The Time for an Updated Canadian Food Guide Has Arrived

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Applied Physiology, Nutrition, and Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>apnm-2015-0046.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Current opinion</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>22-Apr-2015</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Jessri, Mahsa; University of Toronto, Department of Nutritional Sciences, Faculty of Medicine L'Abbé, Mary; University of Toronto, Department of Nutritional Sciences Chair, Faculty of Medicine</td>
</tr>
<tr>
<td>Keyword:</td>
<td>dietary intake < diet, dietary analysis < nutrition, nutrition epidemiology < nutrition</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/apnm-pubs
The Time for an Updated Canadian Food Guide Has Arrived

Authors: Mahsa Jessri¹, Mary R. L’Abbe¹

¹Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2

Running title: Evaluation of Canada’s Food Guide

Manuscript Category: Current Opinion

Requests for Reprints and Correspondence to:

Mary R. L’Abbe, PhD
Earle W. McHenry Professor, and Chair, Department of Nutritional Sciences
Faculty of Medicine, University of Toronto
FitzGerald Building, 150 College Street, Rm 315
Toronto, ON, Canada M5S 3E2
Tel: (416) 978-7235; Fax: (416) 971-2366; Cell: (416) 605-1902
E-mail: mary.labbe@utoronto.ca

Sources of Support

M.J. is supported by the Canadian Institutes of Health Research (CIHR) Vanier Canada Graduate Scholarship, the CIHR/Cancer Care Ontario (CCO) Population Intervention for Chronic Disease Prevention (PICDP): A Pan-Canadian Fellowship, and the CIHR Institute for Community Support (ICS) program. M.L. is the Earle W. McHenry Professor and is supported by the McHenry Chair endowed unrestricted research funds, University of Toronto.

Declaration of Interest

Authors have no financial or competing conflicts of interest.
Abstract

Canada has published food guides since 1942 and the latest version, “Eating Well with Canada’s Food Guide” (EWCFG) was released in 2007. The EWCFG is largely based on meeting nutrient requirements while we are now in need of a food guide with strong guidance on the role of diet in preventing chronic diseases. This article systematically analyses the process and assumptions behind the EWCFG and presents suggestions for needed revisions to the next food guide.

Key words: Eating Well with Canada’s Food Guide 2007, critical evaluation, food-based dietary guidelines, Canada
Introduction

Since 2007, Eating Well with Canada’s Food Guide (EWCFG 2007) has been the foundation for federal nutrition policy and programs to translate current nutritional science into practical food-based dietary guidance for enhancing the overall health of Canadians (Katamay et al. 2007). The EWCFG 2007 is highly accessible to all Canadians and was developed to help consumers make healthy food choices. However, since its release, EWCFG 2007 has received mixed reviews and harsh criticisms by some researchers calling it “obesogenic” (Kondro 2006; Corby 2007). Given a number of limitations in its development, recent advances in dietary guideline development methodology, availability of Canadian national nutrition surveys and changes in food supply, this key fundamental piece of Canadian nutrition policy is in need of updating. This paper analyses each of the steps in the “development process”, and “directional statements” used in the EWCFG 2007, and makes recommendations for updating the food guide based on the latest methodology and science.

Development of the EWCFG 2007

In this paper, each step in development of the EWCFG 2007 (Katamay et al. 2007) was reviewed for strengths and weaknesses. Briefly, a two-step modelling process was used for development of the EWCFG 2007 to create a food intake pattern (Supplementary Figure S1). In the first step, food composites were developed and manipulated until a food intake pattern with satisfactory nutrient levels was identified for each of the age and gender groups. In the second step, 500 simulated diets were created for each of these age and sex groups from the food intake patterns of the first step. Nutrient distributions from the simulated diets were then compared against the Dietary Reference Intake (DRI) values. The modelling was cycled between steps one and two to yield food intake patterns that met the target DRI nutrient requirements. The
final food intake pattern was then adjusted to reflect additional input received during consultations and review of diet-disease relationships (cardiovascular disease, cancer and osteoporosis) (Katamay et al. 2007).

Limitations

a) Development Process

This section analyses each stage in development of EWCFG 2007 as outlined in Supplementary Figure S1.

Phase 1) Food Grouping: As a starting point, the 1992 food guide groups (4 main groups) and directional statements were used to categorize foods for food intake pattern development. Additional food sub-groups were also developed to evaluate the impact of recommending different foods on nutrient content of diets.

Phase 2) Data sources and choice of foods: In phases 1 and 2 of the modelling process, the following two datasets were used: “2001 Food Expenditure Survey (FoodEx)”, which provides estimated quantities of purchased foods, and “Provincial Nutrition Surveys” conducted in the 1990’s, as they were the only sources of information on Canadians’ diets at the time (Katamay et al. 2007). For estimating energy and nutrient values of foods, the Canadian Nutrient File (CNF) 1997 was used.

The approach taken in EWCFG 2007 modelling was to use composite foods based on food choices of Canadians (Provincial Surveys) and food popularity (Foodex), which can have advantages in terms of being practical, realistic and easy to adopt (National Health and Medical Research Council 2011). However, Canadians’ eating habits deviate significantly from a healthy diet, with the mean Healthy Eating Index-Canada (HEI-C) score being 58.8/100 (Garriguet 2009). This, in essence, sets dietary recommendations based on the then current food choices,
which may not be ideal when compared to the scientific graded evidence regarding the role of
diet in chronic diseases.

One further limitation of using the then current food choices is the age and
methodological shortcomings of datasets used. Health Canada is now better positioned for
developing a revised EWCFG, given the availability of national nutrition datasets (CCHS 2.2
and the upcoming CCHS 2015). In addition, significant updates have been made in the CNF
2010 (serving sizes, calories and nutrient values) as a result of changes in food supply and
database updates, which provides the opportunity for more accurate estimation of energy and
nutrients for the next EWCFG.

However, it is important to note that Canada is still in need of a national multiethnic
nutrition survey to be able to capture the different eating habits of ethnic minorities and reflect
them in development of culturally-relevant food patterns. In doing so, a similar approach to that
taken in Australian Dietary Guidelines (ADG) and the Dietary Guidelines for Americans (DGA)
can be adopted where several alternative food patterns (e.g., “omnivore”, “rice-based”, “pasta-
based”, “lacto-ovo-vegetarian” and “Mediterranean”) are recommended to accommodate cultural
preferences of multiethnic groups (National Health and Medical Research Council 2013; USDA
2015). This approach supports the growing evidence that there is more than one strategy for
healthy eating and foods can be combined in different ways to achieve healthy dietary patterns
(National Health and Medical Research Council 2011). This is especially important in Canada
since in 2011 one in every five Canadians was a visible minority, which is higher than any other
G8 country (Statistics Canada 2011).

Phase 3) Food Composites/Popularity: For each modelling group, food composites were
created based on the relative importance of each FoodEx food in the modelling group and this
information was used to identify the relative nutrient content of foods. For instance, if 50% of total purchased fruits was oranges and 25% was apples, then 50% of the nutrient content of the fruit composite was based on the nutrients in one serving of oranges and 25% was based on nutrients in one serving of apples (Katamay et al. 2007).

The limitation of this step is that the food composites created for modelling groups were based on a probability sampling that reflected the popularity of particular foods for a given age and sex group. This approach resulted in potatoes (which have a lower nutrient density) to represent the majority of vegetables modelled due to their high consumption among Canadians. This problem has been addressed by guidelines such as the DGA and the ADG which categorize potatoes as starchy vegetables and set a weekly limit for their consumption (National Health and Medical Research Council 2013; USDA 2015). In addition, only one representative food composite was created in EWCFG for each age and sex neglecting the variability due to individual food selection.

Phase 4) Modelling: In this phase, the amounts of food composites were determined to develop a food intake pattern for each DRI age and gender group. For each group, the number of food guide servings was manipulated to reach a satisfactory average nutrient intake level (Katamay et al. 2007). This food pattern was then used for developing simulated diets in step two.

Unfortunately, only selected nutrients available in the CNF 1997 database were modelled during the EWCFG 2007 development process. Notably absent were added sugars and *trans* fat. Another limitation of this step is lack of consideration of physical activity levels and energy requirements for estimating the required number of servings for different groups (see below).
Phase 5) DRI Modelling Targets Used: In step 2 of the modelling, food intake patterns in step one were used to create 500 simulated diets for each age and sex group to estimate nutrient distributions. As mentioned above, individual foods were selected from the modelling groups with a selection probability based on the relative popularity of foods in FoodEx and Provincial Nutrition Surveys, and were revised based on review of diet-disease relationships. Distribution of energy and nutrients of simulated diets were compared to the DRIs to inform further adjustments to food intake patterns (Katamay et al. 2007).

The major limitation of this stage is that many deviations from DRI recommendations were accepted so that in over 10% of simulated diets, magnesium among males >71 years, vitamin A among females 14-18 years, and zinc in females 9-13 years were below the Estimated Average Requirements (EAR) (Katamay et al. 2007). Most importantly, the median sodium content of all final simulated diets exceeded the UL for those >8 years of age. In addition, vitamin D in the simulated diets of individuals over 50 years did not meet the Adequate Intakes (AI) at the time, which was addressed by Health Canada through inclusion of a recommendation for this age group to take a daily supplement of 400IU vitamin D (Katamay et al. 2007). This deficit is now even larger since the Recommended Daily Allowances for individuals 1-70 years and >70 years recently increased to 600 IU/day and 800 IU/day, respectively (IOM 2011). These changes in vitamin D recommendations have been reflected in the DGA 2015 and the MyPlate which recommend 3 cups/d of milk and alternatives (including fortified soy beverages) for individuals ≥ 9 years and 2 ½ cups for those 4-8 years of age, which is higher than the EWCFG recommendations, despite Canada’s more northern latitude (USDA 2011; USDA 2015). Other nutrients with inadequacies in the final simulated diets included: fiber (especially in children), potassium, and linoleic acid (Katamay et al. 2007).
Most importantly, simulated diets for females of all age groups and males of all age
groups except for those 4-8 years and 31-50 years had higher calories than the estimated energy
requirements (EER), even though only low-fat varieties of meat and milk and alternatives were
modelled in an attempt to stay within the calorie limits. As a result, following the EWCFG 2007
can lead to overconsumption of energy intakes. Compounding this calorie excess, calories from
“other foods” (e.g., high fat and sugary products) were not considered in the final food patterns,
since the sum of calories from recommended amounts of 4 food groups and oils (“essential
calories”) was higher than the EER for the simulated diets leaving no room for assigning the
remaining calories to solid fats and added sugars. This is in contrast to the DGA 2015 and the
ADG which derived dietary patterns with adequate nutrient levels and minimal calories, allowing
them to allocate the remaining calories up to the calorie limit (EER) to set a limit for calories
from solid fats and added sugars for each age and sex group (National Health and Medical
Research Council 2013; USDA 2015). Neglecting “other foods” is especially problematic as they
contribute over 25% of total calories and fat intakes in the Canadian diet (600-800 kcal)
(Garriguet 2009) and could result in even higher overconsumption of calories when consumed.

Phase 6) Consultation: Stakeholders were consulted several times during the revision
process and were consistently updated about the proposed directions of the EWCFG. Health
Canada also presented the draft version of EWCFG 2007 to stakeholders for their feedback
(Katamay et al. 2007). The main concern about these consultations is that one-third of all
stakeholders were from the food industry. Concerns have been raised by some groups that this
provided industry with opportunities for lobbying and cobranding with Health Canada
(Freedhoff 2014).

b) Directional Statements
Directional statements are included in EWCFG 2007 beside the recommendations for each food group and are statements that guide food selection (e.g., choose lower fat meat). Limitations regarding the directional statements are presented below.

1) Grain products: The EWCFG 2007 recommends at least 50% of grain products to be whole (Katamay et al. 2007). The justification for this recommendation was that only white flour in Canada is fortified with folate (150 µg/100g) for neural tube defect prevention. Considering the low dietary fiber intake in Canada, more emphasis on whole grains intake is necessary, such as the earlier proposal by Health Canada to permit folic acid fortification of whole grains (Health Canada 2006a). However, with the recent decision to not approve a health claim for whole grains (Health Canada 2012b), further changes would seem unlikely.

2) Vegetables and Fruits: The EWCFG 2007 recommends consumption of 1 green and 1 orange vegetable daily but does not set limits for juice intake, despite its potential for overconsumption and limited fibre contribution. In addition, the EWCFG 2007 does not set limits for starchy vegetables (e.g., potatoes, corn). However, when Health Canada approved the health claim for fruits and vegetables in reducing the risk of some cancers, starchy vegetables including “potatoes, yams, cassava, plantain, corn, mushrooms, mature legumes and their juices” were explicitly excluded from carrying this health claim (Minister of Justice 2014).

3) Meat and Alternatives: Directional statements do not specify how often meats versus alternatives (e.g., legumes, nuts and seeds) should be consumed, and do not differentiate between red, white and processed meats which may imply the nutritional equivalency of these foods to consumers (Kondro 2006). This is inconsistent with the World Cancer Research Fund report which suggests a strong role for processed meat in the etiology of colorectal cancer (WCRF/AICR. 2007).
4) Fats and Oils: The EWCFG 2007 does not recommend avoiding trans fat and only advises individuals to limit their intakes, yet Health Canada’s Trans-Fat Task Force recommended elimination of trans fats (Health Canada 2006b) and the IOM Macronutrients report did not set a UL for trans fat, as increased risk exists at levels above zero (IOM 2005).

Most importantly, EWCFG 2007 recommends 2-3 Tbsp. per day of oils and fats for all age and gender groups (240-360 additional calories) which is higher than the energy-based recommended amounts in DGA 2015, except for those who require over 2400 Kcal/day.

5) Energy: No directional statements were provided to target calorie intakes, with the underlying assumption that “healthy diets” are equivalent to “low-calorie” diets. A major limitation of the EWCFG 2007 with respect to energy is that eating patterns are recommended for different age and gender groups, without consideration of the differing energy requirements based on physical activity levels. More recent dietary guideline methodology, such as that used in the DGA 2015 sets 12 different dietary patterns for 12 different levels of energy requirements based on age, sex and physical activity levels (USDA 2015).

Summary

EWCFG has evolved significantly over the past 70 years. Although current at the time, one of the main problems with the EWCFG 2007 is its primary focus on meeting nutrient DRI requirements rather than ensuring energy balance and focusing on the types of foods associated with maintaining a healthy body weight and preventing chronic diseases. This is concerning since inadequate micronutrient intakes are only seen for a few nutrients, yet 5 in 10 women and 7 in 10 men over-consume calories and 25% of males and 23% of females consume fat above the Adequate Macronutrient Distribution Range (AMDR) (Health Canada 2012a).
In the next revision, it would also be essential to model food intake patterns based on foods associated with decreased chronic disease risk and less on nutrient deficiencies, focusing on foods to encourage (e.g., fruits, vegetables, legumes, fish, and nuts) and foods to limit (e.g., added sugar, refined grains, red and processed meats, and unhealthy oils) to be able to reorient the modelling steps based on “healthy food” selections in each food group. In addition, elimination of “other foods” and discretionary calories from the modelling phases suggests that the 'real-world' application of EWCFG recommendations in which the population consumes a further 1/4 of energy intake as "other foods" is likely to be obesogenic. Focusing on development of “total diets” rather than a “foundation diet” (National Health and Medical Research Council 2011) for Canadian population, would encompass goals for moderation and can help shape appropriate educational messages for healthy weight. In addition, the next revision should acknowledge the dynamic interplay among individual lifestyle behaviours and environmental contexts by taking a socio-ecological evidence-based approach, such as that taken in the DGA 2015 (USDA 2015).

Furthermore, advancing evidence-based nutrition for developing dietary guidelines requires nutrition research that goes beyond RCTs due to complexity of nutrient interactions and eating patterns (Blumberg et al. 2010). Dietary pattern modelling and linkage with health outcomes offer great potential for development of evidence-based comprehensive dietary guidelines for decreasing the risk of obesity and other chronic diseases in Canada.
References:

IOM. 2011. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The
National Academies Press.

