Addendum to: An Upper Bound on the Error of Alignment-Based Transfer Learning Between Two Linear, Time-Invariant, Scalar Systems

Kaizad V. Raimalwala, Bruce A. Francis, and Angela P. Schoellig

Abstract—This short paper provides a derivation of the minimized H_{∞}-norm of a transfer system as introduced in [1]. This system consists of two linear, time-invariant, single-input, single-output systems tasked to follow the same reference signal. The H_{∞}-norm of this transfer system gives the least upper bound on the 2-norm of the transformation error, which is defined as the difference between the output of a target system and a weighted output of a source system. This paper provides the proofs of Lemma 1 and Theorem 1 in [1].

I. PROBLEM FORMULATION

Consider two first-order, linear, time-invariant (LTI), single-input, single-output (SISO) systems S_1 and S_2, whose transfer functions are given by

$$G_1(s) = \frac{k_1}{s + a_1}, \quad G_2(s) = \frac{k_2}{s + a_2},$$

where $-a_1$ and $-a_2$ are the poles, and k_1 and k_2 are the gains of G_1 and G_2 (see Fig. 1). The quantity of interest in the TL problem is the error in the estimation of $x_1(t)$ and is the output of the transfer system,

$$e_A(t) = x_1(t) - \alpha x_2(t),$$

where α is a constant scalar that is applied to $x_2(t)$ to estimate $x_1(t)$. The transfer function from $d(t)$ to $e_A(t)$ is

$$G_A(s) = \frac{k_1}{s + a_1} - \alpha \frac{k_2}{s + a_2}. \quad (4)$$

To assure that $G_A(s)$ is asymptotically stable, a_1 and a_2 are assumed to be positive. Furthermore, k_2 is assumed to be non-zero to avoid the degenerate case where $G_A = G_1$.

Design Criterion. The signal 2-norm is chosen as a measure for the signal $e_A(t)$, and is denoted by $\|:\|_2$. This measure can be determined for a specific reference signal $d(t) \in L_2[0, \infty)$, where $L_2[0, \infty)$ denotes the set of all signals that have finite energy on an infinite time interval $[0, \infty)$. However, the H_{∞}-norm of G_A provides the least upper bound on $\|e_A\|_2$ for all $d(t) \in D := \{d(t) : \|d\|_2 \leq 1\}$, as shown in [2]; that is,

$$\|G_A\|_\infty = \sup \{\|e_A\|_2 : d(t) \in D\}, \quad (5)$$

where the H_{∞}-norm of G_A is defined as

$$\|G_A\|_\infty := \sup_\omega |G_A(j\omega)|. \quad (6)$$

Definition 1. The transfer problem is formulated as minimizing $\|G_A\|_\infty^2$ with respect to α:

$$\alpha^* := \arg\min_\alpha \|G_A\|_\infty^2. \quad (7)$$

II. AN UPPER BOUND ON THE ERROR 2-NORM

A. An Analytic Expression of the H_{∞}-Norm of G_A

In this subsection, we derive an analytic expression for $\|G_A\|_\infty^2$ as a function of α, a_1, a_2, k_1, and k_2, and prove the following lemma:

Lemma 1. For G_A in (4), $\|G_A\|_\infty^2$ is a piecewise continuous function with respect to α that maximizes $|G_A(j\omega, \alpha)|^2$ with respect to ω for all $a_1, a_2 > 0$, k_1, and $k_2 \neq 0$. It is given by

$$\gamma_A^2(\alpha) := \|G_A\|_\infty^2 = \begin{cases} \phi(\alpha) & \text{if } \alpha_2 < \alpha < \alpha_1 \\ \psi(\alpha) & \text{otherwise} \end{cases}. \quad (8)$$

Proof. The squared magnitude of $G_A(j\omega, \alpha)$ is

$$|G_A(j\omega, \alpha)|^2 = \frac{\lambda_1(\alpha)\omega^2 + \lambda_2(\alpha)}{\omega^4 + \lambda_1\omega^2 + \lambda_5}, \quad (9)$$

where

$$\lambda_1(\alpha) = (k_1 - k_2 \alpha)^2, \quad (10)$$
$$\lambda_2(\alpha) = (k_1 a_2 - k_2 a_1 \alpha)^2. \quad (11)$$

Fig. 1. In this control block diagram, $x_2(t)$ is multiplied by a scalar α to match $x_1(t)$. While $x_1(t)$ and $x_2(t)$ are outputs of sub-systems S_1 and S_2, the output of the overall system is $e_A(t)$.
\[\lambda_4 = a_1^2 + a_2, \]
\[\lambda_5 = a_1^2 a_2. \]

Note that all four \(\lambda \) parameters are non-negative, and that \(\lambda_1 \) and \(\lambda_2 \) are functions of \(\alpha \). To reduce clutter, \(\lambda_1(\alpha) \) and \(\lambda_2(\alpha) \) are denoted by \(\lambda_1 \) and \(\lambda_2 \) in the remainder of the paper. If \(a_1, a_2 > 0 \), then for all \(\alpha \in \mathbb{R} \),
\[
\lim_{\omega \to \pm \infty} |G_A(j \omega, \alpha)|^2 = 0. \tag{14}
\]

Let the frequency that maximizes the squared magnitude for a given value of \(\alpha \) be
\[
\omega^*(\alpha) = \arg \max_{\omega} |G_A(j \omega, \alpha)|^2. \tag{15}
\]

The maximum of \(|G_A(j \omega, \alpha)|^2 \) can be obtained by finding the roots of the derivative of \(|G_A(j \omega, \alpha)|^2 \) with respect to \(\omega \),
\[
\frac{\partial |G_A(j \omega, \alpha)|^2}{\partial \omega} = 0 \tag{16}
\]

\[
\Leftrightarrow -2 \omega \left(\lambda_1 \omega^4 + 2 \lambda_2 \omega^2 + \lambda_2 \lambda_4 - \lambda_1 \lambda_5 \right) = 0 \tag{17}
\]

\[
\Leftrightarrow \omega \left(\lambda_1 \omega^4 + 2 \lambda_2 \omega^2 + \lambda_2 \lambda_4 - \lambda_1 \lambda_5 \right) = 0 \tag{18}
\]

\[
\Rightarrow \omega \left(\frac{1}{4} \omega^4 + p(\alpha) \omega^2 + q(\alpha) \right) = 0, \tag{19}
\]

where
\[
p(\alpha) = \frac{\lambda_2}{2 \lambda_1}, \tag{20}
\]
\[
q(\alpha) = \frac{\lambda_2 \lambda_4 - \lambda_1 \lambda_5}{4 \lambda_1}. \tag{21}
\]

In (18), the equation is divided by \(4 \lambda_1 \) to obtain a standard form of the quartic term in (19), whose roots are known functions of \(p(\alpha) \) and \(q(\alpha) \) (see the Appendix). Note that \(p(\alpha) \) is always non-negative, whereas \(q(\alpha) \) can be negative. Case A2 in the Appendix is not possible since if \(p(\alpha) = 0 \), then \(q(\alpha) = -\lambda_5/4 < 0 \), contradicting case A2.

To find \(\max_{\omega} |G_A(j \omega, \alpha)|^2 \), the real roots of the polynomial in (19) need to be found. Therefore, there are two cases of interest:

Case 1: This case corresponds to cases A1 and A3 from the Appendix, and considers \(q(\alpha) \geq 0 \). In this case, the only real root of (19) is 0. After verifying that \(\omega = 0 \) is a local maximum of \(|G_A(j \omega, \alpha)|^2 \) with the second derivative, we obtain \(\omega^* = 0 \) for all \(\alpha \) due to (14). Therefore,
\[
|G_A|_\infty^2 = |G_A(0j, \alpha)|^2 = \frac{\lambda_2}{\lambda_5} \tag{22}
\]
\[
= \frac{(k_1 a_2 - k_2 a_1 \alpha)^2}{a_1^2 a_2^2} := \psi(\alpha). \tag{23}
\]

As a result, \(|G_A|_\infty^2 \) is a quadratic function of \(\alpha \).

Case 2: This case corresponds to case A4 from the Appendix, and considers \(q(\alpha) < 0 \). In this case, there are three real roots. In addition to the real root \(\omega_1 = 0 \), the quartic term has two real roots \(\pm \omega_2 \). Since there are three real roots with non-zeros second derivative and because of (14), the vertices at \(\pm \omega_2 \) must be maxima and the vertex at \(\omega_1 = 0 \) must be a minimum. Therefore,
\[
(\omega^*(\alpha))^2 = \frac{\omega_2^2}{2} \tag{24}
\]
\[
= 2 \sqrt{p^2(\alpha) - q(\alpha) - 2p(\alpha)} \tag{25}
\]
\[
= \sqrt{\lambda_2^2 - \lambda_1 \lambda_2 \lambda_4 + \lambda_2^2 \lambda_5 - \lambda_2} \tag{26}
\]

Evaluating (9) at \(\omega^2 = \omega_2^2 \) results in
\[
|G_A|_\infty^2 = |G_A(\pm \omega_2, \alpha)|^2 \tag{27}
\]
\[
= \frac{\lambda_2^2}{g(\alpha) + 2 \sqrt{f(\alpha)}} := \phi(\alpha), \tag{28}
\]

where
\[
f(\alpha) := \lambda_5 \lambda_1^2 - \lambda_4 \lambda_1 \lambda_2 + \lambda_2^2, \tag{29}
\]
\[
g(\alpha) := \lambda_5 \lambda_1 - 2 \lambda_2. \tag{30}
\]

In this case, \(|G_A|_\infty^2 \) is a nonlinear function of \(\alpha \).

The last step in proving Lemma 1 is to re-work the conditions in Case 1 and Case 2, which are expressed in terms of \(q(\alpha) \) and not \(\alpha \).

We first consider the special case where \(a_2 = a_1 = a \). Then \(q(\alpha) = a^4/4 \). In this case, \(q(\alpha) > 0 \) for all \(\alpha \) and according to (24),
\[
|G_A|_\infty^2 = \frac{(k_1 - \alpha k_2)^2}{a^2}. \tag{31}
\]

Since (32) is quadratic in \(\alpha \), a unique minimizing \(\alpha \) exists:
\[
\alpha = \frac{k_1}{k_2}, \tag{33}
\]

which is the ratio of the system gains.

When \(a_2 \neq a_1 \), \(q(\alpha) \) can be negative. To obtain a solution, we find the roots of \(q(\alpha) \) by solving
\[
0 = q(\alpha) \tag{34}
\]

\[
\Leftrightarrow 0 = \lambda_2 \lambda_4 - \lambda_1 \lambda_5 \tag{35}
\]

\[
\Leftrightarrow 0 = \left(a_1^2 k_2^2 \right) \alpha^2 - (2 a_1 a_2 k_1 k_2 (a_1^2 - a_1 a_2 + a_2^2)) \alpha + (a_1^4 k_1^2). \tag{36}
\]

We obtain two real roots:
\[
\alpha_1 = \frac{k_1 a_2}{k_2 a_1^2} (a_1^2 + a_2^2 - a_1 a_2 + \eta), \tag{37}
\]
\[
\alpha_2 = \frac{k_1 a_2}{k_2 a_1^2} (a_1^2 + a_2^2 - a_1 a_2 - \eta), \tag{38}
\]

with
\[
\eta = \sqrt{(a_1 - a_2)^2 (a_1^2 + a_2^2)} \tag{39}
\]

It is clear that \(\alpha_2 < \alpha_1 \) for all \(a_1, a_2 > 0 \), \(k_1 \), and \(k_2 \neq 0 \). When \(\alpha \leq \alpha_2 \) or \(\alpha \geq \alpha_1 \), \(q(\alpha) \geq 0 \) and \(|G_A|_\infty^2 = \psi(\alpha) \).

When \(\alpha_2 < \alpha < \alpha_1 \), \(q(\alpha) < 0 \) and \(|G_A|_\infty^2 = \phi(\alpha) \). To summarize, \(|G_A|_\infty^2 \) and \(\omega^*(\alpha) \) are piecewise functions of \(\alpha \).
and are given by
\[\gamma_A^2(\alpha) := \|G_A\|^2_\infty = \begin{cases}
\phi(\alpha) & \text{if } \alpha_2 < \alpha < \alpha_1, \\
\psi(\alpha) & \text{otherwise,}
\end{cases} \] (40)
\[
\omega^*(\alpha) = \begin{cases}
\pm\omega_2 & \text{if } \alpha_2 < \alpha < \alpha_1, \\
0 & \text{otherwise,}
\end{cases}
\] (41)
with
\[
\omega_2 := \sqrt{2\sqrt{p^2(\alpha) - q(\alpha)} - 2p(\alpha)}.
\]

To prove continuity of \(\gamma_A(\alpha)\), it must be shown that
(i) \(\psi(\alpha)\) is continuous in the intervals \((-\infty, \alpha_2]\) and \([\alpha_1, \infty)\),
(ii) \(\phi(\alpha)\) is continuous in the open interval \((\alpha_2, \alpha_1)\),
(iii) and that \(\phi(\alpha_1) = \psi(\alpha_1)\) and \(\phi(\alpha_2) = \psi(\alpha_2)\)
for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\).

The first condition is true because \(\psi(\alpha)\) is a polynomial and is thus continuous over its domain.

Secondly, the function \(\phi(\alpha)\) is continuous under the following two conditions:

1) We first make sure that the square-root term in (29) is well-defined:
\[
0 \leq f(\alpha) = k_1k_2(a_1 - a_2)^2 \left[(2a_1k_2^2(a_1 + a_2))\right] \alpha^2 \\
+ (-k_1k_2(a_1^2 + 6a_1a_2 + a_2^2))\alpha \\
+ 2a_1k_2^2(a_1 + a_2) \alpha.
\] (42)
The inequality is true when \(\alpha \geq \alpha_{f,1}\) and \(0 \leq \alpha \leq \alpha_{f,2}\), where
\[
\alpha_{f,1} = \frac{k_1}{k_2} \frac{(a_1 + a_2)}{2a_1},
\] (44)
\[
\alpha_{f,2} = \frac{k_1}{k_2} \frac{2a_1}{a_1 + a_2}.
\] (45)
It can be shown that \(\alpha_{f,1} > \alpha_{f,2}\) for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\). To show that the inequality in (43) is true over the interval \((\alpha_2, \alpha_1)\), it can be shown that either \(\alpha_{f,2} > \alpha_1\) or that \(\alpha_{f,1} < \alpha_2\); that is, \(\alpha_{f,2}, \alpha_{f,1} \notin (\alpha_2, \alpha_1)\).

2) The second condition is that
\[
g(\alpha) + 2\sqrt{f(\alpha)} \neq 0.
\] (46)
To satisfy (46), \(\alpha \neq \alpha_0\) with \(\alpha_0 := k_1k_2^{-1}\) because
\[
0 = f(\alpha) - \frac{g^2(\alpha)}{4} = -\frac{(a_1^2 - a_2^2)^2(k_1 - \alpha k_2)^4}{4}.
\] (47)

It can be shown that either \(\alpha_0 < \alpha_2\), or \(\alpha_0 > \alpha_1\), for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\). Therefore, \(\phi(\alpha)\) is continuous in the open interval \((\alpha_2, \alpha_1)\).

The third condition can be shown to be true by evaluating \(\phi(\alpha)\) and \(\psi(\alpha)\) at \(\alpha_1\) and \(\alpha_2\). We used analytic simplification techniques in MATLAB to determine that for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\), \(\phi(\alpha_1) = \psi(\alpha_1)\) and \(\phi(\alpha_2) = \psi(\alpha_2)\).

\[\square \]

B. Minimizing the \(H_\infty\)-Norm of \(G_A\) with Respect to the Transformation Parameter

In this subsection, we minimize \(\gamma_A^2(\alpha)\) with respect to \(\alpha\) to prove the following theorem:

Theorem 1. For \(G_A\) in (4), the parameter \(\alpha\) that minimizes \(\gamma_A^2(\alpha)\) for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\) is given by
\[
\alpha^* = \frac{k_1}{k_2} \frac{2\alpha_2}{(4a_1 + a_2 - \sqrt{8a_1^2 + a_2^2})}.
\] (49)

Proof. To find the minimum of \(\gamma_A^2(\alpha)\), one possibility is to find the minimum of \(\phi(\alpha)\) for all \(\alpha \in (\alpha_2, \alpha_1)\) and the minimum of \(\psi(\alpha)\) for all \(\alpha \notin (\alpha_2, \alpha_1)\), and then compare the two. However, it can be shown that \(\alpha_2 < \alpha^* < \alpha_1\) for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\), thereby limiting the search for the minimum to \(\phi(\alpha)\). To prove that \(\alpha_2 < \alpha^* < \alpha_1\), one can use Bolzano’s Theorem [3], which considers the derivative of \(\phi(\alpha)\) with respect to \(\alpha\) denoted by \(\phi'(\alpha)\) and states: if \(\phi'(\alpha)|_{\alpha=\alpha_2} < 0\) and \(\phi'(\alpha)|_{\alpha=\alpha_1} > 0\), then \(\phi(\alpha)\) has a minimum in the interval \((\alpha_2, \alpha_1)\). MATLAB can be used to check the aforementioned conditions on \(\phi'(\alpha)\) at the points \(\alpha_1\) and \(\alpha_2\). However, it is easier to validate that \(\phi'(\alpha) = \psi'(\alpha)\) at \(\alpha_1\) and \(\alpha_2\), and use the fact that \(\psi(\alpha)\) satisfies the above conditions. The function \(\psi(\alpha)\) is a convex parabola with a single minimum at
\[
\alpha_{\psi} = \frac{k_1}{k_2} \frac{a_2}{a_1}.
\] (50)
It is sufficient to show that \(\alpha_2 < \alpha_{\psi} < \alpha_1\) for all \(\alpha_1, \alpha_2 > 0\), \(k_1\), and \(k_2 \neq 0\).

It now remains to find \(\alpha^*\) by solving \(\phi'(\alpha) = 0\). The derivative \(\phi'(\alpha)\) is
\[
\phi'(\alpha) = -\frac{2k_2}{(2\sqrt{f(\alpha) - \lambda_2} + \lambda_4 \lambda_3)^2} z_1(\alpha),
\] (51)
with
\[
z_1(\alpha) = h^3(\alpha) \left[4\sqrt{f(\alpha)} + 2g(\alpha) + h(\alpha)z_2(\alpha) \right],
\] (52)
\[
z_2(\alpha) = m(\alpha) + \frac{n(\alpha)}{\sqrt{f(\alpha)}},
\] (53)
where
\[
h(\alpha) = \sqrt{\lambda_1},
\] (54)
\[
m(\alpha) = \frac{(a_2 - a_1)}{(k_2(a_1 + a_2) - k_1(a_2 - a_1))},
\] (55)
\[
n(\alpha) = k_1(a_2 - a_1)^2 ((a_1 + a_2)(3a_1k_2^2a_2^2 + a_2k_2^2) - k_1k_2(a_1^2 + 6a_1a_2 + a_2^2) a).\]

Besides the three roots at \(\alpha_0 = k_1k_2^{-1}\) found from the term \(h^3(\alpha)\) in (51), the other roots of \(\phi'(\alpha)\) are found by solving
\[
0 = 4\sqrt{f(\alpha)} + 2g(\alpha) + h(\alpha)z_2(\alpha).
\] (56)
As it was previously shown that \(f(\alpha) \geq 0 \) in the interval \((\alpha_2, \alpha_1)\), further modifications of (56) result in a new equation to solve for \(\alpha \):

\[
f(\alpha) = \left(\frac{4f(\alpha) + n(\alpha)h(\alpha)}{2g(\alpha) + m(\alpha)h(\alpha)} \right)^2
\]

\[
\Leftrightarrow 0 = f(\alpha) (2g(\alpha) + m(\alpha)h(\alpha))^2 - (4f(\alpha) + n(\alpha)h(\alpha))^2
\]

\[
\Leftrightarrow 0 = (k_1 - k_2\alpha)^5 (2k_2^2a_1(a_1 + a_2)\alpha^2 - a_2k_1k_2(4a_1 + a_2)\alpha + a_1^2k_1^2)
\]

In addition to the several roots at \(\alpha_0 \), the quadratic expression in (59) yields two real roots:

\[
\alpha_{\phi,1} = \frac{k_1}{k_2} \frac{2a_2}{4a_1 + a_2 - \sqrt{8a_1^2 + a_2^2}}
\]

\[
\alpha_{\phi,2} = \frac{k_1}{k_2} \frac{2a_2}{4a_1 + a_2 + \sqrt{8a_1^2 + a_2^2}}
\]

One can show that \(\alpha_2 < \alpha_{\phi,1} < \alpha_1 \) and \(\phi'(\alpha)|_{\alpha=\alpha_{\phi,1}} = 0 \) for all \(a_1, a_2 > 0, k_1, \) and \(k_2 \neq 0 \). The same is not true for \(\alpha_{\phi,2} \), which represents a degenerate case obtained by squaring (56). Therefore, \(\alpha^* = \alpha_{\phi,1} \).

APPENDIX

Consider the general biquadratic equation,

\[
\frac{1}{4}x^4 + px^2 + q = 0.
\]

The discriminant of this equation is given by

\[
D = q(p^2 - q).
\]

The four roots of the biquadratic equation are given in terms of \(p \) and \(q \) for four cases:

Case A1: For \(q > p^2 \), there are four complex roots,

\[
x_{1,2,3,4} = \pm \sqrt{q - p} \pm j\sqrt{q + p}.
\]

Case A2: For \(p \leq 0 \leq q \leq p^2 \), there are four real roots,

\[
x_{1,2,3,4} = \pm \sqrt{q - p} \pm \sqrt{-q - p}.
\]

Case A3: For \(p > 0 \) and \(0 \leq q \leq p^2 \), there are four roots with zero real part,

\[
x_{1,2,3,4} = j(\pm \sqrt{p^2 + q} \pm \sqrt{p - q}).
\]

Case A4: For \(q < 0 \), there are two real roots and two roots with zero real part,

\[
x_{1,2} = \pm \sqrt{2p^2 - q - 2p},
\]

\[
x_{3,4} = \pm j\sqrt{2p^2 - q + 2p}.
\]

REFERENCES

