Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Botany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjb-2016-0123.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Commentary</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Jun-2016</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Fenton, Nicole; Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts</td>
</tr>
<tr>
<td>Keyword:</td>
<td>restoration, boreal forests, boreal peatlands, anthropogenic disturbance</td>
</tr>
</tbody>
</table>
Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory

Nicole J. Fenton

Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue
445 Boul de l’Université, Rouyn-Noranda, Qc, J9X 4E5. 1-819-762-0971 ext 2312;
fax: 1-819-797-4727; nicole.fenton@uqat.ca

* corresponding author
Abstract

Canada’s boreal biome is a mosaic of forests and peatlands. These ecosystems have developed dynamically, periodically affected by disturbance events of significant spatial extent and variable severity, reducing ecosystem biomass. The same ecosystem types typically regenerate from biological legacies. However, concern is growing about the impact of these different anthropogenic disturbances, particularly compound disturbances including climate change, which opens the door to shifts to alternate stable states. One strategy promoted to regulate anthropogenic disturbance is the “mitigation hierarchy” for development projects, where impacts on ecosystems are avoided, mitigated, restored or compensated. This practical approach is not yet integrated into disturbance and resilience theory. Here, I develop an integrated view of the mitigation hierarchy, and resilience and disturbance theory, in a boreal context using ecosystem services to measure ecosystem state in a two-step process that first models loss of ecosystem function and then integrates the mitigation hierarchy and resilience theory. The application of this model is discussed in the context of restoration studies after different types of catastrophic anthropogenic disturbance. These studies, some of which are published in this special issue, highlight the important role of bryophytes and understory plants in setting restoration targets and developing criteria and indicators of success.

Keywords: restoration; boreal forests; boreal peatlands; anthropogenic disturbance
Introduction

Since deglaciation, the terrestrial component of Canada’s vast boreal biome (5,519,790 km2 total; Brandt 2009) has been made up of a mosaic of forest stands and peatlands (currently 55% and 13% respectively; Brandt 2009, Tarnocai et al. 2011). Over approximately 7000 years (Ritchie 2004, Williams et al. 2004), these ecosystems have developed dynamically as they are periodically affected by disturbance events of significant spatial extent and variable severity (e.g. fire, insects, floods, drought; Holling 1992, Payette 1992, Vile et al. 2011). Typically these disturbances such as forest or peatland fires or insect outbreaks reduce biomass present in the ecosystem and locally disrupt substrates (Shetler et al. 2008; Bergeron and Fenton 2012). As all of the biomass or substrates are rarely removed, the same ecosystem types typically regenerate from biological legacies spared by the natural disturbance event (Rowe 1983, Brumelis and Carleton 1989, Schimmel and Granström 1996). Consequently ecosystem functions (e.g. carbon fixation, nitrogen cycling) are maintained across the landscape as individual ecosystems are disturbed and regenerate.

While most boreal ecosystems are resilient as they regenerate to their initial state after disturbance, situations where ecosystems shift to an alternate stable state (Beisner et al. 2003) are present (e.g. Jasinski and Payette 2005, Boiffin and Munson 2013). Typically these are compound disturbances that eliminate the propagules (sexual or asexual reproductive structures) that permit regeneration; for example two successive fires in a short period that eliminate available tree seed may shift a forest stand to an open heath. In these cases, ecosystem functions are not maintained or are reduced across the landscape as the alternate stable state fulfills different functions. For example, when a
forest fails to regenerate and is replaced by a heath, biomass production drops, among
other consequences.

Large scale anthropogenic disturbances appeared on the Canadian boreal
landscape as European colonists extracted natural resources from boreal ecosystems. In
particular, since 1800 forest harvest, and mining of different types of substances such as
peat, coal, oil and gas, metals and minerals (Brandt et al. 2013) have had significant
impacts on the boreal biome. Despite the size of the boreal biome in Canada, concern is
growing about the impact of these different anthropogenic disturbance types on the boreal
biome (Vernier et al. 2013). This is particularly true in the context of compound
disturbances including climate change (Yamasaki et al. 2008, Kettridge et al. 2015),
opening the door to shifts to alternate stable states that may stop providing some of the
ecosystem functions and services that society depends upon (Oliver et al. 2015).

Faced with social concern for the state of local and global ecosystems, industries
and governments have adopted different programs to regulate anthropogenic disturbance,
and preserve ecosystem functions. One strategy promoted to regulate anthropogenic
disturbance is the “mitigation hierarchy” for development projects, where impacts on
ecosystems (generally considered to be due to habitat loss) are avoided, mitigated,
restored or compensated, in that order (McKenney and Kiesecker 2010). While the
application of this hierarchy has been criticised as it is typically applied only to local
habitat loss, and the avoidance step is frequently ignored (Gardner et al. 2013, Clare et al.
2011), it offers a practical framework for action. Ecological landscape planning, where
ecological or socially important sites are identified before development, is an example of
an “avoidance” strategy (Clare et al. 2011). Forest certification (e.g. the National Boreal
Standard, Forest Stewardship Council Canada Working Group 2004) is an industry specific program that sets out guidelines on how to avoid and mitigate impacts of forest management on the ecosystems and the people inhabiting the forest region.

Restoration/reclamation techniques are currently being developed for boreal landscapes following large catastrophic anthropogenic disturbances (Vitt and Bhatti 2012, Burton 2014, Kuuluvainen et al. 2015, Macdonald et al. 2015). The main challenge is defining the restoration or reclamation target and indicators of success. Burton (2014) and Stanturf et al. (2014), and the articles featured in this special issue suggest using ecosystem functions to define endpoints and indicators of success. The focus on function rather than ecosystem composition is important because community composition is transitory (on a millennial scale) as species respond individually to the environment (Williams and Jackson 2007).

While not explicitly specified, the aim of the mitigation hierarchy is essentially to ensure or generate ecosystem resilience. Theoretical models of ecosystem resilience have multiplied (e.g. Hodgson et al. 2015) as we aim to determine how far we can alter natural systems without destroying their capacity to recover and thus provide ecosystem services. When the capacity for recovery of an ecosystem is lost it may pass into an alternate stable state (Oliver et al. 2015). Resilience and recovery have been defined in a variety of ways, however here I follow Hodgson et al. (2015) and use resilience as the global term encompassing both the ability of a system to resist change in the face of disturbance and its ability to recover to its original state after disturbance. The concept of resilience is inherent in most disturbance models as they generally incorporate the concept of increasing recovery time after for disturbances of increasing severity and frequency.
Similarly, system resilience will decrease as disturbances eliminate or reduce elements important for recovery.

Here, I propose an integrated view of the mitigation hierarchy, and resilience and disturbance theory, in a boreal context using ecosystem services to measure ecosystem state in a two-step process that first models loss of ecosystem function and then integrates this with the mitigation hierarchy and resilience theory. This model provides a framework for the articles describing restoration and reclamation in the boreal context that follow as part of this special issue. It can also give a holistic view of research and actions being undertaken in the boreal context beyond the special issue, with the theoretical underpinnings that provide links among studies and suggest hypotheses. More practically, this holistic view could be useful for evaluating and comparing the effects of different disturbance events on different ecosystems. This comparison can then be used in landscape and regional development planning, to prevent ecosystem service loss due to less desirable alternate stable states following disturbance events.

Modelling loss of ecosystem function

Most disturbances impact many parts of an ecosystem at once. This model, like Robert’s (2004) and Ryan’s (2002), incorporates impacts on both the aerial biomass and the substrate (mineral soils and peat soils). Disturbance severity, measured as a loss of ecosystem function, is determined using three proposed variables from Pickett and White’s seminal book (1985): biomass and propagule removal, substrate degradation/disturbance, and mineral and peat soil removal (presented with theoretical distributions in Fig 1a). These variables are determined as the percent of the original
biomass or substrate removed or degraded in terms of area and depth. Biomass here includes both living and dead material and implies that when all or nearly all of the biomass is removed, propagules (sexual and asexual reproductive structures) are also removed. Therefore, as the amount of biomass removed increases, there are fewer biological legacies to facilitate recovery and the ecosystem is increasingly dependent on dispersal of propagules from outside sources for regeneration (Seidl et al. 2014). For example, when peatlands are mined below 30cm from the surface, no viable Sphagnum spp. propagules remain in the system, and colonization is dependent on outside propagules (Robert et al. 1999, Gonzalez and Rochefort 2014). Similarly, when salvage logging is undertaken before seed abscission, few tree seeds are available for natural regeneration of the forest (Splawinski et al. 2014).

Biomass removal is a common event in natural disturbances in boreal ecosystems, and as such large amounts of biomass need to be removed before there is a sizeable effect on ecosystem function, or recovery. For example, harvest of forest trees alone does not significantly affect ecosystem function. However, when trees are harvested, and stumps and top soil are removed, net ecosystem exchange changes from a sink to a source (Figure 1B; data estimated from Webster et al. 2016). Similarly, if the ecosystem functions C fixation and C stocking for peatlands are examined, significant amounts of peat need to be removed before these functions are completely lost (Figure 1C; data collated from Robert et al. 1999, Gonzalez et al. 2014, House et al. 2012).

Substrate degradation refers to changing the mineral and peat soils that are the foundations of terrestrial ecosystems. When the nature of the substrate is degraded it can no longer support the same biomass, resulting in a change in ecosystem state. An
example is the change in peat soils after forest harvest which results in reduced growth rates for the regenerating trees (Lafleur et al. 2010).

Finally, when the mineral and peat soils are not degraded but simply removed, there is a profound impact on the ecosystem, as it implies that all of the biomass is also removed, and no biological legacies are left to promote recovery. The foundation of the ecosystem is profoundly altered. Examples of this are in situ or open mining of oil or minerals. These very severe disturbances very rarely occur naturally in the boreal context with the possible exception of deglaciation. However even then some biological legacies may remain (LaFarge et al. 2013). These three variables are nested because a disturbance that degrades or removes substrate will also remove biomass (Fig. 1a). Together these three variables give an overall view of the effect of a disturbance event on the ecosystem as the composite variable, change in ecosystem state.

Modelling resilience, mitigation and restoration

The relationship between the composite change variable in ecosystem state and the chance of recovery for different ecosystems can also be modelled. An ecosystem that experiences sufficient change in ecosystem function such that it is unable to recover would transition to an alternate stable state (Fig. 2). The amount of ecosystem functions lost required to switch between stable states would vary among ecosystems (compare solid and dashed lines in Fig. 2). An example would be the development of treeless peat bogs after winter forest harvest in paludifying black spruce boreal forests (Lafleur et al. 2010). Even though only ecosystem functions associated with tree growth are lost, a new ecosystem now exists. However, as indicated by the small difference between ecosystems
A and B in figure 2, restoring the initial ecosystem will be simpler than in a system where there is a greater difference between alternate stable states (e.g. peatland forest vs. agricultural field (e.g. Fig. 2 solid or dotted lines).

In this model, mitigation refers to the actions taken to reduce the chances of switching stable states. This may include changing the disturbance characteristics, such as reducing severity for example, using the same cases as those listed above, by limiting the depth of peat disturbance to permit natural regeneration from in situ biological legacies, or logging a burned forest after seed drop (Splawinski et al. 2014).

Restoration/reclamation are actions undertaken to force the system back to the initial state, such as the forest and wetland reclamation that is presently occurring in Alberta (MacDonald et al. 2015; Borkenhagen and Cooper 2016; Vitt et al., and Harstock et al. this issue). Compensation is accepting the fact that it is impossible to return to Ecosystem A, and paying for the loss of ecosystem functions.

Implications and special issue

Research over the past decades has focussed on how to manage our boreal ecosystems (forest and peatland) for resilience, with different studies on the impacts and suggested management modifications to silvicultural practices (e.g. Fenton et al. 2009, Caners et al. 2013, Fenton et al. 2013).

However, research now needs to focus on anthropogenic disturbances that cross the line and force ecosystems into a new stable state, in order to develop techniques to restore them to their initial state. In this special issue of Botany, four articles discuss restoration of peatland and forest ecosystems after disturbances that resulted in high
levels of change in state of the original system: *in situ* mining of oil sands (Vitt et al.; Harstock et al.), open pit gold mining (Guittonny-Larcheveque et al.), and peat extraction (Rochefort et al.). Individually these studies represent case studies of restoration, where the authors document efforts to restore the original systems after individual anthropogenic disturbances. However, together they illustrate the different issues facing this process, how do you choose your endpoint for restoration? Here different cases are discussed, fen, forest, agricultural field. How do you determine whether you have a “normal” example of this endpoint? Species composition, soil characteristics, or ecosystem function (e.g. nitrogen fixation)? Questions of technique but also of theory need to be further developed in the future to ensure that restoration rebuilds the appropriate ecosystem in the appropriate landscape, and that success is measured in a multi-criteria environment (Burton 2014, Stanturf et al. 2014).

These studies also highlight the importance of understory species, in many cases bryophytes, as keystone species for the regeneration of boreal ecosystems. Bryophytes dominate most boreal systems and drive many ecosystem services in these ecosystems (Turetsky et al. 2012, Macdonald et al. 2015) and have been suggested as foundation species for restoration (Daly et al. 2012, Vitt et al. this issue). While the presence of charismatic mega flora such as trees are seen as a symbol of restoration success, the presence and composition of the ground layer may be more important in determining endpoint and success. With this special issue, the composition this point is emphasized in the context of different environments (continental fens, coastal bogs/fens, boreal forests) with a focus on restoration end points and criteria for success.
Acknowledgments

This special issue, and the inspiration for this comment follow from the symposium “Ecological impacts and restoration of industrial sites: roles of bryophytes and graminoid vascular plants” organised by Dr Line Rochefort (Université Laval) and myself at the international conference Botany 2015 held in Edmonton, Alberta, Canada in July, 2015. I thank all the symposium presenters for their very stimulating conferences, and discussions that followed. In particular I thank Dr Rochefort for accepting to organise the symposium with me. It was a pleasure to work with her. Funding for the symposium was provided by the Canadian Botanical Association and the Botanical Society of America.
References

http://dx.doi.org/10.1890/ES13-00038.1

Gonzalez, E., and Rochefort, L. 2014. Drivers of success in 53 cutover bogs restored by a

Rowe, J. S. 1983. Concepts of fire effects on plant individuals and species. In The role of fire in northern circumpolar ecosystems. Edited by RW Wein and DH MacLean.

Figure 1: Modelling ecosystem function loss. (A) Theoretical representation of a composite disturbance variable, ecosystem function lost, generated from three disturbance variables, biomass removal, substrate degradation, and substrate removal. (B) Application of the model using data from Weber et al. (2016) on biomass harvesting in boreal forest stands. As more biomass is lost, ecosystem function (difference in net ecosystem exchange) is lost. (C) Application of the model using data from peatlands (Robert et al. 1999; Gonzalez and Rochefort 2014; House et al. 2012). As biomass is removed, two ecosystem functions (carbon stocking and carbon fixation) are lost.

Figure 2: Theoretical model illustrating the shift between two alternative stable states (Ecosystem A vs B) for three different systems (solid, dashed and dotted lines). As ecosystem functions are lost, the system loses resemblance to Ecosystem A, until it shifts to Ecosystem B. Actions taken before the state shift mitigate the effects of loss of ecosystem functions and facilitate recovery to ecosystem A. Once the state shift has been determined, restoration or compensation are required.
Ecosystem function lost

% of original affected

soil removal
sub. disturbance
biomass removal

A - Theoretical distribution

% function lost

% biomass removed

B - Forest

decrease in NEE

C - Peatland

C stocking
C fixation

% function lost

% biomass removed

https://mc06.manuscriptcentral.com/botany-pubs
Resemblance to ecosystem

% of ecosystem functions lost

mitigation

restoration

compensation
Resemblance to ecosystem functions lost

Mitigation

Restoration

Compensation

% of ecosystem functions lost