorithm is shown in Fig 2.6. The following exposition of local search is largely based on [58]: The idea of CD is to minimize the multivariate function objective (key rate R) by minimizing it along one
direction at a time. Instead of varying descent direction according to gradient, one fixes descent directions at the outset [58]. These direction are usually the Cartesian bases, and in two decoy-state case, \(e_1 = \mu, \ldots, e_4 = P_{\mu}, \ldots, e_7 = P_{X|\mu}, e_8 = P_{X|\nu}\). These bases are iterated through cyclically one at a time. Mathematically, to optimize \(\mu\), if \(\mu^k\) (the \(k\)th iteration) is given, the minimization of key rate \(R\) along \(\mu\) coordinate in the \(k+1\)th iteration is:

\[
\mu^{k+1} = \arg \max_{y \in R} R(P_{\mu}^{k+1}, P_{\nu}^{k+1}, P_{X|\mu}^{k+1}, P_{X|\nu}^{k+1}, P_{\omega}^{k+1}, y, \nu^k, \omega^k)
\] (2.8)

Figure 2.6: **Local Search** \(e_1, e_2\): basis of optimization. A two dimensional descent sequence. The error contour structure allow the optimization to evaluate only a small subset of the search space. Here we shown that this subset lies on the descent path of the algorithm.©2014 APS

Along one particular direction chosen in CD, we still have to do a one-dimensional line search problem to compute how far the search can move along a given coordinate. This is realized via the BS algorithm. BS starts at the end of previous iterations, and makes progress toward a local minima along the chosen coordinate direction. With a step straddles from one side of the minima to the other side, the algorithm found a turning point. From there, BS searches backward again toward the minima until the same turning point is found with greater accuracy. The procedure is iterated until converged to the minima. At this point in the search space, the CD algorithm restarts with a new direction of line-search.

Although CD requires an intelligent guess to start with, the starting point in convex topologies can be in theory any of the non-zero objective (key rate) points in the search
space. In practice, prior research can shed light on the choices of initial parameters, and these parameters often are good candidates for the starting guess.

2.5 Superconducting Nanowire Single Photon Detector

Making a detector sensitive to a quantum of light is by no mean an easy task, and to characterize the sensitivity of a detector is also a challenging task. This section highlights the most important parameters of a single photon detector (SPD).

Before tackling the exposition of different parameters, it is imperative to understand what constitutes an ideal detector. A perfect detector is one that: 1) captures every incoming photon 2) with perfect timing information, 3) no spontaneous or spurious registration (no dark count), 4) recovers (or quenching) from a detection instantaneous 5) with no memory effect (afterpulsing), and last but not least, 6) the detector should be able to tell the difference of n VS n+1 photons, as opposed to only make distinction of 0 and n≥0 photons.

I stress the fact that such an ideal detector does not exist, and the imperfections of detector influence the performance of QKD protocols. It is the work of protocol designers to factor these imperfections into the protocols and make an effort to minimize these imperfections. The following introduction to these imperfection are summarized from reference [51].

2.5.1 Detection Efficiency

In the probabilistic realm of Quantum Mechanics, not every photon is detected. The detection efficiency of the detector captures the likelihood of a detector to register a photon. Detection efficiency varies with technology and with the wavelength of the photon, and typical values of detection efficiency range from 0.15 for commonplace detector to 0.55 for superior devices [59]. For telecom fiber application, the detection efficiency at 1550nm is the lowest. High detection efficiency is a bonus but is not a requirement.

2.5.2 Dark Count Rate

Detection efficiency captures the probability of miss a photon (false negative), and its dual concept of Dark Count Rate (DCR) captures the probability of registration of photon in
the absence of any photons (false positive). Typical values of DCR may range from 1e-5 to 5e-5 [59], and too low a DCR could potentially enhance the performance of a QKD system.

2.5.3 Dead Time

Realistic detector cannot register two consecutive photons with arbitrary time resolution. The dead time of the detector is the required time for the detector to recover to original state after detection. Typical values for dead time is 10ns to 20ns [59], and the minimal dead time dictates the maximal repetition rate of the QKD system.

2.5.4 Timing Jitter

![Figure 2.7: Effect of Timing Jitter](image)

Figure 2.7: Effect of Timing Jitter The uncertainty of edge transition take away a portion of the period. The actual (useful) period is smaller than the nominal (ideal) period.

Timing jitter captures the time delay from the absorption of the photon optically to the registration of detection electronically. Technically as in Fig 2.7, this jitter consume a portion of the clock periods and reduces the maximum clock rate of the QKD experiment.

2.5.5 Afterpulsing

All of the previous imperfections affect the detector within one period of the repetition rate. The relatively new concept of afterpulsing is a memory effect that spans multiple periods. Afterpulsing refers to the increased probability of dark count rate at a prescribed
time after the registration of a photon. It is desirable to eliminate afterpulse to increase the repetition rate of the QKD system.

2.5.6 Number Resolving Detector VS. Threshold Detector

Number resolving detector is able to report the quantity of a photon stream, but threshold detector can only report the presence of a photon stream. Threshold detectors are inferior to number resolving detectors, but are the norm rather than the exception in today’s technology.
Chapter 3

Protocol Parameter Optimization

This chapter is largely based on the article titled “Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution” by Feihu Xu, He Xu and Hoi-Kwong Lo, published in the Journal of Physical Review A. The Journal of Physical Review A is published by the institute American Institute of Physics. As such, copyright of this work belongs to the American Institute of Physics.

In this chapter, I will discuss the methodology and results of parameter optimization. The aim is allow reader to understand the improvements in both the key rate and the computational resources saving owing to the benefit of optimization.

The results presented here allow other researchers to make methodical judgements on how to choose the number of decoy states, and given the number of decoy states how to choose the parameter sets (intensities and probabilities) to optimize key rate.

The following physical constants and hardware parameters are used throughout this chapter:

<table>
<thead>
<tr>
<th></th>
<th>(\eta_d)</th>
<th>(e_d)</th>
<th>(Y_0)</th>
<th>(f_e)</th>
<th>(\epsilon)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.5 %</td>
<td>1.5 %</td>
<td>(6.02 \times 10^{-6})</td>
<td>1.16</td>
<td>(10^{-7})</td>
<td>(10^{12})</td>
</tr>
</tbody>
</table>

Table 3.1: **Parameters and Constants**, \(\eta_d\): detection efficiency; \(e_d\): misalignment error; \(Y_0\): background rate; \(f_e\): efficiency of error correction; \(\epsilon\): security parameter; \(N\): number of signal; Parameters are from QKD experiment [1]. In the experiment, two SPDs are used. We assume four SPDs in MDI-QKD have identical \(\eta_d\) and \(Y_0\).
3.1 Convex Topology

Prior to the use of local search as a parameter optimization procedure, one must make sure that the search space is continuous and convex. Continuity of search space is usually implied by physics, as physical processes (except for black holes) usually vary smoothly and rarely exhibit singular behavior. In contrast, convexity is usually an exception rather than a norm.

The CD plus BS algorithm works in any general topology of the search space, but the saving in efficiency comes only when the underlying topology, a.k.a. search domain, is a convex optimization problem [57]. It is our goal here to demonstrate the convexity of the key rate as a function of the parameters. The setting we adopt is a 2 decoy states protocol for $N=10^{12}$. Fig 3.1 demonstrates the convexity by noting that as the parameters μ and ν are swept while other parameters are optimized over, the shape of the objective key rate R is smooth and single-mounted.

![Figure 3.1: Convexity of key rate function](image)

Even though this 2-D sweep cannot guarantee the convexity of the entire 13 dimension, I remark here that the non-convexity of the overall topology only brings down the efficiency of the search. The CD plus BS algorithm will still work in a non-convex domain, and the subsequent improved results shed lights on the convexity of the domain.

3.2 Computational Resource

Optimization of parameters is a routine for almost all of the proposed protocols. However the sheer size of the search space bring a “curse of dimension” nightmare. In higher
dimensions, especially with computational resource (time and space) constraints, it is only possible to explore a (intelligent) subspace of the search space. This limitation will in turn induces one form of sub-optimality or another. Hence there is a stringent demand for a computationally light-weight yet accurate enough algorithm to probe the entire search space. The availability of such procedure will not only improve numerical recipe in term of programming, but will also shed light on how the protocols behave under proper changes of parameters.

Since I have proposed to use CD plus BS for searching, it is imperative to compare the speed and accuracy of local search (LS) to exhaustive search (ES) algorithm. I remark here that the claimed large improvement in speed does come with a complexity cost. Any LS will have the need to maintain complex neighborhood relational logic compared to primitive nested loop structure of the EA. Hence, without significant advantages, the complexity of LS will not be justified.

The comparison of results in table 3.2 clearly indicate that LS shows 4 order of magnitude improvement over ES while maintaining the same degree of accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Iterations</th>
<th>Time</th>
<th>Key rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaustive search</td>
<td>10^7</td>
<td>550 hours</td>
<td>6.84×10^{-5}</td>
</tr>
<tr>
<td>Local search</td>
<td>33</td>
<td>1 min</td>
<td>6.83×10^{-5}</td>
</tr>
</tbody>
</table>

Table 3.2: Speed and Accuracy Comparison, Simulation is on MDI-QKD with two decoy-state numerical approach on a standard desktop computer. A full optimization on eight dimension (intensity and probability) is performed. ω is fixed at a near optimal $\omega=0.0005$. The grid for exhaustive search is 10 points per dimension for a total of 10^7 iteration. ©2014 APS

3.3 Key Rate Comparison between Optimization and Non-optimization

As mentioned that, to date, there is no unified framework to choose parameters, most of the previous work either empirically choose some typical parameters as in [27,29] or only perform a partial optimization on a subset of parameters (i.e. only intensity) or only on a restricted sub-domain of the search space. All these approximations to a full
optimization is directly or indirectly owing to the complexity in searching in a large (as many as 8-15) dimensional space.

Now, our proposed local search algorithm solves the complexity problem, and it is our purpose to illustrate the difference between a full optimized key rate and a partially optimized key rate.

Fig 3.2 compare our optimization to those using the parameters and methods presented in Refs [27,29,30] in asymptotical case. From this figure, we make a few observations (and conclusion):

Figure 3.2: **Key rate comparison with infinite data-set.** The dotted black curve is the perfect key rate with infinite decoy states. The blue solid curve is our optimized key rate using the numerical approach with two decoy states, where the intensities are $\omega=0.0005$, $\nu=0.01$ and optimized μ. For comparison purpose, we present the non-optimized and partially-optimized key rates using the methods and parameters of Refs [2, 3, 9]: the black dashed curve is using [3] with $\omega=0$, $\nu=0.01$ and optimized μ; the red dashed curve is using [9] with $\omega=0.01$, $\nu=0.1$ and $\mu=0.3$; the green dashed curve is using [2] with $\omega=0$, $\nu=0.1$ and $\mu=0.5$. Notice that if the parameter optimization is also applied to Refs [2, 9], all the key rates are almost the same. In the asymptotic case, parameter optimization is simple, as only the intensities are required to be optimized and a smaller value of decoy-state intensity can in principle result in a better estimation. Parameter optimization can still increase the key rate and extend the secure distance.

- Even with only 2 decoy states of ours, the key rate is already close to the infinite decoy states key rate case.
• key rates without parameter optimization in Refs [27,29] are an order of magnitude lower than ours and than in [30] with optimization.

• there is still a 50% gap in key rate between partially optimized key rate in [30] and a fully optimized key rate in ours.

• the increased key rate is also accompanied by a extension of secure distance.

There are relatively fewer parameters (only intensity) in asymptotical cases, but in finite key cases, it is to be expected that greater number of parameter can make the improvements (compared to partially optimized) in optimized key rate much higher.

Fig. 3.3 shows the comparison of key rate for the case N=10^{12} with finite-key case. A closer and more quantitative comparison is in Table 3.3. The comparison of our fully optimized key rate with those in Ref [27,30]. We can see that

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0.25</td>
<td>0.5</td>
<td>0.21</td>
</tr>
<tr>
<td>ν</td>
<td>0.05</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>ω</td>
<td>10^{-6}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_μ</td>
<td>0.58</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>P_ν</td>
<td>0.30</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>$P_{X</td>
<td>\mu}$</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>$P_{X</td>
<td>\nu}$</td>
<td>0.71</td>
<td>0.5</td>
</tr>
<tr>
<td>$P_{X</td>
<td>\omega}$</td>
<td>0.83</td>
<td>0.5</td>
</tr>
<tr>
<td>R</td>
<td>1.68×10^{-6}</td>
<td>1.01×10^{-7}</td>
<td>1.64×10^{-7}</td>
</tr>
</tbody>
</table>

Table 3.3: Comparison of parameters at 50km standard fiber. More general comparison results are shown in Fig. 3.3. The 2nd column is the optimal parameters after a full parameter optimization. The 3rd and 4th columns are respectively the parameters from Refs. [2] and [3]. We can see that full optimization can improve the key rate R over one order of magnitude over the non-full-optimization of Refs. [2, 3]. This improvement mainly comes from optimizing the choices of intensities and probabilities. Notice that for the smallest decoy-state ω, modulating the optimal value of around 10^{-6} is usually difficult in decoy-state QKD experiments [4, 5, 6, 7]. However, we find that as long as the intensity of ω is below 1×10^{-3}, the key rate is very close to the optimum. ©2014 APS.
Figure 3.3: **Practical key rate comparison (with statistical fluctuations).** The optimal parameters and key rate in the distance of 50km (standard fiber) are shown in Table 3.3. All the key rates are simulated with $N=10^{12}$. The blue solid and red dashed-dotted curves (almost overlapped) are respectively our optimized key rates (after a full optimization) using the numerical (Appendix A) and analytical (Appendix B) methods with two decoy states. The black dashed curve is using the method of Ref. [3], where only partial parameters (ie, the intensities) are optimized. The green dashed curve is using the method of Ref. [2], where some typical parameters are assumed without optimization. Without full parameter optimization, the key rates in Refs [2, 3] are around one order of magnitude lower than ours across different distances. Our method can enable secure MDI-QKD over 25km longer than [2, 3]. These results highlight the importance of parameter optimization in practical decoy-state MDI-QKD. ©2014 APS

- by accounting for fluctuations, there is a two order of magnitude gap in the resulting key rate between partial optimized key rate and fully optimized key rate. A similar conclusion can be drawn for other cases from $N = 10^{11}$ to $N = 10^{15}$.

- It should be noted that if a full parameter optimization is also performed in Refs. [27,29], the resulting key rates will be roughly the same.

3.4 Practical Choices of Optimization

A full optimization can greatly increase the key rate, but such amenity came with a price: experimental complexity. In theory, the optimized numerical values for parameters can be directly implemented in experiment; in practice, the precision limitation of equip-
ments (modulator, RNG’s) precludes the use of optimal parameters set. Furthermore, the implementation of fully optimized parameters requires several replicas of the same equipment; for example, 4 RNG’s are needed to implement the selection of signal/decoy and the selection of basis for each signal and decoy state.

To query the extend of this limitation, we investigate three options in optimization: 1. unbiased basis choice, 2. simplified basis choice and 3. optimal basis choice. The most basic unbiased basis choice is exactly the one adopted by standard protocol prior to our publication. Here the basis for X and Z are all equal. this is the cheapest to implement as there is no need for RNG’s. Next to unbiased comes the simplified basis choice, in which the basis choice are independent of intensity. Hence only one RNG is needed to control basis choice for both signal and decoys. Last but not least, optimal basis choice make decisions on basis depending on intensity (signal VS decoys) of the choice. Here for 2 decoy states, 3 RNG’s are needed to fully control the basis. In addition, the extra RNG used to do state selection must be synchronized with the 3 basis choice RNG as the selection is intensity dependent.

Mathematically, these kinds of hardware limitations are translated as optimization constraints summarized here:

- **unbiased choice**: $P_{X|\mu} = P_{X|\nu} = P_{X|\omega} = \frac{1}{2} = P_{Z|\mu} = P_{Z|\nu} = P_{Z|\omega}$
- **simplified choice**: $P_{X|\mu} = P_{X|\nu} = P_{X|\omega}$ and, $P_{Z|\mu} = P_{Z|\nu} = P_{Z|\omega}$
- **optimized choice**: no constraint

Table 3.4 shows the comparison results for different choices of bases. The result is obtained using numerical method. The conclusion to draw from these data are:

- The Optimal choice are 300% ish higher than unbiased choice
- The optimal choice are 200% ish higher than those of simplified choice
- The smaller the data size, the more prominent in key rate gain from a full optimization
- The ease of implementation of unbiased choice is not justified with the dramatic loss in key rate.
Table 3.4: Key rate values with different basis choices. The key rates are simulated with two decoy states and numerical approach. Unbiased denotes the standard protocol with equal basis choice; Simplified denotes the simplified choice with the (biased) basis choice independent of intensity choice; Optimal denotes the optimal choice with the (biased) basis choice depending on intensity choice. In a large data-set of 10^{18} (approaching asymptotic case), the key rates with optimal choice are around 300% higher than those of unbiased choice and close to those of simplified choice. In a reasonable data-set (10^{12} to 10^{14}), the key rates with optimal choice are around 300% higher than those of unbiased choice and around 200% higher than those of simplified choice. This shows that the optimal choice can significantly increase the key rates in a practical setting with finite data-set. ©2014 APS

3.5 Choosing the Number of Decoy

Having established the framework for parameter optimization, I now address the second major question of MDI-QKD: how many decoy states should I use. Superficially, increasing the number of decoy states always improves key rate; however, the minute increase in key rate cannot justify the unduly growth of hardware complexity.

The results of numerical optimization for different numbers of decoy states are in Figs 3.4, 3.5 and 3.5. From these data, I make the following observations:

- after a full parameter optimization, two decoy states can give an almost optimal key rate,
- using three decoy states cannot improve much but using one decoy state is severely sub-optimal
Chapter 3. Protocol Parameter Optimization

3.6 Effect of the smallest decoy state ω

While a full optimization gives distinct values for parameter as N and d are changed, but in practice the finite extinction ratio below 30dB cannot be generated with an intensity
Figure 3.5: (Color online) Secret key rate in logarithmic scale as a function of the distance under different numbers of decoy states. The main figure is for data-set $N=10^{12}$ and the inserted figure is for $N=10^{14}$. The key rates are obtained using numerical methods with one (dashed curve), two (solid curve), three (dashed-dotted curve) decoy states. The key rates with two and three decoy states are almost overlapped. In simulation, we perform a full parameter optimization for all cases. Our results show that after a full parameter optimization, the two decoy-state method can give an almost optimal key rate, which is higher than the one with one decoy state. Three decoy states cannot help to increase the key rate.©2014 APS

modulator [5, 6]. As shown in Ref [2], there is a benefit to include a “vacuum” decoy, and it is highly desirable to not modulate the smallest “vacuum” decoy’s intensity, but fixed it at the lowest extinction ratio can be achieved with today’s technology.

Fig 3.6 presents the investigation of the effect of the smallest vacuum state. The simulation is performed by sweeping the smallest intensity ω while optimize the other parameters.

The figure indicates the optimal value of ω is always in the vicinity of 5×10^{-6}. The conclusion is: as long as the intensity of ω is below 1×10^{-3}, the key rate is very close to the optimum, and a perfect vacuum ($\omega = 0$) is not required in a practical decoy state QKD experiment.
Table 3.5: Optimal key values under different number of decoy states. With finite data-set, the key rates with two decoy states are around one order of magnitude higher than the ones with one decoy state. Three decoy states cannot help to improve the key rates. Hence, two decoy states can achieve a near optimal key rate. In the case of two decoy states, the numerical method (Num) can only improve the key around 2% over the ones using our analytical method (Ana). This shows that the two decoy-state analytical method presented in Appendix B can also result in a near optimal estimation. ©2014 APS

3.7 Asymmetric MDI-QKD

MDI-QKD can be analyzed in a symmetric setting, where the transmission distances from Alice’s or Bob’s laboratory to the measurement device blackbox are equal, but a more practical scenario would correspond to asymmetry settings, where the transmission distances are not equal. As it is not obvious how to choose the experimental parameters in this case, I have conducted study on 3 methodologies using 2 decoy states at $N = 10^{12}$: 1. simplified choice of parameter, which is totally different than the simplified basis choice explained in Section 3.4 for symmetric setting, 2. symmetric choice of parameters, and 3. fully optimized choice of parameters.

In simplified choice of parameter, we assume the symmetric case’s result simply carry over to asymmetric case. However, this simplification result in identically 0 key rate. Hence, this brute force extension to asymmetric case proved to be wrong.
Figure 3.6: (b) Key rate as a function of the decoy state ω. As long as the intensity of ω is below 1×10^{-3}, the key rate is very close to the optimum. A perfect vacuum ($\omega = 0$) is not essentially required in practical decoy-state QKD experiments. ©2014 APS

Figure 3.7: comparison of the 3 choice of parameter: simplified, symmetric and fully-optimized the simplified choice results in identical 0 key rate. the symmetric case is close to the fully-optimized result but should be the one adopted in practice. ©2014 APS
In symmetric choice, the state probabilities and basis probabilities are chosen independently for Alice and Bob, but to account for the asymmetric distance and loss, we will scale both Bob’s signal and decoy intensity by $\frac{t_a}{t_b}$ in hope of this scaling will work better. The result on key rate shows that this is indeed a good choice, but there is still a gap away from the optimized choice of parameters. Mathematically, the constraints for symmetric choice are:

- $P_{\mu}^{Alice} = P_{\mu}^{Bob}$, $P_{\nu}^{Alice} = P_{\nu}^{Bob}$, $P_{\omega}^{Alice} = P_{\omega}^{Bob}$

- $P_{X|\mu}^{Alice} = P_{X|\mu}^{Bob}$, $P_{X|\nu}^{Alice} = P_{X|\nu}^{Bob}$, $P_{X|\omega}^{Alice} = P_{X|\omega}^{Bob}$

Finally, the full optimized choice does a thorough optimization on both Alice’s parameters and Bob’s parameter independently. This requires twice as many parameters as in the symmetric MDI-QKD case. The final result in 3.7 shows that the final key rate is superior to the symmetric choice of parameters. Although superior, the improvement of 30 percent of key rate does not justify the use of fully optimized result in actual experiment. Moreover, the improvement of tolerant distance from 26km to 30km also cannot dispense us from a quantum repeaters. Hence, for all purposes, symmetric choice of parameter is a good compromise between experimental complexity and performance.

Our analysis on the improvement of key rate and tolerant distance shows the root cause of the improvement is the better estimation of e_{11}, and this is accomplished by the lowering of signal state probability P_{μ} in exchange for the decoy state probability P_{ν} and P_{ω}.

3.8 Summary

This section summarize the results on optimization by a series of Questions & Answers

Q1: How do I know my optimization is convex?

A1: If the optimization is done on physical parameters, the smoothness is guaranteed by physics, and non-convexity will bring down the efficiency of the algorithm, but nonetheless produce reasonable key rate as objective.

Q2: Should I use Exhaustive Search (ES) or Local Search (LS)?

A2: Use a coarse grid ES to provide a sensible initial guess, and then run LS for optimization to get huge saving on time.

Q3: Should I do partial optimization or a full optimization?
A3: With LS, a full optimization is hardly any more effort, hence always do full optimization.

Q4: If I do have hardware limitation, what approximation scheme should I use?
A4: If aiming for a long fiber distance, use optimized basis choice for non-zero key rate, but use simplified basis choice in case of severe hardware limitation.

Q5: How many decoy states should I use?
A5: The best number is 2 decoy states, as already shown that it is very much the same key rate compared to the case of infinite decoy states.

Q6: should I go to the trouble of modulating the smallest “vacuum”?
A6: No, for all practical purposes, fix it at $\omega = 5 \times 10^{-6}$

Q7: If I just migrated from symmetric MDI-QKD to an asymmetric ones, what additional effort should I do?
A7: use symmetric basis choice to both save computation parameters and additional hardware.

3.9 Conclusion

Our work on the parameter optimization provided a local search recipe to explore the entire domain of the search while maintaining a non-exponentially growing space and time complexity. Also, our work resolved previous three un-anwered questions in the QKD community: First, we illustrated to other researchers that their optimization is only partially done, and such in-complete optimizations will result in sub-optimal key rate objectives. Second, our algorithm also presented the answer to what happen if hardware limitation can allow only searching a sub-domain, e.g. when the smallest ”vacuum” can only be 5×10^{-6}. Finally, and most importantly, our work prescribed the use of 2 decoy states to get a near-optimal key rate, and more than two decoy states will result in diminishing return. With these contributions, I believe our work has impacted the QKD academia on the improvement of MDI-QKD protocols.
Chapter 4

Characterization of Single Photon Superconducting Detector

This chapter is largely based on the article titled “Investigations of Afterpulsing and Detection Efficiency Recovery in SNSPDs” by Viacheslav Burenkov, He Xu, Bing Qi, Robert H. Hadfield and Hoi-Kwong Lo, published in Journal of Applied Physics [51]. The Journal of Applied Physics is published by the American Institute of Physics. As such, copyright of this work belongs to the American Institute of Physics.

This chapter is logically divided into two parts: the first part is done before my joining of the project, and the second part of the project has my contribution. The experiment in section 4.4 and 4.5 is done entirely by Viacheslav Burenkov, and the experiments in section 4.6 4.7 and 4.8 are jointly done by He Xu and Viacheslav Burenkov. Finally, the Simulink models in Appendix C can be replicated by readers who want to delve deeper in validation of our results.

4.1 Introduction

Superconducting Nanowire Single Photon Detectors (SNSPDs) are a relatively new technology for detecting single infrared photons [60, 61]. They can offer certain advantages over other single photon detectors due to their potentially short dead time, small timing jitter [62] and low dark count rate [63]. As such, they have been used in many areas of research, including quantum key distribution (QKD) [64, 65, 66, 67, 68, 69], quantum state tomography [70] and other quantum optic experiments. There has been growing interest in completely characterizing these quantum detectors through a process called
detector tomography [71, 72, 73]. Yet, such characterization is often based on the response of a detector to a one-shot input, when the initial state of a detector is “active”. In other words, it does not consider the possibility that a detector is already “dead” due to an earlier detection event (a “click”) and the fact that the response of a detector to a signal actually depends on its initial state and when the last detection event occurs.

In the context of QKD, we remark that the existing theoretical models for photon detectors are often too simplistic and do not take into account various imperfections in practical detectors. This is highly undesirable because, for one thing, those imperfections may open up security loopholes which allow Eve to hack commercial QKD systems, as demonstrated by the recent quantum hacking experiments against InGaAs APDs [74, 75] and an SNSPD [76]. Therefore, it is important to re-examine existing models for detectors and see if they describe practical detectors well.

Regarding SNSPDs, two assumptions are often made. First, it is commonly assumed without proof that the dark counts (spurious clicks that occur with no light input) of an SNSPD are uniform in time. Secondly, initial experimental studies [77] indicate that detection efficiency recovers continuously, mirroring the recovery of the bias current in the nanowire [78].

In this thesis, we find that, rather surprisingly, both assumptions are invalid for a practical SNSPD. Our investigation consists of three parts. In the first part of our investigation, with no laser input, we study the distribution of dark counts. We find that, rather unexpectedly, dark counts are not uniform. In fact, dark counts show a clustering effect, which we refer to as “afterpulsing”. This “afterpulsing” can be triggered by photons, or can also be triggered by un-intentional blackbody radiation when laser is off. More concretely, for our SNSPD, the total dark count probability could be separated into a uniformly distributed “pure” dark count probability and a highly time-dependent “extra” dark count probability, occurring on a time scale of around 180 ns after a previous dark count.

We found that the probability of afterpulsing of dark counts increases exponentially as the bias current is increased. At high bias currents, afterpulsing of dark counts can be an important contribution to the overall dark count rate. Besides, at high bias currents, more than one afterpulse can occur, with a time interval of about 180 ns between the adjacent afterpulses. At very high bias current, a long train of afterpulses can occur. We study the distribution of the number of pulses as a function of bias current. We discuss the implications of our finding on the security and performance of QKD with SNSPDs.
In the second part of our investigation, with a pulsed laser on with a repetition rate of 2 MHz, we study the distribution of detection events. We observe that about 180 ns following a real detection event due to an input pulse, there is an enhanced probability for our SNSPD to register a (spurious) detection event. Such a spurious detection event is commonly called an afterpulse. We note that two papers related to afterpulsing in SNSPDs (with laser on) have been published recently [79, 80]. In Ref. [79], the afterpulsing effect of an SNSPD with a laser input has been studied on the time scale of 100 ns. Here, we study the afterpulsing effect with a laser input at a much larger time-scale (of 1000 ns) and, for the first time, report the secondary afterpulsing effect (the afterpulse of an afterpulse). Indeed, we find that about 180 ns after the first afterpulse, there is an enhanced probability of having a second afterpulse. This is similar to our finding in the first part of our investigation (with no laser input).

In the third part of our investigation, we study the recovery curve of SNSPD after a detection event. Here, we report an unexpected recovery of detection efficiency after a detector click. Contrary to the widespread belief, the detection efficiency does not monotonically rise to its nominal value but instead increases beyond it on the same time scale as the afterpulsing, before dropping back to the nominal value.

The chapters are structured as follows. Sec. 4.2 introduces the physics of SNSPD and defines the afterpulse phenomenon. Sec. 4.3 describes our experimental set-up in detail and defines what exactly constitutes a detection event. Sec. 4.4 presents our results of a non-uniform distribution of the dark count events in the SNSPD, and introduces the aforementioned afterpulse effect. In Sec. 4.5, we characterize the afterpulsing effect and explain it as a reflection in the readout circuit used, as previously proposed in Ref. [79]. Analysis of afterpulsing is then extended to experiments with incoming light in Sec. 4.6. In Sec. 4.7 we present our results of detection efficiency recovery following a detection event, showing an unexpected temporary rise in detection efficiency beyond the nominal value. In Sec. 4.8 we demonstrate experimentally that afterpulsing can be eliminated by using a different amplifier. Finally, we make a summary and concluding comments in Sec. 4.9, including highlighting the significance of using an SNSPD with these properties for QKD.
4.2 Physics of SNSPD

Superconducting Nanowire Single Photon Detector (SNSPD) is an emerging device for QKD applications. Before delving into our work, this section explains the physics of SNSPD. Fig 4.1 from [10] demonstrates the physical mechanism of SNSPD: (i) the nanowire is kept in the superconducting state, (ii) an incoming photon results in a local hotspot, (iii) the hotspot propagates until (iv) the whole nanowire transition from a superconducting state to (iv) a normal resistive state, and (vi) the quenching of the bias current allows subsequent detections.

4.3 Experimental set-up of SNSPD

The SNSPD consists of a superconducting nanowire, which is current-biased just below its critical current. Photon detection is based on the fact that an incoming photon can induce a transition of the nanowire from its superconducting state to a resistive state, resulting in a voltage pulse that can then be amplified and detected \(^1\).

The SNSPD used in this study is based on a single 100 nm width nanowire covering a 20 \(\mu\text{m} \times 20 \mu\text{m}\) area in a meander configuration [81]. Two such SNSPD chips are fiber coupled and mounted inside a closed cycle refrigerator at a temperature of approximately 2.4 K [82]. In this study we focus in detail on the behavior of one of the fiber-coupled

\(^1\)See supplementary material at [URL will be inserted by AIP] for the outline of the detection process.
SNSPDs.

The schematic of our SNSPD set-up is shown in Fig. 4.2. It is a fairly standard configuration.

![Schematic set-up of the Superconducting Nanowire Single-Photon Detector (SNSPD) and associated components. Dashed red lines represent optical fiber; solid black lines represent electrical connections. An attenuated polarization-controlled laser provides the optical input to the detector chip. A battery powered voltage source and a 100 kΩ resistor is used to bias the nanowire just below its critical current through one branch of the bias tee. The output electrical signal from the SNSPD is read out using the other branch of the bias tee, and is amplified by the amplifier chain before being detected. The SNSPD is maintained at a stable temperature of 2.4 K inside a closed-cycle refrigerator (Sumitomo RDK101D cold head and CNA11C compressor). The length of the cable between the SNSPD and tee piece for the 50 Ω shunt, and between the SNSPD and the bias tee is about 1.5 m of coaxial cable, almost all of which is inside the cryocooler. PC: polarization controller, BS: beam-splitter, TIA: Time Interval Analyzer.](image)

The laser used was a pulsed laser (PicoQuant PDL 800-B) at 1550 nm. An optical attenuator together with a power meter is used to set the desired power of incoming light. The polarization controller (PC) is used to adjust the polarization of incoming light to maximize the detection efficiency [83].

The SNSPD is current-biased below the critical current by setting a DC bias on the battery-powered voltage source. A bias tee (Picosecond Pulse Labs, part-ID 5575A-104, 12 GHz bandwidth), which is essentially a combination of an inductor and a capacitor, is used to set the DC bias through one arm and read out the RF signal through the other arm.

The weak electrical output signal from the detector is then amplified as it passes through the amplifier chain. The amplifier chain consists of two amplifiers, RF-Bay LNA-580 and LNA-1000, with a combined gain of around 56 dB. The LNA-580 and
LNA-1000 amplifiers have a 3 dB roll off of 580 MHz and 1 GHz respectively.

The amplified signal is then detected by a Time Interval Analyzer (TIA), which records the arrival time of detector output signals and synchronization signal with picosecond resolution. The TIA model is PicoQuant HydraHarp 400. The TIA dead time per channel is specified as <80 ns. Thus the TIA dead time plays a negligible role in our investigations since it is considerably lower than the dead time of our SNSPD, which is of the order of 150 ns.\(^2\)

Note that we are using a 50 Ω shunt resistor in our SNSPD set-up to avoid SNSPD latching [84]. Latching is a phenomenon which can occur in SNSPDs where the nanowire doesn’t recover to its superconducting state after a detection [85]. The use of the shunt resistor doubles the dead time of our SNSPD but was necessary in our set-up to avoid latching in the high bias regime we were working in.\(^3\)

The SNSPD bias can be set at different values by changing the voltage of the voltage source depending on what the SNSPD is being used for. For this specific type of NbN SNSPD, higher bias gives a higher detection efficiency, as shown in [61] Fig 3(a). In other types of SNSPDs, the plateau behavior is observed where efficiency saturates at high bias [86, 87]. This can be observed in very uniform short NbN nanowires at short wavelengths, or in new materials like WSi at telecom wavelengths.

Higher bias in our SNSPD also raises the dark count rate (DCR) together with the detection efficiency. Applications in which it is essential to minimize dark counts, such as long distance QKD [67, 68, 69], would require the SNSPD to be operated at a relatively low bias. Above the critical current, the SNSPD will undergo relaxation oscillations (outputting a continuous train of pulses). The maximum detection efficiency of the SNSPD is approximately 2.5%, at a bias of about 25 µA.

It is important to define what exactly constitutes a single detection event. The output voltage pulse coming from the amplifiers of a single detection click, over a time span of 500 ns, is shown in Fig. 4.3.

Fig. 4.3 shows a detection event which occurs at 30 ns, causing a rapid drop of around 300 mV, followed by an overshoot and further oscillations in the voltage pulse. The shape and height of the pulses is very consistent between different detection events (the height of the peak (dip) is proportional to the bias current of SNSPD). We use the leading edge

\(^2\)See supplementary material at [URL will be inserted by AIP] for a discussion about the dead time of our SNSPD.

\(^3\)See supplementary material at [URL will be inserted by AIP] for more details about the latching phenomenon.
Figure 4.3: Output pulse shape of a single detection click, starting at 30 ns, as observed on an oscilloscope (rugged green line). The observed shape shown is the average of ten pulse shapes to reduce appearance of random noise, but the individual pulse shapes are nearly identical to each other. The dotted black line shows the discrimination voltage level used by the TIA to register a detection event.

of the pulse to discriminate a detection event with the TIA, setting the discrimination level at negative 150 mV. This is roughly halfway down the pulse and this amplitude value is well beyond the noise level.

4.4 Afterpulsing of Dark Counts

For the following section, we shall focus on results with the bias current set to 25.0 μA. This bias is close to the critical value, and hence maximizes the detection efficiency of the SNSPD, albeit at the cost of a higher dark count rate (DCR).

In this section we study the dark count distribution of the SNSPD. Therefore, we turn the laser off.

The mechanisms for dark counts in SNSPDs have been discussed in Ref. [61, 88] and references therein. Even if care is taken to minimize stray light and blackbody radiation contributions to the dark count, there would still be a finite amount of dark clicks. The dominant mechanism for this is believed to be current-assisted unbinding of vortex-antivortex pairs [89], although other mechanisms have also been proposed.

It is generally assumed and rarely questioned that dark counts occur randomly and
uniformly in time. The waiting times between each pair of consecutive dark count events (inter-arrival time) are independent random variables, and it is thus a Poisson process. As such these inter-arrival times should follow an exponential distribution. We can see this intuitively as follows. For each fixed-time interval the probability of having a dark count is the same. However, after some starting point in time the probability of having a dark count in each successive fixed-time interval decreases (exponentially) since for a click to happen further down the timeline implies a click did not happen in all prior fixed-time intervals. The single likeliest fixed-time interval where a click would happen is the first one, followed by the second one, and so on.

We decided to verify this by plotting a histogram of waiting times between dark count events. In this experiment, the laser is switched off and we are measuring dark count events only. The detection times are recorded with the TIA. We calculate time difference between neighboring clicks, and group these into 0.1 ms time windows (= bin size) to plot the histogram.

The bias was set to a relatively high value of 25.0 µA, which is near the critical value. The DCR at this bias level is approximately 3200 counts/s. Histogram of waiting times \(dt \) between dark counts is shown in Fig. 4.4.

![Figure 4.4](image)

Figure 4.4: Histogram of waiting time between dark count clicks. An exponential decay fit (blue line) is superimposed on the data points (red dots). The acquisition time was approximately 3 s giving 10,000 detection events in total. The error bars shown are given by the square root of the number of detection events. The first 15 bins are shown. \(I_b = 25.0 \) µA. \(I_c = 25.3 \) µA.

The only expected change from this theoretical model would be due to the detector’s dead time. However, since the dead time of our detector is of the order of 150 ns, this
effect would be negligible with relatively large bin size of the order of 0.1 ms.

We can see from the graph that the data points (bin heights at center of bin) seem to follow an exponential decay except for the first bin, which clearly has a larger than expected value. We fitted an exponential decay curve on top of the data points. To fit the exponential, we discarded the first bin, and also all bins towards the tail end of the distribution (with small values in each bin). We then extrapolated the given curve (blue line in Fig. 4.4) to all bins. There is good agreement amongst all the other bins except for the first bin.

Zooming into the first bin clearly reveals the presence of an afterpulsing effect. We plotted a histogram of waiting times within the first 500 ns using a much smaller bin size (4 ns). This is a separate experiment with a longer acquisition time than in Fig. 4.4. The histogram for the first 500 ns is shown in Fig. 4.5.

![Figure 4.5: Histogram of waiting time between dark count clicks, for the first 500 ns after an initial click. Bias current = 25 µA, 100,000 events total, bin width = 4 ns. \(I_b = 25.0 \mu\text{A}, I_c = 25.3 \mu\text{A} \).](image)

The figure shows a large number of unexpected counts in an approximately Gaussian distribution centered at around 180 ns waiting time. That is, there is an increased probability of a dark count effect occurring around the 180 ns mark after a previous dark count. This is why we refer to this effect as afterpulsing. This effect was independently verified with an oscilloscope, and so it cannot be an artifact of our TIA system.

We can define the amount of afterpulsing as the number of clicks in the first 1000 ns window (there would be negligible real dark counts in such a short time interval). Since the afterpulse effect predominantly happens within the first 1000 ns of a previous click, it is useful to introduce a new quantity called corrected DCR, which is the total DCR
minus all the clicks within the first 1000 ns, i.e. the afterpulses.

A plot of how total DCR and corrected DCR vary with bias current is shown in Fig. 4.6.

Figure 4.6: Total DCR and corrected DCR versus bias current. About 10,000 total clicks were acquired for each bias point. At higher bias, the two deviate more due to more prevalent afterpulsing. The error bars for each point are smaller than the size of the marker. $I_c = 25.3 \mu\text{A}$.

We can see that at lower bias value the total DCR closely matches the corrected dark count rate. At higher bias values the two deviate more and more, as the afterpulsing contributes more to the DCR.

We now examine how changing the bias current affects afterpulsing. We define the probability of afterpulsing as the number of clicks that happen within 1000 ns of a prior click divided by the total number of clicks. We discovered that the afterpulsing strongly depends on the bias current. A plot of afterpulse probability versus current bias is shown in Fig. 4.7.

We see an exponential increase in the afterpulsing probability as the bias current approaches the critical value. Afterpulsing quickly becomes negligible as bias is decreased away from the critical value.

We noticed that afterpulses can occur in trains of one or more afterpulses. Whether the second afterpulse, typically occurring about 360 ns after the initial click, is simply the afterpulse of the first afterpulse is investigated in Sec. 4.5.
Figure 4.7: Afterpulse probability vs bias current. The afterpulsing effect quickly becomes negligible at the bias is reduced away from the very high value of 25.2 µA. I_c is about 25.3 µA.

4.5 Model for afterpulsing

It is important to characterize and understand the underlying cause of the afterpulsing in SNSPDs. For this we have measured the number of afterpulses that occur in the afterpulse ‘train’ of n clicks, at different bias values, with no light input. A single click corresponds to $n = 1$. A two-pulse train is $n = 2$, i.e. a single afterpulse click (occurring at around 180 ns), a three-pulse train is $n = 3$ (first afterpulse at approximately 180 ns, second at approximately 360 ns), and so on. We define the trains such that a train with a certain number of pulses in it is distinct so that, for example, an n-click train does not also count as an $(n-1)$-click train. The afterpulse trains are detected using the TIA, which records all the dark counts over a period of time, and the output is processed on a computer to compile a histogram to show the number distribution of clicks in these afterpulse trains. See Fig. 4.8.

We can see that at lower bias there are virtually no afterpulses. They start to appear as single afterpulses, but as the bias is increasing they start to come in pairs, triplets and more afterpulses in one afterpulse train. For our purposes it is useful to look at the ratio of $n = 2$ (i.e. single afterpulse click) to $n = 1$ events (regular dark count), which is shown in Fig. 4.9.

Fig. 4.9 shows an exponential increase in the ratio as the bias current approaches the critical value. Moreover, it gives the same slope as in Fig. 4.7.

We can see that there seems to be a simple model to describe the secondary afterpulses for a large range of bias values, although the model breaks down when the bias level gets
Figure 4.8: This figure shows how the observed afterpulses start to appear in multiples of clicks as the bias is increased towards the critical value, of about 25.3 μA. The $n = 6$ column represents “6 or more” pulses.

Figure 4.9: Ratio of $n = 2$ (two clicks with the second being an afterpulse click) to $n = 1$ (single click) in $P(n)$ vs n graphs of Fig. 4.8, at different bias values. $I_c = 25.3$ μA.

very close to critical. The model being that subsequent afterpulses in the train are caused by previous afterpulses.

In agreement with earlier work in Ref. [79] we believe that the afterpulses are caused by reflections in the readout circuit. The transient of the voltage pulse may perturb the grounding of the circuit, perturbing the bias current of the SNSPD. This has very little effect if the operational bias is well below the critical value. However, if the operating value is close to critical, this small increase in the effective bias voltage is enough to make a big difference in both the detection efficiency and the dark count rate for a short period
of time around 180 ns after the initial detection. This also explains how the bias current can change the afterpulsing probability. Given these results, we have no reason to think that the actual SNSPD itself has intrinsic afterpulsing.

4.6 Afterpulsing with laser on

In this section we use a pulsed laser running at 0.5 MHz to investigate the afterpulse phenomenon for actual detection events. Note that the experiments from this section onwards were taken on a different day, and the temperature of the SNSPD had increased slightly so that the bias current was lowered slightly from about 25.0 µA to 24.5 µA to approximately match the biasing level of the SNSPD making it consistent with previous results. The critical current had decreased from about 25.3 µA to about 24.8 µA. We used the TIA to obtain a record of all the detection events. The laser provides a synchronization signal to the TIA.

We run the experiment continuously for 150 seconds. Using the sync signal as time reference, we split up the timeline of detection events into 2000 ns segments. We then record the time interval between the click caused by the laser pulse and any other clicks in that 2000 ns time window. We build up a histogram of these time intervals over all 2000 ns segments. The graph is adjusted in the time domain so that the arrival of the electrical signal from the SNSPD caused by the laser pulse, is at $t = 0$. We also only count clicks in one of these 2000 ns segments if the laser pulse did in fact cause a corresponding detection event in that segment. In other words, we are counting further detection clicks conditionally in the event that there was a click at $t = 0$ caused by the laser pulse. This histogram of time interval between the laser pulse signal and detection clicks is shown in Fig. 4.10.

The tall sharp peak at $t = 0$ corresponds to the position of the laser pulse. The other broader peaks correspond to afterpulses. The first broad peak appears at around 180 ns. This is consistent with the results with no laser input. We also see the SNSPD dead time at the beginning. The baseline level corresponds to regular dark counts.

We confirm that the aforementioned afterpulsing effect is present for the case of pure dark count clicks (no laser input) as well as real detection clicks (from pulsed laser), and the peak of the afterpulse occurs after the same delay (about 180 ns) in both cases.
Figure 4.10: Histogram of time interval between the laser pulse signal and detection click. Number of total clicks is just over 17 million, almost all of which are concentrated in the first peak at \(t = 0 \), which corresponds to the detection time of the laser pulses. Laser repetition rate is 0.5 MHz. Photon number \(\mu = 10 \) photons/pulse. Bin size is 20 ns. \(I_c = 24.8 \mu A \).

4.7 Detection efficiency recovery

One might ask whether the afterpulse peak around 180 ns is caused by a higher detection efficiency in the SNSPD at this time, or if it is simply a result of probabilistic events that either happen or not, regardless of detection efficiency (which could in principle, based on results presented so far, even be zero). In this section we answer this question and show that indeed the detection efficiency around that point is higher. We also show how the actual detection efficiency recovers back to its nominal value following a detection. The recovery is not monotonic, and in fact the detection efficiency oscillates in the first 500 ns before settling to the expected value. A measurement of the actual recovery process was reported in Ref. [77], giving a smooth recovery to the nominal value.

To measure detection efficiency dynamics, we perform the following ‘double pulse’ experiment. The pulsed laser is used to make pairs of pulses in 2000 ns windows, at variable separation, ranging from 80 ns to 1000 ns. These pairs of pulses are sent into the SNSPD and the sync signal is matched to the first laser pulse of the pair. The number of photons in each laser pulse is \(\mu = 1 \).

To calculate the detection efficiency for the second pulse in the pair, we take the ratio of the number of cases where both pulses were detected to the number of cases where only the first pulse was detected. We subtract the estimated number of afterpulse clicks
caused by the first pulse in the pair \(^4\). The resulting graph of detection efficiency recovery is shown in Fig. 4.11.

![Detection Efficiency Recovery Graph](image)

Figure 4.11: Detection efficiency recovery graph of our SNSPD. The delay between the two pulses ranges from 80 ns to 1000 ns. Each point is obtained by setting the TIA acquisition time to 30 seconds, resulting in about 400,000 instances of the first laser pulse being detected. The detection efficiency recovery is not monotonic. The error bars for each point only take into account the statistical fluctuations, defined by \(\pm 3\sqrt{\text{number of events}}\). The bias point of the SNSPD was 24.4 \(\mu\)A (the critical current at the time was about 24.8 \(\mu\)A).

The result is unexpected as the increase to nominal detection efficiency is not monotonic. The detection efficiency is virtually zero up to about 80 ns, at which point it starts to rise sharply, reaching a peak at around 180 ns after the detection, corresponding to the same point in time where afterpulsing is at its highest. This is followed by a drop to the expected nominal level after several hundred nanoseconds after a detection.

Based on this evidence, it seems plausible to us that both the afterpulsing and the unexpected detection efficiency recovery are caused by the same external phenomenon. We speculate that the transient in the voltage pulse is perturbing the current flow in the nanowire, leading temporarily to higher bias current, and thus an enhancement of detection efficiency around 180 ns after a detection event. Likewise, we speculate that this temporary overshoot in the bias current could lead to a temporary increase in dark count rate around 180 ns after a detection event, thus causing the observed afterpulsing. However, more experiments would need to be done to make a definitive conclusion.

\(^4\)See supplementary material at [URL will be inserted by AIP] for details of the procedure used to make these estimates.
It is worth noting that the overshoot of the response pulse and the detection efficiency reach their maxima at different times after the falling edge of the pulse crosses the threshold. One explanation for this mismatch could be that the temporal voltage pulse profile recorded on the oscilloscope gives only an indirect indication of the current recovery in the nanowire. There may be a lag between the two owing to the impedance of the circuit.

We replace the amplifier chain with an alternative amplifier and show that the afterpulsing disappears (see Sec. 4.8).

4.8 Using an amplifier with improved low frequency response

We replaced the two RF Bay amplifiers in our set-up with a single MITEQ AM-1431 amplifier, which has a frequency range of 0.001 – 1000 MHz. This amplifier was chosen due to its improved low frequency response compared to the RF Bay amplifiers, which have frequency ranges of 10 – 580 MHz and 10 – 1000 MHz. We repeat the experiment of acquiring dark counts from Sec. 4.4, and plot the histogram of waiting times between dark count events. See Fig. 4.12.

![Histogram of waiting time between dark count clicks](image)

Figure 4.12: Histogram of waiting time between dark count clicks. There are approximately 450,000 events in total. The bin size is 20,000 ns. \(I_c = 24.8 \mu A \). Afterpulsing is no longer present.

Although we did not get a chance to optimize the conditions to directly compare the new result to our previous result from Sec. 4.4 (due to technical issues with our SNSPD cooling system), we have observed that there is no longer an afterpulsing peak within
the first 500 ns after a dark count, and as such, there is no longer an abnormally high number of clicks in the first bin as we can see from Fig. 4.12.

We speculate that the poor low frequency response of the RF Bay LNA-580 and LNA-1000 amplifiers used caused an oscillation in the output voltage pulse during recovery, leading to the afterpulsing effect, as suggested in Ref. [79].

4.9 Summary and Conclusions

The contributions of this thesis can be summarized in terms of three main parts. First, we have performed the first experimental study of the time-domain distribution of dark counts in an SNSPD (i.e. the case with no laser input), showing for the first time, an afterpulsing effect. Second, we have also performed a longer time domain measurement of the afterpulsing effect (1000 ns) with laser input. Third, we have measured the actual recovery graph of the detection efficiency and found that the recovery occurs in an unexpected manner. Specifically, we found that the detection efficiency after a detection event starts from zero, rises and actually overshoots before returning to its normal value.

The afterpulsing, dark count and detection efficiency enhancement during the recovery of the SNSPD show similar dynamics and are all most likely to occur around 180 ns following a detection event (the exact figure depends on the biasing current). We speculate that all three of these effects arise due to a perturbation in the bias current through the nanowire. This is caused by the poor low frequency response of the RF Bay LNA-580 and LNA-1000 amplifiers used, causing an oscillation in the output voltage pulse during recovery, as suggested in Ref. [79]. It thus appears that the afterpulsing effect is not intrinsic to the SNSPD itself. We confirmed experimentally that afterpulsing does indeed disappear when we replace the aforementioned RF Bay amplifiers with a MITEQ AM-1431 amplifier which has a much better low frequency response.

We also want to emphasize the significance of afterpulsing and the recovery profile in QKD applications. One unwanted effect would be if someone chose to operate the system at around 5 MHz repetition rate (corresponding to about 200 ns between pulses), and thereby significantly increasing the effective dark count rate, and hence lowering the secure key rate. It is also natural to ask whether such a recovery profile can cause any security concern for a QKD system. First of all, it was shown in [90] that the proven secure key rate is much lower, in view of detection efficiency mismatch. Second, if Eve always sends signals separated by 180 ns to Bob, then she can gain side information
about the sifted key.

One should be careful about the electronics used in a QKD system as electronics may give false detection signals and afterpulsing effects that may severely undermine security and/or performance of a QKD system. However, even if there is an exploitable loophole due to afterpulsing, the newly developed MDI-QKD \cite{91} can close all such loopholes in the detection system, including unidentified ones.
Chapter 5

Conclusion and outlook

This chapter concludes the findings of the thesis, and provides a perspective for the future.

5.1 Conclusion:

There are two main points in this thesis: the importance of optimization in the design of protocols and the importance of characterization for new devices in Quantum Key Distribution (QKD).

5.1.1 Protocol Optimization:

The goal of optimization is not to merely save computational time and resources; these savings are usually only a by-product of a superior optimization algorithm. Rather, the goal of optimization is to probe the extreme possibilities of a given protocol. For example, in our optimization, the local search algorithm can improve the key rate by 200%.

In this thesis, I have presented a framework for the optimization of protocols by showing:

• recognition of a convex topology can save efforts in optimization.

• identification of controllable parameters must be done to extract the most influential parameters while ignoring others with only spurious and negligible effects.

• optimization algorithm depends on the topology and the parameters,
5.1.2 Detector Characterization:

No matter which type of the device is, and what its physical mechanism is, characterization of the device must be done prior to its use. Such tomographic processes not only make subsequent experiment predictable, but also isolate out many faulty hypotheses of the experiment without expensive equipment renting.

In this thesis, I have presented one aspect of the characterization, namely the origin and elimination of the afterpulse phenomenon. Following the approach in this thesis, other researchers can predict the presence of the afterpulse, and eliminate it if it is undesirable.

5.1.3 General Conclusion:

Aside from the prominent promise of a 200 % increase in the key rate, the proposed methodologies on the optimization of parameters and on the characterization of devices allow any QKD researchers to save efforts on the selection of parameters and on the probing of new devices.

The insights gained in the optimization can potentially compensate technological deficiency such as the lack of true SPDs. Our local search algorithm makes the MDI-QKD protocols more tolerant to photon loss, and the increased key rate allows experimentalists a larger design space to use less expensive devices. The results on how to choose the number of decoy states fill the un-answered question of how many of decoy states make a superior protocol.

Our works on the characterization of SNSPD can be extended and generalized to an understanding of novel devices. Our approaches in both the time domain and the frequency domain can easily be adapted as a tomographic process for general devices. Although the time and frequency behaviour may differ, the interpretations from the characterization will aid researchers to better cope with the non-idealities of the devices and squeeze out the most from the device.

To put our work in a larger perspective, this thesis brings to the QKD community a step further into closing the gap between theory and practice. Finally, this thesis impacts both industry and academia by advancing the QKD protocols a step further from laboratory experiments to viable commercial products. Our results may persuade the industry that QKD does not solely rely on un-realistic technological assumptions. The advent of commercial QKD products may be influenced by our work.
Appendix A

Numerical approaches

Ignoring statistical fluctuations temporally, the estimations on $Y_{11}^{Z,L}$ and $e_{11}^{X,U}$ from Eq. (2.7) are constrained optimisation problems, which is linear and can be efficiently solved by linear programming (LP). The numerical routine to solve these problems can be written as:

$$\begin{align*}
\min : & Y_{11}^{Z}, \\
\text{s.t. :} & 0 \leq Y_{nm}^{Z} \leq 1, \text{with } n, m \in S_{\text{cut}} \\
& Q_{q_a,q_b}^{Z} - \left(1 - \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} \right) \leq \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} Y_{nm}^{Z} \leq Q_{q_a,q_b}^{Z} \\
\text{Max :} & e_{11}^{X}, \\
\text{s.t. :} & 0 \leq Y_{nm}^{X} \leq 1, 0 \leq Y_{nm}^{X} e_{nm}^{X} \leq 1, \text{with } n, m \in S_{\text{cut}} \\
& Q_{q_a,q_b}^{X} - \left(1 - \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} \right) \leq \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} Y_{nm}^{X} \leq Q_{q_a,q_b}^{X} \\
& Q_{q_a,q_b}^{X} E_{q_a,q_b}^{X} - \left(1 - \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} \right) \leq \sum_{n,m \in S_{\text{cut}}} e^{-(q_a+q_b) \frac{q_a^n q_b^m}{n! m!}} Y_{nm}^{X} e_{nm}^{X} \leq Q_{q_a,q_b}^{X} E_{q_a,q_b}^{X}
\end{align*}$$

where S_{cut} denotes a finite set of indexes n and m, with $S_{\text{cut}} = \{ n, m \in \mathbb{N} \text{ with } n \leq N_{\text{cut}}, m \leq M_{\text{cut}} \}$, for prefixed values of $N_{\text{cut}} \geq 2$ and $M_{\text{cut}} \geq 2$. In our simulations,
we choose $N_{\text{cut}} = 7$ and $M_{\text{cut}} = 7$, as larger N_{cut} and M_{cut} have negligible effect on decoy-state estimation. More discussions can be seen in [2]. Here, $q \in \{\mu, \nu\}$ for one decoy-state estimation; $q \in \{\mu, \nu, \omega\}$ for two decoy-state estimation; $q \in \{\mu, \nu_1, \nu_2, \omega\}$ for three decoy-state estimation. Notice that statistical fluctuations can be easily conducted by adding constraints on the experimental measurements of Q_{q_1,q_2}^λ and E_{q_3,q_4}^λ. These additional constraints can be analyzed by using statistical estimation methods, such as standard error analysis [2] or Chernoff bound [92]. A rigorous finite-key analysis can also be implemented by following the technique presented in [92].
Appendix B

Analytical approaches

B.0.4 One decoy state

We consider an estimation method with only one decoy state ν satisfying $\mu > \nu$. Our starting point is Eq. (2.7). To estimate $Y_{11}^{Z,L}$, we use gaussian elimination. Firstly, we simultaneously cancel out all the third order terms Y_{12}, Y_{21}, Y_{30}, Y_{03}:

$$
\mu^3 \times Q_{\nu \nu}^{Z} e^{2\nu} - \nu^3 \times Q_{\mu \mu}^{Z} e^{2\mu} =
\mu^3 (\mu - \nu) Y_{11}^{Z} + \mu^3 (Y_{00}^{Z} + \nu Y_{01}^{Z} + \nu Y_{10}^{Z} + \nu^2 Y_{02}^{Z}/2 + \nu^2 Y_{20}^{Z}/2)
- \nu^3 (Y_{00}^{Z} + \mu Y_{01}^{Z} + \mu Y_{10}^{Z} + \mu^2 Y_{02}^{Z}/2 + \mu^2 Y_{20}^{Z}/2) +
\sum_{n+m>3} \frac{(\mu^{n+m} \nu^3 - \mu^{n+m} \nu^3)}{n!m!} Y_{nm}^{Z}
\leq
\mu^3 (\mu - \nu) Y_{11}^{Z} + \mu^3 (Y_{00}^{Z} + \nu Y_{01}^{Z} + \nu Y_{10}^{Z} + \nu^2 Y_{02}^{Z}/2 + \nu^2 Y_{20}^{Z}/2) \quad (B.1)
$$

where the inequality comes from the fact that $(\nu^{n+m} \mu^3 - \mu^{n+m} \nu^3) < 0$ for $n + m > 3$. Next, from $Q_{\nu \nu}^{Z} E_{\nu \nu}^{Z}$, we have

$$
Q_{\nu \nu}^{Z} E_{\nu \nu}^{Z} e^{2\nu} =
\sum_{n,m=0}^{\infty} \frac{\nu^{n+m}}{n!m!} Y_{nm}^{Z} e_{nm}^{Z} \geq
Y_{00}^{Z} e_{00}^{Z} + \nu Y_{01}^{Z} e_{01}^{Z} + \nu Y_{10}^{Z} e_{10}^{Z} + \nu^2 Y_{02}^{Z} e_{02}^{Z}/2 + \nu^2 Y_{20}^{Z} e_{20}^{Z}/2
= (Y_{00}^{Z} + \nu Y_{01}^{Z} + \nu Y_{10}^{Z} + \nu^2 Y_{02}^{Z}/2 + \nu^2 Y_{20}^{Z}/2)/2 \quad (B.2)
$$

where the final equality is from $e_{0m}^{Z} = e_{n0}^{Z} = 1/2$, which is a standard assumption in QKD descending from the fact that the error rate cause by 0-photon pulse is 1/2. Therefore, by combining Eq. (B.1) and Eq. (B.2), we have a lower bound for Y_{11}^{Z}

$$
Y_{11}^{Z} \geq Y_{11}^{Z,L} = \frac{\mu^3 Q_{\nu \nu}^{Z} e^{2\nu} (1 - 2E_{\nu \nu}^{Z}) - \nu^3 Q_{\mu \mu}^{Z} e^{2\mu}}{\mu^2 \nu^2 (\mu - \nu)} \quad (B.3)
$$
To estimate $\epsilon_{11}^{X,U}$, we use the same method as [45, 92] and obtain an upper bound for ϵ_{11}^{X}

$$\epsilon_{11}^{X} \leq \epsilon_{11}^{X,U} = \frac{1}{(\mu - \nu)^2 Y_{11}^{X,L} X} \times (e^{2\mu} Q_{\mu\mu}^{X} E_{\mu\mu}^{X} + e^{2\nu} Q_{\nu\nu}^{X} E_{\nu\nu}^{X} - e^{\mu+\nu} Q_{\mu\nu}^{X} E_{\mu\nu}^{X} - e^{\nu+\mu} Q_{\nu\mu}^{X} E_{\nu\mu}^{X}) \quad (B.4)$$

B.0.5 Two decoy states

We consider an estimation method with two decoy states ν, ω satisfying $\mu > \nu > \omega \geq 0$. We have the lower bound $Y_{11}^{Z,L}$ and the upper bound $\epsilon_{11}^{X,U}$ [45, 92]

$$Y_{11}^{Z,L} = \frac{1}{(\mu - \omega)^2 (\nu - \omega)^2 (\mu - \nu) X} \times \left[(\mu^2 - \omega^2)(\mu - \omega)(Q_{\nu\nu}^{Z} e^{2\nu} + Q_{\omega\omega}^{Z} e^{2\omega} - Q_{\nu\omega}^{Z} e^{\nu+\omega} - Q_{\omega\nu}^{Z} e^{\omega+\nu}) - (\nu^2 - \omega^2)(\nu - \omega)(Q_{\mu\mu}^{Z} e^{2\mu} + Q_{\omega\omega}^{Z} e^{2\omega} - Q_{\mu\omega}^{Z} e^{\mu+\omega} - Q_{\omega\mu}^{Z} e^{\omega+\mu}) \right], \quad (B.5)$$

$$\epsilon_{11}^{X,U} = \frac{1}{(\nu - \omega)^2 Y_{11}^{X,L}} \times \left[e^{2\nu} Q_{\nu\nu}^{X} E_{\nu\nu}^{X} + e^{2\omega} Q_{\omega\omega}^{X} E_{\omega\omega}^{X} - e^{\nu+\omega} Q_{\nu\omega}^{X} E_{\nu\omega}^{X} - e^{\omega+\nu} Q_{\omega\nu}^{X} E_{\omega\nu}^{X} \right]. \quad (B.6)$$
Appendix C

Simulation in Simulink

The Simulink model presented in Fig C.1 consists of 3 main parts: Source, Circuit and Read-out parts.

The source part:

- Signal 1 and Signal 2: The switchings from superconducting state to normal state and subsequent restorations are modeled by combination of “signal1 + switch” and “signal 2 + switch1”. The two switches are complementary in the sense that there is always one switch closed and the other switch open. In Simulink, a switch must be controled by a signal source.

- Signal to Physical Signal Converter (S-PS): Signals are most conveniently generate by abstract source rather than physical. Hence, S-PS converter are needed as a interface between the abstract signal source and Realistic voltage/current signals.

- Solver Configuration: Each circuit must have a configuratoin block to set the meta-parameters such as simulation duration and minimum simulation time step, etc...

The circuit models:

- Resistor + Switch: this combination models the normal state

- Switch 1: this component alone models the superconducting state

- Electrical Reference: for each configuration blocks there must a corresponding gnd block.
Figure C.1: Simulink Model The model partitions into 3 main sections: Source, circuit and Read-out parts. 1) source section models the incoming photon as a nonlinear transition of SSPD. 2) circuit section models the normal state as a resistor and superconducting state as a non-dissipative wire. 3) read-out parts models the radio-frequency (RF) amplifier and filter by gain and transfer functions

- Inductor: models the nanowire inside the SSPD, it limits the current and prevents the desirable instantaneous transition and recovery.

- DC Current Source: this block models the entire bias circuitry. The T-junction is not necessarily model as the separation of DC and/or RF path in Simulink is clear.

- Voltage Sensor: this block is a virtual Oscilloscope that measure the voltage of SSPD are return the waveform to read-out part of the simulation.
The read-out models:

- Physical Signal - Signal Converter (PS-S): this self-explanatory block provides the dual functionality of S-PS converter at the source side.

- Transfer Fcn2: this block models the filter bandwidth limitation of the RF-amplifier chain in the experiment. This filter is designed as a 3rd order Butterworth Filter.

- Gain: this block models the gain and inverting properties of the amplifier chain, the exactly value is from the product specification of the amplifier.

- From Workspace + To workspace: this combination is not physical, but make it convenient to load and writeback a waveform to Matlab environment. Matlab environment handles complex processing easier than Simulink environment.

- Scope’s: these blocks is virtual oscilloscope that display time domain waveform of the simulated output

- Buffer+ Magnitude FFT + scope: this combination measure frequency domain waveform of the simulated output before AND after the amplifier chains

This Simulink model captures the essential detail of the SSPD and successful simulated results and the matched experimental result are presented in Section 4.5
Bibliography

