Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

Voznyy, O., Mokkath, J. H., Jain, A., Sargent, E. H., & Schwingenschlögl, U.

Version Post-Print/Accepted Manuscript

Publisher's Statement This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright ©American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpcc.5b10908.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the TSpace version (original manuscript or accepted manuscript) because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.
Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands

Oleksandr Voznyy1,†, Junais Habeeb Mokkath2,‡, Ankit Jain1,†, Edward H. Sargent1,†, and Udo Schwingenschl"ogl1,*

1The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada

2King Abdullah University of Science and Technology, Physical Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia

(Dated: July 21, 2016)

Abstract

The electronic and optical properties of tetrahedral CdSe magic clusters (average diameter \(\sim 1.5\) nm) protected by amine and carboxyl ligands, which correspond to previously reported experimental structures, are studied using density functional theory. We find extreme ligand packing densities, capping every single dangling bond of the inorganic core, strong dependence of the Z-type metal carboxylate binding on the amount of amine excess, and potential for improved photoluminescence upon replacing phenyl ligands with alkanes. The computed absorption spectra of the Cd\textsubscript{35}Se\textsubscript{20} cluster agree well with experiments, resolving the 0.2 eV splitting of the first exciton peak due to spin-orbit coupling. We discuss the origin of the significant broadening of the optical spectra as due to phonons and structural variations in ligand configurations and inorganic core apices.
I. INTRODUCTION

The properties of semiconductor quantum dots typically are very sensitive to the size and shape, as well as surface passivation. They can be synthesized with high quality and have dimensions such that their optical gap can be tuned over the entire visible spectrum. Consequently, they find applications in light emitting devices1–3, solar cells4–7, and lasers8,9. The exact structure of the quantum dot surface remains often unknown despite being crucial for optoelectronic applications10. In this regard, ultra stable (so-called magic) clusters attract a lot of attention as promising candidates to shed light on the quantum dot surface chemistry, because their precise atomic structure can be resolved using X-ray diffraction techniques11–13, while their small size allows for comprehensive modeling using density functional theory14,15.

Tetrahedral CdSe clusters with thiolate ligands have been reported more than two decades ago11,12 and mass-spectroscopy characterizations are available for CdSe clusters with ligands removed by laser ablation16,17. However, clusters with carboxylate ligands, more relevant for a typical synthesis of larger quantum dots18,19, have been isolated only recently13.

Here we report the first comprehensive modeling of CdSe clusters including the full ligand shell. In particular, we verify the experimental predictions on the achievable ligand packing density. We explore the stability of the clusters and the variability of their geometry due to ligand rearrangements around the well defined inorganic core. The role of the ligand frontier orbitals in the photoluminescence properties of the clusters is studied and the absorption spectra are obtained within density functional theory (DFT), resolving a 0.2 eV splitting of the first absorption peak due to spin-orbit coupling. We also discuss the effect of thermal vibrations on optical properties.

II. COMPUTATIONAL ASPECTS

Structural optimizations with full ligand shell are performed using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional in CP2K software20. Full benzoic acid ligands and their shorter acetate analogues were explored. First, the ideal zincblende structure is frozen to allow for ligand relaxation, followed by unconstrained relaxation of the cluster as a whole. Further, the energy alignment of the ligand and inorganic core orbitals is verified with B3LYP hybrid functional21,22.
We find that PBE does not capture the correct ligand and core energy alignment, resulting in ligand-localized trap-like states near the valence band even in the case of acetate ligands, which is not the case in B3LYP calculations (see Supplementary Fig.S1). To avoid this effect while maintaining a reasonable computational cost, optical properties are calculated by VASP software23 within the frequency dependent dielectric matrix methodology29, using the PBE functional and passivating every dangling bond with pseudo-hydrogens with non-integer ion charge24. The role of pseudo-hydrogens is to saturate each dangling bond to exactly 2 electrons. Thus, pseudo-hydrogens with charge 1.5 are used to saturate surface Cd atoms.

This is a reasonable approximation at least for the first few absorption peaks since the cluster frontier orbitals are not affected by the ligands and are fully localized on the inorganic core. The structure was fully relaxed but remained very close to ideal zincblende. Effect of spin-orbit coupling on optical properties was also explored.

Molecular dynamics simulations were performed in CP2K, on a cluster with ammonium and acetate ligands at 300 K, using a 1 fs timestep for a total time of 6 ps. The first 1 ps of equilibration was discarded. Bandgap variation due to thermal vibrations over the remaining 5 ps was binned and fitted with a Gaussian.

The CP2K and VASP input files along with cluster geometries are provided in Supporting Information.

Since DFT underestimates the bandgap, we shifted the conduction band states in all presented figures for direct comparison with experimental spectra.

III. RESULTS AND DISCUSSION

A. Structural and electronic properties

Pristine CdSe quantum dots have many dangling bonds, since the surface Cd and Se atoms are undercoordinated. Ligands typically saturate the unpaired electrons. Based on the measurements of the ligand concentration by nuclear magnetic resonance, it has been suggested that, at least in magic clusters, all dangling bonds are fully saturated with ligands13. However, it is not clear whether steric constraints would indeed allow for such a dense packing. We have created our models based on experimental suggestions, using short
a) Relaxed structure of the Cd_{35}Se_{20} cluster with all dangling bonds fully saturated by carboxylates and amines. Binding motifs of ligands on (b) apex Cd atom, (c) Cd ridge, (d) Cd on (111) facet.

amines and benzoic acid as ligands, and indeed find that, due to the surface curvature, every dangling bond can be covered, despite the bulkiness of the phenyl ligands, Figure 1a. The zincblende structure of the core is well retained, in agreement with experimental structures13. Without the ligands the Cd atoms on (111) facets tend to planarize in a sp2 configuration, whereas the presence of the ligands makes it possible to maintain a sp3 configuration, as observed previously25,26.

Extensive molecular dynamics runs allowed us to sample the most favorable ligand adsorption geometries, Figure 1b-1d. Corner Cd atoms have three dangling bonds, thus are saturated with three ligands, while the ridge Cd atoms fully utilize binding to two ligands, in contrast to previously published models with only one ligand26,27.

The projected density of states (PDOS) in Figure 2, calculated with the B3LYP functional, shows that the highest occupied molecular orbital (HOMO) of the cluster is located on the phenyl rings. A ligand-localized HOMO can explain the poor photoluminescence efficiency of the clusters and is consistent with prior experimental work on thiol-capped tetrahedral clusters28. We expect, however, that the clusters can become much brighter if alkane ligands are used instead11.

Saturation of all dangling bonds means that the edge Cd atoms have two ligands attached, and the apex Cd atoms have three ligands, as discussed above (Figure 1b). If two of them happen to be carboxylates, the apex species may be prone to desorption as a neutral Cd(RCOO)\textsubscript{2} molecule. Calculations confirm that such apex Z-type ligands have almost zero binding energy. However, the system stabilizes by 2.4 eV when one of the carboxylates from
FIG. 2. Projected density of states calculated with the B3LYP functional, demonstrating ligand-localized in-gap states.

each apex is exchanged with an amine from (111) facet of the cluster. Cd-carboxylate-amine complex desorption becomes favorable again upon solvation by an additional free amine molecule, suggesting that a loss of Cd apices is possible when excess amines are available in the solution, consistent with experimental observations18,19. Closer inspection of the experimental pair distribution functions13 indeed confirms that, at least for the smallest clusters, geometries lacking one or two apices provide a better fit to the data. We thus consider all such configurations in the optical calculations described below.

B. Absorption spectra

Calculated optical properties are presented in Figure 3 together with the computed energy levels and transitions responsible for optical peaks and experimental spectrum13. Loss of Cd apices exposes the Se dangling bonds. If left unpassivated, HOMO leaks into these dangling bonds, reducing the bandgap and forming the sub-bandgap absorption peaks (see Supplementary Fig.S2).

We find a good agreement in terms of the overall shape of the spectrum, in particular the double peak structure at the absorption edge, with a 190 meV splitting. Calculations without inclusion of spin-orbit effects result in a single peak, confirming that the doublet originates from a spin-orbit split hole state.
FIG. 3. (a) Absorption spectra and (b) interband transitions responsible for absorption peaks of Cd$_{35}$Se$_{20}$ clusters passivated by pseudo-hydrogens.

FIG. 4. Molecular dynamics simulations showing (a) atomic thermal deviations at 300 K, (b) the resulting vibrations of the electronic levels, (c) bandgap distribution over a period of 5 ps.

C. Origin of the spectral broadening

Since the first absorption peaks are dominated by only a handful of discrete transitions, we further sought to understand the origin of the significant broadening of experimental spectra13. It is known that coupling to phonons can broaden the absorption and emission peaks and indeed significant narrowing is observed when cooling the nanocrystals down to low temperatures30,31. However, a typical broadening of 50 meV is observed for regular size nanocrystals, while it reaches 200 meV for the Cd$_{35}$Se$_{20}$ cluster explored here.

We thus performed molecular dynamics simulations, Figure 4. We find that indeed due to the small size of the cluster, thermal vibrations of the atoms constitute relatively large changes of the geometry, sufficient to broaden the bandgap by up to 250 meV.
In addition, experimental photoluminescence excitation spectra are shifted relative to absorption, suggesting the presence of not only homogeneous but also inhomogeneous ensemble broadening. We note that to achieve electroneutrality, only 30 anionic benzoic acid ligands are required on a Cd$_{35}$Se$_{20}$ cluster. The rest of the surface sites is covered with amines, which saturate the Cd dangling bonds with dative bonds formed by the N lone pair. Since both types of ligands adsorb on Cd, a multitude of ligand arrangements is possible, with total energy variations below 0.2 eV, Figure 5. Each such arrangement yields a slightly different surface relaxation and thus affects the band gap of the cluster, leading to an inhomogeneous broadening of the absorption spectrum of an ensemble with nominally identical cores.

IV. CONCLUSION

We have presented a first-principles analysis of tetrahedrally shaped CdSe magic clusters with carboxyl and amine ligands, with and without structural imperfections at the apices of the pyramid. We confirm a high ligand packing density (covering every dangling bond), as suggested by experiments, and a complementary role of carboxylates and amines, allowing to decouple the surface coverage from the charge neutrality. Calculated optical spectra show good agreement with experiment. In particular, the splitting of the first absorption peak is assigned to spin-orbit split off hole state. In addition to phonons leading to homogeneous linewidth broadening, a multitude of possible ligand configurations on the surface allows for a significant inhomogenous broadening in an ensemble of nominally identical inorganic cores. We predict that the photoluminescence of magic clusters can be significantly improved if alkane ligands are used instead of phenyls. The ligand-capped clusters reported here can
serve as prototypical models for further studies of the carrier relaxation dynamics, defects, phonon-assisted trap emission, and blinking of larger nanocrystals.

ACKNOWLEDGMENTS

We thank Jonathan Owen and Alex Beecher for fruitful discussions. Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST), Award KUS-11-009-21, the Ontario Research Fund – Research Excellence Program, and the Natural Sciences and Engineering Research Council (NSERC) of Canada. Computational resources provided by KAUST IT and the SciNet HPC Consortium are gratefully acknowledged. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund – Research Excellence Program, and the University of Toronto.

References

