LPROF: A NON-INTRUSIVE REQUEST FLOW PROFILER FOR DISTRIBUTED SYSTEMS

by

Xu Zhao

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto

© Copyright 2015 by Xu Zhao
Abstract

lprof: A Non-intrusive Request Flow Profiler for Distributed Systems

Xu Zhao
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto
2015

Applications implementing cloud services, such as HDFS, Hadoop YARN, Cassandra, and HBase, are mostly built as distributed systems designed to scale. In order to analyze and debug the performance of these systems efficiently, it is essential to understand the performance behavior of system requests, both in aggregate and individually.

lprof is a profiling tool that automatically reconstructs the execution flow of each request in a distributed application. It infers the execution-flow from logs and binary code and thus does not require any modifications to the application. lprof first statically analyzes an application’s binary code to infer how logs can be parsed so that the dispersed and intertwined log entries can be stitched and associated to specific individual requests.

We evaluate lprof on the four widely used distributed services mentioned above. The result shows that lprof’s precision in request extraction is 90%, and lprof is helpful in diagnosing 65% of the random sampled real-world performance anomalies.
Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Professor Ding Yuan for his support of my study and research. His motivation, patience and endeavour keeps inspiring me. Secondly, I wish to thank my committee members, Professor Michael Stumm, Professor Stewart Aitchison and Professor Ashvin Goel, for their valuable comments and positive feedbacks. They help me realize my real potential and personal value. I would like to thank my colleagues Yongle Zhang, David Lion and Jenny Ren, for working with them is a joy.

I would never have come this far without supports from my friends and family. I want to express my thanks towards Dai Qin, Wei Huang and Gang Hu, who cheers me up during my hard time. I would like to thank my wife Yingxue Zhang for her precious comfort, gentleness and love. Finally, I want to thank my parents for their supports, both materially and mentally.
Contents

1 Introduction 1

2 Background 6
 2.1 Distributed System 6
 2.2 Static Program Analysis 7
 2.3 MapReduce Job 7

3 Motivating Example 9

4 Overview of lprof 12
 4.1 Static Analysis 13
 4.2 Distributed Log Analysis 15

5 Static Analysis 17
 5.1 Parsing Log Printing Statements 17
 5.2 Identifying Request Identifiers 18
 5.3 Partial Order Among Log Points 20
 5.4 Thread Communication 21
 5.5 Summary of Static Analysis 22

6 Log Analysis 24
 6.1 Map: Intra-thread Grouping 24
 6.2 Combine and Reduce: Inter-thread Grouping 25
 6.3 Request Database and Visualization 26

7 Evaluation 28
 7.1 Static Analysis Results 28
 7.2 Request Attribution Accuracy 29
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>The systems and workload we used in our evaluation, along with the number of log messages generated</td>
<td>28</td>
</tr>
<tr>
<td>7.2</td>
<td>Static analysis result: in these two columns we only count the log points that are under the default verbosity level and not printed in exception handler — indicating they are printed by default under normal conditions</td>
<td>29</td>
</tr>
<tr>
<td>7.3</td>
<td>The accuracy of attributing log messages to requests.</td>
<td>29</td>
</tr>
<tr>
<td>7.4</td>
<td>Evaluation of 23 real-world performance anomalies</td>
<td>31</td>
</tr>
<tr>
<td>7.5</td>
<td>The most useful analyses on real-world performance anomalies. The percentage is over the 15 anomalies where lprof is helpful. An anomaly may need more than one queries to detect and diagnose, so the sum is greater than 100%</td>
<td>31</td>
</tr>
<tr>
<td>7.6</td>
<td>Log analysis time and memory footprint. For the parallel map and combine functions, numbers are shown in the form of median/max</td>
<td>33</td>
</tr>
</tbody>
</table>
List of Figures

1.1 One row of the request table constructed by lprof containing information related to one request. The “node traversed” column family [9] contains the IP address, the starting and ending timestamp on each node this request traversed. In this case, the HDFS writeBlock request traverses three nodes. The “log sequence ID” column contains a hash value that can be used to index into another table containing the sequence of log printing statements executed by this request. .. 4

2.1 Part of an HDFS log. Request identifiers are shown in bold. Note that the timestamp of each message is not shown. .. 7

3.1 lprof’s analysis on HDFS’ performance .. 10

4.1 Code snippet from HDFS that handles write request .. 13

4.2 Overall architecture of lprof ... 13

4.3 How “BP-9..9:blk_5..7_1032” is printed .. 15

5.1 Request identifier analysis for the HDFS example of Figure 4.1. When analyzing writeBlock(), the request identifier candidate set (RIC) from its callee receiveBlock() is merged into its own set, so the cumulative count of poolID and blockID is increased to 8, 4 comes from receiveBlock() and 4 comes from the log points in writeBlock(). Since generationStamp is in setGenerationStamp()’s modified variable set (MV), it is removed from writeBlock()’s RIC set .. 19

5.2 DAG representation of log points... 21

5.3 Output of lprof’s static analysis .. 23

6.1 The grouping of five log messages where four print a subset of request identifier values .. 25

6.2 The RAs that combine 9 log messages from 6 threads on 3 nodes belonging to a single write request in HDFS .. 25

6.3 The web application that visualizes a request’ latencies over time ... 27
7.1 The cumulative distribution function on the number of log messages per unique request. For Cassandra, the number of nodes each streaming session traverses varies greatly, therefore the number of log messages in each streaming session request also varies greatly (it eventually reaches 100% with 1060 log messages, which is not shown in the figure).

7.2 Output size after map, combine, and reduce compared to the raw log sizes. The raw log sizes are also shown.
Chapter 1

Introduction

Today large companies rely heavily on distributed systems. Distributed systems are software systems whose components locate on a cluster of computers which can communicate with each other over network [15]. They can provide higher parallelism because computers can cooperate to finish tasks in parallel. Distributed systems can easily scale by adding more machines into the cluster. They also have higher reliability because of independent failure of machines.

Because distributed systems have many advantages, they are widely used in real world production. Google File System [19], developed by Google, is a distributed storage system working as a part of Google Cloud Platform [18]. Apache Hadoop and its Hadoop Distributed File System (HDFS) [23] is an open source Java implementation similar to Google File System, which is used many big companies like Facebook, IBM and Twitter [24].

Tools that aid in analyzing performance behaviors of distributed systems are useful. They can trace user requests to the system and extract profiling information such as user request latency, list of machines that are involved in processing one user request, and so on. These profiling tools are helpful in that they can make more efficient use of hardware resources, because optimizing system performance can help reduce the energy and hardware cost of data centers, which can notably cut costs for large organizations. Also, profiling tools that can help understand and improve distributed system performance is important because user request latency of the system has significant business impact. For example, Google found an .5 seconds in search page generation time dropped traffic by 20% and Amazon found every 100ms of latency cost them 1% in sales [2].

In this thesis, we present the design and implementation of lprof, a novel non-intrusive profiling tool aimed at analyzing and debugging the performance of distributed systems. lprof is novel in that it does not require instrumentation or modifications to source code, but instead extracts information from the system logs output during the course of normal system operation. System logs are append-only files created and maintained by running distributed systems and they contain system activity information. The format of these logs are defined in the system code by developers, which is mainly natural language. lprof’s novelty also appears in its capability of
automatically identifying each request from the logs and extract per-request profiling information such as request latency and list of machines related with this request.

We hereby define a request as an independent execution flow in the system. For example, in HDFS \[28\], a distributed file system, a daemon thread receives a network message from client instructing it to write a data block into the distributed file system, which will further trigger multiple threads to be created on different machines. All these threads triggered by this single client message attribute to one write data block request. Another example of a request is that in HDFS there is an internal maintenance routine running periodically to check the consistancy of the distributed file system. This single maintenance thread itself is a request because it is independent of all the other executions.

Specifically, \textit{lprof} is capable of reconstructing how each request is processed as it invokes methods, uses helper threads, and invokes remote services on other nodes. We demonstrate that \textit{lprof} is easy and practical to use, and that it is capable of diagnosing performance issues that existing solutions are not able to diagnose without instrumentation.

The output of \textit{lprof} is a database table with one line per request as shown in Figure 1.1. Each entry in \textit{lprof}'s output table includes (i) the type of the request, (ii) the starting and ending timestamps of this request, (iii) a list of nodes the request traversed along with the starting and ending timestamps at each node, and (iv) a list of the major methods that were called while processing the request. This table can be used to analyze the system’s performance behavior; for example, it can be SQL-queried to generate \textit{gprof}-like output \[21\], to graphically display latency trends over time for each type of service request, to graphically display average/high/low latencies per node, or to mine the data for anomalies. Chapter 3 provides a detailed example of how \textit{lprof} might be used in practice.

Three observations lead us to our work on \textit{lprof}. First, existing tools to analyze and debug the performance of distributed systems are limited. For example, IT-level tools, such as Nagios \[41\], Zabbix \[58\], and OpsView \[44\], capture OS and hardware counter statistics, but do not relate them to higher-level operations such as service requests. A number of existing profiling tools rely on instrumentation; examples include \textit{gprof} \[21\] that profiles applications by sampling function invocation points; \textit{MagPie} \[3\], Project 5 \[1\], and \textit{X-Trace} \[17\] that instrument the application as well as the network stack to monitor network communication; and commercial solutions such as Dapper \[47\], Boundary \[5\], and NewRelic \[42\].

As these tools all require modifications to the software stack, the added performance overhead can be problematic for systems deployed in production. A number of other tools have been developed recently that apply machine learning techniques to analyze logs \[40, 53\], primarily to identify performance anomalies. Although such techniques can be effective in detecting individual anomalies, they often require separate correct and issue-laden runs, they do not relate anomalies to higher-level operations, and they are unable to detect slowdown creep.\(^1\)

\(^1\)Slowdown creep is an issue encountered in organizations practicing agile development and deployment: each software update might potentially introduce some marginal additional performance overhead (e.g., <1%) that would not be noticeable in performance testing. However, with many frequent software releases, these individual slowdowns can add up to become significant over time.
Our second observation is that performance analysis and debugging are generally given low priority in most organizations. This makes having a suitable tool that is easy and efficient to use more critical, and we find that none of the existing tools fit the bill. Performance analysis and debugging are given low priority for a number of reasons. Most developers prefer generating new functionality or fixing functional bugs. This behavior is also encouraged by aggressive release deadlines and company incentive systems. Investigating potential performance issues is frequently deferred because they can often easily be hidden by simply adding more hardware due to the horizontal scalability of these systems. Moreover, understanding the performance behavior of these systems is hard because the service is (i) distributed across many nodes, (ii) composed of multiple sub-systems (e.g., front-end, application, caching, and database services), and (iii) implemented with many threads/processes running with a high degree of concurrency.

Our third observation is that distributed systems implementing internet services tend to output a lot of log statements rich with useful information during their normal execution, even at the default verbosity. Developers add numerous log output statements to allow for failure diagnosis and reproduction, and these statements are rarely removed. This is evidenced by the fact that 81% of all statically found threads in HDFS, Hadoop Yarn, Cassandra, and HBase contains log printing statements that get executed at default verbosity in non-exception-handling code, and by the fact that companies such as Facebook have accumulated petabytes of log data. In this thesis we reveal that the information in the logs is sufficiently rich to allow the recovering of the inherent structure of the dispersed and intermingled log output messages, thus enabling useful performance profilers like lprof.

Extracting the per-request performance information from logs is nevertheless non-trivial. Challenges include: (i) the log output messages typically consist of unstructured free-form text, (ii) the logs are distributed across the nodes of the system with each node containing the locally produced output, (iii) the log output messages from multiple requests and threads are intertwined within each log file, and (iv) the size of the log files is large.

lprof first performs analysis on the system’s bytecode to be able to stitch together the dispersed and intertwined log messages of each individual request and then interpret them. It analyzes each log printing statement to understand how to parse each output message and identifies the variable values that are output by the message. By further analyzing the data-flow of these variable values, lprof’s analysis extracts identifiers whose values remain unchanged in each specific request. Such identifiers can help associate log messages to individual requests. Since in practice log messages may not contain an identifier or there may not be an identifier that is unique to each request, the analysis further captures the temporal relationships between log printing statements. Finally, lprof identifies control paths across different local and remote threads. The information obtained from the analysis is then used by lprof’s parallel log processing component, which is implemented as a MapReduce job.

2This is in contrast to single-component servers that tend to limit log output. Distributed systems typically output many log messages, in part because these systems are difficult to functionally debug, and in part because distributed systems, being horizontally scalable, are less sensitive to latency caused by the attendant I/O.
The design of *lprof* has the following attributes:

- **Non-intrusive**: It does not modify any part of the existing production software stack. This makes it suitable for profiling production systems.

- **In-situ and scalable analysis**: The Map function in *lprof*’s MapReduce log processing job first stitches together the printed log messages from the same request on the same node where the logs are stored, which requires only one linear scan of each log file. Only summary information from the log file and only from requests that traverse multiple nodes is sent over the network in the shuffling phase to the reduce function. This avoids the cost of sending entire logs over the network to a centralized location to perform the analysis, which is unrealistic in real-world clusters.

- **Compact representation allowing historical analysis**: *lprof* stores the extracted information related to each request in a compact form so that it can be retained permanently. This allows historical analysis where current performance behavior can be compared to the behavior at a previous point of time (which is needed to detect slowdown creep).

- **Loss-tolerant**: *lprof*’s analysis is not sensitive to the loss of data. If the logs of a few nodes are not available, *lprof* simply discards their input. At worst, this leads to some inaccuracies for the requests involving those nodes, but won’t affect the analysis of requests not involving those nodes.

This thesis makes the following contributions. Firstly, it shows that the standard logs of many systems contain sufficient information to be able to extract the performance behavior of system requests. Secondly, it presents the design and implementation of *lprof*, including the technique details on *lprof*’s static analysis and how logs are processed. Finally, it evaluates *lprof* on four popular distributed systems, showing its correctness and performance results.

The rest of this thesis is organized as follows. Chapter 2 provides background materials on distributed system, static analysis, and MapReduce job. Chapter 3 introduces a detailed example of the type of information that is possible to extract from the logs and how it can be used to diagnose and debug performance issues. Chapter 4 provides a high-level overview of *lprof*, which consists of two components: static analysis part and log analysis part. Chapter 5 and 6 describe techniques details of *lprof*’s two components. Chapter 7 evaluates *lprof* using four widely-used distributed systems: HDFS, Hadoop YARN, Cassandra, and HBase. We show that *lprof* performs...
and scales well, and that it is able to attribute 90% of all log messages to the correct requests. We discuss the limitations of lprof in Chapter 8 and close with related work in Chapter 9 and Chapter 10 concludes.
Chapter 2

Background

This chapter introduces three concepts that are critical in this thesis: distributed system, static analysis and MapReduce job. Distributed system is the profiling target of lprof. Static analysis and MapReduce job are two main techniques of lprof. lprof uses static analysis to extract logging behavior of distributed systems, and lprof’s log processing component is implemented as a MapReduce job.

2.1 Distributed System

Distributed systems are software systems that run on a cluster of machines. Each machine in the cluster has both its own hardware like processor and memory, as well as its own software like operating system. Distributed system components run as processes on each machine of the cluster and communicate with each other over network.

We will describe Hadoop Distributed File System (HDFS) as an example of distributed systems. HDFS uses a master/slave architecture. In this architecture, one machine is chosen from the cluster as a master, while other machines acting in the role of slaves. A typical HDFS cluster has a machine running as a centralized master called NameNode, while there are a number of DataNodes running as slaves on other nodes of the cluster. The NameNode manages the metadata of all data blocks, and these data blocks are stored on DataNodes. Each data block will be replicated multiple times on different DataNodes. The number of replications of each data block is determined by a configuration parameter called replication factor. For example, when replication factor is set to three, one data block will be stored on three different DataNodes. The mapping between this data block’s ID and the location of its replications are stored on the NameNode.

When, for example, a client wants write a new block into HDFS, it will first communicate with Namenode, which will return the addresses of a list of DataNodes that could store the data block. The client will then contact the first DataNode from this list to write the data block. The DataNode will further generate a pipeline of DataNodes to mirror the data block one replication per DataNode.
During running of a distributed system, its components on each node will create and append a log file containing activity information of the system. These log files are created by the log printing statements in the system code written by developers.

We show a snippet of such system log file generated by a HDFS DataNode in Figure 2.1. We call each line of this log an log entry. Each log entry are composed of two parts: string constant part and variable part. Constant part indicates this part of log message is generated by a string constant in source code, where variable part is generated by a variable in the corresponding log printing statement. For example, in line 2 of Figure 2.1, “Receiving block” is the string contant part where “BP-9..9:blk_5..7_1032” is the variable part.

2.2 Static Program Analysis

lprof uses static program analysis technique to extract the logging behavior of a distributed system from its bytecode. lprof needs to perform two types of static analysis: control flow analysis and data flow analysis. Control flow analysis is to generate a control flow graph(CFG) from system code. By performing control flow analysis, we could know the reachability between two code positions of the system. Control flow analysis can also generate a call graph describing caller and callee relations between two functions. Data flow analysis, on the other hand, gathers information about the values of variables in the program. lprof requires data flow analysis to determine whether a variable is being modified in a function.

lprof performs control and data flow analysis on system bytecode. Bytecode is an intermediate representation used by Java to make Java program portable on multiple platforms. We don’t use source code to perform static analysis because bytecode already contains enough information to perform the control and data flow analysis. lprof uses Chord Java static analysis framework to perform static analysis on bytecode.

2.3 MapReduce Job

We choose to implement lprof’s log analysis part as a MapReduce job. MapReduce is a programming model for processing and generating data with a parallel and distributed algorithm on a cluster.

Typically there are two phrases in a MapReduce job: map phrase and reduce phrase. The map phrase takes a list of key-value pairs as input and perform operations like filtering and sorting on the list. The MapReduce
algorithm will then group all the key-value pairs with the same key together, where the key is called *reduce key*. Each result group is a list of key-value pairs with the same reduce key. Then in reduce phase, the result groups are passed to theReducer function, which will merge these groups to perform further analysis.

MapReduce has been proved to be an efficient programming model for distributed data processing [14]. In *lprof* we use MapReduce because our log data size is too large to fit in memory. Also, *lprof* is grouping log messages from the same request, which could be used as a reduce key to apply MapReduce algorithm.

There are many implementations of Mapreduce [15] [54]. In practice, we use Hadoop Yarn [54] to implement our log analysis because it is open source and easy to acquire and deploy.
Chapter 3

Motivating Example

To illustrate how \textit{lprof}'s request flow analysis might be used in practice, we selected a performance issue of Hadoop Distributed File System (HDFS) reported by a real user and it is reproduced on a 25-node cluster.

In this case, an HDFS user suspects that the system has become slow after an upgrade. Applying \textit{lprof} to analyze the logs of HDFS produces a request table as shown in Figure 1.1. The user can perform various queries on this table. For example, she can examine trends in request latencies for various request types over time, or she can count the number of times each request type is processed during a time interval. Figures (a) and (b) show how \textit{lprof} visualizes these results.

Figure (a) clearly shows an anomaly with writeBlock requests at around 23:42. A sudden increase in writeBlock's latency is clearly visible while the latencies of the other requests remain unchanged. The user might suspect this latency increase could be caused by a few nodes that are “stragglers” due to an unbalanced workload or a network problem. To determine whether this is the case, the user compares the latencies of each writeBlock request after 23:42 across the different nodes. This is shown in Figure (c), which suggests no individual node is abnormal.

The user might then want to compare a few single requests before and after 23:42. This can be done by selecting corresponding rows from the database and comparing the per-node latency between an anomalous request and a healthy one. Figure (d) visualizes the latency incurred on different nodes for two write requests: one before 23:42 (healthy) and the other after (anomalous). The figure shows that for both requests, latency is highest on the first node and lowest on the third node. HDFS has each block replicated on three data nodes (DNs), and each writeBlock request is processed as a pipeline across the three DN\textquotesingle s: DN1 updates the local replica, sends it...

\footnote{We envision that \textit{lprof} is run periodically to process the log messages generated since its previous run, appending the new entries to the table and keeping them forever to enable historical analysis and debug problems like performance creep. If space is a concern, then instead of generating one table entry per request, \textit{lprof} can generate one table entry per time interval and request type, each containing attendant statistical information (e.g., count, average/high/low timestamps, etc.).}
to DN2, and only returns to the user after DN2’s response is received. Therefore the latency of DN2 includes the latency on DN3 plus the network communication time between DN2 and DN3.

Figure 3.1 (d) also shows that the latency of one request is clearly higher than the latency of the other request on the first two DNs. The healthy request is executed before HDFS upgrade while the anomalous request is from the newer version of HDFS. This leads to the hypothesis that system upgrade is responsible for the latency increase. The HDFS cluster was indeed upgraded between the servicing of these two requests, from version 2.0.0 to 2.0.2. After locating the problematic code path by using the write request related logging statement, a diff between the two versions of the related source code reveal that an extra socket write between DNs was introduced in version 2.0.2. The HDFS developers later fixed this performance issue by combining both socket writes into one.

Figure 3.1 (b) shows another performance anomaly: the number of verifyBlock requests is suspiciously high. Further queries on the request database suggest that before the upgrade, verifyBlock requests appear once every 5 seconds on every datanode, generating a lot of log messages, while after the upgrade, they appear only rarely. Interestingly, we noticed this accidentally in our experiments. This turns out to be another performance anomaly in version 2.0.0 that was fixed by the developers in version 2.0.2, and was accidentally revealed in our experiment. Clearly lprof is useful in detecting and diagnosing this case as well.

On the other hand, existing log analysis tool could not have helped in this case because they can not group the logs on the per-request basis. For example, Xu et. al.’s approach requires the latency of each request to be explicitly logged in order to detect the latency increase. But in this case, the latency of the write request is not logged and can only be inferred by comparing the timestamps between start and end log messages.
Commercial tools such as Splunk [39] or VMWare LogInsight [37] focus on log text searching based on user provided keywords, and therefore also require that latencies are explicitly logged to be able to detect the anomaly. Finally, none of these tools can correlate the logs from the same request across different data nodes and provide per-request profiling information.
Chapter 4

Overview of lprof

In this chapter, before describing lprof’s design, we first discuss the challenges involved in stitching log messages together that were output when processing a single request. We will illustrate these challenges using the HDFS write request example shown in Chapter 3.

Figure 4.1 shows how an HDFS DataNode processes a WriteBlock request. On each DataNode, a DataXceiver thread uses a while loop to process each incoming request. This request may come from client or upstream DataNode in the pipeline. If the op-code is WRITE_BLOCK, then writeBlock() is invoked at line 6. At line 15, writeBlock() sends a replication request to the next downstream datanode in the pipeline. At line 16 - 17, a new thread associated with PacketResponder is created to receive the response from the downstream datanode so that it can send its response upstream. Hence, this code might output log messages as shown in Figure 4.1. These six log messages alone illustrate two challenges we encountered:

1. The log messages produced when processing a single writeBlock request may come from multiple threads, and multiple requests may be processed concurrently. As a result, the log output messages from different requests will be intertwined.

2. The log messages do not contain an identifying substring that is unique to a request. For example, block ID “BP-9..9:blk_5..7” can be used to separate messages from different requests that do not operate on the same block, but cannot be used to separate the messages of the read and the first write request because they operate on the same block. Unfortunately, perfect identifiers unique to each request rarely exist in real-world logs. This is mainly because logging is a common programming practice which is subjective to developers. In Chapter 8, we further discuss how lprof could be simplified if there were a unique request identifier in every log message.

To address these challenges lprof first uses static analysis to gather information from the code that will help map each log message to the processing of a specific request, and help establish an order on the log messages mapped


```java
class DataXceiver implements Runnable {
    public void run() {
        do { // handle one request per iteration
            switch (readOpCode()) {
                case WRITE_BLOCK: // a write request
                    writeBlock(proto.getBlock(), ..);
                    break;
                case READ_BLOCK: // a read request
                    readBlock(proto.getBlock(), ..);
                    break;
                } // proto.getBlock: deserialize the request
            while (!socket.isClosed());
        }
        void writeBlock(ExtendedBlock block) {
            LOG.info("Receiving block " + block);
            receiveBlock(upstream);
            sender.writeBlock(block,..);
            responder = new PacketResponder(block,..);
            responder.start(); // create a thread that
            // handles the acks
        }
        /* PacketResponder handles the ack responses */
        class PacketResponder implements Runnable {
            public void run() {
                ack.readField(downstream); // read ack
                LOG.info("Received block " + block);
                replyAck(upstream); // send an ack to upstream
                LOG.info(myString + " terminating");
            }
        }
    }
}
```

Figure 4.1: Code snippet from HDFS that handles write request.

Figure 4.2: Overall architecture of lprof

We now give an overview of lprof’s static analysis and log processing, depicted in Figure 4.2.

4.1 Static Analysis

lprof’s static analysis gathers information in four steps.

1. **Parsing the log string format and variables** Through this parsing, we are able to obtain the signature of each log printing statement found in the code. Each log print statement is represented by one or more regular expressions (e.g., “Receiving block BP-(.*):blk_(.*)_.*”), which are used during the log analysis phase to map to the request. In a second phase, lprof processes the logs using the information obtained from the static analysis phase; it does this as a MapReduce job.

We now give an overview of lprof’s static analysis and log processing, depicted in Figure 4.2.
a log message to a set of log points in the code that could print this log message. We use the term log point in this thesis to refer to a log printing statement in the code. This step also identifies the variables whose values are contained in the log message.

(2) Request identifier and request entry analysis This stage identifies which variables are modified and which are not in one request control flow. Those that are not modified are recognized as request identifiers. Request identifiers are used to separate messages from different requests; that is, two log messages with different request identifiers are guaranteed to belong to different requests. However, the converse is not true: two messages with the same identifier value may still belong to different requests (e.g., both of the “read” and the “write 1” requests in Figure 4.1 have same the block ID).

Identifying request identifiers without domain expertise can be challenging. Consider “BP-9.9:blk_5..7_1032” in Figure 4.1 that might be considered as a potential identifier. This string contains the values of three types of variables as shown in Figure 4.3: poolID, blockID, and generationStamp. Only the substring containing poolID and blockID is suitable as a request identifier for writeBlock. This is because generationStamp can have different values while processing the write request (as exemplified by the “write 2” request in Figure 2.1), but generationStamp field will not be modified while processing the read request. Without domain knowledge, if we treat all three variables as write request identifiers, we may incorrectly separate logs that from the same write request into different groups.

To infer which log points belong to the processing of the same request, top-level methods are identified by analyzing when identifiers are modified. We use the term top-level method to refer to the first method of any thread dedicated to the processing of a single type of request. For example, in Figure 4.1 writeBlock() and PacketResponder.run() are top-level methods, but DataXceiver.run() is not because it processes multiple types of requests. We say that method \(M \) is log point \(p \)’s top-level method if \(M \) is a top-level method and \(p \) is reachable from \(M \).

We identify the top-level methods by processing each method in the call-graph in bottom-up order: if a method \(M \) modifies many variables that have been recognized as request identifiers in its callee \(M’ \), then \(M’ \) is recognized as a top-level method. For example, because DataXceiver.run() function modifies block variable which are recognized as request identifiers in writeBlock(), so writeBlock() function is a top-level method of the log point on line 13. Because lprof can identify readBlock() and writeBlock() as being two top-level methods for different types of requests, it can separate messages printed by readBlock() from the ones printed by writeBlock() even if they have the same identifier value.

The intuition behind this design is that: although there is no perfect request identifiers logged, in common practice programmers do naturally log identifiers to help debugging. Perfect request identifiers are identifiers that are unique to each instance of request. The actual logged identifiers are not perfect request identifiers, but they still can be used to group logs from the same request. We observe that these identifiers are frequently logged but
rarely modified, and the modification point of these identifiers indicates the entry of a specific request.

(3) **Temporal order analysis** infers the time ordering between logs that come from the same request. For example, by inferring that line 26 is executed after line 24 in Figure 4.1, *lprof* can conclude that when two messages appear in the following order: “... terminating” and “Received block...”, they cannot be from the same request even if they have the same block ID. This step is needed because there may not exist an identifier that is unique to each request.

(4) **Communication pair analysis** identifies threads that communicate with each other. Log messages output by two threads that communicate could potentially be from processing of the same request. Such communication could occur through cooperative threads in the same process, or via sockets or RPCs across the network.

After the static analysis, *lprof* outputs a file that summarize all the static analysis results. This file describes the log printing behavior of the system, which is further used in the following distributed log analysis stage.

4.2 Distributed Log Analysis

The log analysis phase attributes each log message to a request, which is implemented using a MapReduce job. The map function groups together all log messages that were output by the same thread while processing the same request.

Before adding a log message, *lprof*’s log parser will first match it to a regular expression and then to the corresponding log point. If multiple regular expression matches are found, *lprof* will choose the regular expression that has more string constants. It is also possible that because two log points are printing logs with similar formats, one regular expression may map to multiple log points. In this case *lprof* simply dismiss this log message.

After attributing a log message to a log point, *lprof* will try to group it with an existing request log group. A log message is added to a group if (i) they have the same top-level method, (ii) they share the same value for the same type of request identifier, and (iii) the corresponding log point matches the temporal sequence in the control flow.

If there’s no existing group satisfies these constraints, *lprof* will further check if this log message is a request starting log message. A request starting log message means it is a log message that could be the first log message that printed in the processing of a request. If it is, *lprof* will create a new request log group and add this log
message, otherwise \textit{lprof} simply dismiss this log message.

The reduce function merges request log groups if they represent log messages that were output by different threads when processing the same request. Two groups are merged if (i) the two associated threads could communicate, and (ii) their request identifiers share the same value for the same type of identifier.

Output of the reduce phase is a list of request log groups. For each group it has the name of top-level method and a list of log entries attributing to this request. For each log entry, \textit{lprof} records its timestamp, information of the node where it is printed, and its request identifiers.

Then \textit{lprof} will generate final output as a database table shown in Figure 4.1. For each request log group, \textit{lprof} will output its top-level method name, timestamp of starting and ending log entry, ip of nodes processing this request and other information to help user profile system performance. For example, the timestamp information can help user monitor latencies of a request, while the request related node information can help user locate problematic nodes while diagnosing a performance anomaly.
Chapter 5

Static Analysis

lprof's static analysis works on Java bytecode. Each of the four steps in *lprof*'s static analysis is implemented as one analysis pass on the bytecode of the target system. We use the Chord static analysis framework [11]. For convenience, we explain *lprof* using examples in source code. All the information shown in the examples can be inferred from Java bytecode.

5.1 Parsing Log Printing Statements

This first step identifies every log point in the program. For each log point, *lprof* (i) generates a regular expression that matches the output log message, and (ii) identifies the variables whose values appear in the log output.

lprof identifies log points by searching for call instructions whose target method has the name fatal, error, warn, info, debug, or trace. This identifies all the logging calls if the system uses log4j [36] or SLF4J [48], two commonly used logging libraries that are used by the systems we evaluated.

To parse the format string of a log point into a regular expression, we use techniques similar to those used by two previous tools [55, 53]. In both of Wei’s paper [53] and Sherlog [55], schema of logs are extracted by static analysis on source code. For C-like languages, log schemas are directly extracted from printf variants. When there are format strings like ‘%s’ in printf parameters, further track into related functions are required to obtain the accurate logging structure. For object-orienting languages like Java, toString() functions of the logged object need to be parsed in order to know how the object is printed.

In this section, we summarize the challenges we faced in implementing a log parser on real-world systems.

On the surface, parsing line 13 in Figure 4.1 into the regular expression “Receiving block (.*)”, where the wildcard matches to the value of block, is straightforward. However, identifying the variables whose values are output at the log point is more challenging. In Java, the object’s value is printed by calling its toString() method. Figure 4.3 shows how the value of block is eventually printed. In this case, *lprof* has to parse out
the individual fields because only poolID and blockID are request identifiers, whereas generationStamp is modified during request processing. To do this, lprof recursively traces the object’s toString() method and the methods that manipulate StringBuilder objects until it reaches an object of a primitive type.

For the HDFS log point above, the regular expression identified by lprof will be:

“Receiving block (.*):blk_(\d+)_(\d+)”.

The three wildcard components will be mapped to block.poolID, block.blockID, and block.generationStamp, respectively.

lprof also needs to analyze the data-flow of any string object used at a log point. For example, mystring at line 26 in Figure 4.1 is a String object initialized earlier in the code. lprof analyzes its data-flow to identify the precise value of mystring.

Class inheritance and late binding in Java creates another challenge. For example, when a class and its super class both provide a toString() method, which one gets invoked is resolved only at runtime depending on the actual type of the object. To address this, lprof analyzes both classes’ toString() methods, and generates two regular expressions for the one log point. During log analysis, if both regular expressions match a log message, lprof will use the one with the more precise match, i.e., the regular expression with a longer constant pattern.

5.2 Identifying Request Identifiers

In this section, we describe how lprof identifies (i) request identifiers and (ii) top-level methods. We implement the inter-procedural analysis as summary-based analysis [46]. In summary-based analysis, we analyze one method at a time and stores the result as the summary of that method into disk. The methods are analyzed in bottom-up order along the call-graph. When we traverse the call-graph, we always first analyze the callee function, save its analysis result into disk as a summary, and later use this summary when we analyze a caller function. Not being summary-based would require lprof to store the intermediate representation of the entire program in memory, which would cause it to run out of memory.

Data-flow analysis for request identifiers: lprof infers request identifiers by analyzing the inter-procedural data-flow of the logged variables. For each method M, lprof assembles two sets of variables as its summary: (i) the request identifier candidate set (RIC), which contains the variables whose values are output to a log by M or its callees and not modified, and (ii) the modified variable set (MV) which contains the variables whose values are modified. For each method M, lprof first initializes both sets to be empty. It then analyzes each instruction in M. When it encounters a log point, the variables whose values are printed (as identified by the previous step) are added to the RIC set. If an instruction modifies a variable v, v is added to the MV set and removed from the RIC set. If the instruction is a call instruction, lprof first merges the RIC and MV sets of the target method into the
Figure 5.1: Request identifier analysis for the HDFS example of Figure 4.1. When analyzing writeBlock(), the request identifier candidate set (RIC) from its callee receiveBlock() is merged into its own set, so the cumulative count of poolID and blockID is increased to 8, 4 comes from receiveBlock() and 4 comes from the log points in writeBlock(). Since generationStamp is in setGenerationStamp()'s modified variable set (MV), it is removed from writeBlock()'s RIC set.

As an example, consider the following code snippet from writeBlock():

```java
void writeBlock(ExtendedBlock block...) {
    LOG.info("Receiving " + block);
    sender.writeBlock(block...);
    block.setGenerationStamp(latest);
    responder = new PacketResponder(block...);
    responder.start();
}
```

The setGenerationStamp() method modifies the generationStamp field in block. In bottom-up order, lprof first analyzes setGenerationStamp() and adds generationStamp to its MV set. Later when lprof analyzes writeBlock(), it removes generationStamp from its RIC set because generationStamp is in the MV set of setGenerationStamp().

Furthermore, lprof needs to obtain the type of identifiers in RIC. The type of identifier is determined by the Java class member and the variable it comes from. For example, the identifier block.poolID printed by line 13 of Figure 4.1 comes from the first parameter of function writeBlock() called block, and the identifier block.poolID printed by line 24 of Figure 4.1 also comes from the same variable. Further more, these two identifiers are from the same Java class member as ExtendedBlock.poolID, so we will say these two identifiers have the same type.

Identifying top-level methods: the request identifier analysis stops at the root of the call-graph: either a thread entry method (i.e., run() in Java) or main(). However, a thread entry method might not be the entry of a service request. Consider the HDFS example shown in Figure 4.1. The DataXceiver thread uses a while loop to handle read and write requests. Therefore lprof needs to identify writeBlock() and readBlock() as the top-level methods instead of run().

lprof identifies top-level methods by observing the propagation of variables in the RIC set and uses the following heuristic when traversing the call-graph bottom-up: if, when moving from a method M to its caller M', if
the number of identifier candidates decrease, then M is identified as a top-level method. Specifically, \textit{Iprof} counts the number of times each request identifier candidate appears in a log point in each method and accumulates this counter along the call-graph bottom-up. (See Figure 5.1 for an example.) Whenever this count \textit{decreases} from method M to its caller M', \textit{Iprof} concludes that M is a top-level method. The intuition is that developers naturally include identifiers in their log printing statements, and modifications to these identifiers are likely outside the top-level method.

In Figure 5.1, both \textit{writeBlock()} and \textit{readBlock()} accumulate a large count of request identifiers, which drops to zero in \textit{run()}. Therefore, \textit{Iprof} infers \textit{writeBlock()} and \textit{readBlock()} are the top-level methods instead of \textit{run()}. Note that although the count of \textit{generationStamp} decreases when the analysis moves from \textit{setGenerationStamp()} to \textit{writeBlock()}, it does not conclude \textit{setGenerationStamp()} is a top-level method because the accumulated count of all request identifiers is still increasing from \textit{setGenerationStamp()} to \textit{writeBlock()}.

5.3 Partial Order Among Log Points

In this section, we describe how \textit{Iprof} generates a Directed Acyclic Graph (DAG) for each top-level method (identified in the previous step) from the method’s call graph and control-flow graph (CFG). This DAG contains each log point reachable from the top-level method and is used to help attribute log messages to top-level methods.

Each node in the DAG represents one or more log points, and an directed edge from one node to another node indicates the temporal order between log points. For example, in Figure 5.2, an direct edge from log 1 to log 4 indicates in real world logs, log 1 must appear before log 4.

It is not possible to statically infer the precise order in which instructions will execute. For example, when multiple log points are in a loop, it is impossible to know the exact temporal sequence of logging during static analysis. Therefore, \textit{Iprof} takes the liberty of applying a number of simplifications on building the DAG:

1. Only nodes that contain log printing statements are represented in the DAG.
2. All nodes involved in a strongly connected component (e.g., caused by loops) are folded into one node. This implies that multiple log points may be assigned to a single node in the DAG.
3. Similarly, if there is a strongly connected component due to recursive calls, then those nodes are also folded into one.
4. Unchecked exceptions are ignored, since they will terminate the execution. Checked exceptions are captured by the CFG and are included in the DAG.

As an example, Figure 5.2 shows the DAG generated from the code snippet. In this figure, the asterisk (*) next to log 2 and log 3 indicates that these log points may appear 0 or more times. The loop may cause multiple
log points to be folded into one node. In this case, we do not maintain an ordering of the log points inside this node.

In practice, we found the DAG particularly useful in capturing the starting and ending log points of a request — it is a common practice for developers to print a message at the beginning of each request and/or right before the request terminates.

5.4 Thread Communication

In this step, lprof infers how threads communicate with one another. The output of this analysis is a tuple for each communication pair: (top-level method 1, top-level method 2, communication type, set of request identifier pairs), where one end of the communication is reachable from top-level method 1 and the other end is reachable from top-level method 2. “Communication type” is one of local, RPC, or socket, where “local” is used when two threads running in the same process communicate. A “request identifier pair” captures the transfer of request identifier values from the source to the destination; the pair identifies the variables containing the data values at source and destination.

Threads from the same process: lprof detects two types of local thread communications: (i) thread creation and (ii) shared memory reads and writes. Detecting thread creation is straightforward because Java has a well-defined thread creation mechanism. If an instruction r.start() is reachable from a top-level method, where r is an object of class C that extends the Thread class or implements the Runnable interface, and C.run() is another top-level method, then lprof has identified a communication pair. lprof also infers the data-flow of request identifiers, as they are mostly passed through the constructor of the target thread object. If the thread is started by a caller of top-level method, it is not reachable by this top-level method, so we will not establish communication pairs between the thread and the top-level method. In addition to explicit thread creation, if two instructions reachable from two top-level methods (i) access a shared object, and (ii) one of them reads and the other writes to the shared object, then a communication pair is identified.

As an example, consider the HDFS code in Figure 4.1. lprof generates the following tuple: (writeBlock, PacketResponder.run, local, <DataXceiver.block.poolID, PacketResponder.block.poolID>, ..), indicating that writeBlock() could communicate with PacketResponder via local thread creation, and poolID is the request identifier used on both ends for the data value passed between the threads.

Threads communicating across the network: Pairing threads that communicate via the network is more chal-
lenging. While Java provides standard socket read and write APIs for network communication, if we naïvely pair the read to the write on the same socket, we would effectively end up connecting most of the top-level methods together even though they do not communicate. Consider the HDFS example shown in Figure 4.1. While readBlock() and writeBlock() do not communicate with each other, they share the same underlying socket.

Instead of pairing socket read and write, we observe that the sender and receiver that actually communicate both have to agree on the same protocol. Specifically, whenever lprof finds a pair of invoke instructions whose target methods are the serialization and deserialization methods from the same class, respectively, the top-level methods containing these two instructions are paired. Developers often use third-party data-serialization libraries, such as Google Protocol Buffers [20]. This further eases lprof’s analysis since they provide standardized serialization/deserialization APIs. Among the systems we evaluated, Cassandra is the only one that does not use Google Protocol Buffers, but implements its own serialization library. For Cassandra, a simple annotation to pair C.serialize() with C.deserialize() for any class C is sufficient to correctly pair all of the communicating top-level methods. lprof also parses the Google Protocol Buffer’s protocol annotation file to identify the RPC pairs, where each RPC is explicitly declared.

Improvements: To improve the accuracy of “log stitching”, we add two refinements when pairing communication points. First, even when a thread does not contain any log point (which means it does not contain any top-level method), it will still be included in a communication pair if it communicates with a top-level method. In this case, its run() method will be used as the communication end point. The reason is that such a thread could serve as a link connecting two communicating top-level methods A and B. Not including the communication pair would prevent lprof from grouping the log messages from A and B.

The second improvement is to infer the number of times a top-level method can occur in a communication pair. For example, a communication pair “(M1, M2*, local, ..)”, where M2 is followed by an asterisk, means that method M1 could communicate with multiple instances of method M2 in the same request. The log analysis uses this property to further decide whether it can stitch messages from multiple instances of M2 into the same request. The inference of such a property is straightforward: if the communication point to M2 is within a loop in M1’s CFG, then M2 could occur multiple times.

5.5 Summary of Static Analysis

The output of lprof’s static analysis is a file that contains the log printing behavior of the system. Figure 5.3 shows a snippet of the output file for HDFS. It consists of the following four segments:

1. **Top-level methods:** a list of tuples with (i) the name of the top-level method, (ii) an index into the DAG representation of the log points, and (iii) a list of request identifiers;
2. **DAGs**: the DAG for each top-level method;

3. **Log point regex**: the regular expressions for each log point and the identifier for each wildcard;

4. **Communication pairs**: a list of tuples that identify the communication points along with the identifiers for the data being communicated.

To speedup log analysis, this output file also contains a number of indexes, including: (i) an index of regular expressions (to speedup the matching of each log message to its log point) and (ii) an index mapping log points to top-level methods. This output file is sent to every machine in the cluster whose log is analyzed.
Chapter 6

Log Analysis

The log analysis phase is implemented as a MapReduce job to group together information from all the log messages printed by each request. The map and reduce functions use a common data structure, called a request accumulator (RA), for gathering information related to the same request. Each RA may contain multiple top-level methods, because communication pairs may connect multiple top-level methods as one request. Each RA contains: (i) a vector of top-level methods that are grouped into this RA; (ii) the value of each request identifier; (iii) a vector of log point sequences. each sequence comes from one top-level method and contains a list of log points that is printed in this top-level method; (iv) a list of nodes traversed, with the earliest and latest timestamp.

The map and reduce functions will iteratively accumulate the information of log messages from the same request into the RAs. In the end, there will be one RA per request that contains the information summarized from all its log messages.

6.1 Map: Intra-thread Grouping

The map function is run on each node to process local log files. There is one map task per node, and all the map tasks are performed run in parallel. Each map function scans the log file linearly. Each log message is parsed to identify its log point and the values of the request identifiers using regular expression matching. If multiple regular expression matches one single log message, lprof will use the regular expression with the longest string constant. We also heuristically parse the timestamp associated with each message.

Thus a parsed log message is added to an existing RA entry if and only if: (i) their top-level methods match, (ii) their identifiers value do not conflict, and (iii) the log point matches the temporal sequence in the control flow as represented by the DAG. Here we say two identifiers’ value conflict if they have the same type but different value, where the type of identifier is obtained from static analysis in Section 72.

A new RA is created (and appropriately initialized) if the log message cannot be added to an existing RA.
Figure 6.1: The grouping of five log messages where four print a subset of request identifier values.

Figure 6.2: The RAs that combine 9 log messages from 6 threads on 3 nodes belonging to a single write request in HDFS.

Therefore, since communication pairs are not considered at map stage, each RA output by the map function contains exactly one top-level method.

Note that a sequence of log messages can be added to the same RA even when each contains the values of a different subset of request identifiers. Figure 6.1 shows an example. The 5 log messages in this figure can all be grouped into a same RA entry even though 4 of them contain the values of a subset of the request identifiers, and one does not contain the value of any request identifier but is captured using the DAG.

6.2 Combine and Reduce: Inter-thread Grouping

The combine function performs the same operation as the reduce function, but does so locally first. It combines two RAs into one if there exists a communication pair between the two top-level methods in these two RAs, and the request identifier values do not conflict. Moreover, as a heuristic, we do not merge RAs if the difference between their timestamps is larger than a user-configurable threshold. Such a heuristic is necessary because two RAs could have the same top-level methods and request identifiers, but represent the processing of different requests (i.e., two writeBlock operations on the same block). This value is currently set to one minute, but should be adjusted depending on the networking environment. In an unstable network environment with frequent congestion this threshold should have a larger value.

After the combine function, lprof needs to assign a shuffle key to each RA, and all the RAs with the same...
shuffle key must be sent to the same reducer node over the network. Therefore the same shuffle key should be
assigned to all of the RAs that need to be grouped together. We do this by considering communication pairs. At
the end of the static analysis, if there is a communication pair connecting two top-level methods A and B, A and B
are jointed together into a connected component (CC). We iteratively merge more top-level methods into this CC
as long as they communicate with any of the top-level methods in this CC. In the end, all of the top-level methods
in a CC could communicate, and their RAs are assigned with the same shuffle key.

However, this approach could lead to the assignment of only a small number of shuffle keys and thus a poor
distribution in practice. Hence, we further implement two improvements to the shuffling process. First, if all of
the communicating top-level methods have common request identifiers, the identifier values will be used to further
differentiate shuffle keys. Secondly, if an RA cannot possibly communicate with any other RA through network
communication, we do not further shuffle it, but instead we directly output the RA into the request database.

Finally, the reduce function applies the same method as the combine function. Figure 6.2 provides an exam-
ple that shows how the RAs of log messages in the HDFS writeBlock request are grouped together. After the
map function generates $req.acc.1$ and 2 on node 1, the combine function groups them into $req.acc.3$, because
writeBlock() and PacketResponder.run() belong to the same communication pair, and their request iden-
tifier values match. Node 2 and node 3 run the map and combine functions in parallel, and generate $req.acc.4$ and
5. lprof assigns the same shuffle key to $req.acc.3$, $req.acc.4$, and $req.acc.5$. The reduce function further groups
them into a final RA $req.acc.6$.

6.3 Request Database and Visualization

Information from each RA generated by the reduce function is stored into a database table. The database schema
is shown in Figure 6.1. It contains the following fields: (i) request type, which is simply the top-level method with
the earliest time stamp; (ii) starting and ending time stamps, which are the MAX and MIN in all the timestamps of
each node; (iii) nodes traversed and the time stamps on each node, which are taken directly from the RA; (iv) log
sequence ID (LID), which is a hash value of the log sequence vector field in the RA. For example, as shown in Fig-
ure 6.2, the vector of the log sequence of a writeBlock request is “[\([LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]\)]”.
In this vector, each element is a log sequence from a top-level method (e.g., “[LP1]” is from top-level method
writeBlock() and “[LP2,LP3]” is from PacketResponder.run()). Here the order in this vector does not
matter because it contains logs from multiple nodes, where we don’t make any assumption on the synchroniza-
tion of clock among different nodes. Note the LID captures the unique type and number of log messages, their
order within a thread, as well as the number of threads. However, it does not preserve the timing order between
threads. Therefore, in practice, there are not many unique log sequences; for example, in HDFS there are only

\[^1\text{Note that if a request identifier is not shared by all of the communicating top-level method, it cannot be used in the shuffle key because different communicating RAs might have different request identifier (e.g., one RA only has poolID while the other RA has blockID).}\]
220 unique log sequences on 200 EC2 nodes running a variety of jobs for 24 hours. We also generate a separate table that maps each log sequence ID to the sequence of log points to enable source-level debugging. We use MongoDB for our current prototype.

We built a web application to visualize lprof’s analysis result using the Highcharts JavaScript charting library. We automatically visualize (i) requests’ latency over time; (ii) requests’ counts and their trend over time; and (iii) average latency per node. Figure 6.3 shows our latency-over-time visualization.

One challenge we encountered is that the number of requests is too large when visualizing their latencies. Therefore, when the number of requests in the query result is greater than a threshold, we perform down-sampling and return a smaller number of requests. We used the largest triangle sampling algorithm, which first divides the entire time-series data into small slices, and in each slice it samples the three points that cover the largest area. To further hide the sampling latency, we pre-sample all the requests into different resolutions. Whenever the server receives a user query, it examines each pre-sampled resolution in parallel, and returns the highest resolution whose number of data points is below the threshold.

![Image of the web application that visualizes request latencies over time.](image-url)
Chapter 7

Evaluation

We answer four questions in evaluating *lprof*: (i) How much information can our static analysis extract from the target systems’ bytecode? (ii) How accurate is *lprof* in attributing log messages to requests? (iii) How effective is *lprof* in debugging real-world performance anomalies? (iv) How fast is *lprof*’s log analysis?

We evaluated *lprof* on four, off-the-shelf distributed systems: HDFS, Yarn, Cassandra, and HBase. We ran workloads on each system on a 200 EC2 node cluster for over 24 hours with the default logging verbosity level. Default verbosity is used to evaluate *lprof* in settings closest to the real-world. HDFS, Cassandra, and YARN use INFO as the default verbosity, and HBase uses DEBUG. A timestamp is attached to each message using the default configuration in all of these systems.

For HDFS and Yarn, we used HiBench \[33\] to run a variety of MapReduce jobs, including both real-world applications (e.g., indexing, pagerank, classification and clustering) and synthetic applications (e.g., wordcount, sort, terasort). Together they processed 2.7 TB of data. For Cassandra and HBase, we used the YCSB \[13\] benchmark. In total, the four systems produced over 82 million log messages (See Table 7.1).

<table>
<thead>
<tr>
<th>System</th>
<th>LOC</th>
<th>workload</th>
<th># of msg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFS-2.0.2</td>
<td>142K</td>
<td>HiBench</td>
<td>1,760,926</td>
</tr>
<tr>
<td>Yarn-2.0.2</td>
<td>101K</td>
<td>HiBench</td>
<td>79,840,856</td>
</tr>
<tr>
<td>Cassandra-2.1.0</td>
<td>210K</td>
<td>YCSB</td>
<td>394,492</td>
</tr>
<tr>
<td>HBase-0.94.18</td>
<td>302K</td>
<td>YCSB</td>
<td>695,006</td>
</tr>
</tbody>
</table>

Table 7.1: The systems and workload we used in our evaluation, along with the number of log messages generated.

7.1 Static Analysis Results

Table 7.2 shows the results of *lprof*’s static analysis. On average, 81% of the statically inferred threads contain at least one log point that would print under normal conditions, and there are an average of 20 such log points reachable from the top-level methods inferred from the threads that contain at least one log point. This suggests
CHAPTER 7. EVALUATION

29

<table>
<thead>
<tr>
<th>System</th>
<th>Threads tot.</th>
<th>Top-lev. meth.</th>
<th>Log points per DAG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFS</td>
<td>44 95%</td>
<td>167 79%</td>
<td>8</td>
</tr>
<tr>
<td>Yarn</td>
<td>45 73%</td>
<td>79 66%</td>
<td>21</td>
</tr>
<tr>
<td>Cass.</td>
<td>92 74%</td>
<td>74 45%</td>
<td>21</td>
</tr>
<tr>
<td>HBase</td>
<td>85 80%</td>
<td>193 74%</td>
<td>30</td>
</tr>
<tr>
<td>Average</td>
<td>67 81%</td>
<td>129 66%</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 7.2: Static analysis result. : in these two columns we only count the log points that are under the default verbosity level and not printed in exception handler — indicating they are printed by default under normal conditions.

<table>
<thead>
<tr>
<th>System</th>
<th>Correct</th>
<th>Incomplete</th>
<th>Incorrect</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFS</td>
<td>97.0%</td>
<td>0.1%</td>
<td>0.3%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Yarn</td>
<td>79.6%</td>
<td>19.2%</td>
<td>0.0%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Cassandra</td>
<td>95.3%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>4.6%</td>
</tr>
<tr>
<td>HBase</td>
<td>90.6%</td>
<td>2.5%</td>
<td>3.5%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Average</td>
<td>90.4%</td>
<td>5.7%</td>
<td>1.0%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Table 7.3: The accuracy of attributing log messages to requests.

that logging is prevalent. In addition, 66% of the log points contain at least one request identifier, which can be used to separate log messages from different requests. This also suggests that lprof has to rely on the generated DAG to group the remaining 34% log points. lprof’s static analysis takes less than 2 minutes to run and 868 MB of memory for each system.

7.2 Request Attribution Accuracy

With 82 million log messages, we obviously could not manually verify whether lprof correctly attributed each log message to the right request. Instead, we manually verified each of the log sequence IDs (LID) generated by lprof. Recall from Chapter 6 that the LID captures the number and the type of the log points of a request, and the partial orders of those within each thread (but it ignores the thread orders, identifier values, and nodes’ IPs). Only 784 different LIDs are extracted out of a total of 62 million request instances. We manually examined the log points of each LID and the associated source code to understand its semantics. The manual examination took four authors one week of time.

Table 7.3 shows lprof’s request attribution accuracy. A log sequence A is considered correct if and only if (i) all its log points indeed belong to this request, and (ii) there is no other log sequence B that should have been merged with A. All of the log messages belonging to a correct log sequence are classified as “correct”. If A and B should have been merged but were not then the messages in both A and B are classified as “incomplete”. If a log message in A does not belong to A then all the messages in A are classified as “incorrect”. The “failed” column counts the log messages that were not attributed to any request.

Overall, 90.4% of the log messages are attributed to the correct requests.

5.7% of the log messages are in the “incomplete” category. In particular, 19.2% of the messages in Yarn
Figure 7.1: The cumulative distribution function on the number of log messages per unique request. For Cassandra, the number of nodes each streaming session traverses varies greatly, therefore the number of log messages in each streaming session request also varies greatly (it eventually reaches 100% with 1060 log messages, which is not shown in the figure).

were mistakenly separated because of only 2 unique log points that print the messages in the following pattern: “Starting resource-monitoring for container_1398” and “Memory usage of container-id container_1398..”. lprof failed to group them because the container ID was first passed into an array after the first log point and then read from the array when the second message was printed. lprof’s conservative data-flow analysis failed to track the complicated data-flow and inferred that the container ID was modified between the first and the second log points, thus attributing them into separate top-level methods. A similar programming pattern was also the cause of “incomplete” log messages for HBase and HDFS. Cassandra’s 0.1% “incomplete” log messages were caused by a few slow requests with consecutive log messages whose intervals were over one minute.

1.0% of the log messages are attributed to the wrong requests, primarily because they do not have identifiers and they are output in a loop so that the DAG groups them all together. This could potentially be addressed with a more accurate path-sensitive static analysis.

3.0% of the log messages were not attributed to any request because they could not be parsed. We manually examined these messages and the source code, and found that in these cases, developers often use complicated data-flow and control-flow to construct a message. For example, there is a log printing statement only prints one string variable that indicates all environment variables used by the system. The string is constructed differently based on the environment. However, we observe that these messages are mostly generated in the start-up or shut-down phase of the systems and thus likely do not affect the quality of the performance analysis.

Inaccuracy in lprof’s request attribution could affect users as follows: since the “incomplete requests” are caused by two log sequences A and B that should have been merged but were not, lprof would over-count the number of requests. For the same reason, timing information separately obtained from A and B would be underestimations of the actual latency. The “incorrect requests” are the opposite; because they should have been split into separate requests, “incorrect requests” would cause lprof to under-count the number of requests yet overestimate the latencies. Note that administrators should quickly realize the “incorrect requests” because lprof provides the sequence of log messages along with their source code information. The information about the “failed” messages, however, will be lost.

Number of messages per request: Figure 7.1 shows the cumulative distribution function on the number of
messages printed by each unique request, i.e., the one with the same log sequence ID. In each system, over 44% of the request types, when being processed, print more than one messages. Most of the requests printing only one message are system’s internal maintenance operations.

7.3 Real-world Performance Anomalies

To evaluate whether *lprof* would be effective in debugging realistic anomalies, we randomly selected 23 user-reported real-world performance anomalies from the bugzilla databases associated with the systems we tested. This allows us to understand, via a small number of samples, what percentage of real-world performance bugs could benefit from *lprof*. For each bug, we carefully read the bug report, the discussions, and the related code and patch to understand it. We then reproduced each one to obtain the logs, and applied *lprof* to analyze its effectiveness. This is an extremely time-consuming process. The cases are summarized in Table 7.4. We classify *lprof* as helpful if the anomaly can clearly be detected through queries on *lprof*’s request database.

Overall, *lprof* is helpful in detecting and diagnosing 65% of the real-world failures we considered. Next, we discuss when and why *lprof* is useful or not-so-useful.

Table 7.5 shows the features of *lprof* that are helpful in debugging real-world performance anomalies we considered. The “request count” analysis is useful in 73% of the cases. In these cases, the performance problems are caused by an unusually large number of requests, either external ones submitted by users or internal operations.

Table 7.4: Evaluation of 23 real-world performance anomalies.

<table>
<thead>
<tr>
<th>Category</th>
<th>example</th>
<th>tot.</th>
<th>helpful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unnecessary operation</td>
<td>Redundant DNS lookups (should have been cached)</td>
<td>15</td>
<td>13 (87%)</td>
</tr>
<tr>
<td>Synchronization</td>
<td>Block scanner holding lock for too long, causing other threads to hang</td>
<td>4</td>
<td>1 (25%)</td>
</tr>
<tr>
<td>Unoptimized operation</td>
<td>Used a slow read method</td>
<td>2</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Unbalanced workload</td>
<td>A particular region server serves too many requests</td>
<td>1</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Resource leak</td>
<td>Secondary namenode leaks file descriptor</td>
<td>1</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>23</td>
<td>15 (65%)</td>
</tr>
</tbody>
</table>

Table 7.5: The most useful analyses on real-world performance anomalies. The percentage is over the 15 anomalies where *lprof* is helpful. An anomaly may need more than one queries to detect and diagnose, so the sum is greater than 100%.

To evaluate whether *lprof* would be effective in debugging realistic anomalies, we randomly selected 23 user-reported real-world performance anomalies from the bugzilla databases associated with the systems we tested. This allows us to understand, via a small number of samples, what percentage of real-world performance bugs could benefit from *lprof*. For each bug, we carefully read the bug report, the discussions, and the related code and patch to understand it. We then reproduced each one to obtain the logs, and applied *lprof* to analyze its effectiveness. This is an extremely time-consuming process. The cases are summarized in Table 7.4. We classify *lprof* as helpful if the anomaly can clearly be detected through queries on *lprof*’s request database.

Overall, *lprof* is helpful in detecting and diagnosing 65% of the real-world failures we considered. Next, we discuss when and why *lprof* is useful or not-so-useful.

Table 7.5 shows the features of *lprof* that are helpful in debugging real-world performance anomalies we considered. The “request count” analysis is useful in 73% of the cases. In these cases, the performance problems are caused by an unusually large number of requests, either external ones submitted by users or internal operations.
For example, the second performance anomaly we discussed in Chapter 3 belongs to this category, where the number of verifyBlock operations is suspiciously large. In these cases, lprof can show the large request number and pinpoint the particular offending requests.

Another useful feature of lprof is its capability to associate a request’s log sequence to the source code. This can significantly reduce developers’ efforts in searching for the root cause. In particular, among the cases where lprof is helpful, 67% of the bugs that introduced inefficiencies were in the same method that contained one of the log points involved in the anomalous log sequence.

lprof’s capability of analyzing the latency of requests is useful in identifying the particular request that is slow. The visualization of request latency is particularly useful in analyzing performance creep. For example, the anomaly to HDFS’s write requests discussed in Chapter 3 can result in performance creep if not fixed. In addition, lprof can further separate the requests of the same type by their different LIDs which corresponds to different execution paths. For example, in an HBase performance anomaly [27], there was a significant slow-down in 1% of the read requests because they triggered a buggy code path. lprof can separate these anomalous reads from other normal ones.

In practice, the user might not identify the root cause in her first attempt, but instead will have to go through a sequence of hypotheses validations. The variety of performance information that can be SQL-queried makes lprof a particularly useful debugging tool. For example, an HBase bug caused an unbalanced workload — a few region servers were serving the vast majority of the requests while others were idle [26]. The root cause is clearly visible if the administrator examines the number of requests per node. However, she will likely first notice the request being slow (via a request latency query), isolate particularly slow requests, before realize the root cause.

In the cases where lprof was not helpful, most (75%) were because the anomalous requests did not print any log messages. For example, a pair of unnecessary memory serialization and deserialization in Cassandra would not show up in the log. While theoretically one can add log messages to the start and end of these operations, in practice, this may not be realistic as the additional logging may introduce undesirable slowdown. For example, the serialization operation in Cassandra is an in-memory operation that is executed on every network communication, and adding log messages to it will likely introduce slowdown. In another case, the anomalous requests would only print one log message, so lprof cannot extract latency information by comparing differences between multiple timestamps. Finally, there was one case where the checksum verification in HBase was redundant because it was already verified by the underlying HDFS. Both verifications from HBase and HDFS were logged, but lprof cannot identify the redundancy because it does not correlate logs across different applications.

If verbose logging had been enabled, lprof would have been able to detect an additional 8.6% of the real-world performance anomalies that we considered since the offending requests print log messages under the most verbose level. However, enabling verbose logging will likely introduce significant performance overhead.
Figure 7.2: Output size after map, combine, and reduce compared to the raw log sizes. The raw log sizes are also shown.

<table>
<thead>
<tr>
<th>System</th>
<th>Time (s)</th>
<th>Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>map+comb.</td>
<td>reduce</td>
</tr>
<tr>
<td>HDFS</td>
<td>14/528</td>
<td>185/348</td>
</tr>
<tr>
<td>Yarn</td>
<td>412/843</td>
<td>1,802/3,264</td>
</tr>
<tr>
<td>Cassandra</td>
<td>4/9</td>
<td>90/134</td>
</tr>
<tr>
<td>HBase</td>
<td>3/7</td>
<td>74/150</td>
</tr>
</tbody>
</table>

Table 7.6: Log analysis time and memory footprint. For the parallel map and combine functions, numbers are shown in the form of median/max.

7.4 Time and Space Evaluation

The map and combine functions ran on each EC2 node, and the reduce function ran on a single server with 24 2.2GHz Intel Xeon cores and 32 GB of RAM.

Figure 7.2 shows the size of intermediate result. On average, after map and combine, the intermediate result size is only 7.3% of the size of the raw log. This is the size of data that has to be shuffled over the network for the reduce function. After reduce, the final output size is 4.8% of the size of the raw log.

Table 7.6 shows the time and memory used by lprof’s log analysis. lprof’s map and combine functions finish in less than 6 minutes for every system exception for Yarn, which takes 14 minutes. Over 80% of the time is spent on log parsing. We observe that when a message can match multiple regular expressions, it takes much more time than those that match uniquely. The memory footprint for map and combine is less than 3.3GB in all cases.

The reduce function takes no more than 21 seconds for HDFS, Cassandra, and HBase, but currently takes 19 minutes for Yarn. It also uses 7.2GB of memory. Currently, our MapReduce jobs are implemented in Python using Hadoop’s streaming mode, which may be the source of the inefficiency. (Profiling Yarn’s reduce function shows that over half of the time is spent in data structure initializations.) Note that we run the reduce job on a single node using a single thread. The reducer could and should be parallelized in real-world usage.
Chapter 8

Limitations

We outline the limitations of lprof in five aspects. We also provide discussions on how lprof could be extended to overcome these limitations.

(1) lprof requires good logging practice to achieve greatest usefulness. The output of lprof, and thus its usefulness, is only as good as the logs output by the system. In particular, the following properties will help lprof to be most effective: (i) attached timestamps from a reasonably synchronized clock; (ii) output messages in those requests that need profiling (multiple messages are needed to enable latency related analysis); (iii) the existence of a reasonably distinctive request identifier, and (iv) not printing the same message pattern in multiple program locations.

Note that these properties not only will help lprof, but also are useful for manual debugging. lprof naturally leverages such existing best-practices. Furthermore, lprof’s static analysis can be used to suggest how to improve logging. It identifies which threads do not contain any log printing statements. These are candidates for adding log printing statements. lprof can also infer the request identifiers for developers to log.

(2) Currently lprof only works on Java bytecode. Our implementation relies on Java bytecode and hence is restricted to Java programs (or other languages that use Java bytecode, such as Scala). Similar analysis can be done on LLVM bytecode [35], but this would most likely require access to the C/C++ source code so it can be compiled to LLVM bytecode.

(3) Performance of lprof could be a concern for online profiling. While the map phase is executed in parallel on each node that stores the raw log, the reduce phase may not be evenly distributed. This is because all of the RAs that contain top-level methods that might communicate with each other need to be shuffled to the same reducer. This can result in unbalanced load. For example, in Yarn, 75% of the log messages are printed by one log point during the heartbeat process, and their RAs have to be shuffled to the same reducer node. This node becomes the bottleneck even if there are other idle reducer nodes.
(4) If a unique per-request ID exists, lprof’s static analysis part may become not very useful. If a unique per-
request ID exists in every log message, then there would be no need to infer the request identifier. The log string
format parsing could also be simplified since now our log parser only needs to match a message to a log printing
statement, but does not need to precisely bind the values to variables. However, the other components are still
needed. DAG and communication pairs are still needed to infer the order dependency between different log
messages, especially if we want to perform per-thread performance debugging. The MapReduce log analysis is
still needed. If such an ID exists, then the accuracy of lprof will increase significantly, and we can better distribute
the workload in the reduce function by using this ID as part of the shuffle key.

(5) lprof requires redeploy when there are code changes. A system upgrade requires lprof to perform static
analysis on the new version. The new model produced by the static analysis should be sent to each node along
with the new version of the system. In practice, we compare two files generated from Hadoop versions 2.0.0 and
2.2.0. Nevertheless, we don’t find significant differences between their static analysis result.
Chapter 9

Related Work

Using machine learning for log analysis: Several tools apply machine learning on log files to detect anomalies [4, 40, 53]. Xu et al., [53] also analyzes the log printing statements in the source code to parse the log. lprof is different and complementary to these techniques. First, these tools target anomaly detection and do not identify request flows as lprof does. Analyzing request flows is useful for numerous applications, including profiling, and understanding system behavior. Moreover, the different goals lead to different techniques being used in our design. Finally, these machine learning techniques can be applied to lprof’s request database to detect anomalies on a per-request, instead of per-log-entry, basis.

Semi-automatic log analysis: SALSA [51] and Mochi [52] also identify request flows from logs produced by Hadoop. However, unlike lprof, their models are manually generated. By examining the code and logs of HDFS, they identify the key log messages that mark the start and the end of a request, and they identify request identifiers, such as block ID. The Mystery Machine [12] extracts per-request performance information from the log files of Facebook’s production systems, and it can correlate log messages across different layers in the software stack to infer the performance critical path. To do this, it requires developers to attach unique request identifiers to each log message. Commercial tools like VMWare LogInsight [37] and Splunk [49] index the logs, but require users to perform keyword-based searches.

Single thread log analysis: SherLog [55] analyzes the source code and a sequence of error messages to reconstruct the partial execution paths that print the log sequence. Since it is designed to debug functional bugs in single-threaded execution, it uses precise but heavy-weight static analysis to infer the precise execution path. In contrast, lprof extracts less-precise information for each request, but it analyzes all the log outputs from all the requests of the entire distributed system.

Instrumentation-based profiling: Instrumentation-based profilers have been widely used for performance debugging [8, 10, 21, 22, 34, 43, 45]. Many, including Project 5 [1], MagPie [3], X-Trace [17], and Dapper [47],
just to name a few, are capable of analyzing request flows by instrumenting network communication, and they can profile the entire software stack instead of just a single layer of service. \(G^2\) further models all the events into an execution graph that can be analyzed using LINQ queries and user-provided programs. In comparison, lprof is non-intrusive. It also provides source-level profiling information. However, it cannot provide any information if requests do not output log messages.
Chapter 10

Conclusion and Future Work

This thesis presented lprof, which is, to the best of our knowledge, the first non-intrusive request flow profiler for distributed services. lprof is non-intrusive because it can stitch together the dispersed and intertwined log messages generated by the system, which means it does not require instrumenting into the system to get performance information. lprof is a request flow profiler because it can group log messages from the same request flow based on the information from off-line static analysis on the system’s code.

The key insight behind lprof is that although there is no perfect request identifiers, but the actual logged identifiers can still be used to group logs from the same request. These identifiers are frequently logged but rarely modified. The modification point indicates the entry of a specific request.

We have designed lprof as two parts: the static analysis part and log analysis part. The static analysis part will generate a file describing the logging behavior of the system, while the log analysis part uses this file to stitch logs from the same request into the same group. Finally lprof outputs a database table with one line per request, helping people understand performance behavior of distributed systems.

Our evaluation shows that lprof can accurately attribute 90% of the log messages from widely-used, production-quality distributed systems: HDFS [28], Yarn [54], Cassandra [6] and HBase [25]. Out evaluation also shows that lprof is helpful in debugging 65% of the sampled real-world performance anomalies.

We have several plans for future work. While lprof can provide per-request level grouping of system logs, it only works on Java bytecode hence can only be applied on JVM-based distributed systems. Since lprof requires data flow information to do the static analysis, it will be hard to directly apply lprof’s static analysis on binary executables. However, we plan to apply lprof on LLVM or other SSA-based representations. It will help us understand more about the feasibility of lprof’s static analysis on these intermediate representations.

Finally, although lprof can stitch logs generated by one single distributed system, it cannot infer correlations among logs from different system components. Nowadays distributed system stack is becoming more heterogeneous. For example, a user submits a SQL request to Hive [32] will trigger numerous of jobs processed by Yarn
and MapReduce, which is further handled by underlying HDFS and operating system. We plan to further explore how to infer log correlation on different system components.
Bibliography

[33] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The HiBench benchmark suite: Characterization of the MapReduce-based data analysis. In 26th International Conference on Data Engineering Workshops (ICDEW), pages 41–51, 2010.

[57] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterising logging practices in open-source software. In the 34th International Conference on Software Engineering, ICSE’12, Zürich, Switzerland, June 2012.