Trophic biology and migratory patterns of sympatric Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*)
Trophic biology and migratory patterns of sympatric Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*)

A.M. Dennert¹, S.L. May-McNally¹, M.H. Bond²,³, T.P. Quinn², and E.B. Taylor¹,⁴

¹Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British Columbia, 6270 University Ave., Vancouver, BC, CANADA V6T 1Z4
604-822-9152

allison.dennert@gmail.com
smcnally@zoology.ubc.ca
mobond@u.washington.edu
tquinn@u.washington.edu
etaylor@zoology.ubc.ca

²School of Aquatic and Fishery Sciences
University of Washington, Seattle, WA, USA, 98195
tquinn@u.washington.edu

³Fish Ecology Division, Northwest Fisheries Science Center, NOAA, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA

⁴Corresponding author
Trophic biology and migratory patterns of sympatric Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*)

A.M. Dennert, S.L. May-McNally, M.H. Bond, T.P. Quinn, and E.B. Taylor

Abstract: The trophic ecology (diet and head morphology) and migration patterns of two closely related salmonid fishes, Arctic char (*Salvelinus alpinus* (Linneaus, 1758)) and Dolly Varden (*Salvelinus malma* (Walbaum, 1792)), were examined in tributaries of Lake Aleknagik, southwestern Alaska, to test for differentiation between species. Schoener’s Index of Proportional Overlap and multivariate analyses of diets suggested that these species had significantly different trophic niches. Arctic char and the largest individuals of both species had the most diverse diets, and sockeye salmon (*Oncorhynchus nerka* (Walbaum, 1792)) eggs dominated the diet of both species, especially Arctic char. Arctic char had larger jaws and wider heads than Dolly Varden of similar body length, which may contribute to interspecific diet difference. The species also differed in migration patterns; otolith microchemistry indicated that juvenile Arctic char were produced by non-anadromous mothers whereas the mothers of the Dolly Varden had been to sea in the season prior to spawning. The species also segregate in spawning habitat (Arctic char in the lakes and Dolly Varden in streams), and in juvenile rearing habitat. Our study provides the first evidence of divergent feeding and migratory ecology between sympatric juvenile Arctic char and Dolly Varden, differences that may constrain hybridization and introgression between them.

Keywords: competition, life-history, diet analysis, sympatry, char, Dolly Varden, *Salvelinus alpinus*, *Salvelinus malma*
Introduction

Ecological segregation between co-existing species in diet, habitat use, diel activity, or life-history (e.g., extent or timing of migrations) is one of the fundamental characteristics of communities. For instance, there is a long history of research on the comparative ecology of stream fishes, including the extent and patterns of differential resource use during co-existence (Shelford 1911; Hartman 1965; Ross 1986; Mookerji et al. 2004; Herder and Freyhof 2006). Further, and more recently, comparative ecological studies of fishes have explored the role of specialization to alternative ecological niches as a form of adaptation, and its role in constraining gene flow between hybridizing species (Schluter 2000, 2001; Nosil et al. 2005; Taylor et al. 2012).

Dolly Varden (Salvelinus malma (Walbaum, 1792)) and Arctic char (S. alpinus (Linnaeus, 1758)) are two species of salmonid fishes native to the Northern Hemisphere that are estimated to have diverged from a common ancestor between 215,000 and 458,000 years ago (Taylor et al. 2008). Arctic char occur in sympatry with Dolly Varden in many freshwater habitats of western Alaska (DeLacy and Morton 1943; Mecklenburg et al. 2002). These fishes were both previously considered to constitute part of the S. alpinus “complex” and are often taxonomically and morphologically confused with one another (McPhail 1961; Taylor 2016). Historical and current hybridization occurs between the species, yet they maintain clear distinctions in sympatry (Gharrett et al. 1991; Taylor et al. 2008; May-McNally et al. 2015a). Despite their broadly sympatric distributions in western Alaska, their occasional co-occurrence in streams as juveniles (May-McNally et al. 2015a), and their ability to hybridize with one another, very little is known of their comparative ecology in sympatry. DeLacy and Morton (1943) studied the two species in Karluk Lake, on Kodiak Island in the Gulf of Alaska, and
noted that they had broad ecological differences at least as sub-adults and adults. Arctic char were permanent residents of the lake where they spawned on submerged beaches whereas Dolly Varden were anadromous, and spawning and early growth of juveniles took place in streams (DeLacy and Morton 1943). The difference in spawning habitats suggests that there is strong pre-mating isolation between the species. The broad differences in habitat used (streams versus lakes), life history (freshwater resident versus anadromous), feeding ecology, and migratory behaviour, also suggest that Dolly Varden and Arctic char may differ in physiological traits that may represent adaptations to alternative niches.

To test for specialization to alternative food resources, we compared the trophic ecology of juvenile Dolly Varden and Arctic char sampled together in streams. We also compared their trophic morphology to see if any diet differences between species were associated with traits related to feeding capacity, especially gape size, that may influence the size of food that can be ingested and thus dietary habits (e.g., Bozek et al. 1994; Krebs and Turingan 2003; Carroll et al. 2004). Finally, we used otolith microchemistry analysis to test the hypothesis that the two species exhibit different migratory life histories.

Materials and methods

Study area

The study area, Lake Aleknagik (area = 83 km², maximum depth = 110 m, mean depth = 43 m, 59°16’03”N; 158°49’51”W, Burgner 1991), is located near Dillingham, Alaska, in the Wood River Lakes system that drains into Bristol Bay (Fig. 1). This lake presents a diversity of stream habitats, ranging in gradient, size, temperature, and other physical features, and many are used for spawning by sockeye salmon, *Oncorhynchus nerka* (Walbaum, 1972)(Pess et al. 2014). Other
than adult sockeye salmon, which are present at high densities in the July – August spawning period, the stream communities primarily consist of Dolly Varden and juvenile Arctic char, juvenile coho salmon (*O. kisutch* Walbaum, 1972)), rainbow trout (*O. mykiss* Walbaum, 1972)), coastrange sculpin (*Cottus aleuticus* Gilbert 1896), and slimy sculpin (*C. cognatus* Richardson 1836), and smaller numbers of other species, depending on the habitat features. Juvenile sockeye salmon migrate to the lake from the spawning streams upon emergence from their gravel nests. The diets of these fishes are typically comprised of freshwater insects and other invertebrates. Salmonids, however, are largely opportunistic feeders (e.g., Dill and Fraser 1984; Cada et al. 1987; Keeley and Grant 1997; Hagen and Taylor 2001; Gallagher and Dick 2010), and Dolly Varden and Arctic char feed seasonally on the flesh and eggs of salmon and other fishes during and after the spawning period (Denton et al. 2009; Armstrong et al. 2010).

Four permanent streams were selected for study (Fig. 1). Happy Creek contained both species in the same areas of the stream near the mouth, Yako Creek contained both species in a gradient from the mouth to mid-way up the stream; only Arctic char were found at the mouth, and the creek gradually transitioned to exclusively Dolly Varden several km upstream (May-McNally et al 2015a). Whitefish Creek contained almost exclusively Arctic char, but a few Dolly Varden were found at the mouth. Sampling in Silver Salmon Creek revealed only Dolly Varden. This stream also differs from the other three as it drains directly into the Wood River rather than into Lake Aleknagik (May-McNally et al 2015a). Consequently, Silver Salmon Creek lacks an annual sockeye salmon run and the opportunity to feed on eggs that they provide.
Fish sampling

Juvenile fishes were sampled in Happy, Yako, Silver Salmon, and Whitefish creeks in July 2014 ($n = 145$, Table 1). A short reach (~100-150 m) of each stream was sampled using a 2.5 m long x 1.5 m deep pole seine. The reaches sampled were those where preliminary sampling had indicated that the likelihood of sampling both species within similar habitats was high. After each reach was sampled, fish were sedated with MS-222 in fresh water before processing. We recorded Global Positioning System (GPS) data at the upstream end of each sample reach, and fork length, an adipose fin-clip sample (for DNA verification of species identity), and stomach contents by gastric lavage (Gallagher and Dick 2010) from each individual.

A subset ($n = 104, 72\%$) of the total number of fishes sampled had their field identification confirmed by DNA analysis. Genomic DNA of each individual was extracted from the adipose fin clips and polymerase chain reaction (PCR) assays of three microsatellite DNA loci with fixed or nearly-fixed differences between Dolly Varden and Arctic char (Smm-21, Sfo-18, and Sco-202) were conducted following methods outlined by (May-McNally et al. 2015a). Ninety-nine percent (103 of 104 fish) of the samples tested had DNA-based and field-based species identifications that matched each other. Further, a subset of 11 small Dolly Varden and 15 small Arctic char were collected and used in otolith microchemistry analyses (see below). The Arctic char used for otolith analysis were sampled opportunistically from three different sites around Lake Aleknagik using a 32 m long x 5 m deep beach seine and from a pool in the lower portion of Bear Creek using the pole seine. The Dolly Varden used for otolith analysis were collected from two sites in Yako Creek (upper and mid-Yako Creek) and Happy Creek. The fork lengths of all fish used in the analysis of otoliths were very similar and they were considered to be young-of-the year given their mean (SD) fork length of 38.6 (3.63) mm.
Diet analyses

Stomach contents were preserved in 95% ethanol at room temperature and subsequently identified to the lowest possible taxonomic level using dichotomous keys found in Merritt and Cummins (2008) and IOWATER (2005). In addition, data from the University of Washington’s Fisheries Research Institute on the common benthic stream invertebrates in the region were used (J. Carter, University of Washington, pers. comm.). The number of sockeye salmon eggs in the diets was determined by counting the number of whole eggs or egg fragments that constituted more than 50% of the egg sphere.

Statistical analyses of diet data

We estimated the extent of trophic niche segregation between Dolly Varden and Arctic char by calculating diet overlap using two approaches. First, the Schoener Index of Proportional Overlap (SI) provided the basis for tests for significance of diet differences (Bozek et al. 1994; Hagen and Taylor 2001; Gallagher and Dick 2010):

\[SI_{xy} = 100 \left(1 - \frac{1}{2} \sum_{i} \left| p_{xi} - p_{yi} \right| \right), \]

where \(n \) is the number of prey categories, and \(p_{xi} \) and \(p_{yi} \) represent the proportional contribution of the \(i^{th} \) prey item in species \(x \) and \(y \), respectively (Schoener 1970).

We tested the null hypothesis of no differences between intraspecific and interspecific SI values in the following manner. We made independent pairwise comparisons of the mean interspecific SI (i.e., between Dolly Varden and Arctic char) and the mean intraspecific SI (i.e., within Dolly Varden and Arctic char) which represents a comparison of the relative strengths of intra- and interspecific diet overlap (cf. Abrams 1980) using Wilcoxon signed-rank tests. We sampled subsets of individuals such that no individual fish was used in more than one test of
pairwise comparison of interspecific versus intraspecific SI and repeated this analysis using
different subsets 10 times. The α value that determined the threshold significance of each test
was adjusted using a sequential Bonferroni correction (Rice 1989) and was carried out in the
program PAST (ver. 3.04, Hammer et al. 2001).

We next used multivariate analyses to evaluate trophic niche overlap. Data on the
proportional representation of each prey item were transformed using a square-root +1
transformation, and the fork length of each fish was placed into a size class based on length-
frequency distributions (May-McNally et al. 2015a). We included size class comparisons to
examine diet variation with size. Size class 1 contained individuals with a fork length of $<$ 100
mm, class 2 contained 100-149 mm, class 3 contained 150-199 mm, and class 4 contained $>$
200 mm. Then, a set of nonmetric multidimensional scaling (NMDS) analyses using the
Euclidean distance measure were plotted in order to demonstrate the ranked dissimilarity
between individuals. The stress value of the NMDS plots was assessed to ensure that the two-
dimensional plot was an accurate representation of the multivariate data. Stress is calculated by
assessing the amount of scatter the data set creates around a 1:1 line on a Shepard diagram,
which is a diagram that plots the true distance among data points against its distance in two-
dimensional space (Clarke 1993; Greenacre and Primicerio 2013). The stress value indicates
how well the data are represented in two dimensions. When the stress value is lower, the two-
dimensional representation of the true relationships between data points is greater (Greenacre
and Primicerio 2013).

Next, two-way analysis of similarity (ANOSIM) tests were carried out to account for
the influence of species, and the coincident influence of sampling site and size on each
individual’s diet. The ANOSIM analyses used the Euclidean distance as a measure of diet
difference. The ANOSIM tests the null hypothesis that any treatment groups are the same based on multivariate diet data (Clarke 1993; Anderson 2001; Anderson and Walsh 2013). An interaction between treatment groups (i.e., species, size class, stream of origin) is inherent in a crossed two-way ANOSIM design, so an interaction term cannot be partitioned out statistically as in multifactor ANOVA (Clarke 1993). Consequently, three separate ANOSIM tests were performed across the three treatments. We did not use multifactor ANOVA owing to the highly non-normal distributions of the proportional diet composition data, either as single variables or when summarised by ordination using principal components analysis. By contrast, ANOSIM is a distribution free multivariate procedure.

In ANOSIM, the null hypothesis of no difference between treatment groups can be rejected both by a consistent difference in response variables across group levels and by differential effect sizes of response variables across group levels (Clarke 1993). As such, multiple tests of treatment groups may be beneficial to discern which are significant across all levels or just across some (i.e., if a significant interactions between treatment groups might be occurring). Here, a measure of the degree of influence of both treatment groups (i.e., species and size class) is represented by the relative R values associated with each.

A similarity percentage (SIMPER) analysis was carried out using the Euclidean distance measure in order to account for each prey item’s influence on the dissimilarity between individuals. The SIMPER analysis examines which response variables are responsible for any dissimilarities found in a multivariate data set (Greenacre and Primicerio 2013). We used logistic regression to examine the relationship between fish length and the probability of consuming salmon eggs for each species. We did not use the five Dolly Varden sampled from Silver Salmon Creek in the ANOSIM, SIMPER or logistic regression analyses because there were no sockeye
salmon spawning in that stream and hence no salmon eggs on which to feed. All diet-related statistical analyses were carried out in the program PAST (ver. 3.04, Hammer et al. 2001).

Morphological analyses

To see if Dolly Varden and Arctic char differed in trophic characters that might influence diet, a morphological analysis was carried out upon samples of both species collected from Yako Creek, Happy Creek, and Whitefish Creek and contained in the fish collection at the University of British Columbia’s Beaty Biodiversity Museum ($n = 38$, Table S1). These samples represented a range of collections from July 2013 and 2014, from all four of the streams (Table S1). Dial calipers were used to measure the fork length, upper jaw length, the distance from the tip of the snout to the anterior portion of the eye, and the distance between the centers of each eye when measured dorsally. All distances were measured in millimeters (mm) on the left side of each individual, with the exception of the distance between the eyes (measured on the dorsal surface of each fish). Measuring fork length allowed for standardizing measurements to a common body size, upper jaw length was a proxy for gape size, and the eye measurements were proxies for reaction distance (Dunbrack and Dill 1984; Mazur and Beauchamp 2003).

Statistical analyses of morphological data

Fork length was positively correlated with the size of individual body parts or dimensions (i.e., $r^2 > 0.94$ in all cases). Consequently, all distances were scaled to the overall mean fork length by transforming the data using the allometric size removal function in PAST (Hammer et al. 2001). Three two-sample t-tests were carried out on size-standardized body part measurements to test for differences in trophic morphology. The α value that determined the
threshold significance of each test was adjusted using a sequential Bonferroni correction (Rice

Otolith microchemistry analyses

Otolith chemistry of juveniles may be used to determine maternal anadromy in species where resident and migratory fish are sympatric (Kalish 1990). Commonly, the ratio of strontium (Sr) to calcium (Ca) in the otolith core, that region formed very early in larval development, is used to determine whether the natal portion of the otolith originates from fresh or marine water because Sr:Ca varies substantially between the two environments (Zimmerman and Reeves 2002; Donohoe et al. 2008; Zimmerman et al. 2009; Mills et al. 2012). Hi Sr:Ca ratios indicates residence in marine waters (Gillanders 2005; Elsdon et al. 2008), and this is transferred maternally to the core of the otoliths of offspring being nourished by yolk (Kalish 1990). Therefore, in fresh waters with low freshwater Sr concentrations (≤ 5 mmol·mol⁻¹, Kraus and Secor, 2004), maternal anadromy in the season preceding spawning can be assessed because the composition of the otolith core is derived from the maternal environment experienced during vitellogenesis or egg yolk formation (Riva-Rossi et al. 2007; Donohoe et al. 2008). Consequently, if the anadromous (Dolly Varden) *versus* lake resident (Arctic char) difference reported elsewhere (DeLacy and Morton 1943; McPhail 1961) is a general phenomenon, then the core of the otoliths of Dolly Varden would have levels of Sr:Ca indicative of some period of marine residence by their mothers, but this would not be the case for Arctic char.

In the laboratory, one otolith from each of 11 Dolly Varden and 15 Arctic char was rinsed in de-ionized water, dried, and then mounted in thermoplastic resin in the sagittal plane on a
glass slide. Chemical data for each otolith were collected with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Keck Collaboratory, Oregon State University. A Thermo X-Series II ICPMS (Thermo Fisher Scientific, Waltham, MA) with a Photon Machines Analyte G2 (Photon Machines, Bozeman, MT) 193 nm laser set at a pulse rate of 10 Hz with a 85-µm ablation spot was used to ablate a hole from the surface through the core of the otolith for 1,000 pulses. We continuously measured Sr, Mn, and Ca and used NIST-612 glass to transform ion ratios to elemental ratios and measure the mean percent relative standard deviations for each element (all less than 6%). Elemental ratios were converted to molar ratios using the molar mass of each element. Final analyses were computed on the element:Ca in mmol · mol$^{-1}$. A calcium carbonate standard with known concentration (USGS MACS-1) was used to determine the accuracy of the element:Ca ratio (> 95% for all element:Ca). During ablation, we monitored the data for a rapid increase in the concentration of Mn, which indicates the core region had been reached (Ruttenberg et al. 2005; Miller and Kent 2009). The Sr:Ca data collected during the increase in Mn provided the maternally derived core signal, while the data collected during the initial ablation formed the freshwater edge value. We used a t-test to compare the edge and core Sr:Ca data for each fish. Those with significantly higher Sr:Ca in the core were considered to be offspring of anadromous mothers, whereas those with cores that were lower or not different were considered to have had resident mothers (Zimmerman and Reeves 2000).

Results

Diet analysis

We obtained stomach contents from 62 Dolly Varden and 83 Arctic char (Table 1) which were very similar in mean size (mean ± SD fork length = 156.5 ± 50.5 versus 150.0 ± 51.1 mm, for Arctic char and Dolly Varden, respectively, t-test, $p = 0.37$). The 10 independent pairwise
comparisons of stomach contents between species yielded mean Schoener’s Index (SI) values of between 26.8 and 34.5% (Table 2). By contrast, the pairwise comparisons within species yielded means of 48.2% similarity between individual Arctic char, and 51.3% similarity between individual Dolly Varden. There was significantly more diet similarity within species than between species; the interspecific SI values were significantly lower than the intraspecific value for both species in 9 out of 10 comparisons (Wilcoxon signed-rank tests, Table 2).

Multivariate analyses

A non-metric multidimensional scaling (NMDS) analysis using the Euclidean distance measure represented the dissimilarity between the species’ diets with a modest stress value (Stress = 0.1765, Fig. 2A), i.e., the NMDS was a good representation of the dissimilarities in two dimensions. Arctic char consumed a wider variety of prey items than did Dolly Varden as reflected in a higher intraspecific dissimilarity between points within Arctic char (Fig. 2B). When individuals were grouped by size class, the smallest individuals (fork length < 100 mm) consumed the narrowest range of prey (Fig. 2). Larger individuals consumed an increasingly wider variety of prey, and were the most dissimilar from the smallest size classes (Table 3).

A two-way analysis of similarity (ANOSIM) on transformed absolute value data indicated both that species and size class significantly contributed to the variation in diets (Species: $R = 0.093$, $p = 0.0117$; Size: $R = 0.302$, $p = 0.0001$). Similarity between species was lower than the similarity within species, but the species factor accounted for a lower degree of the variation in diets relative to size class as indicated by the smaller R value attributed to the species factor. A second two-way ANOSIM indicated no significant effect of sampling site (i.e., stream) or size class when these two factors were examined together across species (Stream: $R =$...
A third two-way ANOSIM resulted in significant effects of both stream and species with the latter effect being slightly greater (Stream: \(R = 0.146, \ p = 0.0006 \); Species: \(R = 0.175, \ p = 0.0097 \)).

The similarity percentage (SIMPER) analyses revealed differences in diets both among size classes and between species (Table 3). The most dissimilar comparisons occurred between fish from the smallest and largest size classes (89.6%, Table 3). The SIMPER analysis between species indicated an overall average dissimilarity of 43.3% between Dolly Varden and Arctic char (Table 3), and four prey items accounted for 90.4% of the dissimilarity between the stomach contents of Dolly Varden and Arctic char (Table 4). These prey items were: sockeye salmon eggs, which contributed to 71.7% of the dissimilarity; Chironomidae (midges), 9.8% of the dissimilarity; Baetidae (mayflies), 5.5% of the dissimilarity; and Trichoptera (caddisflies), 3.3% of the dissimilarity (Table 4). Arctic char consumed more sockeye salmon eggs on average than did Dolly Varden, whereas Dolly Varden consumed more Chironomidae, Baetidae, and Trichoptera (Table 4). There was a significant relationship between fork length and probability of consuming sockeye salmon eggs in Arctic char (\(\beta = 0.017, \ p = 0.0017 \)), but not in Dolly Varden (\(\beta = -0.0001, \ p = 0.924 \)).

Morphological analysis

Arctic char had larger mouths and heads than Dolly Varden when measurements were standardized by fork length (Table 5). Upper left jaw length, the distance from the anterior portion of the left eye to the tip of the snout, and the distance between the centre of each eye when measured dorsally were all significantly larger in Arctic char when adjusted for multiple comparisons (\(p = 0.0009, 0.0026, \) and 0.0368, respectively; Table 5).
Otolith microchemistry

Analysis of otolith microchemistry indicated maternal anadromy in Dolly Varden, but not in Arctic char. Of the 15 Arctic char otoliths we examined, all had cores that were not significantly different ($P \geq 0.05$) or were significantly lower ($P < 0.05$) in Sr:Ca than the freshwater edge region, indicating that the mothers had not been to sea in the season prior to spawning. In contrast, all 11 of the Dolly Varden examined had core Sr:Ca values that were significantly higher than the freshwater edge region (all $p < 0.00001$), indicating that their mothers had been to sea. Moreover, differences in Sr:Ca ratios between species were limited to the core region of the otoliths (the region whose composition results from the maternal environment experienced during vitellogenesis). Average core Sr:Ca of Dolly Varden (mean $= 1.17$ mmol · mol$^{-1}$) was significantly higher than that of Arctic char (mean $= 0.63$ mmol · mol$^{-1}$, $t = -16.68$, $p < 0.00001$). By contrast, when we compared the averaged Sr:Ca values for each growth region (core versus edge) between Dolly Varden and Arctic char, we found no difference in edge chemistry between Dolly Varden (mean $= 0.84$ mmol · mol$^{-1}$) and Arctic char (mean $= 0.92$ mmol · mol$^{-1}$, $t(22.6) = 1.67$, $p = 0.11$).

Discussion

If, when, and how sympatric species partition available resources has been a central area of investigation in ecology (Schoener 1974; Nakano et al. 1992; Hagen and Taylor 2001) and is increasingly viewed as important in understanding the role of ecology in speciation and the maintenance of genetic distinction in the face of gene flow (Schluter 2000; Nosil et al. 2005; Svanbäck and Bolnick 2007). Here, we demonstrated that juveniles of two species of sympatric char differed in: (i) trophic ecology during a critical period of summer growth; (ii) aspects of
head morphology that are plausibly linked to the observed diet differences; and, (iii) whether or not their mothers were anadromous. Combined with other information on the spatial distributions of the species in this system (May-McNally et al. 2015a), our results suggest that Dolly Varden and Arctic char, although they may co-exist as juveniles, are characterized by alternative trophic niches and migratory behaviour.

Differences in diet and morphology

Colwell and Futuyma (1971) cautioned against sampling bias when calculating Schoener’s Index (SI), noting that closely spaced sampling sites could overestimate niche overlap due to the potential for spatial similarity in certain resource environments and habitats. We were unable to balance sampling among streams and stream reaches evenly. As such, it is plausible that our estimates of niche overlap are conservative, and the actual inferred niche overlap between these species is lower than given here. Despite this uncertainty, the SI values that we estimated are broadly consistent with those reported for stream salmonids, although there are cases where dietary overlap can be substantially higher (i.e., > 0.6, e.g., Muir and Emmett 1988; Hagen and Taylor 2001; Hilderbrand and Kershner 2004). For instance, Mookerji et al. (2004) studied diet overlap in allopatric and sympatric populations of Atlantic salmon (*Salmo salar* Linneaus, 1758) and brook trout (*Salvelinus fontinalis* (Mitchill, 1814)) sampled from two streams in Québec. In the most direct comparison between the two species collected from the same stream and across the same time periods estimated interspecific diet overlap was between 0.22 and 0.25. These estimates were lower than intraspecific comparisons (collected for brook trout only) in only one of the three time periods sampled, but the intraspecific comparisons (0.12 – 0.38) in brook trout involved samples from different streams (Mookerji et al. 2004). Similarly, Dineen et al. (2007)
reported mean numerically-based SI’s between sympatric juvenile brown trout (Salmo trutta Linneaus, 1758) and Atlantic salmon ranging between 0.35 and 0.67 across three Irish streams and three seasons, with only one value exceeding the commonly accepted threshold for “significant” overlap of 0.6 (Wallace 1981).

Hurlbert (1978) discussed some limitations of metrics such as SI and suggested that these indices may lack clear biological interpretation because they distill the ecological niche to a single value and ignore variation in “resource states” such as seasonal abundance or variability. The purpose of our study, however, was to examine trophic niche overlap during a particular “resource state”, because the annual sockeye salmon run is likely to be a key time of year for these juvenile fishes in terms of resource acquisition (Denton et al. 2009). Consequently, a metric such as SI is appropriate in our case.

Our ANOSIM analyses found that diet varied during a period in July between the char species and among streams. At least some of the differences that we observed between Dolly Varden and Arctic char, however, may be attributable to differences in food availability or other factors that influence feeding (e.g., stream flow) among streams because our sampling was not balanced in terms of the numbers of each species sampled among streams. Further, it is possible that differences in density of one or either species across stream could contribute to some of the differences in diet (cf. Svanbäck and Bolnick 2007). Species, however, was the only factor that was significant across both ANOSIM tests where it was tested, and size class and species both had consistently higher R values than sampling stream. This suggests that species and the size of an individual played larger roles in determining diet than the immediate stream environments that we sampled. Similarly, we were unable to record the exact GPS location of each fish sampled, just the location at the upper end of each stream reach. Consequently, microspatial
differences in prey distribution or differences in microhabitat use between Dolly Varden and Arctic char within stream reaches could contribute to the observed interspecific differences between their diets within a reach.

The SIMPER analyses demonstrated that largest differences in stomach contents were present between individuals of the largest and smallest size classes, and that diets expanded as the fish grew. This is likely due to the larger mouth, more efficient predation, and greater stomach volume in larger individuals (Van Valen 1965; Wankowski 1979; Scharf et al. 2000). The interspecific differences between Dolly Varden and Arctic char were similar in magnitude to the differences between individuals of size classes 2 (100-149 mm) and 3 (150-199 mm) within the species (cf. Polis 1984). This suggests that the dissimilarity between species might be based on divergent trophic morphology, particularly in the size of mouth parts which typically increases as fish grow (see below). The SIMPER analysis that compared interspecific differences found that four prey items made up 90% of the dissimilarity between species, and 70% of the dissimilarity was made up of a single prey item: sockeye salmon eggs. Because all fish used in the SIMPER analyses were collected in areas that had spawning sockeye salmon (and hence access to eggs), our results suggest a greater ability to exploit, or stronger preference for, sockeye salmon eggs by Arctic char. Sockeye salmon eggs also contributed greatly to the variation between size classes; the opportunity or capacity to eat eggs may be an important part of diet separation between species and size classes during the spawning season.

The logistic regression showed that Arctic char increased their exploitation of sockeye salmon eggs as they grew, but Dolly Varden did not. Armstrong et al. (2010) demonstrated an increase in feeding on sockeye salmon eggs with increasing size in juvenile coho salmon, and they estimated that coho salmon, Arctic char, and Dolly Varden first began eating eggs at
between 60 and 70 mm. When scaled to a common fork length, Arctic char had significantly larger mouth and head morphology than Dolly Varden. Further, both the distance between the eyes and distance from snout to eye were larger in Arctic char. These latter trait values are associated with a greater reaction distance which may be important in the detection of drifting eggs (Dill and Fraser 1984; Dunbrack and Dill 1984; Scharf et al. 2000; Mazur and Beauchamp 2003). Head and mouth morphology may influence the size, quantity, and diversity of prey items consumed between species and individuals (Van Valen 1965; Wankowski 1979; Langeland et al. 1991; Nakano et al. 1992; Lu and Bernatchez 1999; Scharf et al. 2000) and, in particular, may contribute to the increase in sockeye salmon eggs in the diet with increasing size in Arctic char relative to Dolly Varden (e.g., Adams and Huntingford 2002; Krebs and Turingan 2003).

Snorrason et al. (1994) suggested that the development of divergent Arctic char morphotypes were driven by variation in diet and habitat use. Woods et al. (2013) and May-McNally et al. (2015b) demonstrated that sympatric morphs of Arctic char were characterized by differences in diet and habitat use and that the morphs were genetically distinct from one another. This is consistent with the idea that chars, and Arctic char in particular, are predisposed to divergence via trophic specialization (Klemetsen 2010). The ability to exploit a wide variety of resources depending on environmental conditions, including the presence of a congener, may, therefore, be a key factor explaining the co-existence of Dolly Varden and Arctic char. Nonetheless, it would be important to understand if co-existence between the two species and differences in diet that we have demonstrated extend to other parts of the year when sockeye salmon eggs are not such a dominant prey item. For instance, some studies have reported that seasonal co-existence and the extent of diet overlap between species can be influenced by levels
of food abundance, being higher during periods of increased food abundance (Nilsson 1960; Nummi and Väänänen 2001).

Our study did not resolve prey item identity to a lower taxonomic level than family and in some cases prey were only identified to order: Trichoptera, Plecoptera, Hymenoptera. The Trichoptera (caddisflies) were among the four prey items that contributed to a combined 90% of the trophic dissimilarity between these species (3.4% for Trichoptera). Further, sample sizes were not equally distributed across each sampling stream. This may have resulted in conservative analysis of sampling stream as an influential factor. All of our data were obtained during the period of sockeye salmon spawning. As such, there was no control for the effect of the sockeye salmon (e.g., the presence of eggs, and also the disturbance of insects caused by their digging (Field-Dodgson 1987; Peterson and Foote 2000), and our diet data therefore may apply only to this particular time of year and sockeye salmon density. Salmon eggs, however, play a large role in the growth of juvenile fishes that feed on them (Denton et al. 2009; Armstrong et al. 2010; Bentley et al. 2012) and to have avoided sampling during the salmon spawning period would have been unrepresentative of the trophic ecology in these streams.

Indeed, although Arctic char appear to reside largely in Lake Aleknagik, their seasonal appearance in streams is probably driven by the temporary availability of salmon eggs there because Arctic char may feed on eggs (e.g., Hindar and Jonsson 1982) and make well marked habitat shifts to exploit seasonal growth opportunities (e.g., Näslund 1990; Klemetsten et al. 2003). Further, characterization of the average size of the prey items examined would help to further test for differences in the trophic ecology of Dolly Varden and Arctic char, and stable isotope analysis could provide a longer term perspective on the trophic ecology of these species (Bootsma et al. 1996; Bearhop et al. 2004). Finally, there is a strong need for a better
understanding of how the species behave when sympatric, especially in terms of the behavioural aspects of trophic interactions (e.g., Schutz and Northcote 1972; Jonsson et al. 2008).

Differences in migratory life history

Our analysis of Dolly Varden and Arctic char otoliths revealed a distinct separation in the migratory histories of the parents of the juvenile fishes assayed. All the Dolly Varden had been produced by mothers that had been to sea in the season prior to spawning, and none of the Arctic char had been produced by anadromous mothers. Needless to say, a greater sample size is required to determine if all Arctic char are resident in this system and if all Dolly Varden are anadromous. The fry we assayed, however, represented a mix of collections from streams and beaches, in the case of the Arctic char, and from several streams, in the case of the Dolly Varden. Given the complete separation between the migratory histories of these samples, selected “blind” with respect to any information on their parents, it seems likely that the Dolly Varden in this system, or at least the females, are primarily anadromous (cf. Hart et al. 2015), and the Arctic char are primarily resident. This conclusion is consistent with the results of other forms of sampling with beach seines, gillnets, and hook and line (Taylor et al. 2008; May-McNally et al. 2015a), all of which can produce large-bodied Arctic char throughout the summer in this system whereas adult-sized Dolly Varden are seldom encountered until the fall during what is presumably their upstream migration from the sea. In addition, there is segregation of spawning sites between the two species as determined by direct observations and as inferred from catches of young-of-the-year fish. Dolly Varden have been observed spawning in streams whereas Arctic char have been observed spawning in the lake on submerged beaches in Lake Aleknagik (C. Schwanke, Alaska Dept. of Fish and Game, Dillingham, Alaska) and also in Karluk Lake,
Alaska (DeLacy and Morton 1943). Newly-emerged Arctic char are routinely caught in the lake beaches in mid-summer whereas young-of-the year Dolly Varden are only found in streams. Consequently, it seems likely that young Dolly Varden result from adults that spawn in streams and that juveniles grow there until they are large enough to migrate to sea, although there may also be some non-anadromous males as reported elsewhere (e.g., Maekawa et al. 1993). In contrast, after adult Arctic char spawn in lakes, the young-of-the-year emerge on lake beaches, but then ascend the lower reaches of streams, overlapping spatially with juvenile Dolly Varden (May-McNally et al. 2015a). After a few years, when the juvenile Dolly Varden are migrating to sea, the older juvenile Arctic char move into deep areas of the lake where they feed and grow for several years until they are large enough to feed in shallower water, where they routinely eat juvenile sockeye salmon in the early summer (Ruggerone and Rogers 1984; May-McNally et al. 2015a).

Our work has provided the first estimates of the degree to which sympatric Arctic char and Dolly Varden differentially use trophic and spatial resources in freshwater habitats. Further work is required to understand the generality of these differences across other systems and the extent of seasonal variation in resource use, particularly for trophic biology and during times when sockeye salmon eggs are not available. More generally and if our results are consistent across systems and seasons, they may contribute to constraining gene flow between Dolly Varden and Arctic char when they do hybridize (Taylor et al. 2008; May-McNally et al. 2015a). For instance, morphologically-intermediate hybrids may show reduced feeding performance, in terms of food acquisition and growth, relative to parental species in fishes (e.g., Schluter 1995). Further, the behavioural and physiological differences associated with freshwater residency (Arctic char) versus anadromy (Dolly Varden) may reduce survival of hybrids and explain their
rarity in nature (Taylor et al. 2008; May-McNally et al. 2015a; cf. Foote et al. 1992; Taylor and Foote 1991; Moore et al. 2010).

Acknowledgements

We thank Jackie Carter and Chris Boatright of the University of Washington’s Alaska Salmon Program and the UW Fisheries Research Institute at Lake Aleknagik. Their hospitality and support in coordinating field sampling and volunteers was much appreciated. Drs. Trish Schulte, Carl Douglas, Lacey Samuels, and Don Moerman provided helpful comments on our research. Field sampling assistance at Lake Aleknagik was provided by Tish Kleyn, Jeff Baldock, Brendan Smith, Charlotte Dohrn, Lindsay Hart, Isaac Reynolds, Kaili Park, Susan Harris, Jordan Lee, Austin Anderson, Jordan Scheibe, Nirupam Nigam, Triston Chaney, Tess Hostetter, and the University of Alaska Fairbanks Bristol Bay Salmon Camp. Dr. Michelle Tseng and Karen Needham provided assistance in insect identification, and Khang Hua helped with the genetic analysis in this work. The Beaty Biodiversity Museum Fish Collection provided valuable samples. Sampling was conducted with permits from the Alaska Department of Fish and Game and the University of Washington’s IACUC. Financial support for this work was provided by Natural Sciences and Engineering Research Council of Canada Discovery and Equipment grants awarded to E.B. Taylor, the UBC Department of Zoology SURE Award, awarded to A.M. Dennert, and by the H. Mason Keeler endowment to T.P. Quinn. Comments on an earlier version of this manuscript by J. Hammar and anonymous reviewers is appreciated.

References

https://mc06.manuscriptcentral.com/cjz-pubs

May-McNally, S. L., Quinn, T. P., and E. B. Taylor. 2015a. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic and spatial distinctiveness. Ecol. Evol. 5: 3031-3045.

Table 1. The total number of Dolly Varden (Salvelinus malma) and Arctic char (S. alpinus), sampled for stomach contents across four sampling sites in Lake Aleknagik, southwestern Alaska.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Arctic Char</th>
<th>Dolly Varden</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happy Creek</td>
<td>24</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Yako Creek</td>
<td>36</td>
<td>41</td>
<td>77</td>
</tr>
<tr>
<td>Whitefish Creek</td>
<td>23</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Silver Salmon Creek</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>62</td>
<td>145</td>
</tr>
</tbody>
</table>
Table 2. A summary table of one-sample Wilcoxon signed-rank tests comparing 10 permutations of independent pairwise comparisons of Schoener’s Index of Proportional Overlap between Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*) to mean intraspecific proportional overlap. The mean index of proportional overlap within Arctic char was 48.2 %, and the mean index of proportional overlap within Dolly Varden is 51.3 %. The p values presented are the large-sample approximations given by the Wilcoxon signed-rank test. Asterisks indicate a significant difference between the mean intraspecific index and the mean interspecific index of proportional overlap, where α to reject the null hypothesis is adjusted by a sequential Bonferroni correction.

<table>
<thead>
<tr>
<th>Permutation</th>
<th>Mean</th>
<th>Comparison to mean index</th>
<th>Comparison to mean index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>within Arctic char (48.2%)</td>
<td>within Dolly Varden (51.3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>31.3</td>
<td>1278</td>
<td>2.6738</td>
</tr>
<tr>
<td>2</td>
<td>27.8</td>
<td>1258</td>
<td>2.8191</td>
</tr>
<tr>
<td>3</td>
<td>30.1</td>
<td>1271</td>
<td>3.2197</td>
</tr>
<tr>
<td>4</td>
<td>28.9</td>
<td>1247</td>
<td>3.3458</td>
</tr>
<tr>
<td>5</td>
<td>30.0</td>
<td>1191</td>
<td>3.2106</td>
</tr>
<tr>
<td>6</td>
<td>34.5</td>
<td>1134</td>
<td>2.7441</td>
</tr>
<tr>
<td>7</td>
<td>33.9</td>
<td>1137</td>
<td>2.7672</td>
</tr>
<tr>
<td>8</td>
<td>31.0</td>
<td>1116</td>
<td>2.9038</td>
</tr>
<tr>
<td>9</td>
<td>26.8</td>
<td>1182</td>
<td>3.7906</td>
</tr>
<tr>
<td>10</td>
<td>33.3</td>
<td>968</td>
<td>2.2385</td>
</tr>
</tbody>
</table>
Table 3. A summary table of a SIMPER analysis dissimilarities on square-root +1 transformed prey abundance data for diets of Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*). Overall average dissimilarity between species and size classes is shown. Size class 1 contains individuals with a fork length of <100 mm, class 2 contains 100-149 mm, class 3 contains 150-199 mm, and class 4 contains >200 mm. An expansion on the specific dissimilarities between Dolly Varden and Arctic char can be seen in Table 5.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Overall Average Dissimilarity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolly Varden</td>
<td>Arctic char</td>
<td>43.29</td>
</tr>
<tr>
<td>Size Class 1</td>
<td>Size Class 2</td>
<td>18.30</td>
</tr>
<tr>
<td>Size Class 1</td>
<td>Size Class 3</td>
<td>53.33</td>
</tr>
<tr>
<td>Size Class 1</td>
<td>Size Class 4</td>
<td>89.55</td>
</tr>
<tr>
<td>Size Class 2</td>
<td>Size Class 3</td>
<td>43.86</td>
</tr>
<tr>
<td>Size Class 2</td>
<td>Size Class 4</td>
<td>74.92</td>
</tr>
<tr>
<td>Size Class 3</td>
<td>Size Class 4</td>
<td>56.38</td>
</tr>
</tbody>
</table>
Table 4. The results of a SIMPER analysis on square-root +1 transformed prey abundance data comparing diets of sympatric Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*).

Average dissimilarity, the percentage of contributive and cumulative variation, and the untransformed mean abundance of each prey item that occurred within the transformed data are given. The analysis used a Euclidean distance measure, and the overall average dissimilarity was 43.3%.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Average dissim.</th>
<th>Contrib. %</th>
<th>Cumulative %</th>
<th>Mean abundance in Arctic char</th>
<th>Mean abundance in Dolly Varden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sockeye salmon eggs</td>
<td>31.04</td>
<td>71.70</td>
<td>71.70</td>
<td>24.0100</td>
<td>13.3956</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>4.26</td>
<td>9.84</td>
<td>81.55</td>
<td>2.5921</td>
<td>2.8224</td>
</tr>
<tr>
<td>Baetidae</td>
<td>2.39</td>
<td>5.51</td>
<td>87.05</td>
<td>0.2304</td>
<td>0.3364</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>1.45</td>
<td>3.34</td>
<td>90.40</td>
<td>0.0169</td>
<td>0.2704</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>1.01</td>
<td>2.32</td>
<td>92.72</td>
<td>0.3249</td>
<td>0.3136</td>
</tr>
<tr>
<td>Nematoda</td>
<td>0.44</td>
<td>1.01</td>
<td>93.73</td>
<td>0.1089</td>
<td>0.0036</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0.43</td>
<td>1.00</td>
<td>94.73</td>
<td>0.0225</td>
<td>0.0000</td>
</tr>
<tr>
<td>Heptageniidae</td>
<td>0.42</td>
<td>0.97</td>
<td>95.70</td>
<td>0.0121</td>
<td>0.0784</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0.41</td>
<td>0.94</td>
<td>96.64</td>
<td>0.0324</td>
<td>0.0009</td>
</tr>
<tr>
<td>Unidentified sp.</td>
<td>0.29</td>
<td>0.66</td>
<td>97.30</td>
<td>0.0225</td>
<td>0.0049</td>
</tr>
<tr>
<td>Drosophilidae</td>
<td>0.17</td>
<td>0.39</td>
<td>97.69</td>
<td>0.0064</td>
<td>0.0064</td>
</tr>
<tr>
<td>Elmidae</td>
<td>0.16</td>
<td>0.37</td>
<td>98.06</td>
<td>0.0016</td>
<td>0.0036</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>0.16</td>
<td>0.37</td>
<td>98.43</td>
<td>0.0064</td>
<td>0.0009</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0.16</td>
<td>0.37</td>
<td>98.80</td>
<td>0.0049</td>
<td>0.0004</td>
</tr>
<tr>
<td>Empididae</td>
<td>0.07</td>
<td>0.16</td>
<td>98.96</td>
<td>0.0004</td>
<td>0.0025</td>
</tr>
<tr>
<td>Haliplidae</td>
<td>0.06</td>
<td>0.15</td>
<td>99.11</td>
<td>0.0016</td>
<td>0.0004</td>
</tr>
<tr>
<td>Ceratoptogenidae</td>
<td>0.06</td>
<td>0.14</td>
<td>99.25</td>
<td>0.0036</td>
<td>0.0000</td>
</tr>
<tr>
<td>Scirtidae</td>
<td>0.06</td>
<td>0.14</td>
<td>99.38</td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td>Culicidae</td>
<td>0.06</td>
<td>0.13</td>
<td>99.51</td>
<td>0.0004</td>
<td>0.0009</td>
</tr>
<tr>
<td>Oligochaetidae</td>
<td>0.05</td>
<td>0.11</td>
<td>99.62</td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hydracarina</td>
<td>0.04</td>
<td>0.10</td>
<td>99.72</td>
<td>0.0001</td>
<td>0.0009</td>
</tr>
<tr>
<td>Syrphidae</td>
<td>0.04</td>
<td>0.10</td>
<td>99.82</td>
<td>0.0001</td>
<td>0.0009</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>0.04</td>
<td>0.08</td>
<td>99.91</td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td>Dryopidae</td>
<td>0.03</td>
<td>0.06</td>
<td>99.97</td>
<td>0.0001</td>
<td>0.0004</td>
</tr>
<tr>
<td>Odonata</td>
<td>0.01</td>
<td>0.03</td>
<td>100.00</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Table 5. Average left upper jaw length (as a proxy for gape width), distance from left snout to eye, and the distance between the eyes standardized by fork length in sympatric samples of Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*). The standardized fork length was 152.8 mm. All values are expressed in transformed millimeters (mm) ± the standard error of the mean and are significant at $P < 0.0368$ ($n = 17$ Arctic char, and $n = 21$ Dolly Varden).

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Upper Jaw Length1</th>
<th>Distance from Snout to Eye2</th>
<th>Distance between Eyes3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Char</td>
<td>15.4 mm ± 0.28</td>
<td>9.1 mm ± 0.14</td>
<td>13.6 mm ± 0.25</td>
</tr>
<tr>
<td>Dolly Varden</td>
<td>14.1 mm ± 0.25</td>
<td>8.5 mm ± 0.13</td>
<td>12.4 mm ± 0.23</td>
</tr>
</tbody>
</table>

$^1 p = 0.0009$

$^2 p = 0.0026$

$^3 p = 0.0368$
Figure captions

Figure 1. A map of Lake Aleknagik, Bristol Bay, Alaska. The sampling sites are (1) Happy Creek, (2) Yako Creek, (3) Whitefish Creek, and (4) Silver Salmon Creek.

Figure 2. A nonmetric multidimensional scaling (NMDS) analysis using the Euclidean distance measure on square-root $+1$ transformed absolute value diet composition data from Dolly Varden (*Salvelinus malma*) and Arctic char (*S. alpinus*). A) Stomach contents plotted in two-dimensional space coded by species, and B) stomach contents plotted in two-dimensional space coded by size class. Size class 1 contains individuals with a fork length of <100 mm, class 2 contains individuals with a fork length of 100-149 mm, class 3 contains individuals with a fork length of 150-199 mm, and class 4 contains individuals with a fork length of individuals with a fork length of >200 mm. Stress=0.1765; Axis 1 $R^2=0.81$; Axis 2 $R^2=0.10$.