Supplementary Information

Surface Interactions of Monomethylarsonic Acid with Hematite Nanoparticles Studied Using ATR-FTIR: Adsorption and Desorption Kinetics

Md Abdus Sabura,1 and Hind A. Al-Abadlehb*

b Department of Chemistry and Biochemistry, Wilfrid Laurier University
Waterloo, ON N2L 3C5 Canada

*Corresponding author email: halabadleh@wlu.ca

1 Current Address: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1

Journal: Canadian Journal of Chemistry

Prepared: July 22, 2015

Supplementary Data (4 pages)

1. Fig. S1
2. Fig. S2
3. Fig. S3
Fig. S1. (a) Representative ATR-FTIR absorption spectra collected as a function of time for the adsorption of 0.5 mM iAs(V)(aq) on hematite nanoparticles (6 mg film) at pH 7, I = 0.01 M NaCl, and 2 mL/min flow rate at room temperature, (b) kinetic curves generated from the
spectral feature at 875 cm$^{-1}$, and (c) observed adsorption rates as a function of spectral components.

Fig. S2. ATR-FTIR absorption spectra collected as a function of time for the adsorption of 1 mM HPO$_4^{2-}$ (aq) during the desorption of iAs(ads) at pH 7 and 2 mL/min flow rate. The estimated initial surface coverage of iAs(V) the hematite film after 30 min is 10^{13} molecule/cm2, and that for phosphate after 10 min is 8×10^{12} molecule/cm2.
Fig. S3. ATR-FTIR absorption spectra collected as a function of time for the adsorption of 1 mM HPO_4^{2-} (aq) on a fresh hematite film at pH 7 and 2 mL/min flow rate. The estimated surface coverage of phosphate after 30 min is 1.7×10^{13} molecule/cm2.