Noether symmetry in Horndeski Lagrangian

D. Momeni,*† and R. Myrzakulov†
Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan
(Dated: May 19, 2016)

Abstract

The Noether symmetry issue for Horndeski Lagrangian has been studied. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Horndeski Lagrangian. We have been proven that for Horndeski Lagrangian always is possible to find a way to make symmetrization.

PACS numbers:
Keywords: Horndeski Lagrangian; Noether symmetry

1. INTRODUCTION

Canonical scalar fields are so popular in theoretical physics because of their simplicity and easy way to interpret. Naturally if we use the Kaluza-Klein reduction for Einstein-Hilbert action in higher dimensions, the reduced lower dimensional action is equal to a scalar theory which is coupled to an abelian gauge field. As an example, we can obtain Bergmann-Wagoner bi-scalar general action in scalar-tensor theory [5]. If we apply this reduction scheme on a more generalized model of gravity in the form of Lovelock gravity, we obtain more terms of scalar fields, which are now coupled to the gravity or to its second order invariants. Technically, as we know, when the fields, which are now coupled to the gravity or to its second order invariants. naturally if we use the Kaluza-Klein reduction for black hole physics to cosmology [14]–[43]. The models are made on Horndeski Lagrangian. We have been proven that for Horndeski Lagrangian always is possible to find a way to make symmetrization.

In particular, the first two terms of Horndeski Lagrangian are very important to study. These terms are constructed from the second order forms like $(\nabla_{\mu} \phi)^2$ and $(\nabla_{\mu} \phi)^2 \nabla_{\mu} \nabla_{\nu} \phi$. We would like to write these types of the Lagrangian densities in following forms [19, 38]:

$$\mathcal{L}_2 = k(\phi, X),$$
$$\mathcal{L}_3 = -G(\phi, X) \nabla_{\mu} \nabla_{\nu} \phi,$$

Here k and G are arbitrary functions of field ϕ and its kinetic part $X \equiv -\partial_{\mu} \phi \partial^{\mu} \phi / 2$. Other higher order terms can be constructed using different geometric quantities like R (the Ricci tensor), $G_{\mu\nu}$ (the Einstein tensor), and higher derivatives of field. Furthermore, we know that $G = X$, we obtain covariant Galileons [18]. In this paper, we consider a class of Horndeski Lagrangian, which is presented by the following action

$$S_{\text{tot}} = \int \frac{R}{2} \sqrt{-g} d^4 x + \sum_{i=2}^{5} \int d^4 x \sqrt{-g} \mathcal{L}_i,$$

Where different Lagrangian densities have been defined by the following:

$$\mathcal{L}_2 = G_2(\phi, X),$$
$$\mathcal{L}_3 = G_3(\phi, X) \nabla_{\mu} \nabla_{\nu} \phi$$
$$\mathcal{L}_4 = G_{4,\alpha}(\phi, X) \left[(\nabla_{\mu} \nabla_{\nu} \phi)^2 \right.$$
$$- \nabla_{\alpha} \nabla_{\beta} \phi \nabla_{\mu} \nabla_{\nu} \phi + R G_{4,\alpha}(\phi, X),$$
$$\mathcal{L}_5 = G_{5,\alpha}(\phi, X) \left[(\nabla_{\mu} \nabla_{\nu} \phi)^3 \right.$$
$$- 3 \nabla_{\mu} \nabla_{\nu} \phi \nabla_{\alpha} \nabla_{\beta} \phi$$
$$+ 2 \nabla_{\alpha} \nabla_{\beta} \phi \nabla_{\mu} \nabla_{\nu} \phi \nabla_{\rho} \nabla_{\delta} \phi$$
$$- 6 G_{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi G_{5}(\phi, X).$$

Here $G_{i,\alpha}(\phi, X) \equiv \frac{\partial G_{i}(\phi, X)}{\partial X}$, R is the Ricci tensor, $G_{\mu\nu}$ is the Einstein tensor, also we set $\kappa^2 = 8\pi G = 1, c = 1$.

*Corresponding author
†Electronic address: d.momeni@yahoo.com
‡Electronic address: rmyrzakulov@gmail.com
Our aim here is to address symmetry issue for Horndeski Lagrangian given in (3). In literature a paper [45] existed that specifically discusses constraints on a general scalar field if you enforce only the literal galilean symmetry. In our work we will consider Horndeski models and not Galileons. In particular, the model doesn’t respect Galileon symmetry. The functions \(G_i \) given in (3) are arbitrary functions of \(\phi, X \). Furthermore, because Horndeski Lagrangian is constructed in a covariant form, so it is manifestly Lorentz invariant.

We have been investigated all possible Noether symmetries of such models in the cosmological FLRW model. Our plan in this work is as the following:

In Sec. II we review the fundamental theory of Noether symmetry for regular dynamical systems. In Sec. III we are considering Horndeski Lagrangian with Noether symmetries. In Sec. IV we have been proven a sequence of theorems about Noether symmetries for higher order derivative models, including Horndeski Lagrangian. We conclude in Sec. V.

II. REVIEW OF NOETHER SYMMETRY

Let us consider a dynamical system with \(N \) configurational coordinates \(q_i \) is defined by the Lagrangian \(L \equiv L(q_i, \dot{q}_i; t) \), \(1 \leq i \leq N \). The set of EL equations for this dynamical system is written as \(p_i - \frac{\partial L}{\partial \dot{q}_i} = 0 \), \(p_i \equiv \frac{\partial L}{\partial \dot{q}_i} \). We mention here that up or down the index has the same meaning since we are working in the flat space. What we called it as Noether Symmetry Approach is the existence of a vector, Noether vector \(\vec{X} \) [12],[13],[10],[11],[9]:

\[
\vec{X} = \Sigma_{i=1}^{N} \alpha^i(q) \frac{\partial}{\partial q^i} + \dot{\alpha}^i(q) \frac{\partial}{\partial \dot{q}^i},
\]

and a set of non-singular functions \(\alpha_i(q_i) \), in such a way that the Lie derivative of Lagrangian vanishes on all points of the manifold (the tangent space of configurations \(TQ \equiv \{ q_i, \dot{q}_i \} \)):

\[
L_{\vec{X}} = 0
\]

The mentioned condition can be written in the following expanded form:

\[
L_{\vec{X}} = X L = \Sigma_{i=1}^{N} \alpha^i(q) \frac{\partial L}{\partial q^i} + \dot{\alpha}^i(q) \frac{\partial L}{\partial \dot{q}^i}.
\]

From the phase-space point of view, existence of \(\vec{X} \) implies that the total phase flux enclosed in a region of space, is conserved along \(X \). In fact, it is an easy task to show that (by taking into account the EL equations):

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0, \ 1 \leq i \leq N.
\]

Consequently, we have:

\[
\Sigma_{i=1}^{N} \frac{d}{dt} \left(\alpha^i \frac{\partial L}{\partial \dot{q}^i} \right) = L_{\vec{X}} L.
\]

If we can find \(\alpha_i \) by vanishing the coefficients of all powers of \(\dot{q}^i \), then we will show that there exist a global conserved charge as the following:

\[
\Sigma_0 = \Sigma_{i=1}^{N} \alpha^i p_i
\]

In other words, the existence of Noether symmetry implies that the Lie derivative of the Lagrangian on a given vector field \(\vec{X} \) vanishes, i.e.

\[
L_{\vec{X}} L = 0.
\]

It has been proven that Noether symmetry is a powerful tool to study cosmological models in different models [13]-[24]. In our article we explore Noether symmetries (14) for the Horndeski Lagrangian, given by (3).

III. NOETHER SYMMETRY FOR THIRD ORDER HORNDESKI LAGRANGIAN

To have a more comprehensive result, let us consider the following Lagrangian which was proposed as minimal G-inflation [41]:

\[
\mathcal{L}_3 = k(\phi, X) - G(\phi, X)Y.
\]

Where we denote by \(Y = \nabla_\mu \nabla^\mu \phi \). There is no simple way to reduce this Lagrangian to a simpler quadratic form, because of the appearance of the highly nonlinear term \(Y \). To resolve this problem, we propose a couple of Lagrange multipliers \(\{ \lambda, \mu \} \) in the following forms:

\[
L = 3a\dot{a}^2 + a^3 \left[k(\phi, X) - G(\phi, X)Y \right]
\]

\[
- a^3 \left(\lambda(X - \frac{1}{2} \dot{\phi}^2) + \mu(Y - \nabla_\mu \nabla^\mu \phi) \right).
\]

By varying the Lagrangian \(L \) w.r.t to the \(\{ X, Y \} \) we obtain \(\lambda = k_X - Y G_X, \mu = -G \), so the reduced Lagrangian is written as the following:

\[
L(a, \phi, X, Y; \dot{a}, \dot{\phi}) = 3a\dot{a}^2 + a^3 \left[k(\phi, X) \right]
\]

\[
- G(\phi, X)Y \right] - a^3(X - \frac{1}{2} \dot{\phi}^2)(k_X - Y G_X).
\]

The appropriate set of the coordinates for configuration space is \(q^i = \{ a, \phi, X, Y \} \). We define a vector field \(\vec{X} = \alpha \frac{\partial}{\partial a} + \beta \frac{\partial}{\partial \phi} + \gamma \frac{\partial}{\partial X} + \theta \frac{\partial}{\partial Y} + \dot{\alpha} \frac{\partial}{\partial \dot{a}} + \dot{\beta} \frac{\partial}{\partial \dot{\phi}} + \dot{\gamma} \frac{\partial}{\partial \dot{X}} + \dot{\theta} \frac{\partial}{\partial \dot{Y}} \). Here the functions \(\alpha^i = \{ \alpha, \beta, \gamma, \theta \} \) are defined on configuration space, so we have the following system of PDEs as a result of (14).
We know that

\[
\frac{\partial G}{\partial a} = \frac{\partial G}{\partial Y} = 0, \quad (18)
\]

\[
\frac{\partial k}{\partial a} = \frac{\partial k}{\partial Y} = 0, \quad (19)
\]

\[
3\alpha^{-1}(k - X(k, X - YG_{,X}) - YG_{,X}) + \beta(k_{,\phi} - X(k_{,\phi} - YG_{,\phi} - YG_{,\phi}) + \gamma(-k_{,XX} - YG_{,X}X) + YG_{,X}) - \theta(XG_{,X} + G) = 0
\]

\[
\alpha = 2aa_{,a} = 0 \quad (21)
\]

\[
3\alpha^{-1}(k_{,X} - YG_{,X}) + \beta(k_{,X} - YG_{,X}) + \gamma(k_{,XX} - YG_{,XX}) - \theta G_{,X} + 2\beta_{,\phi}(k_{,X} - YG_{,X}) = 0
\]

\[
6\alpha_{,\phi} + a^2\beta_{,\phi}(k_{,X} - YG_{,X}) = 0 \quad (23)
\]

\[
\alpha_{,X} = \alpha_{,Y} = 0 \quad (24)
\]

\[
\beta_{,X}(k_{,X} - YG_{,X}) = 0 \quad (25)
\]

\[
\beta_{,Y}(k_{,X} - YG_{,X}) = 0. \quad (26)
\]

We know that $p_a = 6a\dot{a}$, $p_\phi = a^3\dot{\phi}(k_{,X} - YG_{,X})$ and the corresponding Noether charge is written as the following:

\[
\Sigma = 6a\dot{a} + \beta a^3\dot{\phi}(k_{,X} - YG_{,X}) = \Sigma_0. \quad (27)
\]

The system of PDEs has three major class of exact solutions.

Class A: The system has the following exact solutions if we impose $k_{,X} = YG_{,X} = 0$. $G_{,X} \neq 0$:

\[
\alpha = \frac{\alpha_0}{\sqrt{a}}, \quad \beta = \frac{\alpha_0Y}{a\sqrt{a}} \frac{\beta_0(ch(\phi) - 3f(\phi))}{f'(\phi)}, \quad (28)
\]

\[
\gamma = -\frac{\alpha_0ch(\phi)}{a\sqrt{a}G_{,X}}, \quad (29)
\]

\[
\theta = 0. \quad (30)
\]

Where \{h(\phi), f(\phi)\} are arbitrary functions of ϕ. The associated conserved Noether charge is $\Sigma_A = 6a\dot{a}$ from here we find $a(t) = \left[\frac{3}{2} + \frac{\beta_0}{\alpha_0}(t - t_0)\right]^{2/3}$. So we conclude here that:

The third order action of G-inflation presented by (15) has Noether symmetry vector field:

\[
\dot{X} = \frac{\alpha_0}{\sqrt{a}} \frac{\partial}{\partial a} + \frac{\alpha_0}{a\sqrt{a}} \frac{\beta_0(ch(\phi) - 3f(\phi))}{f'(\phi)} \frac{\partial}{\partial \phi} \quad (31)
\]

\[
-\frac{\alpha_0ch(\phi)}{a\sqrt{a}G_{,X}} \frac{\partial}{\partial X} + \frac{d}{dt}\left[\frac{\alpha_0}{\sqrt{a}}\frac{\partial}{\partial a}\right]
\]

\[
\frac{d}{dt}\left[\frac{Y}{a\sqrt{a}} \frac{\beta_0(ch(\phi) - 3f(\phi))}{f'(\phi)} \frac{\partial}{\partial \phi}\right].
\]

So, the action is in the following form:

\[
S = \int \sqrt{-g}d^4x \left(\frac{R}{2} + f(\phi)\nabla_\mu\nabla^\mu\phi\right) \quad (32)
\]

\[
= \int \sqrt{-g}d^4x \left(\frac{R}{2} + 2Xf'(\phi)\right)
\]

It is important to mention here that the above Noether symmetrized model is written in the following equivalent form:

\[
S = \int \sqrt{-g}d^4x \left(\frac{R}{2} - \frac{1}{2} \nabla_\mu\psi\nabla^\mu\psi\right) \quad (33)
\]

Where $\psi = \pm \sqrt{f'(\phi)}d\phi$. Equation of motion of a scalar field is obtained:

\[
\dot{\Psi} + 3H\dot{\Psi} = 0 \quad (34)
\]

Which can be solved by $\psi = \frac{\psi}{\left[\frac{3}{2} + \frac{\beta_0}{\alpha_0}(t - t_0)\right]^{1/2}}$. So, if we apply Noether symmetry method to the L_3, the set of the EOMs is completely integrable.

Class B: We suppose that $k_{,X} = 0$, $G_{,X} = 0$. Consequently we have

\[
\alpha = \alpha(a, \phi), \quad \beta = \beta(a, \phi), G = G(\phi), k = k(\phi). \quad (35)
\]

Exact solution for PDEs are given by:

\[
\alpha = \alpha(a) = \frac{\alpha_0}{\sqrt{a}} \quad (36)
\]

\[
\beta = \beta(a) = \frac{\alpha_0\alpha(a)}{a} \quad (37)
\]

\[
\theta = \theta_0g(a)Y \frac{\alpha(a)}{a}. \quad (38)
\]

Where

\[
k(\phi) = k_0e^{-3\phi/\beta_0}, \quad (39)
\]

\[
G(\phi) = Ce^{-3\phi/\beta_0} + \frac{\theta_0}{\beta_0}e^{-3\phi/\beta_0} \int d\phi g(\phi)e^{3\phi/\beta_0} \quad (40)
\]

Noether vector is:

\[
\dot{X} = \frac{\alpha_0}{\sqrt{a}} \frac{\partial}{\partial a} + \frac{\alpha_0}{a\sqrt{a}} \frac{\partial}{\partial \phi} + \theta_0g(a)Y \frac{\alpha(a)}{a} \frac{\partial}{\partial Y} \quad (41)
\]

or equivalently:

\[
S = -\frac{1}{2} \int d^4x \sqrt{-g} \left(XG_{,\phi} - \frac{1}{2}k(\phi)\right) \quad (33)
\]

This form is the k-inflation model in the standard canonical form. \cite{1}

Case C: There is another interesting analytic class of solutions when we put $\gamma = \theta = 0, k_{,X} - YG_{,X} = \Psi_{,X}$. In this case, we have the following solutions:

\[
\dot{X} = \frac{\alpha_0}{\sqrt{a}} \frac{\partial}{\partial a} + \frac{\alpha_0}{a\sqrt{a}} \frac{\partial}{\partial \phi} + \theta_0g(a)Y \frac{\alpha(a)}{a} \frac{\partial}{\partial Y} \quad (41)
\]
* \(a = \beta = 0, \Psi = F_1(a, \phi) \) In this family, the scalar field has no dynamics, because the kinetic term is absent. Consequently the solutions have no physical application as cosmological models and we can ignore them.

* \(a = 0, \beta = F_2(a, \phi), \Psi = F_3(a) \) This class is potentially very interesting case, because the physical action is reduced to the Einstein-Hilbert action in the presence of a type of fluid in which the pressure is given by \(p = \Psi \). It is easy to show that all the EOMs are integrable with this type of Noether symmetry.

* \(a = 0, \beta = c_1, \Psi = F_4(a, X) \) The model is a purely kinetic k-inflation which is non-minimally coupled to the cosmological background via the arbitrary function \(\Psi(a, \phi, X) \).

* \(a = 0, \beta = F_5(\phi), \Psi = X \frac{F_6(a)}{F_5(a)} + F_8(a) \) We have a type of fluid in the cosmological background. It has been shown that the model is completely integrable for a set of the EOMs. It has been shown that \(\Phi \) the model has scaling solutions when Horndeski's field is coupled to the background. Scaling solutions are those that \(c^\alpha_m \) is constant. So, we can find a solution of the following equivalent equation \(\frac{d\rho_0}{d\ln a} = \frac{d\rho_m}{d\ln a} \).

IV. NOETHER SYMMETRY FOR HIGHER DERIVATIVE HORNDESKI LAGRANGIAN

We saw in the previous section that all types of the modified gravity theories always have nonlinearity, due to the higher order derivatives of the fields. Historically Ostrogradski [46] was the first who studied canonical formalism (Hamiltonian formalism) for a class of models with higher order derivatives (see [51] for a comprehensive review). In the case of Galileon, even if we work at the level of minimal models, with \(L_3 \), there is no simple way to reduce point-like Lagrangian to the standard quadratic form \(L = L(\phi, X^m) \). A way to introduce a set of appropriate Lagrange multipliers. But in this section we introduce an alternative to work with higher derivative Lagrangians. The simplest case which we are particularly interesting, is the class of Lagrangian functions \(L(q_i, \dot{q}_i, (\ddot{q}_i)^n(q_i)), n \leq 2 \). It is possible to extend it to \(n \leq 3 \), but such cases doesn’t have simple physical interpretations. We would like to see how we can find generalized Noether symmetry for a Lagrangian with second order time derivatives, namely \(L = L(q_i, \dot{q}_i, \ddot{q}_i) \). The first simple example is point-like Lagrangian of standard GR, that it contains \(\alpha \) due to the curvature term \(R = \pm 6(\frac{\dot{a}}{a} + \frac{\dot{a}^2}{a^2}) \) but we can omit second order derivative term \(\ddot{a} \) using an integration part-by-part. For G-inflation models if we pass to the higher terms, we need a generalized Noether symmetry. This is one of the most important motivation for us in this work.

Let us start to define a set of appropriate conjugate momenta:

\[p_i = \frac{\partial L}{\partial \dot{q}_i}, \quad \tilde{r}_i = \frac{\partial L}{\partial q_i} \tag{44} \]

The generalized EL equation is given by:

\[\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0. \tag{45} \]

Or equivalently we write down it in the following form:

\[\frac{\partial L}{\partial q_i} - \tilde{p}_i + \tilde{r}_i = 0. \tag{46} \]

We define a vector field:

\[\vec{X} = \sum_{i=1}^{N} \alpha_i \frac{\partial}{\partial q_i} + \dot{\alpha}_i \left[\frac{\partial}{\partial \dot{q}_i} - \frac{2}{\dot{a}} \left(\frac{\partial}{\partial \dot{q}_i} \right) \right] \tag{47} \]

\[-\dot{\alpha}_i \frac{\partial L}{\partial \dot{q}_i} \].

We call it as generalized Noether symmetry if and only if it satisfies the following algebraically vector equation:

\[\mathcal{L}_X \mathcal{L} = 0, \tag{48} \]

In this case we find that the following polynomial should be vanish:

\[\sum_{i=1}^{N} \alpha_i \frac{\partial L}{\partial q_i} + \dot{\sum}_{j=1}^{N} \dot{\alpha}_j \frac{\partial L}{\partial \dot{q}_j} - \frac{2}{\dot{a}} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \dot{\sum}_{j=1}^{N} \dot{\alpha}_j \frac{\partial L}{\partial \dot{q}_j} = 0. \tag{49} \]

If we collect all terms of different powers of \(\{ \dot{q}_i, \ddot{q}_j \} \) we obtain a system of second order PDEs (not first order like the standard Lagrangians) for \(\{ a_i(q^m) \} \). Consequently, the associated Noether charge is obtained by the following theorem:
Theorem: For Lagrangian \(L = L(q_i, \dot{q}_i, \ddot{q}_i) \), there exists a Noether vector symmetry given by (48) and a Noether conserved charge:

\[K = \Sigma_{i=1}^{s} (\alpha_i \dot{p}_i - \partial_t (\alpha_i r_i)). \] (50)

Proof: Using (46) it is easy to show that \(\dot{K} = 0 \), because we've:

\[\begin{align*}
\dot{K} &= \Sigma_{i=1}^{s} (\partial_t (\alpha_i p_i) - \partial_t (\alpha_i r_i)) \\
&= \Sigma_{i=1}^{s} (\alpha_i \dot{p}_i + \dot{\alpha}_i p_i + 2\alpha_i \dot{r}_i + \ddot{\alpha}_i r_i) \\
&\implies \Sigma_{i=1}^{s} (\alpha_i \partial L/\partial q_i + \dot{\alpha}_i (\partial L/\partial \dot{q}_i) - 2\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i}) \\
&\implies LX = 0.
\end{align*} \]

This is our Q.E.D.

It is adequate to present the following generalized theorem for the dynamical system in the form \(L = L(q_i, q_i^{(a)}; t) \), \(q_i^{(a)} = (\partial t)^a q_i \), \(1 \leq i \leq N \), \(1 \leq a \leq s \), \(s \leq N \). We are remembering to the mind that in this class of models, the generalized EL equation is written as the following:

\[\frac{\partial L}{\partial \dot{q}_i} + \Sigma_{a=1}^{s} (-1)^a (\partial t)^a \left(\alpha_i q_i^a \right) = 0, \] (52)

Here \(p_i^a = \frac{\partial L}{\partial \dot{q}_i^a} \) is the new set of conjugate momenta.

Theorem: For Lagrangian \(L = L(q_i, q_i^{(a)}; t) \), there exists a generalized conserved Noether current given by:

\[K = \Sigma_{i=1}^{s} (\partial t)^a \left(\alpha_i \dot{p}_i^a \right). \] (53)

Proof: Using the Leibniz rule for derivatives we obtain:

\[\begin{align*}
\partial_t (K) &= \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} (-1)^{a+k} (\partial t)^a \left(\alpha_i \dot{p}_i^k \right) \\
&= \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} \left(\partial t \right)^a \frac{a!}{k!(a-k)!} [\alpha_i \dot{p}_i^a] \\
&= \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} \left(\partial t \right)^a \frac{a!}{k!(a-k)!} [\partial q_i^{(a)}] \\
&= \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} \left(\partial t \right)^a \frac{a!}{k!(a-k)!} \left[\frac{\partial}{\partial q_i^{(a)}} \right] L \implies LX = 0
\end{align*} \]

Where the following vector field,

\[\dot{X} = \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} \left[(-1)^{a+k} \frac{a!}{k!(a-k)!} (\partial t)^k \right] \]

is the Noether vector symmetry.

\[[\alpha_i] (\partial t)^a \times \left[\frac{\partial}{\partial q_i^{(a)}} \right] \]

Corollary: For a general Horndeski model with the following Lagrangian

\[L = L(\phi, (\nabla)^a \phi), 1 \leq a < s. \] (56)

The following vector is conserved:

\[K^\mu = \Sigma_{a=1}^{s} (-1)^{a+1} (\nabla)^a \left[\alpha(\phi) \frac{\partial L}{\partial (\nabla)^a \phi} \right]. \] (57)

i.e. \(\nabla \mu K^\mu = 0 \). In the above theorem if we use the conventional Horndeski's notations we should identify, \(\nabla \equiv \nabla_\mu \), \(X \sim (\nabla_\mu \phi)^2 \), \(Y \sim (\nabla_\mu)^2 \phi = \nabla_\mu \nabla^\mu \phi \) and etc.

Illustrative example: If we consider the minimal model of Horndeski theory, \(L_2 + L_3 = k(\phi, X) - G(\phi, X) \nabla_\mu \nabla^\mu \phi \), we obtain:

\[K^\mu = \nabla_\mu \left[\alpha(\phi) G(\phi, X) \right] - \alpha(\phi)(k, X)
\]

\[-G, X \nabla_\mu \nabla^\mu \phi \nabla^\mu \phi. \]

Which is trivially conserved if we fix \(\alpha \) by Noether conservation vector condition (14).

V. CONCLUSIONS

The most general form of scalar-tensor theory for gravity in the covariant form was proposed by Horndeski. The significant feature is that the set of equations of motion remains second order. Because Horndeski Lagrangian was constructed in a covariant form, consequently it is manifestly Lorentz invariant. In this work we addressed Noether symmetry of point like Lagrangian in the framework of Horndeski theory. We proposed a theorem about the Noether symmetry for a general higher order Lagrangian, specially in the form of Horndeski models. We extended the idea of the Lie generator of the normal tangent space. We have been proven that a vector field:

\[\dot{X} = \Sigma_{i=1}^{s} \Sigma_{k=1}^{s} \left[(-1)^{a+k} \frac{a!}{k!(a-k)!} (\partial t)^k \right] \]

is the Noether vector symmetry for \(L = L(q_i, q_i^{(a)}; t) \). For a general Galileon model \(L_2 + L_3 \), we have been proven that there exists conserved current. Our work explore more features of such extended models.

VI. ACKNOWLEDGMENT

Thanks to Gregory Horndeski for his great inspirations.