The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high glucose-induced injured H9c2 cardiomyoblasts

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Physiology and Pharmacology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjpp-2015-0587.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>31-Mar-2016</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Ji, Lei; the First Hospital of Jilin University, Department of Cardiology; Changchun Central Hospital, Department of Cardiology; Liu, Yingying; China-Japan union Hospital of Jilin University, Department of Nephrology; Zhang, Ying; The First Hospital of Jilin University, Department of Neurology; Chang, Wenguang; College of Basic Medical Sciences, Jilin University, Department of Pharmacology; Gong, Junli; Changchun Central Hospital, Department of Cardiology; Wei, Shengnan; College of Basic Medical Sciences, Jilin University, Department of Pharmacology; Li, Xudong; Changchun Central Hospital, Department of Cardiology; Qin, Ling; The First Hospital of Jilin University, Department of Cardiology</td>
</tr>
<tr>
<td>Keyword:</td>
<td>edaravone, type 1 diabetes, oxidative stress, apoptosis</td>
</tr>
</tbody>
</table>
The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high glucose-induced injured H9c2 cardiomyoblasts.

Lei Jia,b, Yingying Liuc, Ying Zhangd, Wenguang Change, Junli Gongb, Shengnan Weie, Xudong Lib, Ling Qina,*

aDepartment of Cardiology, the First Hospital of Jilin University, Changchun 130021, China.

bDepartment of Cardiology, Changchun Central Hospital, Changchun 130051, China.

cDepartment of Nephrology, China-Japan union Hospital of Jilin University, Changchun 130033, China.

dDepartment of Neurology, the First Hospital of Jilin University, Changchun 130021, China.

eDepartment of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China

Address for Correspondence:
*Dr. Ling Qin, MD, PhD,
Department of Cardiology,
The First Hospital of Jilin University, China,
No. 71 of the XinMin Road, Changchun City, Jilin Province, China
Tel: +86 043184808227; fax: +86 0431 8484 1049;
E-mail: Lingqin1111@126.com
Abstract

Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozocin induced-type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2) and B-cell lymphoma 2 (Bcl-2), reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high glucose-incubated H9c2 cells by edaravone increased the activity of anti-oxidative stress by increasing SIRT-1, PGC-1α, and NRF-2 and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.

Key words: edaravone, type 1 diabetes, oxidative stress, apoptosis.
Introduction

Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 1 diabetes (Huxley et al. 2015; Nathan 2015). Many etiological factors like hyperglycemia, metabolic abnormalities may affect the physiology of the diabetic heart. The overwhelming effects of all these factors lead to cardiac abnormalities including myocardial dysfunction, myocardial hypertrophy and decreased left ventricular compliance. The underlying molecular defect involved in the pathogenesis of diabetic cardiomyopathy is not fully understood. Several mechanisms like oxidative stress and cardiomyocytes apoptosis have been proposed for hyperglycemia-induced cardiac injury in the diabetic heart (Kayama et al. 2015). Oxidative stress is caused by imbalance of reaction oxygen species (ROS) generation and ROS elimination in heart (Penckofer et al. 2002). A decrease in antioxidative proteins is recognized to play an important role in genesis of diabetic cardiac dysfunction and leads to apoptosis in cardiomyocytes, eventually induces heart failure in diabetic heart (Hare 2001; Shen et al. 2007). These oxidative abnormalities may be promising therapeutic targets for the treatment of diabetic cardiovascular complications.

Edaravone (EDA), was approved in 2001 in Japan for the treatment of ischemia stroke (Kikuchi et al. 2010). It has been shown that edaravone can diffuse into many organs in addition to neurovascular system, edaravone exerts protective effects in a number of tissue damage, including myocardial, muscle, lung, liver, pancreatic and...
renal injury (Kikuchi et al. 2011; Liu et al. 2015; Naritomi et al. 2010; Song et al. 2015; Yang et al. 2010). The preventive effects of edaravone on cardiomyocytes apoptosis, necrosis, as well as myocardial injury following ischemia reperfusion are well documented (Kikuchi et al. 2012; Kikuchi et al. 2011; Tsujita et al. 2004). In clinical studies, a reduction in antioxidant activity in heart occurs early after the diagnosis of type 1 diabetes mellitus, which may result in the development of diabetic cardiovascular complications (Marra et al. 2002). As an anti-oxidant regent, whether edaravone protects heart function during the development of diabetes is unknown. The mechanism of edaravone’s ROS scavenger effects is still unclear. In the process of ROS elimination, an intracellular regulatory protein Sirtuin-1 (SIRT-1) responds to insulin sensitivity plays an important role in regulating anti-oxidant activity in mitochondrial, SIRT-1 can bind to peroxisome proliferator activated receptor G coactivator 1α (PGC-1α), which then can be deacetylated and activated. Activated PGC-1α can up-regulate the transcription of Nuclear factor (erythroid-derived 2)-like 2 (NRF-2), results in the induction of many antioxidant proteins (Nguyen et al. 2009; Ping et al. 2015). In addition, edaravone reduces cardiomyocytes apoptosis by increasing Bcl-2 and decreasing Bax and Caspase-3 (Rajesh et al. 2003), which may also relate to its antioxidative effects (Hare 2001). In this study, we examined if edaravone could attenuated cardiac dysfunction in type 1 diabetes rats. We showed that edaravone improved cardiac function in type 1 diabetic rat heart and reduced oxidative stress through its activation of SIRT-1/PGC-1α/NRF-2 signal pathway and in turn inhibited apoptosis by modulating Bcl-2/Bax/Caspase-3 signal pathway.
Material and Methods

Materials

Edaravone was obtained from BoDa Pharmaceutical Factory (Jilin, China). Streptozotocin, Dulbecco's modification of Eagle's medium (DMEM), cell culture reagents, trypsin-EDTA solution, glucose, 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and reagents for Western blot analysis were obtained from Sigma-Aldrich (Beijing, China). Fetal bovine serum was obtained from Runsheng Biological Materials Co., Ltd. (Taiyuan, China). Polyclonal antibodies against SIRT-1, PGC-1α, NRF-2, Bcl-2, Bax, secondary antibodies for Western blot analysis were obtained from Abcam (Beijing, China). Caspase-3 antibody was obtained from Cell signaling technology (Beijing, China). Polyvinylidene fluoride membranes were obtained from Millipore (Beijing, China). H9c2 rat cardiac myoblastic cells were obtained from Cell Resource Center (IBMS, Beijing).

Animals

Six week old male Wistar rats were housed individually in a room (constant temperature, 12/12 h light/dark cycles) and received standard laboratory rat diet and water ad libitum. All procedures were approved by the Ethics Committee for the Use of Experimental Animals of Jilin University.
Generation of type 1 diabetic animals

Type 1 diabetic model was induced with a single intraperitoneal injection of streptozocin (STZ) (60 mg/kg) in our rats as described previously (Vallejo et al. 2014). STZ was freshly dissolved in citrate buffer (0.1 M). Control animals received the buffer only. 7 days after the injection a drop of blood was collected from the tail vein and blood glucose concentration was determined by using a digital blood glucose meter (Accu-Chek® Sensor, Roche, Mannheim, Germany). Animals with a random blood glucose level >16.7 mmol/L were considered to be diabetic and were included into the study. Rats were divided randomly into three groups: vehicle-treated control (CON; \(n = 12 \)), vehicle treated diabetic (Model; \(n = 12 \)) and edaravone-treated diabetic (EDA; \(n = 10 \)) groups. Animals were treated with saline or with edaravone (6 mg/kg/day) by intraperitoneal injection for 4 weeks.

Measurement of biological parameters

Body weight, Blood glucose (BG), Insulin (INS), malondialdehyde (MDA) and superoxide dismutase (SOD) in rat serum were determined using assay kits as per the manufacturer’s instructions (Nanjingjiancheng Bio-engineering Institute, Nanjing, China).

Echocardiography
Transthoracic two-dimensional M-mode echocardiogram pulsed wave Doppler spectral tracings were obtained from CON, Model and EDA animals using a Sequioa-512 Ultrasound System (Siemens AG, Munich, Germany) with a 15-MHz transducer in rats anesthetized using 0.3% Pentobarbital sodium (intraperitoneal injection) according to previously described (Chang et al. 2015). M-mode tracings were used to measure LV end-diastolic diameter (LVD D), percent ejection fraction (EF%) and interventricular septal thickness (IVS). Doppler flow velocities across the mitral valves were determined by measurement of early ventricular filling peak velocity (E wave) and late filling velocity (A wave) during the systolic and diastolic phase. E wave to A wave ratio (E/A) were used to determine diastolic function.

Hematoxylin and Eosin stain (H&E stain)

Hearts from CON, Model and EDA animals were fixed in 10% formalin and imbedded in paraffin. The morphology of myocardial was quantified in 4 mm paraffin sections after staining with Hematoxylin and Eosin stain. Transverse transnuclear widths (cardiomyocytes diameter) were measured of 100 longitudinally oriented, mono-nucleated cardiomyocytes. The cardiomyocyte diameter was calculated using IPP6.0 imaging software. 6 visual fields were randomly selected under a 40× magnification.
Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay

TUNEL assay was performed to detect DNA strand breaks using a commercial kit (Roche, China). TUNEL positive cell nuclei were counted in 15 randomly selected fields of sections by IPP6.0.

Cell culture

H9c2 cells were maintained in low glucose DMEM with 10% fetal bovine serum, 2% L-glutamine, 10% sodium bicarbonate, 10% sodium pyruvate, 5% HEPES, 1% penicillin/streptomycin and 1% gentamycin in an incubator (37°C, 5% CO₂). For ROS fluorescence microscopy assay, H9c2 cells were plated on glass coverslips coated with poly-D-lysine in a 24-well plate. Cells were incubated with 35mM glucose plus or minus 30µM edaravone for 24h.

Cell viability assay

Cell viability was determined by MTT assay in 96-well tissue culture plates as described previously (Chang et al. 2013). After treatment, the culture medium was removed from the wells, and 200 µl of MTT reagent (Sigma) at a concentration of 1 mg/mL in PBS was added to each well. After 4 h incubation at 37°C, MTT reagent in PBS was removed and then the blue-colored formazan product was solubilized in 0.15 ml of Dimethyl Sulphoxide (DMSO) for 20 min. The absorbance of converted dye
was measured at a wavelength of 570 nm.

Reactive oxygen species measurements

The level of intracellular ROS generation was assessed using the ELISA kit (Shanghai Yanjing Biological Research Technology Co, LTD, China) according to manufacturer’s instruction. Furthermore, fluorescence microscopy was used to confirm the results of the microplate ROS assay. Briefly, after the indicated treatments, cells were washed twice with phosphate-buffered saline and then incubated with serum-free DMEM containing 10 μmol/l dichlorofluorescein diacetate (DCFH-DA) at 37°C for 30 min. After that, cells were washed with PBS three times in order to eliminate the residual DCFH-DA. Cells from each group were analyzed by measuring the excitation and emission spectrum at 488 and 525 nm, respectively. The fluorescence was visualized using a fluorescence microscope coupled with an image analysis system Olympus IX71 system biological microscope.

siRNA knockdown of SIRT-1

H9c2 cells were seeded at 6 wells plate. Then transfections were carried out using scramble small interfere RNA or sirtuin-1 small interfere RNA (SIRT-1 siRNA, Santa Cruz Biotechnology) and transfection reagent (Inventrigen, Thermo Fisher Scientific) according to the manufacturer’s instructions. The transfection solution (volume 400 µl) was prepared in serum- and antibiotic-free DMEM (low glucose)
medium containing 0.5μg/well siRNA-SIRT-1 or scrambled siRNA and transfection reagent. The mixture was incubated for 20 min at room temperature and then diluted with 600 μl of DMEM medium and then added to the cells for 6 h. This was followed by the addition of 1 ml DMEM containing 20% FBS to the cells and incubation for another 10 h. Then cells were incubated with 35μM high glucose plus or minus EDA for 24h.

Western blot analysis

Hearts from CON, Model and EDA animals were homogenized and protein samples were prepared with ice-cold RIPA lysis buffer; in vitro western blot experiments, upon completion of the experiments, cells were harvested using ice-cold RIPA lysis buffer. Protein concentrations were measured using the bicinchoninic acid assay (BCA assay, Pierce BCA Protein Assay Kit). For western blot detection of SIRT-1, PGC-1α, NRF-2 and Bel-2, Bax, Caspase-3 protein expressions, 70μg proteins were used, all proteins were separated by 12 % SDS polyacrylamide gel and electro transferred onto polyvinylidene fluoride membranes. Membranes were blocked with 5 % (w/v) skim milk for 2 h at room temperature and then incubated with primary antibodies with gentle agitation overnight at 4 °C. The membranes were washed 3 times for 10 min each with 15 ml of TBST (10 mM Tris–HCl, 150 mM NaCl and 0.1 % (v/v) Tween-20 and then incubated with secondary antibody at room temperature for 2 h. Protein was visualized with enhanced chemiluminescence.
solution and images generated with GENE Imaging system. The images were quantified using Image Analysis Software (Quantity One).

Statistical analysis

Values are presented as mean ±S.E.M. An unpaired Student’s t test was performed for single comparisons between two groups. $P<0.05$ was considered statistically significant.
Results

Edaravone treatment increases insulin and superoxide dismutase levels, but does not alter body weight and blood glucose

Type 1 diabetic rats were killed after 4 weeks with or without EDA treatment. No difference in body weight was observed between Model and EDA rats (Table 1). In contrast, serum insulin (INS) was increased in EDA treated animals compared to Model. Serum glucose levels were unaltered between Model and EDA animals. Serum lipid peroxidation was assessed by analysis of MDA and SOD, biomarkers of oxidative stress. Serum MDA levels were decreased in EDA animals compared to Model animals, serum SOD levels were increased in EDA animals compared to Model. Thus, EDA treatment increases serum insulin and SOD levels but does not alter body weight and serum glucose in type 1 diabetic animals.

Edaravone treatment attenuates cardiac dysfunction induced by type 1 diabetes

To assess the effect of edaravone on cardiac function in type 1 diabetic rats, echocardiography was performed in CON, Model and EDA groups one week prior to sacrifice. Systolic and diastolic dysfunction developed in type 1 diabetic animals compared to CON, EDA treatment attenuated these changes (Fig. 1A, B). E/A, EF% and LVDD were significantly decreased in Model group compared to CON (Fig.1C, D, F). Treatment of Model animals with edaravone restored E/A, EF% and LVDD to that of CON animals. In addition, IVS was significantly increased in Model animals.
compared to CON (Fig.1E), treatment of Model animals with EDA restored IVS to that of the control group. Thus, EDA treatment improves cardiac function in type 1 diabetic rats.

Edaravone reduces cardiomyocytes hypertrophy and apoptosis in type 1 diabetic rats

To evaluate the effect of edaravone on cardiac hypertrophy, cardiomyocytes diameter were measured in H&E staining. When compared with controls, the cardiomyocytes diameters in Model animals were significantly increased, indicating cardiomyocytes hypertrophy occurred. However, this increase was prevented by EDA treatment (Fig.2A).

Apoptosis of cardiomyocytes were measured by DNA fragmentation in TUNEL staining. TUNEL-positive nuclei were rare or absent in the hearts of control animals, whereas the number of TUNEL positive nuclei was significantly increased in diabetic animals (Fig.2B). Treatment with edaravone significantly decreased the number of TUNEL-positive nuclei in the myocardium.

Edaravone treatment increases cardiac antioxidant protein expressions and reduces apoptotic protein expressions

To explore the possible mechanisms of EDA in protection of myocardium injury in type 1 diabetic rats, several key antioxidant transcriptional gene proteins were...
examined including SIRT-1, PGC-1α and NRF-2. As shown in Figure 3, SIRT-1, PGC-1α and NRF-2 protein expressions were significantly decreased in diabetic animals compared to CON, treatment of diabetic animal with EDA increased SIRT-1, PGC-1α and NRF-2 protein expressions compared to diabetic animals.

We further examined expressions of apoptotic related proteins in CON, Model and EDA animals. Bcl-2, which was an anti-apoptotic protein, were decreased in diabetic animals compared to control, treatment of diabetic animals with EDA reversed this reduction. Bax and Caspase-3 were increased in Model animals compared to CON, treatment of diabetic animals with EDA significantly decreased the expressions of Bax and Caspase-3. Thus, EDA treatment increases SIRT-1, PGC-1α, NRF-2 and Bcl-2 and reduces Bax and Caspase-3 (Fig.4A, B, C).

Edaravone treatment attenuates high glucose-induced cardiomyocytes cytotoxicity and ROS generation

High glucose level is believed to be a major contributing factor in the pathogenesis of diabetic complications. As an in-vitro model, we examined if edaravone treatment altered cellular apoptosis and reactive oxygen species generation in high glucose incubated H9c2 cardiac myocytes. High glucose (35mM) concentration in cell culture medium was used to mimic the high glucose in our type 1 diabetic rat model. H9c2 cells were incubated for 24 h with EDA (30µM) or high glucose with EDA, and cytotoxicity was examined. Incubation of cells with 0-30 µM
EDA has no cytotoxicity (Fig.5A). In contrast, incubation of cells with 35mM glucose resulted in significant cytotoxicity. EDA (30µM) prevented the cell death induced by high glucose incubation in H9c2 cells (Fig.5B). We next examined the ROS generation in high glucose treated H9c2 cells. Incubation of H9c2 cells with 35mM glucose resulted in a remarkable increase in ROS generation compared to untreated cells (Fig.5C, D), EDA treatment significantly reduced ROS generation induced by high glucose. Thus EDA treatment reduces high glucose-induced cell cytotoxicity and ROS generation.

Edaravone treatment increases SIRT-1, PGC-1α, NRF-2 and Bcl-2 and reduces Bax and Caspase-3.

Since high glucose incubation of H9c2 cells resulted in ROS generation and cell cytotoxicity, EDA treatment reduces ROS generation and increases cell viability. We next examined if antioxidant and apoptosis proteins was playing a role in the regulation effect of EDA on high glucose induced H9c2 cell injury. Treatment of H9c2 cells with high glucose resulted in the reduction in SIRT-1, PGC-1α and NRF-2 protein expression compared to control. EDA treatment in high glucose-treated cells significantly increased the expression of SIRT-1, PGC-1α and NRF-2 (Fig.6A, B, C). In addition, Bcl-2 was reduced in high glucose treated H9c2 cells compared to untreated control, treatment of high glucose treated H9c2 cells with EDA increased Bcl-2 protein levels. Bax and Caspase-3 were increased in high glucose treated H9c2
cells compared to control, EDA treatment significantly reduced the expression of Bax and Caspase-3 in high glucose treated H9c2 cells (Fig. 7A, B, C). Thus, EDA treatment increases the expression of SIRT-1, PGC-1α, NRF-2 and Bcl-2 and reduces the expression of Bax and Caspase-3 in high glucose-induced cardiomyocytes injury.

Knockdown SIRT-1 diminished edaravone-regulated protein expression in high glucose-incubated H9c2 cardiomyoblasts.

As SIRT-1 regulates cell growth and survival in response to oxidative stresses, we next examined if knockdown SIRT-1 mRNA could abolish the protective effects of EDA. The results showed that knockdown SIRT-1 mRNA by small interfere RNA caused a reduction in SIRT-1 protein expression, accompanied by decrease of NRF-2 expression in high glucose treated H9c2 cells. In addition, after knockdown SIRT-1, the expressions of Bax and Caspase-3 were markedly increased and the expression of Bcl-2 was reduced in EDA treated cells (Fig. 8). Thus, EDA treatment attenuates high glucose induced apoptosis in H9c2 cells by increasing SIRT-1 and NRF-2.
Discussion

Diabetes leads to cardiac structural and functional disturbances in the myocardium. It is widely recognized that cardiomyocyte hypertrophy, fibrosis and apoptosis are present in diabetic heart (Fuentes-Antras et al. 2015; Trachanas et al. 2014). Several studies have described that increased oxidative stress may be primarily responsible for the development of diabetic cardiovascular diseases (Liu et al. 2014; Trachanas et al. 2014; Wold et al. 2005). Many compounds and drugs with antioxidant properties prevent development and progression of diabetes-induced cardiovascular injury (Abdel-Hamid and Firtgany Ael 2015; Call et al. 2015; Kajstura et al. 2001; Suzuki et al. 2015; Umbarkar et al. 2015). Recently, the protective effects of edaravone on cardiovascular disease have attracted much attention. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion, as well as myocarditis-induced dilated cardiomyopathy and has beneficial effects on the impaired oxidant/antioxidant status of heart in VPA-induced toxicity (Emekli-Alturfan et al. 2015; Tsujita et al. 2004; Yamawaki et al. 2004; Yamazaki et al. 2009). As a free radical scavenger, whether edaravone protects against diabetes-related myocardium injury is still unknown. In the present study, type 1 diabetes induced diabetic rats exhibited systolic and diastolic dysfunction and increased in cardiomyocytes diameter. Treatment of these animals with EDA prevented cardiac functional loss and cardiomyocytes hypertrophy. Also, treatment of high glucose treated H9c2 cells with EDA reduced ROS generation. The mechanism for the improvement of cardiac functional in edaravone treated rats was related the
increase of SIRT-1, PGC-1α and NRF-2 expressions. Apoptosis of cardiomyocytes is another important outcome of hyperglycemia-induced inflammation and oxidative stress in the heart. In current study, edaravone also protected cardiomyocytes from apoptosis in diabetic animals and in high glucose-induced apoptotic H9c2 cells by reduction of Bax and Caspase-3 and increased of Bcl-2 expression, these observations indicated that mechanism of action of edaravone attributed to anti-apoptosis in addition to its anti-oxidant activity.

SIRT-1, a histone deacetylase, plays an important role in the regulation of ROS generation in the heart (Lai et al. 2013). Deacetylation reflects its main task, this deacetylase protects from endothelial dysfunction, atherothrombosis, diet-induced obesity, type 2 diabetes and myocardial infarction (Breitenstein et al. 2011; Guarani et al. 2011; Hsu et al. 2010). SIRT-1 directly deacetylated PGC-1α and activated PGC-1α, overexpression of PGC-1α in vascular endothelial cells increased mitochondrial antioxidant enzyme expression, and decreased oxidative stress and cell death (Lu et al. 2010b). Activated PGC-1α can bind to NRF-2, in turn positively regulates the expression of several ROS detoxifying enzymes such as superoxide dismutase (SOD) and decreased oxidative stress (Nojiri et al. 2006; Nonn et al. 2003). The preventive effect of PGC-1α/NRF-2 activation on cardiovascular and diabetic cardiovascular diseases has been reported by several groups (Ping et al. 2015).

Enhanced SIRT-1 and NRF-2 protected the heart from exhaustive exercise-induced injury and increased NRF-2 prevent diabetes-induced high blood pressure and cardiac
dysfunction as well as cardiac hypertrophy, fibrosis, oxidative damage, and inflammation (Cheng et al. 2013; Nguyen et al. 2009; Uruno et al. 2013). In contrast, NRF-2 knockout mice exhibited cardiac hypertrophy and left ventricular dysfunction (Velmurugan et al. 2013). In the current study, edaravone treatment reduced ROS generation in high glucose treated H9c2 cells and inhibited cardiomyocytes hypertrophy via activation of SIRT-1, PGC-1α and NRF-2.

Cardiomyocyte apoptosis also plays an important role in the development of diabetes-induced decreased cardiac function and myocardial hypertrophy (Cai et al. 2002). As a result of diabetes progression and high glucose induced cell apoptosis, a progressive rise in DNA damage levels that was accompanied by increasing activation of proteins involved in the mitochondria-mediated apoptotic pathway. Crucial events in apoptosis are the translocation of the pro-apoptotic Bax protein from the cytoplasm to the mitochondria where it forms an oligomeric pore in the outer membrane, and the release of Bcl-2, an anti-apoptotic protein that prevents Bax oligomerization. The formation of oligomeric pore in mitochondrial outer membrane release cytochrome C, in turn activates caspase 3, which are responsible for apoptosis within cell (Ivanovic-Matic et al. 2014; Lu et al. 2010a; Ryu et al. 2015). In our present study, edaravone treatment reduces TUNEL stained DNA damage via activation of Bcl-2 and inhibition of Bax and Caspase-3. In addition, numerous experimental studies demonstrate that ROS are involved in cardiomyocyte apoptosis. Doxorubicin-derived ROS is responsible for its toxicity to myocardium and lead to cardiomyocytes
apoptosis, and suppressing the elevation of reactive oxygen species improve high glucose-induced cardiomyocytes apoptosis in mouse myocardium (Cai et al. 2002). In our experiments, treatment of high glucose-treated H9c2 cells with edaravone reduced ROS generation and this was accompanied by reducing Bax, Caspase-3 and increasing Bcl-2. In addition, knockdown SIRT-1 resulted in a decreased NRF-2, hence increased apoptotic protein expression. These data suggest that anti-apoptotic effect of edaravone in the diabetic heart may be regulated, in part, through its anti-oxidant action.

In summary, our findings demonstrate that edaravone treatment improves cardiac dysfunction in diabetic rats and reduces oxidative stress and apoptosis in high glucose-induced apoptotic H9c2 cardiomyocytes. The mechanisms underlying these beneficial effects are increased activities of SIRT-1, PGC-1α, NRF-2 and Bcl-2 and reduced activities of Bax and Caspase-3. The present study suggested that edaravone may be a candidate drug for the treatment of diabetes-induced cardiovascular diseases.
Acknowledgements

This work was conducted in Preclinical Pharmacology R&D Center of Jilin Province and Key Lab of Traditional Medicine for Diabetes of Jilin Province. This work was supported by talent development foundation project of Jilin province (20131209).

Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur. J. Pharmacol. PMID:26522928

Wold, L. E., Ceylan-Isik, A. F., and Ren, J. 2005. Oxidative stress and stress signaling:

Table 1. Body weight and blood biochemical parameters in diabetic rats.

<table>
<thead>
<tr>
<th></th>
<th>Body weight (g)</th>
<th>Blood Glucose (mmol/L)</th>
<th>INS (mIU/L)</th>
<th>MDA (nmol/ml)</th>
<th>SOD (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>344±11.3</td>
<td>6.6±0.10</td>
<td>6.02±0.29</td>
<td>6.12±0.62</td>
<td>306.6±6.35</td>
</tr>
<tr>
<td>Model</td>
<td>249±10.5(^a)</td>
<td>30.2±1.16(^a)</td>
<td>2.89±0.27(^a)</td>
<td>8.85±1.25(^a)</td>
<td>256.4±6.49(^a)</td>
</tr>
<tr>
<td>EDA</td>
<td>259±9.5</td>
<td>27.2±1.33</td>
<td>5.08±0.18(^b)</td>
<td>6.07±0.78(^b)</td>
<td>292.9±9.22(^b)</td>
</tr>
</tbody>
</table>

Body weight and blood biochemical parameters were determined in Control, Model and EDA(6mg/kg, ip) animals as described in Materials and Methods. Values represent the mean±S.E.M (n=8). \(^a\) P<0.05 vs. Control, \(^b\) P<0.05 vs. Model.
Figure legends

Figure 1. Echocardiographic analysis in diabetic rats.

Echocardiography was performed on Control, Model and EDA animals one week prior to sacrifice as described in Material and Methods. A. Mitral valvular inflows showing E wave and A wave (E wave: LV early-filling wave; A wave: filling from atrial contraction). B. Left ventricular end-diastolic diameter (D). C. Ratio of the early to late peak diastolic trans-mitral flow velocity (E/A). D. Percentage of ejection fraction (EF%). E. Inter-ventricular Septum thickness (IVS). F. Left ventricular internal dimension-diastolic (LVDD). Data represent the mean±S.E.M (n=8). *P<0.05, **P<0.01 vs Control, #P<0.05, ##P<0.01 vs Model.

Figure 2. Edaravone reduces cardiomyocytes diameters and apoptosis.

A. Hematoxylin and eosin staining of left ventricular tissue slices depicting cardiomyocyte hypertrophy and bar graph showing the average cardiomyocyte diameter of 100 cells per field (×40). Values given are from three independent measurements. B. TUNEL stained myocardial tissue sections for apoptotic nuclei and bar graph showing the average number of TUNEL positive apoptotic nuclei/field. *P<0.05, **P<0.01 vs Control, #P<0.05, ##P<0.01 vs Model.
Figure 3. Edaravone treatment increases SIRT-1, PGC-1α and NRF-2 expression.

Expression of SIRT-1 (A), PGC-1α (B) and NRF-2 (C) were determined in Control, Model and EDA animals as described in Materials and Methods. Representative Western blots are depicted. Data represent the mean±S.E.M (n=6). *P<0.05, **P<0.01 vs Control, #P<0.05 vs Model.

Figure 4. Edaravone treatment reduces Bax, Caspase-3 and increases Bcl-2 expression.

Expression of Bax (A), Bcl-2 (B) and Caspase-3 (C) were determined in Control, Model and EDA animals as described in Materials and Methods. Representative Western blots are depicted. Data represent the mean±S.E.M (n=6). *P<0.05, **P<0.01 vs Control, #P<0.05, ##P<0.01 vs Model.

Figure 5. Edaravone treatment restores cell viability in high glucose-cultured H9c2 cardiomyoblasts.

A. H9c2 cells were incubated with various concentrations of edaravone and cell viability determined as described in Materials and Methods. B. H9c2 cells were
incubated with high glucose plus or minus EDA (30μM) and cell viability determined as described in Materials and Methods. C. H9c2 cells were incubated with high glucose (HG) plus or minus EDA and ROS generation determined by fluorescence (C) and ELISA (D) as described in Materials and Methods. A representative micrograph is depicted. Data represent the mean±S.E.M (n=6). *P<0.05, **P<.01 vs control, # P<0.05, ##P<0.01 vs HG.

Figure 6. Edaravone treatment increases SIRT-1, PGC-1α and NRF-2 expressions in high glucose-incubated H9c2 cardiomyoblasts.

H9c2 cells were incubated in the absence or presence of high glucose(HG) with or without edaravone and expression of SIRT-1(A), PGC-1α(B), NRF-2 (C) were determined as described in Materials and Methods. Representative Western blots are depicted. Data represent the mean±S.E.M (n=6). *P<0.05, **P<0.01 vs Control, #P<0.05, ##P<0.01 vs HG.

Figure 7. Edaravone treatment reduces Bax, Caspase-3 and increases Bcl-2 expressions in high glucose-incubated H9c2 cardiomyoblasts.

H9c2 cells were incubated in the absence or presence of high glucose(HG) with or without edaravone and expression of Bax(A), Bcl-2(B), Caspase-3(C) were determined as described in Materials and Methods. Representative Western blots are
depicted. Data represent the mean±S.E.M ($n=6$). *$P<0.05$, **$P<0.01$ vs Control,
#$P<0.05$, ##$P<0.01$ vs HG.

Figure 8. Knockdown SIRT-1 diminished edaravone-regulated protein expression in high glucose-incubated H9c2 cardiomyoblasts.

Knockdown SIRT-1 siRNA were performed as described in Materials and Methods, after knockdown SIRT-1, the cells were incubated in the absence or presence of high glucose (HG) or high glucose with edaravone (HG+EDA) or siSIRT-1 with high glucose and edaravone (siSIRT-1+HG+EDA), then expression of SIRT-1 (A), NRF-2 (B), Bax (C), Bcl-2 (D) and Caspase-3 (E) determined as described in Materials and Methods. Data represent the mean±S.E.M of three separate experiments, *$P<0.05$ compared to control, #$P<0.05$ compared to HG, φ $P<0.05$ compared to HG+EDA.
Abbreviations: Bcl-2, B-cell lymphoma 2; BG, Blood glucose; EDA, edaravone; EF%, percent ejection fraction; INS, Insulin; IVS, interventricular septal thickness; LVDD, left ventricular end-diastolic diameter; MDA, Malondialdehyde; NRF-2, nuclear factor like-2; PGC-1α, peroxisome proliferator activated receptor γ coactivator α; ROS, reaction oxygen species; SIRT-1, sirtuin-1; STZ, streptozocin; SOD, superoxide dismutase; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling assay.
Figure 1. Echocardiographic analysis in diabetic rats.
262x258mm (300 x 300 DPI)
Figure 2. Edaravone reduces cardiomyocytes diameters and apoptosis.
186x346mm (300 x 300 DPI)
Figure 3. Edaravone treatment increases SIRT-1, PGC-1α and NRF-2 expression.
Figure 4. Edaravone treatment reduces Bax, Caspase-3 and increases Bcl-2 expression.
Figure 5. Edaravone treatment restores cell viability in high glucose-cultured H9c2 cardiomyoblasts.

341x237mm (300 x 300 DPI)
Figure 6. Edaravone treatment increases SIRT-1, PGC-1α and NRF-2 expressions in high glucose-incubated H9c2 cardiomyoblasts.

465x153mm (300 x 300 DPI)
Figure 7. Edaravone treatment reduces Bax, Caspase-3 and increases Bcl-2 expressions in high glucose-incubated H9c2 cardiomyoblasts.
417x146mm (300 x 300 DPI)
Figure 8. Knockdown SIRT-1 diminished edaravone-regulated protein expression in high glucose-incubated H9c2 cardiomyoblasts.

360x209mm (300 x 300 DPI)