Behavioural responses to fisheries capture among sharks caught using experimental fishery gear
Behavioural responses to fisheries capture among sharks caught using experimental fishery gear

Austin J. Gallagher1,2,3*, Erica R. Staaterman3,4, Steven J. Cooke2, Neil Hammerschlag1,5

1Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
2Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
3Beneath the Waves, Inc., Syracuse, NY 13202, USA
4Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, MD 21037, USA
5Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146, USA

*agallagher@rsmas.miami.edu, tel: +1-305-421-4356, fax: +1-305-421-4356

Running head: Shark behaviour during capture
Abstract

The response to capture is important in fisheries because it can reveal potential threats to species beyond fishing mortalities resulting from direct harvest. To date, the vast majority of studies assessing shark stress responses have used physiology or biotelemetry to look at sensitivity after capture, leaving a gap in our understanding of the behaviours of sharks during capture. We examined the behavioural responses of sharks to capture by attaching accelerometers to fishing gear and measuring the immediate and prolonged forces they exerted while on the line. We recorded acceleration vectors and derived the rate of intense fighting behaviours of 23 individual sharks comprising three species. Results suggest that blacktip sharks exhibited intense bouts of fighting behaviour at the onset of hooking, while nurse and tiger sharks displayed more subdued acceleration values during capture. We also obtained plasma lactate from a subset of individuals and detected a strong correlation with maximum acceleration. These results align with previously published values and suggest that shark movement during fisheries capture is an important factor during bycatch and catch-and-release interactions.
Introduction

For various reasons (e.g., to comply with harvest regulations, lack of market for a given fish, conservation ethic), some fish captured by fishers are released. Interestingly, fishes exhibit among the most pronounced stress responses to capture among all vertebrates (Barton 2002; Cockrem 2013). Whereas stress responses have evolved to permit animal survival, it is known that they can impair animal survival and vitality when they are prolonged (Sapolsky et al. 2000; but see Boonstra 2013). As such, stress responses are used widely in applied research as valuable biomarkers for understanding vertebrate fitness and conservation needs (Wikelski and Cooke 2006; Dantzer et al. 2014). Moreover, stress responses are useful in improving our understanding of the impacts of catch and release fisheries interactions for many groups of fishes worldwide, especially those which are biologically sensitive to overfishing and of conservation concern (Broadhurst et al. 2006; Donaldson et al. 2011).

Fisheries exploitation of slow-growing and long-lived fishes such as sharks remains an important area of focus for both marine and conservation biology, and in recent years fisheries-based research has expanded to examine the behavioural and physiological consequences of catch and release fisheries interactions on sharks (e.g., Skomal and Bernal 2010, Skomal and Mandelman 2012). To date, physiological analyses (e.g., blood gas, metabolite, and ion analysis) and bio-telemetry (e.g., satellite tagging) of captured sharks have been heavily relied upon to measure the impacts of capture stress acutely and predict survival outcomes at release (e.g., Campana et al. 2006, Skomal 2007; Brill et al. 2008, Gallagher et al. 2014a, Marshall et al. 2012, 2015). These types of comparative studies can be used to infer how the sharks’ overall ‘fighting’ intensity affects their physiology, thus allowing us to make predictions about their fate (i.e., survival). However, ‘fighting’ is rarely characterized, despite the fact that behavioural changes occur directly at the onset of hooking and are intimately connected to a complex suite of
neuroendocrine/hormonal feedbacks and physiological cascades (Barton 2002). Moreover, hooking behaviour may also feedback on the physiological stress response and act as a mediator (e.g., driving differences in stress reactivity), although this link is not well-understood. This knowledge gap is likely due to the logistical challenges of directly observing sharks when they become hooked on a fishing line, particularly since fishing gear is usually left unattended for hours before gear retrieval. Obtaining species-specific data within the context of shark survivability and stress in fisheries may be increasingly valuable to predict the impacts of bycatch and even recreational fisheries, as population trends for many species appear to be variable (e.g., Braccini et al. 2015).

The attachment of accelerometers to wild animals has become a popular approach to studying free-ranging behaviour, energetics, and estimates of metabolism (Wilson et al. 2006); however, they can also provide useful information on how wild animals interact with potentially hazardous stressors and objects (Brownscombe et al. 2013, 2014a). The application of bio-logging devices including accelerometers has become increasingly popular for use in shark research in recent years (e.g., Whitney et al. 2007, Papastamatiou et al. 2015); however they are rarely used in an applied fisheries settings. Here we examined the behavioural responses of sharks to capture by attaching accelerometers to fishing gear and measuring the immediate and prolonged forces they exerted while on the line. We focused efforts on five sympatric shark species commonly encountered in the subtropical Atlantic. The study objectives were to: (1) quantify mean and maximum fight intensity using metrics of force measured with accelerometers (Brownscombe et al. 2014a) when sharks were captured with an experimental fishery technique; (2) to estimate the frequency (i.e., rate) at which sharks exhibit intense fighting behaviour; and (3) to compare these behavioural measurements with empirical physiological results for the same
group of species. We impart that this information might be used to better understand whether physiological shifts are indeed driven by behavioural changes or more cryptic physiological adaptations, thus allowing the research community to make important eco-physiological and applied evolutionary linkages between the biology of species and fisheries interactions (Horodysky et al. 2015).

Materials and methods

Study site, species, and tools

This work was conducted in four subtropical locations: inside Florida state waters within Everglades National Park (~25.0° N, 81.0° W), in US Federal waters off the reef edge in the middle of the Florida Keys (~24.69° N, 80.85° W), in the waters around Key Biscayne and within Biscayne National Park (~25.47° N, 80.19° W), and off the West End of Grand Bahama in the Bahamas (~26.59° N, 79.08° W). Sampling was conducted from March 2013 to May 2014, across the wet and dry seasons (wet = June to November, avg. temp for all locations = 26.5° C; dry = December to April, avg. temp for all locations = 23.0° C).

All sharks were captured using circle hook drumlines, a passive and autonomous fishing technique, following the methods used by Gallagher et al. (2014a). Each fishing unit consisted of a weighted base designed to sit on the sea floor, which was tied to a line extending to the surface via inflatable floats. A tuna clip attached a 23-meter monofilament gangion line (~400 kg test) to the weight, terminating at a baited 16/0 non-offset circle hook. The test strength of the final 3 meters of the line leading to the hook was augmented by crimping 4-strands of the monofilament together, and this terminal portion was attached to the main line via a swivel. To quantify shark fighting behaviour and intensity, we mounted tri-axial accelerometers (OpenTag, 12 mA h battery, 10 Hz recording frequency, 13-bit resolution, 69 g in air, Loggerhead Instruments)
firmly to this attachment point on the swivel using three cable ties and duct tape. This
experimental fishery technique and data-logging approach enabled us to record undisturbed and
relatively unrestricted fighting and capture behaviours in high resolution as sharks swam in a 23-

meter radius circle around the base.

Ten baited drumlines were deployed roughly ~500 m apart, allowed to soak for an hour,
then sequentially checked for shark presence. Upon gear retrieval, each shark was restrained on a
partially submerged platform and was sexed and measured for total length (in cm). For a subset
of individuals in the present data set, we obtained whole blood (~7 mL) via caudal venipuncture
using chilled 18 gauge needles and 10mL syringes. Approximately 7 mL of the mixed whole
blood samples was then centrifuged at 1300g for 5 minutes to separate plasma from whole blood.
Samples were frozen on board, then transferred to -20°C freezer on shore where they were stored
for future analyses. We then analyzed each plasma sampled for lactate (mmol L⁻¹), by placing a
drop (< 0.1 mL) of thawed plasma on the testing strip of a Lactate Plus portable analyzer (Nova
Biomedical, Waltham, MA) following standard protocols (Barker et al. 2016). The freezing of
plasma has been shown to have negligible effects on plasma lactate concentrations compared to
when assayed directly in the field (authors, unpublished data). Accelerometer units from
captured sharks were then removed from the fishery gear and all sharks were released. The
sharks captured in this study represented ecologically distinct species which are commonly
encountered throughout the subtropical Atlantic: blacktip (Carcharhinus limbatus), nurse
(Ginglymostoma cirratum), and tiger (Galeocerdo cuvier). We only used jaw-hooked individuals
for analysis.

Data Analysis
Tri-axial accelerometers recorded total acceleration (g) at 10 Hz in three axes, \((x,y,z)\), where \(g\) (with a maximum of \(±16\) g) was defined as the sum of dynamic (the fishing line) and static (gravity) acceleration. Dynamic acceleration is defined as the acceleration due to changes in velocity or movement of the device itself, whereas static acceleration is defined as the inclination of the device with respect to the Earth’s gravitational field (Shepard et al. 2008). Each recorded fight scenario comprised two distinctive sections (Figure 1): (1) the initial “burst period” when the animal bites the bait and the hook is set (defined in a 5 minute period); and (2) the resulting “fight scenario” which was broken up into 5 minute periods and ended before the shark was reeled in (in order to increase the resolution of the data and probe temporal differences in the overall capture event). The entire duration of the capture scenario was visually scrutinized for each individual, with each scenario beginning approximately one minute before the animal was hooked, which triggered a significant response in acceleration (Figure 1). We ended each event at the moment before the final, ultimate rise in depth (signaling the researchers reeling the animal in to the boat), thus excluding additional forces from the shark or researcher on the fishing line (Figure 1). From this subset of the entire data recording, total acceleration vectors \((A_{\text{total}})\), a proxy for overall force (similar to \(VeDBA\), see Quasem et al. 2012) and measured in g, were calculated as \(A_{\text{total}} = \sqrt{(x^2 + y^2 + z^2)}\) for the entire capture event at 10 Hz. We did not remove static acceleration from the data as we were interested in the total forces following Brownscombe et al. (2014a). We calculated the maximum and mean total acceleration values for the entire duration of the capture scenario, as well as among 5 minute bins. In order to determine and quantify the frequency of intense fighting behaviour, we calculated the number of peaks \((N_{\text{peaks}})\) occurring above the amplitude threshold of \(3.5\) g throughout the capture scenario and calculated a standardized peak rate \((PR)\) as \(PR = \left(\frac{N_{\text{peaks}}}{\text{capture duration (mins)}}\right) \times 60\) min. The value of
3.5 g was chosen after visually scrutinizing acceleration plots for every animal and based on a similar study conducted on largemouth bass (*Micropterus salmoides*, Brownscombe et al. 2014). This value was chosen because our goal was to explore and compare amplitudes among and within species with a reference to the only other similar study in the fish literature. The effects of animal size and fight time (using 20 minutes as a minimum cut-off needed to generate sufficient dependent variable data) on peak rate and maximum acceleration were explored via linear regression. We evaluated the impact of season on maximum acceleration using ANOVA. For both these analyses we looked at all individuals combined due to low sample size for two of the species. Both of these dependent variables were log-transformed prior to analysis to meet the assumptions of normality and equal variance. We also evaluated the correlations between plasma lactate and fight time, peak rate, and maximum acceleration using Spearman correlation. All data analyses and data processing were conducted in MatLab (Mathworks, Inc. Natick, MA) and significance was declared at $P < 0.05$.

Results

By attaching accelerometers to experimental fishing gear, we recorded a total of 1010 minutes of time on the hook from 23 individual sharks comprising three species (Table 1): blacktip (n = 7); nurse (n = 9); and tiger (n = 7). Fight times for all sharks ranged from 9 to 88 minutes, with a mean of 48.4 ± 25.6 minutes. Measured total lengths suggested that all of the sharks sampled in this study were either subadult or mature (Compagno et al. 2005, Table 1).

We detected a range of average and maximum acceleration forces across the entire sample of sharks (Table 2). Average mean acceleration values were similar between blacktip and tiger sharks ($1.03 \pm 0.27; \ 1.00 \pm 0.22 \ g$, respectively; Table 2), whereas nurse sharks exhibited the lowest average mean acceleration values $0.98 \pm 0.15 \ g$ (Table 2). There were no species-
specific differences in maximum acceleration, therefore these data were pooled for all sharks (n = 23). We did not find any significant relationships between maximum acceleration and shark size (total length, $F_{1,22} = 3.43, P = 0.08, R^2 = 0.14$) or fight time duration (minutes, $F_{1,22} = 0.17$, $P = 0.90, R^2 = 0.001$). There was no significant difference in average maximum acceleration values between sampling seasons (one-way ANOVA, $F_{1,22} = 1.147, P = 0.23$). Maximum acceleration was a more dynamic measure among species, with blacktip sharks (n = 7) displaying the greatest forces of all species (9.19 ± 4.20, Table 2). Maximum values were lower in tiger sharks (8.35 ± 3.84 g) and the lowest among nurse sharks (6.05 ± 2.19 g). Approximately 78% of nurse sharks (7 of 9 individuals), 57% of blacktip sharks (4 of 7 individuals), and 57% of tiger sharks (4 of 7) exerted their maximum acceleration values in the initial “burst period.”

Peak rates ranged from 0 - 345 peaks/hr for all sharks (Table 1). Blacktip sharks exhibited the highest average peak rates (90.00 ± 119.78 peaks/hr; Figure 2a, although this number is likely driven up by the one individual with 344.95 peaks/hr), followed by tiger sharks (30.96 ± 33.95 peaks/hr, Table 2). Nurse exhibited the lowest peak rates and less variance (17.43 ± 13.06, Table 2, Figure 2b). We did not find species-specific differences in peak rate ($P > 0.05$) and thus pooled all sharks for subsequent analyses. We did find a significant relationship between peak rate and fight time duration ($F_{1,22} = 6.53, P < 0.05, R^2 = 0.04$), but not with shark size ($F_{1,22} = 0.80, P = 0.38, R^2 = 0.04$). We did not detect significant differences in mean peak rates between sampling seasons (one-way ANOVA, $F_{1,22} = 3.22, P = 0.09, R^2 = 0.24$).

We obtained plasma lactate samples from a subset of sharks with accelerometer units attached to their fishing lines (~50%, n = 14). For all species pooled, mean plasma lactate was 3.86 ± 2.99 mmol⁻¹, with values ranging from 0.62 – 10.09 mmol⁻¹. Blacktip sharks (n = 3) had the highest mean plasma lactate (7.18 ± 3.10 mmol⁻¹), followed by tiger sharks (n = 6, 4.35 ±
2.27 mmol\(^{-1}\)). Nurse sharks (n = 5) had the lowest plasma lactate values (1.28 ± 0.86 mmol\(^{-1}\)). A positive and significant relationship was detected between plasma lactate and maximum acceleration for all sharks combined (\(r = 0.87, p < 0.01, n = 14\), Figure 3). There was a positive but slightly non-significant relationship between plasma lactate and peak rate (\(r = 0.48, p = 0.087, n = 14\)), and we did not find a relationship between plasma lactate and fight time (\(r = 0.31, p = 0.284, n = 14\)).

Discussion

By exposing sharks to a standardized form of fisheries capture - a physical stressor - we elicited behavioural stress responses that revealed a high degree of inter-individual and among-species variation in fighting behaviour. To date, assessments of shark sensitivity to the process of capture have relied almost entirely on empirical physiological information, with fight time (the duration the shark is on the hook) generally emerging as a good predictor of change for most physiological variables. Previous work has found that the interaction between fight time and animal size was significantly and positively correlated with lactate values obtained via blood samples (Marshall et al. 2012), including from sharks captured on the same fishery gear used here (Gallagher et al. 2014a). Lactate is a metabolite produced anaerobically in the white muscle due to exhaustive exercise (Moyes et al. 2006), and continues to be widely regarded as one of the more reliable predictors of capture stress in elasmobranchs as it is produced during burst swimming (Marshall et al. 2012; French et al. 2015). On an individual level, two-thirds of blacktip sharks here displayed their highest acceleration values in the initial “burst” period within five minutes of hooking, and we found that blacktip sharks had consistently high maximum acceleration values. (Table 2). For all sharks for which we were able to pair physiological data with behavioural data (plasma lactate and accelerometer, n = 14), we found a
positive and significant relationship between maximum acceleration and plasma lactate (Figure 2). This is an important finding as it suggests that bouts of intense fighting and high rates of movement, as represented in maximum acceleration herein, are likely to result in physiological stress (Butcher et al. 2015, Guida et al. 2016). However, this relationship was not affected by time on the line, which corroborates the notion that species-specific differences in capture responses may be more likely to drive physiological disruption and survival outcomes than fight time alone, particularly for hard-fighting species (Gallagher et al. 2014a,b).

High relative peak rates sharks are defined by the repetition of fighting behaviours over 3.5 g (Figure 2). Acceleration bouts over this threshold are nearly three times the mean values for all of the species assessed (Table 1). Blacktip sharks are known to suffer high mortality rates (i.e., up to ~90%) when exposed to longline fishing (e.g., Beerkircher et al. 2002; Gallagher et al. 2014b, Butcher et al. 2015), suggesting that intense fighting behaviours when hooked may have negative consequences for survival. Two great hammerheads that were captured opportunistically alongside the main dataset with fishing lines fitted with accelerometers (but not included here due to low sample size) also exhibited high peak rates and are known to be highly vulnerable to capture stress and at-vessel and post-release mortality (Gallagher et al. 2014a, Electronic Supplementary Material 1-2). Tiger sharks (the largest species assessed here) exhibited low overall peak rates (~18 peaks/hr, Table 2), a finding that agrees with published information citing this species as resilient to stress induced from the process of capture (e.g., Morgan and Burgess 2007; Butcher et al. 2015). However, one tiger shark in the present study exhibited a peak rate over 100 peaks/hr (Table 2). Clearly more data are needed to decrease the variance in our preliminary findings, but this result may reinforce the tiger shark’s ability to increase oxygen delivery to tissues under acidotic conditions – thus permitting recovery - as seen
in some teleost species such as rainbow trout (*Oncorhynchus mykiss*, Rummer et al. 2013). However, since sharks appear unable to exhibit Root effects unlike teleosts, additional physiological research and integration with tools such as accelerometers is needed to better understand these pathways.

Whole organismal performance capacities such as maximum locomotor performance are often tied to ecologically-relevant processes such as foraging or avoiding predators (Irschick et al. 2005). The highest maximum acceleration forces in this study were exhibited by blacktip sharks, as 5 of 7 individuals displayed maximum values over 10 g (Table 1). Nurse and tiger exhibited, in general, low overall acceleration profiles (including peak rates) and low levels of lactate in the present study. Recent work revealed that that nurse sharks have very low metabolic rates (Whitney et al. 2016a), a finding which further explains the empirical agreement between their physiology and behaviour we detected. Whether tiger sharks exhibit similar metabolic and energetic profiles remains unknown, but the consistent trend for this species to exhibit low stress responses provides justification for future work (Mandelman and Skomal 2009, Marshall et al. 2012, Gallagher et al. 2014a). These data add to the growing realization that a shark species’ biology and ecology might be good predictors of stress responses when hooked (in this case, acceleration/behavioural responses), but we do not have enough data yet to confidently support this claim.

Although the approach we employed here enabled the detection of consistent trending patterns in the behaviour and physiology of sharks when captured on a specific type of fishery gear, this study should be viewed as an initial step in understanding behavioural stress responses to fishing for sharks. Clearly individuals that fight intensely and for sustained periods of time are likely to be the most vulnerable to negative consequences of fisheries interactions, and more
research is needed to understand performance/mortality thresholds and recovery times. Due to
the opportunistic nature of our sampling, we could not control the sample sizes on a species-
specific basis. Nevertheless, our data corroborate and add to the general conclusion that catch
and release scenarios can threaten the survival of species that mount intense stress responses.
This type of information highlights the need for best practices to promote sustainability, such as
the use of heavy drag on fishing lines for species which high maximum acceleration values and
repeated and intense fighting behaviour when hooked.

In summary, these findings suggest that animal movement during capture may underpin a
pivotal mechanism both triggering and maintaining the physiological stress response of sharks
when captured in fisheries interactions (Guida et al. 2016). Obtaining physiological data from
large and highly mobile apex predators is inherently challenging, and our study highlights the
utility in applying bio-logging devices in novel and innovative ways to understand the
relationship between animal performance and resilience to human stressors (Whitney et al.
2016b). This approach also detected a moderate degree of individual variation in fighting
behaviours, which may explain why certain fish suffer mortality or appear to exhibit extreme
physiological disturbance when other conspecifics of similar size and shape exposed to the same
conditions/stressors do not. Lastly, maximum performance capacities such as those investigated
here are often favored by natural selection (Irschick et al. 2008), so continued work in this regard
may expose in greater detail how evolutionary theory can be used to predict the vulnerability of
threatened fishes (Gallagher et al. 2015). This study supports the growing realization that life-
history correlates and ecological traits likely play a larger role in understanding the impacts of
fisheries on sharks than previously thought (Young et al. 2006).

Acknowledgements
We greatly appreciate the field assistance provided by the interns and staff of the Shark Research Program, especially J. Jerome for sample processing assistance and M. Piechowski, C. Slonim and E. Cartaya for field work assistance. This was supported by a Florida Sea Grant Fellows Scholarship to AJG and grants to NH and AJG at the Shark Research Program at the University of Miami. SJC is supported by the Canada Research Chairs Program and NSERC.

References

Quasem, L. 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE 7:e31187.

Table 1. Biological (species, sex), length (TL = total length, in cm), and acceleration values (mean and maximum ± SD, in g), peak rates (peaks/hr), and fighting durations (minutes) for the 23 sharks assessed in the present study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Season</th>
<th>Location</th>
<th>TL</th>
<th>Sex</th>
<th>Mean Acc</th>
<th>Max Acc</th>
<th>Peak Rate</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blacktip</td>
<td>Wet</td>
<td>Outer Reef</td>
<td>170</td>
<td>F</td>
<td>0.99 ± 0.28</td>
<td>12.45</td>
<td>55.71</td>
<td>42</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Wet</td>
<td>Key Biscayne</td>
<td>180</td>
<td>F</td>
<td>1.13 ± 0.57</td>
<td>12.2</td>
<td>344.95</td>
<td>12</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Dry</td>
<td>Everglades</td>
<td>168</td>
<td>F</td>
<td>1.04 ± 0.39</td>
<td>11.48</td>
<td>147.0</td>
<td>20</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Wet</td>
<td>Everglades</td>
<td>133</td>
<td>F</td>
<td>1.06 ± 0.19</td>
<td>11.18</td>
<td>26.59</td>
<td>88</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Dry</td>
<td>Everglades</td>
<td>161</td>
<td>F</td>
<td>1.03 ± 0.21</td>
<td>10.34</td>
<td>34.9</td>
<td>55</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Dry</td>
<td>Everglades</td>
<td>161</td>
<td>F</td>
<td>0.97 ± 0.11</td>
<td>5.2</td>
<td>2.86</td>
<td>63</td>
</tr>
<tr>
<td>Blacktip</td>
<td>Wet</td>
<td>Everglades</td>
<td>103</td>
<td>F</td>
<td>0.99 ± 0.02</td>
<td>1.48</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Nurse</td>
<td>Wet</td>
<td>Outer Reef</td>
<td>240</td>
<td>F</td>
<td>0.97 ± 0.24</td>
<td>10.25</td>
<td>38.2</td>
<td>26</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Key Biscayne</td>
<td>230</td>
<td>F</td>
<td>1.01 ± 0.15</td>
<td>8.15</td>
<td>17.9</td>
<td>47</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Everglades</td>
<td>200</td>
<td>F</td>
<td>0.96 ± 0.19</td>
<td>7.24</td>
<td>34.0</td>
<td>30</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Key Biscayne</td>
<td>249</td>
<td>F</td>
<td>0.95 ± 0.15</td>
<td>7.10</td>
<td>16.2</td>
<td>85</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Key Biscayne</td>
<td>247</td>
<td>F</td>
<td>1.00 ± 0.09</td>
<td>6.31</td>
<td>4.73</td>
<td>76</td>
</tr>
<tr>
<td>Nurse</td>
<td>Wet</td>
<td>Key Biscayne</td>
<td>161</td>
<td>F</td>
<td>0.96 ± 0.10</td>
<td>5.62</td>
<td>1.40</td>
<td>88</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Inner Reef</td>
<td>230</td>
<td>F</td>
<td>0.98 ± 0.13</td>
<td>4.06</td>
<td>5.22</td>
<td>46</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Inner Reef</td>
<td>239</td>
<td>M</td>
<td>1.01 ± 0.16</td>
<td>4.06</td>
<td>25.9</td>
<td>37</td>
</tr>
<tr>
<td>Nurse</td>
<td>Dry</td>
<td>Inner Reef</td>
<td>212</td>
<td>M</td>
<td>1.00 ± 0.16</td>
<td>3.71</td>
<td>13.3</td>
<td>9</td>
</tr>
<tr>
<td>Tiger</td>
<td>Wet</td>
<td>Tiger Beach</td>
<td>378</td>
<td>F</td>
<td>0.97 ± 0.22</td>
<td>13.4</td>
<td>15.5</td>
<td>66</td>
</tr>
<tr>
<td>Tiger</td>
<td>Wet</td>
<td>Tiger Beach</td>
<td>373</td>
<td>F</td>
<td>1.07 ± 0.44</td>
<td>11.97</td>
<td>185</td>
<td>13</td>
</tr>
<tr>
<td>Tiger</td>
<td>Wet</td>
<td>Tiger Beach</td>
<td>273</td>
<td>F</td>
<td>1.03 ± 0.31</td>
<td>11.53</td>
<td>48.6</td>
<td>37</td>
</tr>
<tr>
<td>Tiger</td>
<td>Wet</td>
<td>Outer Reef</td>
<td>289</td>
<td>F</td>
<td>0.90 ± 0.13</td>
<td>7.1</td>
<td>15.0</td>
<td>24</td>
</tr>
<tr>
<td>Tiger</td>
<td>Dry</td>
<td>Outer Reef</td>
<td>220</td>
<td>F</td>
<td>1.03 ± 0.21</td>
<td>5.7</td>
<td>27.3</td>
<td>11</td>
</tr>
<tr>
<td>Tiger</td>
<td>Dry</td>
<td>Everglades</td>
<td>182</td>
<td>M</td>
<td>1.07 ± 0.11</td>
<td>4.47</td>
<td>5.1</td>
<td>35</td>
</tr>
<tr>
<td>Tiger</td>
<td>Wet</td>
<td>Everglades</td>
<td>215</td>
<td>F</td>
<td>0.93 ± 0.14</td>
<td>4.32</td>
<td>5.2</td>
<td>46</td>
</tr>
</tbody>
</table>

Table 2. Species-specific averages ± SD for mean and maximum acceleration (in g), as well as peak rate (peaks/hr). Percentage lead maximum (% lead max.) refers to the proportion of individuals exhibiting their highest maximum acceleration value in the first 5 minute period of their entire fight duration/bout.

<table>
<thead>
<tr>
<th>Species</th>
<th>Avg. Mean Acc</th>
<th>Avg. Max Acc</th>
<th>Avg. Peak Rate</th>
<th>% Lead Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blacktip (n = 7)</td>
<td>1.03 ± 0.25</td>
<td>9.19 ± 4.20</td>
<td>90.00 ± 119.78</td>
<td>57.00</td>
</tr>
<tr>
<td>Nurse (n = 9)</td>
<td>0.98 ± 0.15</td>
<td>6.05 ± 2.19</td>
<td>17.43 ± 13.06</td>
<td>77.80</td>
</tr>
<tr>
<td>Tiger (n = 7)</td>
<td>1.00 ± 0.22</td>
<td>8.35 ± 3.84</td>
<td>30.96 ± 33.95</td>
<td>57.00</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Representative example of time-series analysis conducted on raw tri-axial accelerometer data for a captured great hammerhead shark (no analyses were performed on this species, see Supplementary Material). The four time-series (Acc.X, Axx.Y, Acc.Z, and Depth) present information taken simultaneously at 10 Hz. Pressure (depth) shown due to its role in visually scrutinizing start and end points for analysis: (a) gear on the bottom, (b) the hook is set in the shark serving as a starting point for analysis, (c) the “burst” period, the initial period of 5 minutes from the onset of hooking, (d) fight duration, defined as the remaining portion of data analyzed for each individual, (e) the analysis was ended prior to the subsequent final increase in depth, signifying the shark being landed, and (f) the gear is on the boat at sea level and logger is turned off.

Figure 2. Representative acceleration plots showing the total acceleration vectors among individuals from 2 species of sharks in the present study: (a) blacktip, and (b) nurse. Red dots represent peaks greater than 3.5 g (acceleration on the y-axis) along each individual’s entire hooking duration (minutes on the x-axis). The number of red dots per entire hooking duration was multiplied by 60 minutes for each species to generate the peak rate in units of peaks/hour. A wave-form with a flat acceleration line at 1 g would indicate no animal movement, as seen in (b) suggesting the nurse shark is sitting on the bottom and not moving (this species does not need to swim in order to facilitate respiration). Photos: (a) Christine Shepard and (b) Frank Gibson.

Figure 3. Correlation between maximum acceleration (g) obtained via fishing-line-borne accelerometers and plasma lactate (mmol/l) obtained via blood biopsy for a subset of 14 pooled sharks from the present study (blacktip, n = 3; nurse, n = 5; tiger, n = 6).