IS256 Abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Microbiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>cjm-2015-0090.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Note</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>14-Apr-2015</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Perez, Marta; IPLA-CSIC, Technology and biotechnology of dairy products Calles-Enríquez, Marina; IPLA-CSIC, Technology and biotechnology of dairy products del Rio, Beatriz; IPLA-CSIC, Technology and biotechnology of dairy products Ladero, Victor; IPLA-CSIC, Technology and biotechnology of dairy products Martin, M Cruz; IPLA-CSIC, Technology and biotechnology of dairy products Fernandez, Maria; IPLA-CSIC, Technology and biotechnology of dairy products Alvarez, Miguel; IPLA-CSIC, Technology and biotechnology of dairy products</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Enterococcus faecalis, insertion sequence, biofilm, gelatinase</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjm-pubs
IS256 Abolishes Gelatinase Activity and Biofilm Formation in a Mutant of the Nosocomial Pathogen *Enterococcus faecalis* V583

Marta Perez, Marina Calles-Enríquez, Beatriz del Río, Victor Ladero, María Cruz Martín, María Fernández* and Miguel A. Alvarez

Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.

E-mail addresses:

Marta Perez: mpgarcia@ipla.csic.es

Marina Calles-Enríquez: marynacalles@hotmail.com

Victor Ladero: ladero@ipla.csic.es

Beatriz del Río: beadelrio@ipla.csic.es

Mª Cruz Martín: mcm@ipla.csic.es

Miguel A. Alvarez: maag@ipla.csic.es

* Corresponding author: María Fernández.

e-mail: mfernandez@ipla.csic.es

Tel.: +34 985 89 21 31; fax: +34 985 89 22 33.
Abstract

Enterococcus faecalis is one of the most controversial species of lactic acid bacteria. Some strains are used as probiotic, while others are associated with severe and life threatening nosocomial infections. Their pathogenicity depends on the acquisition of multi drug resistance and virulence factors. Gelatinase, which is required in the first steps of biofilm formation, is an important virulence determinant involved in *E. faecalis* pathogenesis including endocarditis and peritonitis. The gene that codes for gelatinase (*gelE*) is controlled by the Fsr quorum-sensing system, whose encoding genes (*fsrA*, *fsrB*, *fsrC*, and *fsrD*) are located immediately upstream of *gelE*.

The integration of a DNA fragment into the *fsr* locus of a derived mutant of *E. faecalis* V583 suppressed the gelatinase activity and prevented biofilm formation. Sequence analysis indicated the presence of IS256 integrated into the *fsrC* gene at nucleotide position 321. Interestingly, IS256 is also associated with biofilm formation in *Staphylococcus epidermidis* and *Staphylococcus aureus*. This is the first description of an insertion sequence that prevents biofilm formation in *E. faecalis*.

Key words: *Enterococcus faecalis*, insertion sequence, biofilm, gelatinase
Enterococcus faecalis, a Gram-positive bacterium, is generally thought to be a commensal of the mammalian gastrointestinal tract. However, its ability to endure a range of harsh conditions allows it to survive in other environments. It is also an opportunistic pathogen that can cause nosocomial infections, including bacteremia and biofilm-based pathogeneses such as endocarditis and urinary tract infections (Paulsen et al. 2003). The problem of hospital-acquired enterococcal infections has been aggravated in recent decades due to the alarming increase in emergent vancomycin-resistant enterococci (VRE) (Pan et al. 2012).

Gelatinase, an extracellular protease, is known to be involved in E. faecalis pathogenesis, and is synthesized by approximately 60% of clinical isolates (Galloway-Pena et al. 2011). It is required in the first steps of biofilm formation (Hancock and Perego 2004) and contributes towards virulence by hydrolyzing host substrates such as collagen, fibrinogen, fibrin, endothelin-1, bradykinin, LL-37 and complement components C3 and C3a (Thurlow et al. 2010).

The genes that code for gelatinase (gelE) and serine protease (sprE) form an operon controlled by the Fsr quorum-sensing system located immediately upstream of gelE. The two-component system of enterococcal Fsr includes fsrA (a response regulator), fsrB (a propeptide processing protein), fsrC (histidine kinase), and fsrD (a gelatinase biosynthesis activating pheromone [GBAP]) (Nakayama et al. 2006). The Fsr system of E. faecalis is required for the production of gelatinase (Hancock and Perego 2004), and appears to be involved in the regulation of other genes important in virulence and metabolism (Bourgogne et al. 2006; Teixeira et al. 2013).

This paper describes the effect of the integration of IS into the fsrC gene in a laboratory derivative mutant of E. faecalis strain V583.
E. faecalis V583 was isolated in 1987 from a blood culture of a chronically-infected patient. It was the first clinical VRE isolate reported from the United States (Sahm et al. 1989) and Shankar et al., (2002) demonstrated that variations within the structure of the pathogenicity islands modulate the virulence of this strain. During the construction of an E. faecalis V583 non-tyramine-producing mutant (Perez et al. 2014) by double-crossover deletion (Jonsson et al. 2009) of the tyrosine decarboxylase (tdc) gene cluster (Ladero et al. 2012), it was observed that one of the three independent E. faecalis V583 Δtdc mutants obtained did not produce gelatinase. This was confirmed by streaking single colonies on M17 agar plates containing 30 gL\(^{-1}\) of gelatin and incubating overnight at 37°C (Reviriego et al. 2005).

The primers fsrA1F (5’-GCAGGAAACTACTGAAATCGC-3’) and sprE1R (5’-CTCGAGATTTCCTCCGTGTTCTGG-3’) were designed based on E. faecalis V583 genome sequence (GenBank accession number: AE016830) to PCR-amplify the fsrABDC-gelE-sprE locus. The wild type strain and the Δtdc mutants yielded the expected 5767 bp fragment. However, the amplification of the strain unable to produce gelatinase resulted in a 7091 bp amplicon (data not shown). New primers were designed in order to sequence this unexpected fragment: fsrB1F (5’-GTGCAATACTTGAAGAGGAGGG-3’), fsrC1R (5’-CATATAACAATCC CCAACCGTGC-3’), fsrC1F (5’-GATAACAAATAGTGCCCTCAAGCG-3’), gelE1R (5’-CATAAGATTATGTTTCCCTTATCC-3’), fsrC2R (5’-TCATCATGTAGGTCC ATAAGAACG-3’) and fsrC2R (5’-CGTAAAGCTGCTCATAATAGCC-3’). Sequence analysis (performed by Macrogen, Korea) indicated the presence of a 1324 bp DNA fragment integrated into the fsrC gene at nucleotide position 321. The insert corresponded to IS256. This was orientated in the same transcriptional direction as the
fsr genes and had a target site duplication of 8 bp in the flanked regions (Figure 1). The nucleotide sequence of the fsrABCD locus containing IS256 was deposited in the European Nucleotide Archive under accession number HG794359.

The construction of a fsrC mutant strain and their subsequent complementation demonstrated that fsrC expression is necessary for gelE expression and biofilm production (Hancock and Perego 2004), experiments were performed to determine whether the IS256 in the frsC gene affected the capacity of the strain to form a biofilm on polystyrene microtiter plates (TC Microwell 96U, Thermo Scientific, Denmark). Briefly, E. faecalis strains were grown overnight in M17 medium with 14 mM glucose at 37°C. The culture was diluted 1:40 in 200 µl of the same media. The microtiter plates were incubated at 37°C for 24 h in aerobic conditions. The cells were washed, stained with crystal violet and the optical density was determined following a method previously described (Hancock and Perego 2004). The capacity of the gelatinase-negative strain to form biofilms was much reduced compared to the parental strain and ∆tdc gelatinase-positive mutants (Figure 2).

These results suggest that the insertion of IS256 into fsrC leads to a truncated histidine kinase. This would lead to impaired GBAP signalling, therefore preventing the expression of gelE and biofilm formation.

It has been indicated the high plasticity of the E. faecalis genome in the area of the Fsr system (Galloway-Pena et al. 2011). The gelatinase-negative phenotype has been reported for both natural and laboratory E. faecalis strains (Teixeira et al. 2012). It has a number of genetic causes, mostly involving the fsr locus (Shankar et al. 2012). However, this is the first report of an IS causing gelE not to be expressed.
IS256, which encodes a transposase, is widespread in the genomes of multi-resistant staphylococci and enterococci. The sequence appears as multiple free copies as well as forming the ends of the composite aminoglycoside resistance-mediating transposon Tn4001 (Hennig and Ziebuhr 2010). \textit{E. faecalis} V583 has multiple copies of IS256 in its genome, 6 in the chromosome and 4 spread across 3 plasmids (Paulsen et al. 2003).

IS256 has been identified as a marker of multidrug resistance and biofilm-formation in clinical isolates of staphylococci (Hennig and Ziebuhr 2010). It is associated with biofilm formation via its reversible transposition into the ica operon in \textit{S. epidermidis} (Ziebuhr et al. 1999) and \textit{S. aureus} (Valle et al. 2007), and into the agr operon in \textit{S. aureus} (Cafiso et al. 2007). Biofilm-associated genes and regulators seem to be an important hot-spot for IS256 integration in staphylococci. As shown by the present results, IS256 is also associated with biofilm-forming genes in enterococci.

It has been shown that a temperature of 30°C favors the transposition of IS256 in \textit{S. aureus} (Valle et al. 2007). The present production of \textit{E. faecalis} mutants by homologous recombination (Jonsson et al. 2009) involved growth at 28°C for approximately 75 generations, which may have similarly favored the transposition process.

It is difficult to speculate upon the survival/evolutionary benefit that silencing the Fsr system would bring. In any event, minority subpopulations of \textit{E. faecalis} GBAP quorum non-responders - perhaps arising from accumulation of mutations in the fsr locus - have been reported (Thomas et al. 2009). Thus, the transposition of IS256 might provide a mechanism for the generation of GBAP non-responders, which might have an evolutionary advantage under certain conditions. It has been suggested that, in
staphylococci, the shutdown of biofilm formation by IS256 may help dissemination into novel habitats (Ziebuhr et al. 1999).

Given the clinical importance of biofilm formation, and of gelatinase as a promising target for therapeutic intervention against multidrug-resistant and virulent E. faecalis strains, further investigations should be performed to unravel the complex regulation of the Fsr system. The genetic causes of phenotypic change in biofilm-forming ability should be determined, taking into account the importance of mobile elements in genome flexibility, adaptation and evolution.

Acknowledgements

This work was funded by the Spanish Ministry of Economy and Competitiveness (AGL2013-45431-R). M.P. was the recipient of an FPU fellowship from the Spanish Ministry of Education, Culture and Sport. The authors thank Adrian Burton for linguistic assistance.

References

Teixeira, N., Santos, S., Marujo, P., Yokohata, R., Iyer, V.S., Nakayama, J., et al. 2012. The incongruent gelatinase genotype and phenotype in *Enterococcus faecalis* are due to
shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal. Microbiology 158(Pt 2): 519-528.

Legend of figures

Figure 1.
Diagram showing the IS256 insertion. IS256 was inserted into the fsr locus of the E. faecalis V583Δtdc gelatinase-negative strain.

Figure 2.
Biofilm formation on polystyrene microtiter plates. 1. E. faecalis V583 parental strain; 2. E. faecalis V583 Δtdc strain; 3. E. faecalis V583 Δtdc gelatinase-negative strain. The asterisk indicates statistically significant difference (P≤0.001; Student's t-test) in comparison to the other conditions.
Fig. 1. Diagram showing the IS256 insertion site in the fsr locus of the *E. faecalis* V583Δtdc gelatinase-negative strain.
Figure 2