Nesting sites in agricultural landscapes may reduce the reproductive success of Blanding’s turtle (*Emydoidea blandingii*) populations

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Zoology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjz-2015-0154.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Note</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>02-Nov-2015</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Mui, Amy; University of Toronto Mississauga, Geography</td>
</tr>
<tr>
<td></td>
<td>Edge, Christopher; University of Toronto, Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td></td>
<td>Paterson, James; University of Ottawa, Biology</td>
</tr>
<tr>
<td></td>
<td>Caverhill, Brennan; Toronto Zoo</td>
</tr>
<tr>
<td></td>
<td>Johnson, Bob; Toronto Zoo</td>
</tr>
<tr>
<td></td>
<td>Litzgus, Jacqueline; Laurentian University, Biology</td>
</tr>
<tr>
<td></td>
<td>He, Yuhong; University of Toronto Mississauga, Geography</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Blanding’s turtle, Emydoidea blandingii, nest site selection, disturbance, agricultural landscape, normalized difference vegetation index, remote sensing</td>
</tr>
</tbody>
</table>
Nesting sites in agricultural landscapes may reduce the reproductive success of

Blanding’s turtle (*Emydoidea blandingii*) populations

A.B. Mui (corresponding author)
(amy.mui@utoronto.ca)
416-427-8382
Department of Geography, University of Toronto Mississauga,
3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6

C.B. Edge (c.edge@utoronto.ca)
Department of Ecology and Evolutionary Biology, University of Toronto
25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5

J.E. Paterson (jpate066@uottawa.ca)
Department of Biology, University of Ottawa
30 Marie-Curie Private, Ottawa, Ontario, Canada, K1N 9B4

B. Caverhill (brennan.caverhill@gmail.com)
Wetland Conservation Program, Toronto Zoo
361A Old Finch Avenue, Toronto, Ontario, Canada, M1B 5K7

B. Johnson (bjohnson@torontozoo.ca)
Wetland Conservation Program, Toronto Zoo
361A Old Finch Avenue, Toronto, Ontario, Canada, M1B 5K7

J.D. Litzgus (jilitzgus@laurentian.ca)
4Department of Biology, Laurentian University
935 Ramsey Lake Road, Sudbury, Ontario, Canada, P3E 2C6

Y. He (yuhong.he@utoronto.ca)
Department of Geography, University of Toronto Mississauga
3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6
Abstract

Almost all turtle species nest in terrestrial environments and maternal site selection represents a critical component of nest success. Females use cues in the current environment to predict the future conditions for embryo development. However, in disturbed landscapes current and future conditions may not be correlated. We compared Blanding’s turtles (Emydoidea blandingii (Holbrook, 1838)) nest sites selection in a (relatively undisturbed) park and a (heavily disturbed) agricultural landscape in Ontario, Canada, using field measurements and satellite imagery. Environmental variables were compared using logistic regression and AIC based on data measured at nest (presence) and random (pseudo-absence) locations. Specific environmental variables associated with site selection differed between study areas. Most notably, NDVI (normalized difference vegetation index, a proxy for vegetation cover) increased significantly during the year at the agricultural locale corresponding with the growth of planted fields. No parallel change was observed at the park locale where canopy cover remained more consistent. An increase in vegetation cover may alter nest temperatures and soil moisture. Combined with the unpredictability in timing of crop sowing, and harvesting, findings suggest that nests in agricultural fields may act as ecological sinks, and other species nesting in similarly altered habitats may be subjected to the same threats.

Keywords: Blanding’s turtle, Emydoidea blandingii, nest site selection, disturbance, agricultural landscape, sink, normalized difference vegetation index, remote sensing
Introduction

Almost all turtles, whether they are marine, terrestrial, riverine or semi-aquatic, undergo migrations of varying distances to construct their nests in terrestrial habitats (Steen et al. 2012). Aside from the selection of a suitable nest environment, turtles provide no further parental care. Because incubation time for freshwater turtle eggs ranges from 60-90 days (Packard et al. 1987; Cagle et al. 1993), female turtles likely use contemporary environmental cues as predictors of the future nest site conditions (Kolbe and Janzen 2002; Hughes and Brooks 2006; López et al. 2013). Site selection therefore is an important determinant of offspring success and females must select a location that provides appropriate conditions for embryo development, minimizes the risk of flooding, and is within relatively close proximity to suitable overwintering sites for hatchlings (Kolbe and Janzen 2002; López et al. 2013). Typical characteristics of successful nests include well-drained, and sparsely vegetated, loose sandy soil with a low canopy cover (Hughes and Brooks 2006; Dowling et al. 2010). Variables such as slope, elevation, and soil composition may remain stable throughout an active season; however, others such as soil temperature and moisture, which are related to the amount of vegetation cover, can change from the time of nest construction to hatchling emergence, particularly in human-altered environments.

Obtaining accurate data on vegetation cover across different locations and temporal scales can be challenging, however satellite-derived imagery can provide this information. The normalized difference vegetation index (NDVI) is an indirect measure of surface vegetation that has provided numerous benefits for ecological research. By exploiting the multi-temporal feature of satellite imagery, NDVI time-series data has been applied to questions relating herbivore reproductive success with the onset and duration of vegetation growth (e.g., Pettorelli
et al. 2005) and to predict species occurrence across time (Osborne et al. 2001; Mueller et al. 2008). In multi-temporal studies of crop growth, NDVI shows obvious benefits for providing information on canopy closure over turtle nests as an indication of altered understory temperature.

Thermal nest environments are especially important to turtles as they exhibit temperature-dependent sex determination (TSD) and vegetation cover has been correlated with changes to below canopy soil temperature and moisture (Carlson et al. 1990). Eggs incubated at lower temperatures have been correlated with poor development in snapping turtles (Chelydra serpentina L. 1758) as well as a higher incidence of egg mortality due to mould (Yntema 1978). Studies on early development of soft-shelled turtles (Pelodiscus sinensis (Wiegmann, 1835)) found that hatchlings of eggs incubated in lower thermal environments were smaller and performed poorly in locomotor tests compared to those incubated at higher temperatures (Du and Ji 2003).

In human-altered areas, turtles have selected nest sites in plowed fields, backyard flowerbeds, hydro line right of ways, abandoned railroad beds, and roadsides (Joyal et al. 2001; Grgurovic and Sievert 2005; Beaudry et al. 2010; Dowling et al. 2010; Edge et al. 2010; Paterson et al. 2013). While these anthropogenic nest sites can provide habitats that are similar to natural sites, development and overall success of eggs and hatchlings may be negatively impacted (Kolbe and Janzen 2002) depending on the characteristics of the disturbed area and the frequency and extent of ongoing disturbance. Across much of the world, conversion of the landscape to agriculture represents a dominant type of land cover disturbance and Southern Ontario, the location of our study, is no exception with significant wetland losses occurring since the 1960s (Bardecki 1982). With the increase in row crops adjacent to turtle habitat,
female turtles have been found to preferentially select agricultural areas as nesting sites. Previous work on snapping turtles found that variation in temperature associated with agricultural practices has an impact on the sex ratios of hatchlings (Freedberg et al. 2011). Yet few studies have compared nesting preferences across different landscapes nor examined the change in overstory vegetation growth from the time of nesting to post-emergence.

In this study, we tested two hypotheses related to nest site selection across a relatively undisturbed landscape located in a provincial park, and a landscape heavily impacted by agricultural practices. We postulated that female Blanding’s Turtles (*Emydoidea blandingii* (Holbrook, 1838)) from the two different study areas select nest sites based on similar environmental conditions. Secondarily, we hypothesized that environmental cues used by turtles in altered landscapes to select nest locations are not reliable indicators of future nest conditions. We tested this by comparing vegetation cover (as a proxy for substrate temperature) over nest locations at the park locale and the agricultural locale in the spring and late summer.

Materials and Methods

Study sites

We examined nest site selection by female Blanding’s turtles from a protected area in Algonquin Provincial Park (hereafter: park locale) and an intensive agricultural region of Brant County (hereafter: agricultural locale) in Ontario, Canada (Figure 1). The park locale contains areas of formerly disturbed, but currently abandoned landscape elements such as an unused railway bed, old paved areas (e.g. decommissioned helicopter pad, radio-observatory), and logging/visitor roads that receive seasonal traffic, while the agricultural locale is dominated by
active agricultural fields, a population of less than 400 people/km\(^2\), and a relatively dense
collective of roads.

Nest Characteristics

To locate nests, 24 female Blanding’s turtles were radio-tracked nightly during the nesting
period. All animals were handled in accordance with protocols approved by institutional animal
care committees at Laurentian University (park locale) and the Ontario Ministry of Natural
Resources (agricultural locale). Nest construction occurred between May 26 – June 24\(^{th}\) at the
park site, and between May 29\(^{th}\) and June 30\(^{th}\) at the agricultural site. Hatchlings emerged from
the nest between mid-August and early October at both sites. In order to characterise selection
of a nest location by gravid females we compared biophysical and proximity variables between
nest sites and random locations. Substrate properties of nests (composition, moisture), distance
to nearest wetland, and canopy cover were measured for 12 nests, and for 12 paired random
locations at each locale to characterize alternate habitat availability in the surrounding area.
Random locations were selected by choosing an arbitrary direction and distance within 90 m
(+/- 10 m) of a nest location. The 90 m constraint represents the average daily movement of
Blanding’s turtles (Gibbs and Shriver 2002) and ensured that random locations represented
areas that were accessible to the turtles and not remote locations where the species would not
reasonably be found. If variables between nests and random locations differed significantly,
then it was accepted that females were non-randomly selecting the location for oviposition. In
this case, significant variables relating to maternal choice of nest location were compared
between the park and agricultural locales.

At each nest and random location a 15 cm deep soil sample was collected using a 2 cm
diameter soil corer. This depth corresponds to approximate nest chamber depth in this species
(Standing et al. 1999). Samples were analyzed for moisture content, organic matter, and particle composition (% sand, % silt, % clay). Soil moisture was measured as the percent change in mass of samples after drying at 105 °C for 24 hours. Organic matter, and particle composition was determined following the methods of Bledsoe et al. (1999). Distance to nearest wetland was measured with ArcGIS (ArcMap 10.2, ESRI, Redlands, California).

To characterize vegetation canopy cover during the nesting season, NDVI (normalized difference vegetation index) was calculated from satellite imagery. NDVI is a widely-used indicator of live green vegetation that uses the reflectance (ρ) of the visible (red) and near-infrared (nir) bands of the electromagnetic spectrum to estimate vegetation characteristics (Rouse et al. 1974).

$$NDVI = \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + \rho_{red}}$$

NDVI values range from -1 to 1, where higher values indicate a greater coverage of photosynthetically-active vegetation, while values less than zero typically do not have any ecological meaning. Numerous studies have shown a strong relationship between NDVI and green leaf area (e.g., leaf area index (LAI)), which is defined as the amount of green foliage area per unit ground surface area (Chen and Cihlar 1996). Plants are known to both absorb and reflect solar radiation, and the logical assumption is that increasing canopy cover will reduce the amount of solar radiation incident upon the substrate below. Previous work has established an inverse relationship between NDVI and soil surface temperature (Carlson et al. 1990). Other factors related to increased vegetation cover include an alteration of soil moisture level surrounding the nest, which may affect gas exchange in the eggs, and changes to soil permeability due to rapid growth of below ground root systems.
While the exact timing of nesting and hatchling emergence is variable, the acquisition of satellite data in the spring and late summer encapsulates the majority of the incubation period. NDVI was calculated from a set of satellite imagery obtained in the spring (agricultural locale: 9 April 2012, park locale: 25 May 2012) and late summer (agricultural locale: 5 Sept 2012, park locale: 12 Sept 2012) which coincided with the general period of nesting and hatching at both study sites. Satellite imagery was acquired from the high spatial resolution (1.84m) GeoEye-1 sensor, which collects data across four multispectral bands (blue, green, red, and near infrared). Images were processed for geometric and radiometric corrections using PCI Geomatica software (version 10.3; PCI Geomatics, Markham, Ontario, Canada).

Statistical Analyses

Comparison of nest site characteristics - To compare measured environmental variables at turtle nests between locales we used univariate analysis of variance (ANOVA). At each locale, a logistic regression model and AICc were used to determine the set of predictor variables that best discriminated between nest and random locations. A correlation matrix for all variables was constructed and correlations > 0.5 were reviewed. Percent silt and percent moisture were removed from analyses because they were correlated with other variables. Model averaging was performed on all models with ΔAICc < 2 and top models from both study areas were compared.

Comparison of change in vegetation cover - We compared NDVI during the two sampling periods (spring and late summer) and between locales with a nested analysis of variance, with type (turtle or random) nested within population, and nest ID as a random factor. All statistics were performed with R version 3.0.1 (R Core Team 2013).
Results

Nest Site Location

Blanding’s turtles in the park locale nested in areas of open canopy created through anthropogenic alteration such as gravel logging roads, dirt shoulders of paved areas, and abandoned railway beds. All radio-tracked female Blanding’s turtles in the agricultural locale nested in early season bare crop fields.

Nest Characteristics

Data for two nests at the park locale and one nest from the agricultural locale were not used due to missing data or measurement errors. All nests (n = 10) in the park locale were characterized as sand (> 85% sand, < 10% clay, <15% silt) mixed with rocks and pebbles of varying size, while nests in the agricultural locale were characterized as loamy sand (> 70% sand, < 15% clay, <30% silt; n = 7) or sand (n = 4). Average organic matter in nests differed between locales; it was 1.77% for park locale nests, and 2.13% for agricultural locale nests (p < 0.05). Soil moisture was considerably lower in turtle nests at the park (1.65%) than at the agricultural locale (10.07%) (p < 0.05).

Results of the seasonal comparison of vegetation cover showed that NDVI over nests at the park locale did not differ between spring and late summer (p > 0.05) nor between nests and random locations in either season (p > 0.05) (Figure 2). These results indicate relatively stable canopy conditions and no preferential selection for vegetation cover. At the agricultural locale, NDVI over turtle nests increased significantly (p < 0.01) from the spring to the fall, which suggests an increase in vegetation growth (and cover) from the time of nest construction to the end of the incubation period. NDVI also differed significantly between turtle nest and random
locations \((p < 0.01)\). Higher NDVI values at random locations suggest that turtles at the disturbed agricultural site, preferentially selected nest sites with lower vegetation cover but this variable did not remain static throughout the incubation period.

Nest Site Selection Model

Model fitting found that seven models had some support for predicting turtle nest sites at the agricultural locale (Table 1). Models at the agricultural local included four variables, organic matter (OrgMat) was found in all seven models, and sand, distance to nearest wetland, and NDVIs were each found in three models. Turtles primarily preferred locations that had lower organic content, had more sand, had lower NDVI (vegetation cover) in the spring, and were closer to wetlands than random location (Table 2). At the park locale, only two models comprised of two variables showed support for distinguishing between nest and random locations (Table 1). Females at the park locale primarily preferred sites with less organic matter (OrgMat) and secondarily preferred sites with less sand than what was available at random sites (Table 2). Common variables correlated with nest site preference at both locales were sand and organic matter content. At both study locales, turtles selected nest locations with less organic content. However, females at the agricultural locale also utilized sites with more sand than random locations.

Discussion

Historically, Blanding’s turtles likely relied on shifting riverine sandbars, sand plateaus, and natural disturbances to open the forest canopy in areas for nesting, but now humans have become the dominant agents of landscape disturbance (Beaudry et al. 2010). At both of the
study locales, radio-tracked females nested in locations altered by human disturbance. At the park locale, nests were located along logging roads, an abandoned railway bed, and adjacent to the few paved areas which provided loose substrate and open canopy. At the agricultural locale, females nested exclusively in bare agricultural fields, which were adjacent to wetlands and comprised a large proportion of the total study area.

In regards to substrate composition at nests between study areas, females from both locales chose sites with less organic matter which may be related to avoidance of canopy cover (Hughes and Brooks 2006). Females in the agricultural locale also selected sites that had more sand, lower NDVI, and were closer to wetlands than random sites. Comparing model selection across the two study areas suggests that female nest site selection differs between the two study locales and that a universal model for predicting nest site preference may not be possible. It is important to note that the use of paired locations means that preference is relative to availability and this affects the interpretation of the results.

Nesting in early season bare crop fields was preferentially selected by all radio-tracked females in the agricultural locale, indicating a high level of attraction to these altered areas; a behaviour also documented in snapping turtles (Freedberg et al. 2011). Naturally-occurring nest sites such as sand banks, and an artificial nest site were also present in the study area but were not preferentially selected. A major difference between nesting sites at the agricultural and park locales, is that considerable and rapid vegetation growth occurred in crop fields at the agricultural locale from spring to fall (Figure 3), while limited vegetation growth occurred in nesting habitats used in the park locale. NDVI (A proxy for vegetation cover) did not differ at nest sites between spring and late summer at the park locale, suggesting that the cues turtles used to select nest locations are good predictors of future canopy conditions at this less
disturbed site. However, in the agricultural locale, NDVI over nests was higher in the late summer than in the spring, demonstrating that the cues turtles used to select nest sites are not a good predictor of canopy cover during the incubation period. Early season crop fields consist of bare open soil with high sand content, preferred characteristics for nesting turtles; however, the rapid growth of crops can change critical environmental variables (temperature and moisture) that can determine whether eggs hatch and develop successfully. While female turtles may select nesting sites with lower organic content to avoid significant vegetation growth after nesting (Hughes and Brooks 2006), this cue may not accurately predict future conditions at agricultural sites because plant matter is removed from active crops before planting.

At higher latitudes, temperature is a major determinate of nesting success and the length of the embryonic period (Obbard and Brooks 1981; Bobyn and Brooks 1994). Low temperatures decrease development rate and can dramatically reduce nesting success. Lower nest temperatures also have the potential to affect sex ratios as Blanding’s turtles display temperature-dependent sex determination (TSD): males are typically produced at temperatures below 26.5°C to 30°C while females are produced at higher temperatures (Ewert and Nelson 1991). Nest shading would lower incubation temperatures, and can result in biased sex ratios (Kolbe and Janzen 2002; Freedberg et al. 2011), which could impact population stability as sexually mature females are the most important cohort for maintaining a stable population (Congdon et al. 2003). Painted turtles were found to repeatedly select nest sites based on similar quantities of overstory vegetation cover, which was considered a reasonable predictor of nest thermal environments (Janzen and Morjan 2001). Similarly, female Blanding’s turtles likely also select sites based in part on overstory vegetation, though in agricultural landscapes this important variable does not remain static throughout the incubation period of the nest.
Row crops also affect post-hatching dispersal as vision has been identified as the primary orientation cue used by Blanding’s turtle hatchlings (Pappas et al. 2009) and row crops restrict the view of both near and far horizons. Previous research has shown that hatchling turtles in row crops orient randomly or in the direction of crop rows (Pappas et al. 2013). The inability to orientate effectively could impact the ability of hatchling turtles to find suitable overwintering locations (Paterson et al. 2012) and may increase overall dispersal time and distance.

If emergence from nests is delayed due to low temperatures, the probability of nest destruction by harvesting equipment increases as agricultural machinery can kill both hatchlings, and entire nests (Tingley et al. 2009; Saumure et al. 2006). Other effects of prolonged incubation include delayed development and reduced hatchling fitness (Yntema 1978; Du and Ji 2003). Chemical additions to the crop fields such as pesticides and fertilizers may result in developmental abnormalities or affect sexual development (Bishop et al. 1991; de Solla et al. 1998). Unfortunately, the presence of chemical contaminants, rapid crop growth, and the timing of heavy farming machinery are variables that females are unlikely to detect or predict when choosing nest sites in regions altered for farming.

Early season bare crop fields emulate the conditions of natural nesting habitats for female Blanding’s turtles, but are likely acting as population sinks, or ecological traps, as conditions rapidly change throughout the season. Furthermore, embryos incubating in agriculture sites are exposed to pesticides, nests may be disturbed or destroyed by planting or harvesting, hatchlings and adults can be killed by agricultural machinery, and the rapid growth of crops alters environmental characteristics of nests. Because no maternal care is provided beyond nest site selection and construction, there is no mechanism that allows female turtles to learn from and respond to these human-induced changes, resulting in potential recurrent dead-end or low
quality nest site selection for the reproductive life of that female. Overall, this indicates that agricultural oviposition sites may act as ecological sinks, and other turtle species nesting in similarly-altered habitats may be subjected to the same threat.

Acknowledgements

Authors would like to thank B. Steinberg, and F. Dorombozi for field support and logistical assistance. Funding was provided by an NSERC grant to A. Mui and graduate expansion funding from the Department of Geography at the University of Toronto Mississauga. Additional funding was generously provided by Environment Canada’s Habitat Stewardship Fund, and the Ministry of Natural Resources Species at Risk Stewardship Fund.

Literature Cited

Table 1: Comparison of the top seven logistic regression models for nest site selection by female Blanding’s turtles (*Emydoidea blandingii*, (Holbrook, 1838)) at the two study locales (all models with \(\Delta AIC_c < 2 \) were included in model averaging).

<table>
<thead>
<tr>
<th>Population</th>
<th>Variables</th>
<th>K</th>
<th>(\Delta AIC_c)</th>
<th>Cumulative (\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>OrgMat + NDVIs</td>
<td>3</td>
<td>0.00</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Sand + OrgMat</td>
<td>3</td>
<td>1.36</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>OrgMat</td>
<td>2</td>
<td>1.59</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>OrgMat + Dist</td>
<td>3</td>
<td>1.74</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>OrgMat + NDVIs + Dist</td>
<td>4</td>
<td>1.76</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Sand + OrgMat + NDVIs</td>
<td>4</td>
<td>1.81</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Sand + OrgMat + Dist</td>
<td>4</td>
<td>1.98</td>
<td>1.00</td>
</tr>
<tr>
<td>Park locale</td>
<td>Sand + OrgMat</td>
<td>3</td>
<td>0.00</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>OrgMat</td>
<td>2</td>
<td>0.06</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>OrgMat + NDVIs</td>
<td>3</td>
<td>2.27</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>OrgMat + Dist</td>
<td>3</td>
<td>2.45</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Clay + OrgMat</td>
<td>3</td>
<td>2.47</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Sand + OrgMat + NDVIs</td>
<td>4</td>
<td>2.89</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Clay + Sand + OrgMat</td>
<td>4</td>
<td>2.91</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\(\Delta AIC_c < 2 \) for bolded models

Table 2: Result of model averaging all models within \(\Delta AIC_c 2 \) of the top model to predict turtle nest or random locations.

<table>
<thead>
<tr>
<th>Population</th>
<th>Variable</th>
<th># models</th>
<th>Coefficient</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural</td>
<td>OrgMat</td>
<td>7</td>
<td>-108.51</td>
<td>63.59</td>
</tr>
<tr>
<td></td>
<td>Sand</td>
<td>3</td>
<td>18.50</td>
<td>15.19</td>
</tr>
<tr>
<td></td>
<td>Dist</td>
<td>3</td>
<td>-0.015</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>NDVIs</td>
<td>3</td>
<td>-10.11</td>
<td>8.33</td>
</tr>
<tr>
<td>Park locale</td>
<td>OrgMat</td>
<td>2</td>
<td>-21.44</td>
<td>10.31</td>
</tr>
<tr>
<td></td>
<td>Sand</td>
<td>1</td>
<td>-20.22</td>
<td>13.7</td>
</tr>
</tbody>
</table>

https://mc06.manuscriptcentral.com/cjz-pubs
Figure 1. Location of the two study locales in southern Ontario, Canada. (A) Algonquin Provincial Park, representing a relatively undisturbed landscape, and (B) Brant County, representing a highly disturbed landscape dominated by agriculture. Images collected from GeoEye-1 satellite on (A) 25-May-2013 and (B) 9-April-2012 and shown in false colour composite (RGB: near infrared-red-green).

Figure 2. Mean NDVI (±SE) in the spring and fall at the two study locales. Brant County = disturbed agriculture locale, Algonquin = relatively undisturbed park locale. Closed bars represent random sites and open bars represent turtle nest locations. (* $p < 0.01$).

Figure 3. Change in vegetation cover over nest sites (under nest protector) at the disturbed agricultural locale in Brant County, Ontario, Canada (a) June 2011 after nesting, (b) July 2011 during incubation (note: nest protector at bottom left of image).
(A) Algonquin Provincial Park
(Undisturbed Site)

(B) Brant County
(Agricultural Site)