2016

Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic Festuca rubra

Published version

James S. Santangelo

Peter M. Kotanen

doi:10.1002/ecs2.1260

This work is licensed under the Creative Commons Attribution 3.0 License. To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/

HOW TO CITE TSPACE ITEMS

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the TSpace version (original manuscript or accepted manuscript) because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.
Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic Festuca rubra

JAMES S. SANTANGELO1† AND PETER M. KOTANEN2

1Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6 Canada
2Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6 Canada

Citation: Santangelo, J. S., and P. M. Kotanen. 2016. Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic Festuca rubra. Ecosphere 7(5):e01260. 10.1002/ecs2.1260

Abstract. Plant–microbial symbioses are widespread in nature and can shape the ecology and evolution of hosts and interacting symbionts. Fungal endophytes—fungi that live asymptotically within plant tissues—are a pervasive group of symbionts well known for their role in mediating host-responses to biotic and abiotic stresses. However, they also may become pathogenic and often impose metabolic costs on hosts. Here, we examine the role of fungal endophytes in mediating responses of the host grass red fescue (Festuca rubra) to salt and herbivore stress. We collected 38 red fescue genotypes from within its native range on Akimiski Island, Nunavut, Canada, where it occurs in the supratidal region on the northern part of the island and is heavily grazed by nesting and brood-rearing snow geese (Chen caerulescens caerulescens) and Canada geese (Branta canadensis). We screened all plants for the presence of the systemic endophyte Epichloë festucae and sequenced the nonsystemic endophytic community on a subset of these plants. While we did not detect E. festucae, our plants instead were host to a diverse array of nonsystemic fungal endophytes. We then conducted a fully factorial greenhouse experiment where we crossed plant genotype (4 levels) with simulated grazing (clipped or unclipped), endophyte status (present or absent) and salinity (0, 32 or 64 ppt) to examine the ecological role of this endophytic community. Overall, the presence of nonsystemic endophytes increased plant survival, but only in the absence of salt or clipping. On the other hand, these endophytes reduced plant tolerance to simulated herbivory by 69% but had no effect on aboveground plant growth. Thus, our results identify a potential nonsystemic endophyte-mediated trade-off in host plant survival and tolerance to herbivory and suggest this trade-off may be altered by stressful abiotic conditions.

Key words: Akimiski Island; Canada geese; Festuca rubra; herbivory; nonsystemic endophytes; plant–fungal interactions; red fescue; snow geese.

Received 20 August 2015; revised 18 September 2015; accepted 28 September 2015. Corresponding Editor: D. P. C. Peters.
Copyright: © 2016 Santangelo and Kotanen. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
† E-mail: james.santangelo37@gmail.com

INTRODUCTION

Plant–microbial interactions are ubiquitous in nature and can have profound effects on the ecology and evolution of both plants and symbionts (Larimer et al. 2010, Yang et al. 2013). Furthermore, the tremendous diversity of plant symbionts—both bacterial and fungal—means their effects on host fitness likely depend on the interactive effects of multiple partners (Larimer et al. 2010). Thus, by examining the effects of whole symbiotic communities on plant fitness, we may gain insight into their ecological role in natural host populations.
Fungal endophytes—including both mutualistic and pathogenic fungi that live within plant tissues—are a well-studied and pervasive group of plant symbionts in nature (Clay and Saikkonen et al. 1998, Clay and Schardl 2002, Schardl et al. 2004, Sánchez Márquez et al. 2012, Rodriguez et al. 2009). Research into the distribution and ecological role of endophytes has been especially intensive in the family Clavicipitaceae, where the asexual genus Neotyphodium and closely related species of the sexual genus Epichloë have provided model systems. These fungi systemically colonize the aboveground tissues of many cool-season grasses (Subfamily: Pooideae) and are vertically transmitted through seeds (Clay and Schardl 2002, Schardl et al. 2004). However, plants also are host to a broad array of horizontally transmitted, nonclavicipitaceous endophytes that generally form nonsystemic localized infections within plant tissues (Sánchez Márquez et al. 2012). These species form a highly diverse community within aboveground plant tissues, although this diversity shows latitudinal clines, being lowest in arctic and boreal biomes and highest in the tropics (Arnold and Lutzoni 2007, Sánchez Márquez et al. 2012). Systemic endophytes typically are considered plant mutualists, increasing resistance, and tolerance to a range of biotic and abiotic conditions such as herbivory (Clay 1988, Bazely et al. 1997, Clay et al. 2005), competition (Marks et al. 1991), drought (Kane 2011, Nagabhyru et al. 2013) and soil salinity (Reza Sabzalian and Mirlohi 2010, Yin et al. 2014) to name a few, although antagonistic interactions also occur (Saikkonen et al. 1998, Faeth 2002, 2009, Gorischek et al. 2013). In contrast, studies of nonsystemic fungal symbionts, although fewer in number, show potentially important but highly variable effects on plant fitness and thus their ecological significance is less well understood (Rodriguez et al. 2009, Sánchez Márquez et al. 2012).

Red fescue (Festuca rubra; Subfamily: Pooideae) is commonly infected with both systemic and nonsystemic fungal endophytes (Zabalgogeazcoa et al. 2006, 2013). It is a perennial grass with a holarctic distribution and is a staple forage plant for nesting and brood-rearing colonies of snow and Canada geese in coastal Canadian subarctic ecosystems (O et al. 2005, 2006, Kotanen and Abraham 2013). Geese in these systems have pronounced effects on the dynamics of plant communities, greatly reducing the abundance of forage grasses in addition to increasing salinity, temperature, and soil anoxia which limit plant recruitment and survival in devegetated areas (Jefferies et al. 2003, 2006, Abraham et al. 2005, Kotanen and Abraham 2013). Given the ability of fungal endophytes to influence host survival (Rudgers et al. 2012) and preference and performance of grazing herbivores (Conover and Messmer 1996, Bazely et al. 1997, Koh and Hik 2007), they may play an important role in shaping the response and performance of F. rubra to biotic and abiotic stresses in the Canadian subarctic.

However, the endophytic fungal community of F. rubra has never been characterized in the Canadian subarctic and thus its potential importance in mediating interactions between nesting geese and their food plants and in structuring northern plant populations remain unknown. We used a combination of microscopic examination and high-throughput sequencing of the ITS2 region of nuclear rDNA to describe the systemic and nonsystemic fungal endophytes of Festuca rubra collected from Akimiski Island, Nunavut Territory, Canada where it occurs on saline, supratidal soils, and is heavily grazed by lesser snow and Canada geese (Martini and Glooschenko 1984, O et al. 2006). We then conducted a fully factorial greenhouse experiment where we manipulated the presence/absence of endophytes, simulated herbivory, salt concentrations, and plant genotype to address the following questions: (1) Which fungal endophytes are present? (2) Do fungal endophytes influence plant survival? (3) Do endophytes influence plant growth and/or tolerance to simulated herbivory? (4) Do the costs and benefits of endophytes vary with soil salinity?

Methods

Study system

Akimiski Island (53 °N 81 °W), Nunavut Territory, Canada is the largest island in James Bay and characterized by a cold, yet humid subarctic climate (Martini and Glooschenko 1984, O et al. 2005). This island is an important site for staging and nesting of several species of geese. In particular, lesser snow geese (Chen caerulescens caerulescens [Linnaeus]) nest in a
relatively dense colony of about 4000 birds along a 35-km stretch of the north shore of this island (Abraham et al. 1999, Kotanen and Abraham 2013), while Canada geese (Branta canadensis (Linnaeus) interior Todd) nest at lower densities throughout the island (Leafloor et al. 1996, 2000). Following hatch, these species intensively graze leaves of forage plants in intertidal and supratidal areas, as well as in nearby freshwater fens (O et al. 2006, Kotanen and Abraham 2013). Geese have had pronounced effects on the composition of intertidal vegetation communities at this site, replacing the forage grass Puccinella phryganodes and sedge Carex subspathacea with devegetated mudflats in heavily grazed areas (Jefferys et al. 2006, Kotanen and Abraham 2013). Such vegetation changes typically are associated with highly altered soil properties, including increased salinity, temperature, and anoxia (Iacobelli and Jefferys 1991, Srivastava and Jefferys 1995, 1996, McLaren and Jefferys 2004). Festuca rubra is the most important forage species in supratidal areas, where it forms extensive stands containing a mosaic of short, heavily grazed or tall, infrequently grazed patches interspersed among devegetated and degraded mudflats (O et al. 2005, 2006, Kotanen and Abraham 2013). While the reasons for the differences between these patches are not well understood, they may reflect geese’s preferences for feeding on short-statured grasses—to ease handling and better nutrient content—as that once tall patches are grazed, they are maintained that way.

In August 2014, 38 plugs (~2 cm × 2 cm) of Festuca rubra were collected from nine sites on the north coast of Akimiski Island, from areas used for grazing by postnesting snow and/or Canada geese and goslings. Because Festuca rubra grows vegetatively through the production of stolons and rhizomes, resulting in the formation of large clonal patches (Grime et al. 2007), we ensured sampling locations were at least 20 m apart to avoid sampling the same individual. While plugs may contain multiple individuals, the vigorous clonal growth of F. rubra suggests this is unlikely and thus henceforth we refer the plugs as distinct genotypes. Festuca rubra is commonly infected asymptomatically with the systemic fungal endophyte Epichloë festucae (Wäli et al. 2006, Zabalgogoa et al. 2006), which lives intercellularly in the sheaths, culms, and rhizomes of the plant and is strictly vertically transmitted through seeds (Rodriguez et al. 2009). In addition, F. rubra is also colonized by a diverse community of vertically and/or horizontally transmitted, non-systemic, fungal endophytes with potentially diverse ecological roles (Zabalgogoa et al. 2013).

Detection of endophytes

The plugs from Akimiski Island were transported to the University of Toronto Mississauga and transplanted into 10-cm pots containing a mixture of potting mix and field soil and maintained in the greenhouse. In September 2014, we determined the presence of systemic, clavicipitaceous endophytes in all plants using a modification of the methods described in Clark et al. (1983). From each of 39 plants, we excised all leaf sheaths from a single, fully formed tiller and boiled them for 10 min in a solution containing 0.1% lactophenol aniline blue and mounted on them microscope slides with cover slips. We then examined each sheath in its entirety at 100×–200× for the presence or absence of sparsely branching, septate, intercellular hyphae characteristic of Neotyphodium/Epichloë endophytes (Clark et al. 1983). If endophytes were not seen during this time, they were presumed absent. To confirm results from the staining procedure, we used a commercially available endophyte detection kit (Phytoscreen Immunoblot Kit #ENDO7973, Agrinostics, Watkinsville, Georgia, USA, http://www.agrinotics.com). These methods were able to reliably detect Epichloë festucae in infected test samples of F. rubra.

Hyphae not matching the typical growth pattern of E. festucae were considered potential nonsystemic endophytes. To identify nonsystemic endophytes, we sent four plant samples (one from near the Ministik River: N53.190, W81.216, one from near the Thompson River: N53.212, W81.310, and two from a goose-banding location, ASO: N53.203, W81.388) with unidentified hyphae for next-generation sequencing of fungal ITS2 genetic markers (Canadian Centre for DNA Barcoding, Biodiversity of Ontario, University of Guelph). We queried returned sequences against known fungal ITS2 regions using the BLAST algorithm in NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). We assigned species identities
when the top match was at least 99% similar to the queried sequence. We then cross-referenced species identities with published literature; if they were known to act as endophytes in other systems, they were presumed to be endophytic. We acknowledge that four samples are insufficient to accurately characterize the diverse community of nonsystemic endophytes in any system. However, our goal here is to make a first step toward understanding of the ecological role these symbionts are playing in this system rather than conducting a comprehensive survey of nonsystemic endophytes.

Experimental design

Using three of the sequenced plants from above (one from ASO, one from the Thompson River, and one from the Ministik River) and one unsequenced plant (from the Ministik River), we set up a fully factorial greenhouse experiment at the University of Toronto Mississauga. We manipulated the presence or absence of endophytes (i.e., E+ or E−), simulated herbivory (i.e., clipped or unclipped), salt concentration (i.e., 0 ppt, 32 ppt, or 64 ppt), and genotype (i.e., four plant genotypes, each with its associated endophytes) for a total of 48 treatments. To generate endophyte-free clones, we split experimental plants into four large ramets in late November 2014 and planted them individually into 8.75-cm square pots filled with potting soil. We used tillers formed from new clonal growth postfungicide application to minimize the effects of the fungicide on host growth and performance. We let tillers grow for 1 week prior to starting experimental treatment applications to minimize the effects of transplant shock and to allow us to remove any plants that failed to establish. At the start of the experiment, we had at least 10 replicates per treatment for a total of 506 plants. We recorded initial plant biomass by measuring the diameter and height to the longest leaf of each plant and calculating the volume of a cylinder (i.e., \(V = \pi r^2 h \)), which is highly correlated with aboveground biomass in this (Santangelo et al. 2015) and closely related species (Faeth and Sullivan 2003). At days 0 and 30 we clipped all plants in the clipping treatment to 1 cm above the soil surface using a sharp razor blade as a proxy for grazing herbivores, as has been successfully done to measure *F. rubra*'s tolerance to herbivory in other systems (Turley et al. 2013, Didiano et al. 2014, Santangelo et al. 2015). We watered plants weekly with 50–100 mL of distilled water containing 0, 32, or 64 parts-per-thousand sea salt, corresponding to control, seawater, and twice seawater treatments, within the range of salt concentrations expected in similar systems (Earle and Kershaw 1989, Iacobelli and Jeffries 1991, Srivastava and Jeffries 1995, McLaren and Jeffries 2004), though high compared to values measured at this site by O et al. (2005).

We recorded survival of plants at day 30 and day 60 as 1 (alive) or 0 (dead). Above and belowground biomass of each of the surviving unclipped plants was harvested after 60 d, oven-dried for 48 h at 60 °C and weighed to the nearest 0.1 mg. Clippings taken at 30 and 60 d were oven-dried for 48 h at 60 °C and weighed to the nearest 0.1 mg. Given that plants were clipped at day 0, the sum of the amount of tissue regrown...
from 0 to 30 d and from 30 to 60 d can be used as a measure of plant tolerance to herbivory.

Statistical analyses
To examine differences in survival among plants, we fit a logistic regression using endophyte status (i.e., E+ or E−), clipping (i.e., clipped or unclipped), salinity (i.e., 0 ppt, 32 ppt, or 64 ppt) and genotype (i.e., four genotypes) as predictors of plant survival. We began with a global model including all main effects and interactions. We then used the “dredge” function in R’s “MuMIn” package (Bartoń 2013) to compare 167 possible models and, among all models with a ΔAIC < 2, we selected the one with the best fit containing the interactions of a priori interest (Appendix S1: Table S1); this model did not include any three- or four-way interactions and results were qualitatively similar to a global model containing all main effects and interactions, and similar to those obtained when parameter estimates are based on averaging of all models with a ΔAIC < 2. We then fitted this model using the “glm” function in R version 3.0.1 (R Core Team 2014). P-values for model terms using the “ANOVA” function, which performs likelihood ratio tests by testing the reduction in deviance equal to dflarger model – dfreduced model. Where significant interactions were found, we performed Tukey HSD post hoc tests to control for multiple comparisons and examine differences among treatment levels. Given the qualitatively different results for survival after 30 and 60 d, we chose to run these analyses separately.

To examine differences in tolerance to herbivory, we fit a one-way ANOVA to plants in the clipping treatment using endophyte status as a predictor of tissue regrowth (in mg) over the 60 d of the experiment. We could not examine how tolerance is mediated by salt concentrations due to high plant mortality at 32 ppt and 64 ppt salt resulting in reduced power to detect differences in tolerance at these levels. We log-transformed tissue regrowth values to improve normality and homogeneity of variance. To examine differences in above and belowground biomass (to meet assumptions of normality) on the final sampling data for unclipped plants only. Log-transformed initial plant volume was used as a covariate in the analysis of aboveground biomass.

RESULTS

Endophyte communities
Microscopic examination of leaf sheaths revealed that 73% of plants contained hyphae of potential endophytes. *Epichloë festucae* was not detected by means of immunoblotting, staining, or ITS sequencing in any plants, but sequencing of four plant samples identified the presence of 12 presumed nonsystemic endophytes (Table 1), with two of these (*Microdochium nitale* and *Plectosphaerella cucumerina*) occurring in all four plants.

Plant survival
After 30 d, plants with nonsystemic endophytes had 72% greater survival than plants treated with fungicide (deviance = 47.82, df = 1, P < 0.001), although this depended on salt concentrations (endophyte × salt interaction, deviance = 7.28, df = 2, P = 0.021, Fig. 1a). Specifically, endophytes increased survival by 53% at 0 ppt salt (Tukey HSD P < 0.001, Fig. 1a), 90% at 32 ppt (Tukey HSD, P < 0.001, Fig. 1a) and 90% at 64 ppt salt, although the latter was nonsignificant (Tukey HSD, P = 0.477, Fig. 1a). The effects of simulated herbivory on plant survival depended on salt concentrations (clipping × salt interaction, deviance = 7.21, df = 2, P = 0.027), although clipping had no significant overall effect on survival (deviance = 0.91, df = 1, P = 0.341). Plant genotypes differed in survival (deviance = 25.73, df = 3, P < 0.001), although this effect again depended on salt concentrations (genotype × salt interaction, deviance = 21.79, df = 6, P = 0.001) and the presence of endophytes (genotype × endophyte interaction, deviance = 10.59, df = 3, P = 0.014). For each genotype, endophytes either increased survival or had no significant effect (Appendix S1: Fig. S2a). None of the best models included a significant three-way interaction, meaning that the effects of endophytes on salt and herbivore tolerance were not statistically plant genotype-dependent.
After 60 d, the presence of nonsystemic endophytes increased plant survival by 45% (deviance = 7.17, df = 1, \(P = 0.007 \)), although this depended on salt concentrations (endophyte × salt interaction, deviance = 6.74, df = 2, \(P = 0.034 \), Fig. 1b). Specifically, endophytes increased survival by 48% at 0 ppt salt (Tukey HSD, \(P = 0.025 \), Fig. 1b), while reducing survival by 20% at 32 ppt, although this effect was not significant (Tukey HSD, \(P = 0.999 \), Fig. 1b). Endophytes had no effect on survival at 64 ppt; instead, there was complete mortality of infected and uninfected plants (Fig. 1b).

Interestingly, final survival in response to simulated herbivory was differentially influenced by the presence of endophytes (endophyte × clipping interaction, deviance = 8.65, df = 1, \(P = 0.003 \), Fig. 2), a result that was not apparent after 30 d. Specifically, infected plants had 110% higher survival than uninfected plants when unclipped (Tukey HSD, \(P = 0.019 \), Fig. 2) but there was no significant effect of endophytes on plant survival...
in the presence of clipping (Tukey HSD, $P = 0.999$, Fig. 2). Furthermore, plant genotypes differed in survival (deviance $= 12.30$, df $= 3$, $P = 0.003$), although this effect depended on the presence of endophytes (genotype × endophyte interaction, deviance $= 20.75$, df $= 3$, $P < 0.001$). Again, endophytes either increased survival or had no significant effect, depending on the plant genotype (Appendix S1: Fig. S2b), and the best fit model did not include a significant 3-way interaction.

Plant biomass production and tolerance to herbivory

The presence of nonsystemic endophytic fungi reduced tolerance to simulated herbivory by 69% ($F_{1, 44} = 6.39$, $P = 0.015$, Fig. 3a). Endophytes in unclipped plants had no significant effect on plant aboveground biomass production ($F_{1, 55} = 0.742$, $P = 0.393$, Fig. 3b) but reduced final belowground biomass by 35.7% ($F_{1, 56} = 5.285$, $P = 0.025$, Fig. 3c).

DISCUSSION

Endophytic community of Festuca rubra

Although we found ample evidence of infection by nonsystemic endophytes, we found no evidence of systemic infection by *Epichloë festucae* in any sampled *F. rubra* populations, while the 73% of plants with nonsystemic endophytes reported here is likely conservative given the limited number of tissue samples examined. While the frequency of the grass-*Epichloë* symbiosis varies

Fig. 2. Mean proportion of surviving *Festuca rubra* plants after 60 d either infected or uninfected with nonsystemic endophytes in the presence ($n_{\text{infected}} = 137$, $n_{\text{uninfected}} = 115$) or absence ($n_{\text{infected}} = 137$, $n_{\text{uninfected}} = 110$) of clipping to simulate herbivore damage. All points represent means ± 1SE. Asterisks denote significant differences (Tukey HSD, $P < 0.05$) between infected and uninfected plants within each level of the clipping treatment.

Fig. 3. Boxplots showing (a) tolerance to herbivory, (b) aboveground, and (c) belowground biomass of *Festuca rubra* plants infected or uninfected with nonsystemic endophytes. Note log-transformed response variables in (a) and (b). Original data in (a) and (b) in mg. Boxplots show medians (horizontal line), means (open circles), interquartile range (IQR) as 25th and 75th percentiles (boxes), and 1.5× IQR (whiskers).
widely in nature (Leuchtmann 1992, Iannone et al. 2011), our result is consistent with a previous survey finding a greater proportion of uninfected Festuca populations at higher latitudes (Semmartin et al. 2015) and suggests that grass–Epichloë interactions are impaireid by the cold conditions of the Canadian subarctic. In fact, colder temperatures can reduce the fidelity of Epichloë transmission (Ju et al. 2006), which may result in lower endophyte frequencies in natural populations and shape endophyte-host population dynamics (Afkhami and Rudgers 2008, Gundel et al. 2011a,b, Semmartin et al. 2015). Furthermore, geese can significantly increase the availability of nitrogen in grazed areas, in part due to the addition of goose droppings (Bazely and Jefferies 1985, 1989). High nitrogen concentrations may favor uninfected plants resulting in selection against grass–Epichloë symbioses (Faeth and Fagan 2002). Finally, their absence may result from isolation: Akimiski is an offshore island and likely has never been connected to the mainland.

In contrast with these results, microscopic analysis and next-generation sequencing revealed a complex community of nonsystemic endophytes. Nonsystemic fungal endophytes (including pathogens) are ubiquitous, although species-level diversity and abundance tend to decrease toward poles (Arnold and Lutzoni 2007, Sánchez Márquez et al. 2012). While the relatively low diversity reported here corroborates this view, one finding is of particular interest. A recent survey of nonsystemic endophytes of F. rubra in northern Finland found no evidence of infection by species of Alternaria or Cladosporium, two species commonly infecting temperate grass populations (Sánchez Márquez et al. 2012), and the authors suggest these genera may be uncommon at arctic latitudes (Zabalgogeazcoa et al. 2013). While our study populations are not as far north as theirs, our detection of both these genera in our plant samples suggests their distributions stretch at least as far north as the Canadian subarctic. In line with the previous study, we also found evidence of Microdochium nivale in our study populations, a common pathogenic snow mold at higher latitudes (Zabalgogeazcoa et al. 2013). Two endophytes, Cladosporium sphaerospermum and Plectosphaerella cucumerina, were found in all plant samples, potentially reflecting host colonization in a common greenhouse environment.

Ecological role of nonsystemic endophytes

While the ecological and evolutionary consequences of grass symbioses with vertically transmitted systemic endophytes are well documented (Clay and Schardl 2002, Saikkonen 2004, Saikkonen et al. 2006), little is known about the potential role that the more diverse community of nonsystemic endophytes may play in natural populations (Sánchez Márquez et al. 2012). Here, we have shown that nonsystemic endophytes from the Canadian subarctic mediate a trade-off in plant performance by increasing survival of F. rubra, but reducing tolerance to simulated herbivory. The positive effects on survival suggest the fungi we detected are not simply pathogens, although their effects are also not simply beneficial. While we cannot attribute these effects to the role of any one fungal taxon, our results suggest that these symbionts serve important ecological functions in natural systems despite often being overlooked.

Moderate grazing by nesting and brood-rearing geese can result in the production of grazing lawns, where the quantity and quality of forage are maintained by the herbivores that are feeding on it (Cargill and Jefferies 1984, Hik and Jefferies 1990, Jefferies et al. 2003, O et al. 2006). However, such effects are often unstable (Abraham et al. 2005, Jefferies 1988, Jefferies and Rockwell 2002, Jefferies et al. 2003). Over time, grazing and grubbing by geese can reduce vegetation cover, increasing temperatures and evaporation rates and ultimately result in hypersaline soils that reduce plant survival and limit plant recruitment (Iacobelli and Jefferies 1991, Srivastava and Jefferies 1996, O et al. 2005). Our results suggest that nonsystemic endophytes can play a role in enhancing plant survival under otherwise favorable conditions; unfortunately, this initial benefit was lost in clipped and saline treatments, suggesting it may be of limited value in sites severely grazed by or dev egetated by geese. Still, endophytes may at least delay plant mortality in saline soils, as evidenced by the greater survival of infected plants in all salt treatments after 30 d—an effect that disappeared by the end of the experiment. As well, although the salt concentrations we used (32 ppt and 64 ppt) are not...
unusual in systems severely degraded by snow geese (Iacobelli and Jeffries 1991, Srivastava and Jeffries 1995, McLaren and Jeffries 2004), they are much higher than the values reported by O et al. (2005) for devegetated soils at our study location (<5 g/L). These values are point estimates based on limited sample sizes in patchily damaged areas, and certainly are low compared to many more severely damaged sites. Nonetheless, they indicate that salinity may not immediately reach high values in devegetated areas; in sites such as these, endophytes may increase survival of remaining plants, even if this benefit ultimately is lost as salt continues to accumulate.

While nonsystemic endophytes seem to increase plant survival in our system, we found they reduce regrowth following simulated herbivory suggesting an endophyte-mediated trade-off between plant performance and herbivore tolerance. Endophyte-mediated trade-offs have been reported for systemic endophytes (i.e., Epichloë/Neotyphodium), where they can reduce host survival but increase population growth (Rudgers et al. 2012), increase reproductive biomass but reduce reproductive effort (Gundel et al. 2013), and increase resistance to herbivores at the cost of reduced tolerance (Bultman et al. 2004). Tolerance—defined as a plant’s ability to maintain fitness in the presence of herbivores (Rosenthal and Kotanen 1994, Strauss and Agrawal 1999)—is a complex plant trait subject to both environmental and genetic variation and can alter patterns of resource allocation following damage (Rosenthal and Kotanen 1994, Núñez-Farfán et al. 2007). Thus, given the metabolic demands of harboring symbionts, nonsystemic endophytes may alter patterns of resource allocation thereby reducing F. rubra’s ability to regrow lost tissue in the presence of herbivores. Similarly, the reduced belowground biomass production of infected plants detected here suggests endophytes may have a role in reducing their hosts’ ability to assimilate resources required for tissue regrowth. This may also explain why the survival benefits imparted by endophytes were only detected in the absence of clipping, where plants do not have to expend additional resources regrowing damaged tissues. Finally, the production of costly nitrogen-rich alkaloids by systemic endophytes (Leuchtmann et al. 2000), while increasing resistance, may explain their reduced tolerance to herbivores (Bultman et al. 2004). While we did not quantify resistance here, nonsystemic endophytes have been shown to increase host resistance to herbivores in other systems. For example, nonsystemic endophytes of Carex brevicollis produce alkaloids that are toxic to cattle (Canals et al. 2014) and Cladosporium sphaerospermum, an endophyte detected here, can produce alkaloids and other compounds (e.g., phenolics) that may explain the reduced survival of Spodoptera litura caterpillars fed infected cauliflower (Thakur et al. 2013). If endophytes in our system also produce herbivore-deterrent alkaloids, this may in part explain the reduced tolerance of infected grasses.

While endophytes reduced plant tolerance to herbivory, they had no effect on aboveground biomass production. This is interesting given the role many nonsystemic endophytes, including Cladosporium sphaerospermum, Fusarium sp., and Chrysosporum sp., have in producing gibberellins and other plant growth hormones (Hamayun et al. 2009a, b, Rai et al. 2014). However, it is possible that antagonistic interactions of beneficial symbionts with known plant pathogens, such as the snow mold Microdochium nivale, outweighed any potential benefits on growth conferred by potential mutualists. This result highlights our need to better understand the role that individual symbiotic taxa are playing, a goal that could not be achieved here. Controlled inoculation experiments with some of the nonsystemic endophytes detected here are thus required to tease apart the ecological effects of each and provide insight into their role in subarctic F. rubra populations. Nonetheless, it is clear that this often overlooked community of nonsystemic endophytes has important consequences on plant performance that are contingent upon interactions with both biotic and abiotic stresses.

Acknowledgments

This research was supported by NSERC with assistance from the Ontario Ministry of Natural Resources. Numerous members of the Akimiski Field Station provided assistance, and we would especially like to thank Sarah Hagey (OMNR) for organizing the collection of plant samples, and Ken Abraham (OMNR) for commenting on a draft.

SANTANGELO AND KOTANEN
of the manuscript. Marc Vicari kindly provided endophyte-containing Festuca for use as positive controls. Cheyenne Cameron helped apply treatments and provided logistical support throughout the experiment.

Literature Cited

coasts of Akimiski Island, James Bay, Northwestern
Territories, Canada: geology, geomorphology, and

maintenance of vegetation mosaics in an arctic salt

Nagabhyru, P., R. D. Dinkins, C. L. Wood, C. W. Bacon,
and C. L. Schardl. 2013. Tall fescue endophyte ef-
facts on tolerance to water-deficit stress. BMC Plant
Biology 13:1.

The evolution of resistance and tolerance to herbi-
vores. Annual Review of Ecology, Evolution, and
Systematics 38:541–566.

Survival and growth of the forage grass *Festu-
ca rubra* in naturally and artificially devegetated
sites in a sub-arctic coastal marsh. Écoscience

and grazing lawns: responses of the grass *Festuca
rubra* to defoliation in a subarctic coastal marsh.
Botany- Botanique 93:1–9.

Rai, M., D. Rathod, G. Agarkar, M. Dar, M. Brestic,
G. M. Pastore, and M. R. M. Junior. 2014. Fungal
growth promoter endophytes: a pragmatic ap-
proach towards sustainable food and agriculture.
Symbiosis 62:63–79.

unspecialized endophytic fungus on specialized
plant-herbivorous insect interactions. Oecologia
114:541–547.

R Core Team. 2014. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria.

Reza Sabzalian, M., and A. Mirlohi. 2010. *Neotyphodi-
um* endophytes trigger salt resistance in tall and
meadow fescues. Journal of Plant Nutrition and

Rodriguez, R. J., J. F. Jr White, A. E. Arnold, and R. S.
Redman. 2009. Fungal endophytes: diversity and

plant tolerance to herbivory. Trends in Ecology &

Rudgers, J. A. J., T. E. X. T. Miller, S. M. S. Ziegler, and
K. D. K. Craven. 2012. There are many ways to be
a mutualist: endophytic fungus reduces plant sur-
vival but increases population growth. Ecology
93:565–574.

Saikkonen, K., S. H. Faeth, M. Helander, and T. J. Sul-
ivan. 1998. Fungal endophytes: a continuum of
interactions with host plants. Annual Review of

Saikkonen, K., P. Lehtonen, M. Helander, J. Koricheva,
and S. H. Faeth. 2006. Model systems in ecology:
dissecting the endophyte–grass literature. Trends

Sánchez Márquez, S., G. F. Bills, N. Herrero, and I.
Zabalgozaezcoa. 2012. Non-systemic fungal endo-

Santangelo, J. S., N. E. Turley, and M. T. J. Johnson.
2015. Fungal endophytes of *Festuca rubra* increase
in frequency following long-term exclusion of rab-

Schardl, C. L., A. Leuchtmann, and M. J. Spiering.
2004. Symbioses of grasses with seedborne fun-
gal endophytes. Annual Review of Plant Biology

Semmartin, M., M. Omacini, P. E. Gundel, and I. M.
Hernández-Agrament. 2015. Broad-scale vari-
ation of fungal-endophyte incidence in temperate

vegetation and soil salinity: a consequence of goose
foraging in an arctic salt marsh. Canadian Journal
of Botany 73:75–83.

feedback: Herbivory, plant growth, salinity, and
the desertification of an Arctic salt-marsh. Journal
of Ecology 84:31–42.

Strauss, S. Y., and A. A. Agrawal. 1999. The eco-
logy and evolution of plant tolerance to herbivory.

Thakur, A., S. Kaur, A. Kaur, and V. Singh. 2013. En-
hanced resistance to *Spodoptera litura* in endophyte
infected cauliflower plants. Environmental Ento-

Turley, N. E., W. C. Odell, H. Schaefer, G. Everwand,
M. J. Crawley, and M. T. J. Johnson. 2013. Contem-
porary evolution of plant growth rate following
experimental removal of herbivores. American
Naturalist 181:S21–S34.

Varvas, T., K. Kasekamp, and B. Kullman. 2013. Prelim-
inary study of endophytic fungi in timothy (*Phleum

Vega, F. E., F. Posada, M. Catherine Aime, M. Pava-Ripoll,
F. Infante, and S. A. Rehner. 2008. Entomopathogenic
fungal endophytes. Biological Control 46:72–82.

Wäli, P. R., J. U. Ahlholm, M. Helander, and K. Saik-
konen. 2006. Model systems in ecology: dissection of the
systemic grass endophyte *Epichloë festucae* in fine

Waqas, M., A. Khan, L. Ali, S.-M. Kang, Y.-H. Kim,
and I.-J. Lee. 2013. Seed germination-influencing

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1260/supinfo