Abstract

The popular approach of using overly simplistic total scores as the sole indicator of learner performances in the complex discipline of mathematics, restricts the recognition of remedial needs (Nichols, 1994). This study analyzed a random sample of 5,000 Grade 6 learner responses, out of 127,302 to the 2013-2014 EQAO assessment, to better understand mathematical performances. Firstly, an Exploratory Factor Analysis was performed to investigate the dimensionality of the test, followed by an investigation of strengths and weaknesses in these dimensions using a Latent Class Analysis (Collins & Lanza, 2010). Results revealed that the majority of learners were strong in their ability to apply mathematical knowledge to solve problems, but weak in applying process or thinking skills to do the same. This pattern was consistent regardless of linguistic background. These results highlight the urgent need to not only remediate learners’ mathematical thinking abilities, but also future research into this skill dilemma.
Acknowledgments

Firstly, many thanks to our Lord God Almighty for health, strength and the opportunity to pursue this goal. To my supervisor Dr. Eunice Jang, thank you for all the support and endless patience. As well as for sharing your limitless expertise to help me grow in my passion for assessment and measurement. Lastly, but definitely not least of all, many thanks to my family. To my husband for the love and constant reminder of my capabilities, to Owen and Kelsie for your patience and understanding when I could not spend time with you, and my mom for the endless hours of babysitting.
Table of Contents

Acknowledgments .. iii

Table of Contents .. iv

List of Tables ... vi

List of Figures .. vii

Chapter 1 Introduction ... 1

Chapter 2 Literature Review ... 5
 2.1 Largescale Assessments in Education ... 5
 2.1.1 Scoring and Reporting Practices of Largescale Assessments 6
 2.1.2 Test Development Procedures .. 7
 2.2 Mathematics Education and Curriculum .. 8
 2.3 Factors Predicting Mathematical Performances ... 11

Chapter 3 Method .. 13
 3.1 Participants ... 13
 3.2 Instrument .. 14
 3.3 Data Analysis ... 17
 3.3.1 Phase 1: Establishing the Dimensionality of the Assessment 17
 3.3.2 Phase 2: Identifying Mathematical Strengths and Weaknesses 19
 3.3.3 Phase 3: Predicting Class and Profile Membership 21

Chapter 4 Results ... 23
 4.1 Dimensionality Characteristics .. 23
 4.1.1 Determining the Best Fitting Factor Solution Model 24
 4.2 Mathematical Strengths and Weaknesses .. 30
 4.3 Predicting Mathematics Profiles by Language and Length of Residence Background 36

Chapter 5 Discussion ... 38
5.1 What Characterizes the Dimensionality of the EQAO Mathematics Achievement Test Administered to Grade 6 Students in Ontario Public Schools? ...38

5.2 In which Mathematical Dimensions and Related Strands do Students Demonstrate Strengths and Weaknesses in their Mathematical Achievement? ...40

5.3 To What Extent Are Mathematics Performance Profiles Predicted by Student Background, such as Language and Residence Status? ...42

5.4 Study Limitations ...43

5.5 Recommendations and Future Research ...44

References ..49
List of Tables

Table 1 Final Random Sample used for the Analysis ... 14
Table 2 Knowledge and Skills Categories, Strands and Descriptive Statistics of 28 Mathematics Items ... 16
Table 3 Six Groups Created Based on ESL and Time Lived in Canada 21
Table 4 Eigenvalues of Correlation Matrix indicating Total Variance Explained
.. 23
Table 5 EFA Model Fit Statistics of the 1 to 3 Factor Solutions on 28 Mathematics Items 25
Table 6 Factor Loadings of the 23 Items used in the Final Three Factor Solution Model....... 26
Table 7 Promax Factor Correlations Between 3 Factors ... 27
Table 8 LCA Fit Statistics for 2, 3 and 4 Classes .. 30
Table 9 Item-groups Created to Describe Mathematical Performances of Grade 6 Learners .. 31
Table 10 Parameter Estimates for Six Groups on 3 Classes ... 36
List of Figures

Figure 1. Scree plot... 24

Figure 2. Three performance profiles of Grade 6 learners in 11 mathematical item-groups. 32
Chapter 1 Introduction

The teaching and learning of mathematics has long since formed a fundamental part of the curriculum in educational settings all across the globe. As individuals, the value we place on the teaching and learning of this discipline is evident in the way in which we count for babies even before they can speak, or the way in which we delight in the accomplishment of shape recognition by two year olds. *The Ontario Curriculum, Grades 1-8: Mathematics, 2005* document further illustrates the importance of mathematical skills by emphasizing that it equips students with knowledge, skills and habits of mind that are essential for successful and rewarding participation in information and technology-based societies. According to Stokke (2015), strong mathematical knowledge predicts future academic achievement and is needed in order to be successful in the workforce. Furthermore, achievement in this fundamental subject has been directly related to the career trajectory of an individual (Shapka, Domene & Keating, 2006). The National Council of Teachers of Mathematics (2000) sums up the importance by stating that mathematical competence opens doors to productive futures, while a lack thereof, keeps these doors closed.

Despite the obvious importance of mathematical competencies on both an individual and societal level, a declining trend in the performances of learners in this essential discipline has drawn attention from educators and policymakers around the world. This trend seems to be especially true for Canadian learners as highlighted by the 2012 results of the Programme for International Student and Assessment (PISA) survey. The results of this pencil-and-paper based test, which assesses learners’ abilities to apply mathematical knowledge to solve problems in the form of real-world contexts (OECD, 2016), indicated that, although Canadian learners were
among the higher performing achievers, performance of its 15 year olds declined by 14-points compared to nine years ago (La Rose, 2014).

These results have been further echoed on a provincial level as revealed by the results produced by the provincial accountability office of Ontario, namely the Education Quality and Accountability Office (EQAO). A report produced by this organization showed that, since 2009, the number of Grade 3 and Grade 6 learners to achieve the provincial standard in mathematics has decreased significantly, despite an increase in reading and writing performances over the same time (EQAO, 2014). An even more startling statistic presented in this report is the fact that only 54% of Ontario’s Grade 6 learners achieved the provincial standard in 2014, a decline from 61% in the 2012 assessment. The revelation of these results have sent shockwaves throughout all stakeholder levels in Ontario, from government agencies, to teachers, parents and learners, and have therefore sparked numerous debates and heightened the demand for remedial strategies.

Largescale assessments, such as the aforementioned PISA and EQAO tests, serve predominantly as tools to satisfy the demand for accountability and educational improvements in public schooling systems (Chudowsky & Pellegrino, 2003; Rogers, 2014). Educators are held accountable for students’ academic achievement measured against standards or expectations as laid out in the curriculum document of a particular discipline of interest. School improvement plans are directed based on the performances of students on these accountability measures. In some cases, sanctions associated with the test results, raise concerns about narrowing the curriculum to the tested content as well as educators’ morale (Jang & Ryan, 2003). Although the practice of using largescale assessments in education dates back to the 19th century, and has grown exponentially since the implementation of the No Child Left Behind Act (DePascale,
2003), much controversy exists surrounding their impact on education without pedagogically
useful information concerning what students know and can do with their learning.

The generation of a total score to serve as the sole indicator on which to reflect the
overall performances of learners on largescale assessments is a popular approach adopted by
organizations for the purpose of providing feedback to stakeholders (Nichols, 1994). Total
scores, however, have been criticized for providing an overly simplistic representation of learner
abilities, which in addition to heightening the risk of result abuse (Earl, 1999), and lacks the
necessary insight into learner abilities on which to base any meaningful decisions for the
improvement of education (Nichols, 1994; Rogers, 2014). For this reason, it is argued whether
or not any remedial action based on these results in an attempt to improve mathematical
educational practices can extend beyond anything more than the implantation of blanketed
remedial strategies without further insight.

The purpose of this study was therefore, to go beyond total scores to gain better insight
into the mathematical performances of Grade 6 learners of Ontario, in an attempt to produce
evidence on which to base remediation. Using the results of the EQAO provincial assessment,
this study aimed to investigate learner strengths and weaknesses in different aspects of
mathematics, as determined by an analysis of the dimensionality of the items that make up the
assessment. Furthermore, this study used language background variables and length of residence
in Canada in an attempt to better identify learners and predict performance profile membership.

The responses of a sample of Grade 6 learners to 28 multiple choice mathematics items
on the EQAO provincial assessment were analyzed. The following questions were addressed in
this study:
i. What characterizes the dimensionality of the EQAO mathematics achievement test administered to Grade 6 students in Ontario public schools?

ii. In which mathematical dimensions and related strands do students demonstrate strengths and weaknesses in their mathematical achievement?

iii. To what extent are mathematics performance profiles predicted by student background, such as language and length of residence status?
Chapter 2 Literature Review

This chapter discusses largescale assessments in education, as well as their scoring and reporting practices. This is followed by an overview of mathematics education and its associated curriculum, as well as the factors predicting the performances of learners therein.

2.1 Largescale Assessments in Education

Much of the origin and development of largescale testing in education can be traced back to 1845 in the United States, where they were first implemented in Boston schools and championed for their use as a superior way to examine pupils (Wilson, 2007). Today, the concept of educational testing has expanded into a multi-million-dollar business (Wilson, 2007), with largescale assessments serving as the measurement tool of choice on which to gauge the system of education (Rogers, 2014).

Largescale assessments can be characterized by the way in which they are administered to large groups of learners simultaneously and in a highly standardized manner (Wilson, 2007). The foundations of these assessments rest on the same ideas as criterion referenced tests and are classified as standards-based rather than norm-referenced tests (Kaplan & Saccuzzo, 2007). In other words, these largescale standards-based assessments compare the performances of individuals against specific types of skills, tasks or knowledge, such as curricular standards or expectations, whereas norm-referenced tests compare each person with a norm and therefore, forces competition among people (Kaplan & Saccuzzo, 2007).

Largescale assessments in education were originally used to sort and classify learners; today, they still serve this gatekeeping purpose, but are also employed to serve two other functions to which the majority of attention has shifted, namely holding those responsible for the
education of learners accountable (accountability) and for the improvement of education (Chudowsky & Pellegrino, 2003; Nagy, 2000). School accountability involves the process of evaluating school performance on the basis of student performance measures (Figlio & Loeb, 2011), and forms part of the system used by officials in education to monitor the effective functioning of schools.

It can also be characterized as either a high- or low-stakes system, which further differentiates the use of the results. For instance, according to Rogers (2014), accountability in Canada is considered to be a low-stakes system, and therefore the emphasis is predominantly on using the results for educational improvement. In contrast, the United States is considered to be a high-stakes system, as results are used chiefly to sanction and reward schools.

Although the use of largescale assessments in education have been credited for providing an objective “yardstick” on which to measure learners’ performances (Rogers, 2014), and for their ability to simplistically rank individuals along a highly reliable scale (Huff & Goodman, 2010), they have endured much criticism from those within the field. Not only has much of this been centered around their many unintentional consequences, such as promotion of teaching to the test, test preparation activities at the expense of instructional time, dishonesty among educators and student drop out (Rogers, 2014; Schoenfeld, 2007), but also their scoring and reporting practices and procedures. These criticisms have led to much doubt concerning their effectiveness as a tool to serve the purposes for which they are employed.

2.1.1 Scoring and Reporting Practices of Largescale Assessments

It is common practice for largescale assessments to be scored using Item Response Theory or Classical Test Theory in order to generate a total score, and to use only these to report the overall performances of learners on the assessment (Nichols, 1994). Although this scoring and
reporting procedure is credited for being relatively quick and cost effective (Chudowsky & Pellegrino, 2003), they serve merely to highlight that there is a problem, but provide little direction as to what the problem is (Nichols, 1994). Foster, Noyce, and Speigel (2007) sum up the criticism against total scores by stating that, although they may reassure a school’s staff about student progress, or alert them to trouble ahead, they do little to inform teachers about how students are thinking, what they understand, where they are falling down, and how specifically, teachers might change their own instructional practices to address students’ difficulties.

The over simplistic representation of learner performances by total scores, therefore, lacks the necessary insight on which to base remedial decisions (Nichols, 1994). For this reason, the effectiveness of largescale assessments as a tool for improving education has been questioned (Rogers 2014). For instance, it is expected that educators and principles use results of largescale assessments to improve their instructional practices (Rogers, 2014), however, in a study conducted by Klinger and Rogers (2013), it was discovered that they, in fact, found little direction from these results to do so. This has led to an increased demand from those within the field for these assessments to report more than only overall performances in the form of total scores (Huff & Goodman, 2010; Nichols, 1994; Rogers, 2014). Detailed information from assessments can help those in education, including teachers and students, identify content and curricular areas that need attention (Schoenfeld, 2007), and in so doing, aide in the improvement of education in disciplines where it is needed the most.

2.1.2 Test Development Procedures

Largescale assessment organisations commonly adopt traditional unidimensional frameworks to form the basis of test development procedures. A unidimensional framework is one that assumes a single factor or latent variable as an explanation for a certain behaviour, such
as academic ability (Kaplan & Saccuzzo, 2007). However, many curricular in practice today have been developed on a multidimensional framework, such as that of mathematics, where academic ability is assumed to consist of more than one skill or factor.

Furthermore, test development practices are performed taking into consideration certain test constraints, for instance, test format, which is usually paper-and-pencil based, as well as administration time. For this reason, it is impossible to include items to measure all curriculum expectations in one test (Haertel & Herman, 2005). This sampling process of curriculum expectations, therefore, also means that only few items for each expectation are included in the assessment (Rogers, 2014).

In addition to these test development procedures raising construct validity concerns (Wilson, 2007), they limit the reporting of test scores beyond anything more than overall total scores. As highlighted by Rogers (2014), since the assessment was never designed from an explicit framework in line with that of curriculum expectations from the start, as well as include only a few items targeted at each subdomain, it is highly unlikely that the assessment meets the rigorous test properties needed to allow for reporting anything beyond that of total scores.

In order to satisfy the many calls for change to reporting practices, assessment organisations would need to deviate from these traditional more cost effective practices. For this reason, Chudowsky and Pellegrino (2003) indicate that change is unlikely to happen soon. As a result, our efforts to improve education in disciplines where it is needed the most, will continue to take place within the confines of that which assessment organisations refuse to change.

2.2 Mathematics Education and Curriculum

The mathematical reform movement generated in the late 1950’s signaled the need for the implementation of better teaching and learning practices for mathematics in schools (Friesen,
2005). Today, many mathematics curricular worldwide, including that of Canada, are based on the *Principles and Standards for School Mathematics* as set out by the National Council of Teachers of Mathematics (NCTM) (Friesen, 2005). Very broadly, curriculum refers to the substance or content of teaching and learning, it focusses on the “what” of teaching and learning as opposed to the “how” (Stein, Remillard & Smith, 2007).

This NCTM document calls for the teaching and learning of mathematics with the goal of developing both content or procedural knowledge, and conceptual understanding of the discipline, through the application of essential thinking or processing skills, such as problem solving or reasoning skills, which in turn will be developed (NCTM, 2000). This goal for mathematics education is in stark contrast to that of traditional goals where only the teaching and learning of procedural or content knowledge was valued and taught through rote teaching and learning practices (Schoenfeld, 2007). Procedural knowledge refers to what and how to solve certain mathematical problems, whereas conceptual understanding, refers to why a certain problem is solved the way it is (Kilpatrick, Swafford, Findell & NRC, 2001).

Furthermore, the NCTM adopted the view that standards play a leading role in guiding the improvement of mathematics education (NCTM, 2000). It therefore highlights specific mathematical standards or expectations that learners should achieve. Specifically, five Content Standards are used to guide the teaching and learning of procedural and conceptual knowledge, namely, Number and Operations, Algebra, Geometry, Measurement and Data Analysis and Probability. Five Process Standards also guide the essential processes or thinking skills of Problem Solving, Reasoning and Proof, Communication, Connections and Representation (NCTM, 2000). The NCTM (2000) repeatedly proclaims the interconnectedness of these standards by indicating that procedural knowledge should never exist without conceptual
understanding, which, in turn, should not be developed without the application and acquisition of the essential processing skills.

The Content and Process Standards are further classified into groups or categories for assessment purposes in mathematics curricular, such as that of Ontario. Specifically, the *Ontario Curriculum, Grades 1-8: Mathematics, 2005* document describes four categories of Knowledge and Understanding, Thinking, Communication and Application to which the standards are allocated. These four categories are known as the Knowledge and Skills categories, and are reflected in the document’s Achievement Chart. The first category of Knowledge and Understanding, can be described as encompassing mathematical knowledge of content and understanding, and therefore, focusses predominantly on the achievement of the Content Standards. The remaining three categories focus predominantly on the use of the Process Standards. The Thinking category assesses the use of problem solving, reasoning and proving processes; the Communication category focusses on the assessment of the communicating processes, and lastly, the Application category focusses on the assessment of the connecting processes.

From the above mathematics curriculum, we can see that the knowledge base is still considered important in mathematics education, however, so is conceptual understanding and the application and acquisition of thinking skills. As stated by Schoenfeld (2007), anyone who lacks a solid grasp of facts, procedures, definitions, and concepts is significantly handicapped in mathematics, yet, there is more to being mathematically proficient than simply reproducing standard content on demand. Therefore, if we are interested in understanding mathematical proficiency as it is taught and learned today, it is important that we reflect learner abilities in all aspects of the discipline (Kilpatrick et al., 2001). In so doing, we will gain better insight into
their strengths and weaknesses, allowing us to remediate accordingly in our efforts to improve learner performances in this essential discipline.

2.3 Factors Predicting Mathematical Performances

Given the relative importance of mathematics, it is no surprise that much research has been dedicated to highlighting and isolating the number or factors that can influence and predict mathematical performances. By doing so, early interventions and remedial strategies can be better targeted to improve future mathematical success (Hinton, 2014).

One such factor that has been given much attention is that of language proficiency and its influence on mathematical performances. Studies conducted by Hinton (2014), Howie (2005) and Abedi and Lord (2001), for instance, discovered that learners who spoke English as a second language performed worse in mathematical assessments compared to their English proficient counterparts. Fillmore (2007) however, cautions against interpreting this as a lack of mathematical ability without firstly taking into account the aspect of language. Since much of the mathematics taught today is presented in the form of a word problem, it relies heavily on a deep understanding of language (Moschovich, 2007). Therefore, trying to tease out precisely how much of the struggle is related to a language issue and how much to an issue with mathematics, is a unique challenge for teachers, assessment and English Language Learners (ELL’s) (Fillmore, 2007). As highlighted by Moschovich (2007), assessment is certainly a complex task, perhaps especially when working with students who are learning English. It is challenging to decide whether an utterance reflects a student’s conceptual understanding, a student’s proficiency in expressing their ideas in English, or a combination of mathematical understanding and English proficiency.
Canada has a high and diverse immigrant population, for instance, 20.6% of its population in 2011 was determined to be comprised of immigrants from various countries (Statistics Canada, 2016). Thus, the mathematical performances of ELL’s cannot be ignored. Fortunately, this aspect is currently given attention in the province of Ontario as assessment organizations such as the EQAO do attempt to report separately on these learners’ performances. However, Jang, Dunlop, Wagner, Kim and Gu (2013) warn against treating ELL’s as a homogenous group. Their study found that, when taking into account the length of residence in Canada, performances of these students varied significantly concerning their reading proficiencies.

Therefore, if we wish to predict mathematical performances or gain better insight based on student background, such as language factors, it is necessary to consider subpopulation groups that make up the overall ELL population, such as length of residence in the country.
Chapter 3 Method

This chapter describes the participants, instrument and data, as well as the three main analyses used to answer the questions presented in this study.

3.1 Participants

The current study used data made available by the Education Quality and Accountability Office (EQAO) of Ontario. The EQAO, is an arms-length Ontario government agency that is responsible for developing and overseeing reading, writing and mathematics assessments administered to Grade 3, 6, 9 and 10 students in Ontario public schools. The purpose of the results of these largescale assessments, is to determine the extent to which learners have achieved the curriculum standards of the particular discipline for educational accountability and improvement purposes (EQAO, 2016).

Learners’ responses are scored by the EQAO using Classical Test Theory and Item Response Theory (Rogers, 2013) to generate a score that is then converted into a Level NIE, 1, 2, 3 or 4. Level 3 describes a performance at the provincial standard, whereas Level 4 a performance surpassing the standard, Level 2 a performance approaching the standard and Level 1 a performance much below the standard. Lastly, a “NIE” rating is generated for those learners who have not provided sufficient evidence for a Level 1 score. The EQAO test scores are reported using these proficiency levels for each of the areas tested, namely reading, writing and mathematics. Background information such as gender, time lived in Canada and student home language etc. is also collected by questionnaires administered by the EQAO over the same time.

The full population data set comprised of approximately 127, 302 Grade 6 learners’ responses to the English 2013/2014 provincial Junior Division assessment. A random sample of 5,000 learner responses to the assessment was drawn from the entire data set. Learners with missing data on any of the variables were excluded from the sampling process so that the final
data set contained responses to all mathematics items as well as background information. All learners within the sample were enrolled at the time in Grade 6 and attended various schools across the province. Table 1 below presents the distributions of student subgroups from the random sample based on their gender, language background, and time spent in Canada in comparison with the entire population. The percentage of learners in each subgroup was very closely aligned with the larger Grade 6 population and was therefore considered a representative sample.

Table 1

Final Random Sample used for the Analysis

<table>
<thead>
<tr>
<th>Standard</th>
<th>Gender</th>
<th>Language</th>
<th>Time lived in Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Met</td>
<td>Below</td>
<td>Female</td>
</tr>
<tr>
<td>Frequency</td>
<td>2765</td>
<td>2235</td>
<td>2456</td>
</tr>
<tr>
<td>Sample%</td>
<td>55.3%</td>
<td>44.7%</td>
<td>49.1%</td>
</tr>
<tr>
<td>Population %</td>
<td>54%</td>
<td>46%</td>
<td>49%</td>
</tr>
</tbody>
</table>

Notes. *N* = 5000; Standard = met the provincial standard or achieved below the provincial standard; ESL = enrolled in English as a Second language program; Time lived in Canada = Canadian born learners, non-Canadian born learners who have lived in Canada for less than 5 years and non-Canadian born learners who have lived in Canada for 5 years or more.

3.2 Instrument

Student responses to the mathematics test items and background information on the EQAO 2013/2014 Junior Division assessment were used for this study. This assessment is a provincially mandated large-scale assessment used by the Ontario government to measure the extent to which learners have achieved the standards as laid out in the curriculum. All the EQAO large-scale assessments are designed using rigorous development procedures and meet high testing standards with acceptably high reliabilities (Rogers, 2013) of above .80. The Junior Division assessment is
specifically administered to all Grade 6 learners attending schools within the province of Ontario during the months of May and June and under highly standardized conditions (EQAO, 2016). The assessment measures reading, writing and mathematical skills in each of the corresponding sections. The mathematics section specifically consists of 36 items of which 28 are multiple choice items and 8 are constructed-response format questions. This study included only the 28 multiple choice items.

While the EQAO does not claim to measure the Knowledge and Skills categories as laid out in the *Ontario Curriculum, Grades 1-8: Mathematics, 2005* document (Rogers, 2013), it still references each of the mathematics items to one of three of the categories namely that of *Knowledge and Understanding, Thinking and Application*. The category of *Communication* is not represented by any of the items as, according to Rogers (2013), this skill is not feasible to assess in a paper-and-pencil based test. For items to be referenced to the Knowledge and Understanding category, they need to be recognized as requiring students to demonstrate subject specific content and comprehend its meaning. Those referenced to the Application category need to be recognized as requiring students to select an appropriate mathematical tool and apply the appropriate information. Lastly, those referenced to the Thinking category, need to be seen as requiring of students to select and sequence a variety of tools and think critically in order to solve problems (Rogers, 2013). Items are scrutinized by teachers and other content experts for the process of allocating items to the most appropriate category. Items are further referenced to the five content areas or strands of the curriculum document according to their content topic, namely *Number Sense and Numeration, Measurement, Geometry and Spatial Sense, Patterning and Algebra* and *Data Management and Probability*.

Table 2 shows the representation of each of the Knowledge and Skills categories and the strands to which the 28 multiple choice items were referenced by the EQAO, as well as the item difficulties (p-values) and discrimination indices (pt-biserial correlations) for each of these items. According to Kaplan and Saccuzzo (2007), item difficulty values should range from .30 to .70 to
maximize information about the differences among individuals. Furthermore, item discriminability values should not be negative or below .20 to be considered adequate. Based on these recommendations, all 28 items were considered suitable to be included in the analyses of this study.

Table 2

Knowledge and Skills Categories, Strands and Descriptive Statistics of 28 Mathematics Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Know. & Skill</th>
<th>Strand</th>
<th>p-value</th>
<th>pt-biserial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K and U</td>
<td>Patterning & Algebra</td>
<td>.86</td>
<td>.39</td>
</tr>
<tr>
<td>14</td>
<td>K and U</td>
<td>Patterning & Algebra</td>
<td>.74</td>
<td>.43</td>
</tr>
<tr>
<td>3</td>
<td>K and U</td>
<td>Number Sense & Numeration</td>
<td>.76</td>
<td>.37</td>
</tr>
<tr>
<td>15</td>
<td>K and U</td>
<td>Number Sense & Numeration</td>
<td>.86</td>
<td>.35</td>
</tr>
<tr>
<td>9</td>
<td>K and U</td>
<td>Data Management & Probability</td>
<td>.48</td>
<td>.33</td>
</tr>
<tr>
<td>19</td>
<td>K and U</td>
<td>Measurement</td>
<td>.50</td>
<td>.27</td>
</tr>
<tr>
<td>25</td>
<td>K and U</td>
<td>Measurement</td>
<td>.76</td>
<td>.40</td>
</tr>
<tr>
<td>22</td>
<td>K and U</td>
<td>Geometry & Spatial Sense</td>
<td>.87</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.73</td>
<td>.36</td>
</tr>
<tr>
<td>11</td>
<td>App</td>
<td>Patterning & Algebra</td>
<td>.81</td>
<td>.43</td>
</tr>
<tr>
<td>24</td>
<td>App</td>
<td>Patterning & Algebra</td>
<td>.70</td>
<td>.37</td>
</tr>
<tr>
<td>26</td>
<td>App</td>
<td>Patterning & Algebra</td>
<td>.40</td>
<td>.30</td>
</tr>
<tr>
<td>5</td>
<td>App</td>
<td>Number Sense & Numeration</td>
<td>.56</td>
<td>.38</td>
</tr>
<tr>
<td>7</td>
<td>App</td>
<td>Number Sense & Numeration</td>
<td>.82</td>
<td>.30</td>
</tr>
<tr>
<td>10</td>
<td>App</td>
<td>Data Management & Probability</td>
<td>.55</td>
<td>.47</td>
</tr>
<tr>
<td>18</td>
<td>App</td>
<td>Data Management & Probability</td>
<td>.78</td>
<td>.47</td>
</tr>
<tr>
<td>23</td>
<td>App</td>
<td>Data Management & Probability</td>
<td>.71</td>
<td>.42</td>
</tr>
<tr>
<td>2</td>
<td>App</td>
<td>Measurement</td>
<td>.59</td>
<td>.31</td>
</tr>
<tr>
<td>8</td>
<td>App</td>
<td>Measurement</td>
<td>.58</td>
<td>.28</td>
</tr>
<tr>
<td>20</td>
<td>App</td>
<td>Measurement</td>
<td>.54</td>
<td>.47</td>
</tr>
<tr>
<td>6</td>
<td>App</td>
<td>Geometry & Spatial Sense</td>
<td>.68</td>
<td>.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.64</td>
<td>.38</td>
</tr>
<tr>
<td>17</td>
<td>Think</td>
<td>Patterning & Algebra</td>
<td>.52</td>
<td>.36</td>
</tr>
<tr>
<td>21</td>
<td>Think</td>
<td>Number Sense & Numeration</td>
<td>.57</td>
<td>.22</td>
</tr>
<tr>
<td>28</td>
<td>Think</td>
<td>Number Sense & Numeration</td>
<td>.69</td>
<td>.33</td>
</tr>
<tr>
<td>4</td>
<td>Think</td>
<td>Data Management & Probability</td>
<td>.46</td>
<td>.35</td>
</tr>
<tr>
<td>13</td>
<td>Think</td>
<td>Measurement</td>
<td>.54</td>
<td>.39</td>
</tr>
<tr>
<td>27</td>
<td>Think</td>
<td>Measurement</td>
<td>.41</td>
<td>.46</td>
</tr>
<tr>
<td>12</td>
<td>Think</td>
<td>Geometry & Spatial Sense</td>
<td>.42</td>
<td>.35</td>
</tr>
<tr>
<td>16</td>
<td>Think</td>
<td>Geometry & Spatial Sense</td>
<td>.54</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.52</td>
<td>.35</td>
</tr>
</tbody>
</table>

Notes. K and U = Knowledge & Understanding, App = Application, Think = Thinking; p-value and pt-biserial means for each Knowledge & Skill category represented in bold.
No items had p-values below .30 however, 10 items had difficulty values above .70 indicating that they were relatively easy for this sample. Since none of the p-values were above .90, they were considered to still possess sufficient variability to be included in the analyses. Furthermore, no items had values below the recommended .20 or negative pt-biserial values. Table 2 further highlights the item difficulty and discrimination means for each of the three categories. From these values, it can be concluded that the items referenced to the Knowledge and Understanding category were relatively more easy for this sample while those items referenced to the Thinking category more difficult, and those referenced to the Application category moderately difficult. Lastly, it is highlighted that a greater number of items represented the Application category (12 items) than the Knowledge and Understanding and Thinking category, which had an equal number of eight items.

3.3 Data Analysis

The data analyses involved three phases, each of which addressed one of the three questions asked in this study. The first phase used Exploratory Factor Analysis (EFA) approaches to examine the first research question, “What characterizes the dimensionality of the EQAO mathematics achievement test administered to Grade 6 students in Ontario public schools?”. Latent Class Analysis (LCA) approaches were used in the second phase in order to answer question two, “In which mathematical dimensions and related strands do students demonstrate strengths and weaknesses in their mathematical achievement?”. A multinomial logistic regression analysis was performed to examine research question three, “To what extent are mathematics performance profiles predicted by student background, such as language and length of residence status?”

3.3.1 Phase 1: Establishing the Dimensionality of the Assessment

An Exploratory Factor Analysis (EFA) was conducted in order to determine the dimensionality of the EQAO Grade 6 mathematics test based on 5,000 students’ responses to 28 multiple choice items. Although exploratory in nature, the EFA was used to examine the extent
to which the test dimensionality can be accounted for by knowledge and skills and further by the strand specified by the EQAO.

EFA is a statistical procedure that simplifies the process of visually inspecting a range of correlations in order to examine the dimensionality of measures (Furr, 2011). The 28 multiple choice items were firstly recoded as binary data, thus creating dichotomous categories (0 = incorrect responses and 1 = correct responses). In order to perform an EFA with this type of data, a more sophisticated statistical software package is required. The reason for this being that standard software such as IBM’s SPSS (version 23.0) creates correlation matrices suitable only for continuous data that assume a normal distribution (Uebersax, 2015). Therefore, MPLUS version 6.12 (Muthén & Muthén, 1998-2012) was used for the analysis so that a tetrachoric correlation matrix could be generated to suite the binary data used in this study.

When conducting an EFA in Mplus, a correlation matrix, eigenvalues and model fitting statistics such as the chi-square test, Root Mean Square Error of Approximation (RMSEA) and Root Mean Square Residual (RMSR) are produced in order to assist with the process of determining the solution that best fits the data. A good fitting model will be represented by a non-significant chi-square p-value as well as a RMSEA value and RMSR value of below .05 (Schumacker & Lomax, 2004). However, interpretability of the model should also be taken into consideration when deciding on the best solution (Meyers, Gamst & Guarino, 2013). The weighted least-squares with mean ($wlsm$) estimation method as recommended by Muthén and Muthén (1998-2012) for binary data and the oblique rotation method (Promax) was used for this analysis based on the assumption that factors are likely to be correlated with each other.

Four steps were implemented during this phase. The first step entailed determining the ideal number of factors to be extracted to best describe the data. This entailed a combined evaluation of the correlation matrix, eigenvalues, scree plot and fit statistics as described above. The next step entailed an evaluation of the items and their loadings on each of the factors to determine if any should be discarded in terms of low factor loadings or cross-loadings. If any
items were deemed unacceptable, these were removed and the analysis re-run and subsequently re-evaluated. This step was repeated until a final and appropriate factor solution model was obtained. Following this, the reliability for each factor was established, followed by an investigation of the factor correlations in order to determine the uniqueness of each extracted dimension. Ideally, items should correlate highly with each other within each extracted factor/dimension, however, for each dimension to be considered unique, between-factor correlations should be low (Rogers, 2014). According to Meyers et al. (2013), between-factor correlations should not exceed .80 to warrant the use of a separate dimension. The last step involved an investigation of the similarities between items in each factor in order to describe the items that make up each. This was done firstly in terms of the three Knowledge and Skills categories and secondly, the five strands to which the items were referenced, as well as any further content similarities.

3.3.2 Phase 2: Identifying Mathematical Strengths and Weaknesses

In an attempt to identify in which mathematical subdomains or dimensions and related strands learner performances were strongest and weakest, as asked in question two of this study, a Latent Class Analysis (LCA) was performed using MPLUS version 6.12 (Muthén & Muthén, 1998-2012).

Specifically, the goal of a mixture model is to reveal unobserved heterogeneous and meaningful population groups within the larger homogenous population by identifying similarities in their responses to measured variables (Nylund, Asparouhov & Muthén, 2007). These identified latent populations or sub-groups are called classes. Therefore, using this analysis allowed for the generation of distinct performance profiles for each sub-group or class identified as performing similarly in the largescale assessment. In this way, more accurate class specific strengths and weaknesses could be described as opposed to simply those of the overall Grade 6 population.
For an LCA, the outcome variables used are specifically categorical (Nylund et al., 2007). Therefore, dichotomously scored response data from the random sample of 5,000 students were used for the LCA. The LCA approach is exploratory in nature because the optimal number of classes representing all latent classes cannot be determined apriori (Nylund et al., 2007). Therefore, an investigation of relevant fit statistics generated by the LCA was firstly conducted. According to Pastor, Barron, Miller and Davis (2007), the fit statistics commonly used to determine the optimum number of classes include the Bayesian Information Criterion (BIC), the sample-size adjusted BIC and the Akaike Information Criterion (AIC), where lower values indicate a better fitting model. An Entropy statistic is also commonly used to determine model fit. This statistic ranges from 0 to 1 where values closest to 1 indicate higher classification accuracy.

Following the identification of the best fitting model, the entire sample was profiled in terms of distinct mathematics classes. In order to reduce the number of points on these profiles, items were grouped according to the strand to which they were referenced by EQAO within each identified factor. This allowed for the identification of learner strengths and weaknesses not only surrounding factors, but also each strand within each factor.

As part of the LCA, mean item probability scores are calculated for each class. This statistic indicates the mean probability for each class to respond correctly to an item and therefore ranges from 0 to 1 (Nylund et al., 2007). Values closest to one, therefore, indicate a higher probability of responding correctly to an item. Using these values for each item, average item-group probability scores were calculated and these values were then used to describe class specific strengths and weaknesses. This was done, firstly, by describing overall item-group performances in comparison to other classes and, secondly, by describing class performances in each specific factor overall and lastly in terms of each strand within each factor.
3.3.3 Phase 3: Predicting Class and Profile Membership

In order to answer question three concerning whether or not English as a second language and length of residence in Canada significantly predicted the performance profile to which a learner belongs, a multinomial logistics regression analysis was conducted. This phase was completed using IBM’s SPSS (version 23.0).

A multinomial logistic regression is used when the dependent variable for the analysis consists of more than two categorical levels (Meyers et al., 2013). Besides the item probability mean generated by the LCA, a class probability mean for each learner in the sample is also calculated as part of the analysis. This class probability indicates the likelihood of a learner belonging to each of the classes or performance profiles. Based on the highest class probability, learners were allocated to one of the performance profiles as generated in phase 2. These classes were coded 1, 2, 3 etc. based on the number of classes determined to best describe the sample and represented the dependent or predicted variable of the analysis.

Table 3

<table>
<thead>
<tr>
<th>Group</th>
<th>Language</th>
<th>Time lived in Canada</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-ESL</td>
<td>CA born</td>
<td>4185</td>
<td>83.7%</td>
</tr>
<tr>
<td>2</td>
<td>ESL</td>
<td>CA born</td>
<td>308</td>
<td>6.2%</td>
</tr>
<tr>
<td>3</td>
<td>Non-ESL</td>
<td>Non-CA born < 5 years</td>
<td>76</td>
<td>1.5%</td>
</tr>
<tr>
<td>4</td>
<td>ESL</td>
<td>Non-CA born < 5 years</td>
<td>123</td>
<td>2.5%</td>
</tr>
<tr>
<td>5</td>
<td>Non-ESL</td>
<td>Non-CA born ≥ 5 years</td>
<td>199</td>
<td>4.0%</td>
</tr>
<tr>
<td>6</td>
<td>ESL</td>
<td>Non-CA born ≥ 5 years</td>
<td>109</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Notes. *N = 5000; ESL = English as a second language learner; CA born = Born in Canada*

An independent variable used for predicting the latent class membership included six groups based on the following background variables: English Second Language (ESL) status, as
well as whether or not they were Canadian born, non-Canadian born but at the time had resided in the country for less than 5 years or non-Canadian born but at the time had resided in the country for five years or more. This was done in order to avoid clustering ELL learners as a homogenous group and therefore better identify learners. These six categorical data groups represented the predictor or independent variable. Table 3 indicates more precisely how each of the groups were created, as well as their sizes.
Chapter 4 Results

The results of this study are discussed according to the three questions presented and phases of data analyses as discussed in Chapter 3. Firstly, the results produced from the Exploratory Factor Analysis (EFA) described in phase one concerning question one are reported. Secondly, those produced by the Latent Class Analysis (LCA) in phase two to answer question two and lastly those produced from the multinomial logistics regression analysis conducted in phase three to answer question three are presented in this chapter.

4.1 Dimensionality Characteristics

As noted, an EFA was conducted on the 28 multiple choice mathematics items in order to determine the dimensionality of the largescale assessment to which they belonged. The eigenvalues of the tetrachoric correlation matrix (Table 4) produced by Mplus, ranged between 8.62 and .41, the first three factors showed eigenvalues greater than 1 and accounted for 39.53% of the total variance.

Table 4
Eigenvalues of Correlation Matrix indicating Total Variance Explained

<table>
<thead>
<tr>
<th>Item</th>
<th>Eigenvalue</th>
<th>Item</th>
<th>Eigenvalue</th>
<th>Item</th>
<th>Eigenvalue</th>
<th>Item</th>
<th>Eigenvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.6</td>
<td>2</td>
<td>1.3</td>
<td>3</td>
<td>1.0</td>
<td>4</td>
<td>.93</td>
</tr>
<tr>
<td>5</td>
<td>.91</td>
<td>6</td>
<td>.90</td>
<td>7</td>
<td>.87</td>
<td>8</td>
<td>.85</td>
</tr>
<tr>
<td>9</td>
<td>.84</td>
<td>10</td>
<td>.80</td>
<td>11</td>
<td>.79</td>
<td>12</td>
<td>.76</td>
</tr>
<tr>
<td>13</td>
<td>.74</td>
<td>14</td>
<td>.72</td>
<td>15</td>
<td>.70</td>
<td>16</td>
<td>.69</td>
</tr>
<tr>
<td>17</td>
<td>.66</td>
<td>18</td>
<td>.65</td>
<td>19</td>
<td>.64</td>
<td>20</td>
<td>.63</td>
</tr>
<tr>
<td>21</td>
<td>.60</td>
<td>22</td>
<td>.57</td>
<td>23</td>
<td>.53</td>
<td>24</td>
<td>.52</td>
</tr>
<tr>
<td>25</td>
<td>.50</td>
<td>26</td>
<td>.49</td>
<td>27</td>
<td>.46</td>
<td>28</td>
<td>.41</td>
</tr>
</tbody>
</table>
4.1.1 Determining the Best Fitting Factor Solution Model

The eigenvalues, scree plot and fit statistics were used to determine the best number of factors to describe this data set. Based on the “number of eigenvalues greater and equal to one rule” as suggested by Meyers, et al. (2013), together with the scree plot and relevant fit statistics, it seemed adequate to extract three factors albeit accounting for less than 50% of the variance.

![Scree plot](image)

Figure 1. Scree plot.

Although three eigenvalues were produced greater and equal to one suggesting the existence of three factors, this was contradicted by the scree plot (Figure 1), which suggested the existence of only two factors, as it appeared to level off mostly at number three. Subsequently, a comparison of the one to three factor solutions was conducted in terms of the relevant fit statistics as described in Table 5.

The significant chi-square p-values ($< .001$) generated for the one and two factor solutions suggested that the data differed significantly from the model matrix. Although the chi-square p-value has been criticized in the past for being overly sensitive to large sample sizes and therefore,
almost always producing a significant value (Meyers et al., 2013), this was determined not to be the case for this analysis, as the p-value generated in the three factor model increased substantially from the one to two factor model, thus ensuring the reliability of this value.

Table 5

| EFA Model Fit Statistics of the 1 to 3 Factor Solutions on 28 Mathematics Items |
|------------------|---------|------|--------|--------|
| FA model | Chi-Square | df | p-value | RMSEA | RMSR |
| 1 | 924.76 | 350 | < .001 | .018 | .031 |
| 2 | 440.12 | 323 | <.001 | .009 | .021 |
| 3 | 343.90 | 297 | .032 | .006 | .019 |

Note. $N = 5000$

Therefore, since the Chi-square p-value of .032 of the three factor model was not significant (at the .001 probability level), as well as the fact that only two items represented the fourth factor in the four factor solution model, it was deemed a good fitting model. The values of .006 and .019 of the RMSEA and RMSR respectively, were well below the .05 recommended value, providing further support for this three factor solution model.

A further inspection of the factor loadings from the three-factor solution as well as of the items on each factor resulted in the removal of four items (i.e. 12, 18, 23 and 24). Items 18, 23 and 24 were discarded as a result of low factor loading scores below .30. Whereas a decision was made to remove Item 12, as it was the only item referenced to the Thinking category that did not load on the factors in the same way that the others did. Table 6 presents the final factor loadings with the Knowledge and Skills categories to which items were originally allocated by the EQAO that is, knowledge and understanding, application and thinking.

The Promax factor correlation matrix produced by Mplus (Table 7), revealed that all three factors correlated positively and moderately to high with one another. The strongest correlation
existed between Factor 1 and Factor 3 with a relatively high coefficient value of .747, while the weakest correlation existed between Factor 1 and Factor 2 with a coefficient of .576.

Table 6
Factor Loadings of the 23 Items used in the Final 3 Factor Solution Model

<table>
<thead>
<tr>
<th>Item</th>
<th>Knowledge & Skill</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KU</td>
<td>.64</td>
<td>-.09</td>
<td>.13</td>
</tr>
<tr>
<td>11</td>
<td>App</td>
<td>.63</td>
<td>-.04</td>
<td>.12</td>
</tr>
<tr>
<td>14</td>
<td>KU</td>
<td>.55</td>
<td>.13</td>
<td>.01</td>
</tr>
<tr>
<td>6</td>
<td>App</td>
<td>.51</td>
<td>.12</td>
<td>-.04</td>
</tr>
<tr>
<td>15</td>
<td>KU</td>
<td>.51</td>
<td>-.05</td>
<td>.14</td>
</tr>
<tr>
<td>10</td>
<td>App</td>
<td>.47</td>
<td>.23</td>
<td>.05</td>
</tr>
<tr>
<td>7</td>
<td>App</td>
<td>.45</td>
<td>-.12</td>
<td>.13</td>
</tr>
<tr>
<td>25</td>
<td>KU</td>
<td>.38</td>
<td>.09</td>
<td>.17</td>
</tr>
<tr>
<td>3</td>
<td>KU</td>
<td>.35</td>
<td>-.01</td>
<td>.24</td>
</tr>
<tr>
<td>9</td>
<td>KU</td>
<td>.35</td>
<td>.09</td>
<td>.07</td>
</tr>
<tr>
<td>22</td>
<td>KU</td>
<td>.31</td>
<td>.07</td>
<td>.23</td>
</tr>
<tr>
<td>5</td>
<td>APP</td>
<td>.30</td>
<td>.09</td>
<td>.22</td>
</tr>
<tr>
<td>13</td>
<td>App</td>
<td>.10</td>
<td>.65</td>
<td>-.05</td>
</tr>
<tr>
<td>27</td>
<td>Think</td>
<td>-.04</td>
<td>.63</td>
<td>.23</td>
</tr>
<tr>
<td>2</td>
<td>Think</td>
<td>-.07</td>
<td>.50</td>
<td>.12</td>
</tr>
<tr>
<td>20</td>
<td>App</td>
<td>.14</td>
<td>-.03</td>
<td>.59</td>
</tr>
<tr>
<td>17</td>
<td>Think</td>
<td>-.04</td>
<td>.04</td>
<td>.55</td>
</tr>
<tr>
<td>26</td>
<td>App</td>
<td>.13</td>
<td>.01</td>
<td>.33</td>
</tr>
<tr>
<td>8</td>
<td>App</td>
<td>.11</td>
<td>-.01</td>
<td>.32</td>
</tr>
<tr>
<td>28</td>
<td>Think</td>
<td>.15</td>
<td>.03</td>
<td>.32</td>
</tr>
<tr>
<td>16</td>
<td>Think</td>
<td>.11</td>
<td>.10</td>
<td>.31</td>
</tr>
<tr>
<td>4</td>
<td>Think</td>
<td>.14</td>
<td>.12</td>
<td>.30</td>
</tr>
<tr>
<td>21</td>
<td>Think</td>
<td>-.04</td>
<td>.08</td>
<td>.30</td>
</tr>
</tbody>
</table>

\[\alpha = .725 \quad \alpha = .536 \quad \alpha = .565\]

Notes. KU = Knowledge and Understanding; App = Application; Think = Thinking category

As stated earlier, according to Meyers et al. (2013), correlations should not exceed .80 to warrant the use of separate factors. These results are therefore considered to reveal the existence of three
unique factors that can be used to describe the multidimensionality of these mathematics multiple
choice items.

Table 7

Promax Factor Correlations Between 3 Factors

<table>
<thead>
<tr>
<th></th>
<th>FA 1</th>
<th>FA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor 2</td>
<td>.576</td>
<td></td>
</tr>
<tr>
<td>Factor 3</td>
<td>.747</td>
<td>.626</td>
</tr>
</tbody>
</table>

Note. N = 5000

As indicated in Table 6, Factor 1 consisted of 12 items in total with factor loading scores ranging between .30 and .64 and achieved a relatively high Cronbach’s alpha of .725. All seven items referenced to the Knowledge and Understanding category used in the final model loaded together on Factor 1, along with five items referenced to the Application category. Factor 2 consisted of only three items with factor loading scores ranging between .50 and .63 and achieved a moderate Cronbach’s alpha of .536. In Factor 2, two items referenced to the Thinking category and one to the Application category loaded together to make up the total of three items for this factor. Lastly, Factor 3 consisted of a total of eight items with factor loading scores ranging between .30 and .59 and also achieved a moderate Cronbach’s alpha score of .565. The remaining five items referenced to the Thinking category and three items referenced to the Application category loaded together to make up the eight items that loaded together on Factor 3.

In terms of the strands to which the items in Factor 1 were referenced, for instance Patterning and Algebra etc., no clear similarities appeared to exist to tie all the items together based on this. However, similarities seemed to exist in terms of the applied skill requested of learners to solve the mathematical problems. It appeared that all the items of this factor merely requested of learners to apply their mathematical knowledge in terms of procedures and conceptual understanding to answer the questions. For instance, Item 15, which is referenced to
the Knowledge and Understanding category, asks the following, “What is the value of 0.730 – 0.156?” Whereas, Item 5, which is referenced to the Application category, asks that learners solve problems involving the addition of decimal numbers (the exact question was not released). Therefore, it was determined that no clear difference existed between the applied skill requested from these two items, even though they were referenced to two different Knowledge and Skills categories. It was therefore concluded that Factor 1 could be described as measuring the application of mathematical knowledge to solve problems in various strands.

An inspection of the items that loaded together on Factor 2 revealed that two of the items were referenced to the Thinking category, while one of the items was referenced to the Application category. Furthermore, all three items were similar in that that they covered the “Measurement” strand and more specifically, that all three items requested of learners to solve problems relating to “Area”. Item 2, for instance, asks, “The parallelogram below will be cut into two congruent triangles (provides dimensions). What is the area of one of the triangles?”, Item 13 asks, “Which of the following shows a rectangle and a triangle that have the same area?” and lastly, Item 27 requests that learners compare the areas of two polygons (exact item not released). Item 2 was referenced to the Application category, whereas Items 13 and 27 were referenced to the Thinking category. It was therefore determined that Factor 2 could be described as requesting of learners to apply thinking processes or skills such as problem solving and reasoning in order to solve deeper mathematical problems specifically surrounding the Measurement topic of “Area”.

Lastly, for Factor 3 as with Factor 1, no clear similarities appeared to exist to tie all the items together based on strands. However, as with Factor 1, similarities seemed to exist in terms of the applied skill requested of learners to solve the mathematical problems. It appeared that all the items on this factor requested of learners to apply thinking skills to solve deeper mathematical problems surrounding various strands, in other words, learners had to go beyond the mere application of content knowledge to solve these items. For instance, Item 20 referenced
to the Application category requested that learners solve the following problem, “Each beaker of water below has a capacity of 2L. Which beaker appears to have about 500ml of water in it?”

Whereas, Item 28 referenced to the Thinking category asks, “Mrs Garrett sends surveys to 120 students, and 78 students return the survey. Which statement best describes the percent of students who return the survey?” Again, no clear difference appeared to exist between the applied skill requested of learners, in terms of the Application and Thinking categories to which the items were referenced. It was therefore concluded that Factor 3 could be described as measuring the ability of learners to apply thinking processes or skills such as problem solving and reasoning in order to solve deeper mathematical problems in various strands.

In sum, the results of the EFA determined that a three factor model could be used to adequately characterize the dimensionality of the multiple choice mathematics items on the EQAO assessment. Twelve items clustered adequately together in terms of factor loading scores to form Factor 1, which achieved a relatively high Cronbach’s alpha of .725, three items on Factor 2, which achieved a moderate Cronbach’s alpha of .536, and lastly eight items on Factor 3, which also achieved a moderate Cronbach’s alpha score of .565. Upon closer inspection of the items on each factor and in terms of the Knowledge and Skills categories and strands to which they were referenced by the EQAO, it was determined that Factor 1 could be best described as measuring the ability of learners to apply mathematical knowledge related to procedural and conceptual understanding in order to solve problems in various mathematical strands. Factor 2 could be best described as measuring the ability of learners to apply process or thinking skills in order to solve problems related specifically to the topic of “Area”. Lastly, Factor 3 could be best described as measuring the ability of learners to apply thinking skills in various mathematical strands.
4.2 Mathematical Strengths and Weaknesses

In an attempt to identify in which mathematical dimensions and related strands Grade 6 learner performances were strongest and weakest, as asked in question two of this study, a Latent Class Analysis (LCA) was conducted. This allowed for distinct performance profiles to be generated for classes or sub-groups performing similarly in the population and therefore allowed for more accurate descriptions of strengths and weaknesses. The factors as established in the dimensionality investigation in Phase 1 of this study were used to represent the dimensions for this analysis.

Although the four class model achieved the lowest AIC, BIC and Sample-Size Adjusted BIC statistic values in comparison to the two and three class model, it also produced a much lower Entropy value of .69 (see Table 8). Therefore, it was decided that, since these statistics did not decrease that much from the three class to four class model, the use of the four class model with a much lower Entropy value did not seem warranted. Thus, the three class model was opted for instead, as it produced lower fit statistics than the two class model, as well as a sufficiently high Entropy value of .75. Furthermore, the results indicated that each class was represented by the following proportion of learners from the sample, Class 1 comprised of 32.1%, Class 2 of 45.2% and Class 3 of 22.7%.

Table 8

<table>
<thead>
<tr>
<th>LCA Fit Statistics for 2, 3 and 4 Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit statistics</td>
</tr>
<tr>
<td>AIC</td>
</tr>
<tr>
<td>BIC</td>
</tr>
<tr>
<td>Adj. BIC</td>
</tr>
<tr>
<td>Entropy</td>
</tr>
</tbody>
</table>

Notes. N = 5000; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; Adj. BIC = Sample-Size Adjusted Bayesian Information Criterion
Eleven item-groups were created to describe the strengths and weaknesses of the three classes as represented in Table 9. Item-groups were created by grouping items according to the factor they were determined to measure (as established in the EFA) as well as the strand to which they were allocated by the EQAO. Five item-groups were created for Factor 1, one item-group for Factor 2 and five groups for Factor 3. The number of items within each item-group varied from 1 item to 4 items. The mean probability scores calculated for each class for each item-group and overall dimension or factor are also represented in Table 9. These mean item-group probability scores as presented in Table 9 were used to plot three distinct performance profiles for each class as represented in Figure 2 below.

Table 9
Item-Groups created to Describe Mathematical Performances of Grade 6 Learners

<table>
<thead>
<tr>
<th>Factor</th>
<th>Content Area</th>
<th># of items</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patterning & Algebra</td>
<td>3</td>
<td>.97</td>
<td>.86</td>
<td>.48</td>
</tr>
<tr>
<td>1</td>
<td>Measurement</td>
<td>1</td>
<td>.95</td>
<td>.78</td>
<td>.44</td>
</tr>
<tr>
<td>1</td>
<td>Geometry & Spatial Sense</td>
<td>2</td>
<td>.94</td>
<td>.79</td>
<td>.50</td>
</tr>
<tr>
<td>1</td>
<td>Number Sense & Numeration</td>
<td>4</td>
<td>.92</td>
<td>.76</td>
<td>.49</td>
</tr>
<tr>
<td>1</td>
<td>Data Management & Probability</td>
<td>2</td>
<td>.78</td>
<td>.49</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>Factor 1 class probability means</td>
<td></td>
<td>.91</td>
<td>.74</td>
<td>.44</td>
</tr>
<tr>
<td>2</td>
<td>Measurement (Area)</td>
<td>3</td>
<td>.85</td>
<td>.39</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>Factor 2 class probability means</td>
<td></td>
<td>.85</td>
<td>.39</td>
<td>.28</td>
</tr>
<tr>
<td>3</td>
<td>Patterning & Algebra</td>
<td>2</td>
<td>.67</td>
<td>.43</td>
<td>.20</td>
</tr>
<tr>
<td>3</td>
<td>Measurement</td>
<td>2</td>
<td>.79</td>
<td>.55</td>
<td>.25</td>
</tr>
<tr>
<td>3</td>
<td>Geometry & Spatial Sense</td>
<td>1</td>
<td>.79</td>
<td>.47</td>
<td>.31</td>
</tr>
<tr>
<td>3</td>
<td>Number Sense & Numeration</td>
<td>2</td>
<td>.80</td>
<td>.60</td>
<td>.44</td>
</tr>
<tr>
<td>3</td>
<td>Data Management & Probability</td>
<td>1</td>
<td>.72</td>
<td>.40</td>
<td>.22</td>
</tr>
<tr>
<td></td>
<td>Factor 3 class probability means</td>
<td></td>
<td>.76</td>
<td>.51</td>
<td>.29</td>
</tr>
</tbody>
</table>

Note. The factor probability means presented in bold are slightly higher, as the actual item probability score was used to calculate these values and not the item-group probability scores.

Using the evidence generated from the mean item-group and factor probability scores as represented in Table 9 and Figure 2, these performance profiles were used to describe the strengths
and weaknesses of each class. Class specific strengths and weaknesses were described according to firstly, overall performances in the 11 item-groups in comparison to the other classes, secondly in terms of overall performances in each dimension (Factor 1, 2 and 3), and lastly in terms of performances in each strand within each dimension for Factor 1 and 3 only (as Factor 2 only represented Measurement topic of “Area”). A mean item-group probability score ranging from .86 - .10 was described as especially strong, .71 - .85 as strong and .56 - .70 as moderately strong, while those scores ranging from .41 - .55 were described as moderately weak, .26 - .40 as moderately weak and .25 and below as especially weak.

![Figure 2](image)

Figure 2. Three performance profiles of Grade 6 learners in 11 mathematical item-groups.

Results indicated that those learners most likely to belong to Class 1 performed higher than Class 2 and 3 in all item-groups. Therefore, this class to which 32.1% of learners from the sample belonged can be best described as the highest performing and second largest group overall. Those most likely to belong to this class can be described as having an especially strong ability to apply
mathematical knowledge in order to solve problems in various strands. This was determined by the average 91% overall probability for success achieved for those items related to Factor 1. They can also be described as having a strong ability to apply thinking skills in order to solve problems surrounding the Measurement topic of “Area”, and strong ability to do the same in various strands. This was determined by the 85% probability for success achieved for those items related to Factor 2 and 76% probability for success achieved for those related to Factor 3. Furthermore, their overall performances in the knowledge dimension can be described as stronger in comparison to their performances in the thinking dimensions.

Specifically concerning their ability to apply mathematical knowledge in various strands (Factor 1), these learners can be described as performing slightly stronger in the Patterning and Algebra (item-group probability score = .97) and considerably weaker in Data Management and Probability (item-group probability score = .78) in relation to their performances in the other strands. Specifically regarding their ability to apply thinking skills in order to solve problems (Factor 3), they can be described as performing slightly stronger in Number Sense and Numeration (item-group probability score = .80) and considerably weaker in Data Management and Probability (item-group probability score = .72) and Patterning and Algebra (item-group probability score = .67) with the latter being the weakest in relation to their performances in the other strands.

Results further indicated that those learners most likely to belong to Class 2 performed overall lower than Class 1, but higher than Class 3 in all item-groups. Therefore, this class to which 45.2% of the learners belonged can be best described as the intermediate performing and largest group overall. Those most likely to belong to this class can be described as having a strong ability to apply mathematical knowledge in order to solve problems in various strands. This was determined by the average 74% overall probability for success achieved for those items related to Factor 1. They can also be described as having a weak ability to apply thinking skills in order to solve problems surrounding the Measurement topic of “Area”, and moderately weak ability to do the same in various strands. This was determined by the 39% probability for success achieved for
those items related to Factor 2 and 51% probability for success achieved for those related to Factor 3. Furthermore, their overall performances in the knowledge dimension can be described as stronger in comparison to their performances in the thinking dimensions.

Specifically concerning their ability to apply mathematical knowledge in various strands (Factor 1), performances for these learners can be described as considerably stronger in Patterning and Algebra (item-group probability score = .86) and considerably weaker in Data Management and Probability (item-group probability score = .49) in relation to their performances in the other strands. Specifically regarding their ability to apply thinking skills in order to solve problems (Factor 3), performances can be described as stronger in Number Sense and Numeration (item-group probability score = .60) and considerably weaker in Data Management and Probability (item-group probability score = .40) and Patterning and Algebra (item-group probability score = .43) with the former being the weakest in relation to their performances in the other strands.

Lastly, results indicated that those learners most likely to belong to Class 3 performed lower than Class 1 and 2 in all item-groups. Therefore, this class to which 22.7% of learners belonged can be best described as the lowest performing group overall. Those most likely to belong to this class can be described as having a moderately weak ability to apply mathematical knowledge in order to solve problems in various strands. This was determined by the average 44% overall probability for success achieved for those items related to Factor 1. They can also be described as having a weak ability to apply thinking skills in order to solve problems surrounding the Measurement topic of “Area”, and weak ability to do the same in various strands. This was determined by the 28% probability for success achieved for those items related to Factor 2 and 29% probability for success achieved for those related to Factor 3. Furthermore, their overall performances in the knowledge dimension can be described as stronger in comparison to their performances in the thinking dimensions.

Specifically concerning their ability to apply mathematical knowledge in various strands (Factor 1), it was determined that these learners can be described as performing slightly stronger in
Geometry and Spatial Sense (item-group probability score = .50) and considerably weaker in Data Management and Probability (item-group probability score = .19) in relation to their performances in the other strands. Specifically regarding their ability to apply thinking skills in order to solve problems (Factor 3) their performance can be described as considerably stronger in Number Sense and Numeration (item-group probability score = .44) and weaker in Data Management and Probability (item-group probability score = .22) and Patterning and Algebra (item-group probability score = .20) with the latter being the weakest in relation to their performances in the other strands.

In sum, the results of the LCA revealed that three classes could be used to best describe the performances of Grade 6 learners in the three dimensions as established during the EFA, and their related strands. Class 1 was described as the highest performing and second largest group. The learners in the class were described as performing especially strong in Factor 1 (namely their ability to apply mathematical knowledge to solve problems in various strands), strong in Factor 2 (namely their ability to apply thinking skills to solve problems specifically related to the Measurement topic of “Area”) and in Factor 3 (namely their ability to apply thinking skills in order to solve problems in various strands). Class 2 was described as the intermediate performing and largest group and performing strong for Factor 1, weak for Factor 2 and moderately weak for Factor 3. Lastly, Class 3 was described as the lowest performing and smallest group and performing moderately weak for Factor 1 and weak for both Factor 2 and 3. For all classes, overall factor performances were described as weaker in the thinking dimensions namely Factor 2 and 3 than in the knowledge dimension namely Factor 1. A greater discrepancy between these mathematical knowledges and thinking skills dimensions appears to exist for those in Class 2 than for those in Class 1 and 3.

Lastly, in terms of describing the performances of each class in the strands related to each factor for Factor 1 and 3, results revealed clear similarities between all classes in terms of those in which performances were described as weaker. For all classes regarding Factor 1, their ability to
apply mathematical knowledge within the Data Management and Probability strand was described as the weakest in relation to the other strands. For all classes regarding Factor 3, their ability to apply thinking skills in the Patterning and Algebra and Data Management and Probability strand was described as weakest in relation to their performances in the other strands.

4.3 Predicting Mathematics Profiles by Language and Length of Residence Background

To avoid treating learners as homogenous groups based on their language background, they were allocated to one of six groups according to their ESL designation and length of residency in Canada. The six groups represented the predictor variable (independent variable) whereas the three classes or performance profiles were treated as the predicted or dependent variable. Class 1, namely the highest performing profile group, was used as the reference category.

Results of this analysis indicated that the final model did not significantly predict class and performance profile membership with a -2 Log likelihood of 77.40 and a Chi-square value of 9.57 (10, N = 5000), p = .48. The upper portion of Table 10 presents the regression coefficients, the Wald test, adjusted odds ratio [Exp(B)], and the 95% confidence intervals (CI) for odds ratios for the predictor contrasting Class 2 to Class 1. The lower portion of the table presents the regression coefficients, the Wald test, adjusted odds ratio [Exp(B)], and the 95% confidence intervals (CI) for odds ratios for the predictor contrasting Class 3 to Class 1.

Results therefore revealed that ESL status and residence in Canada did not significantly predict class or profile membership regardless of group allocation. In other words, regardless of group allocation, learners were found to be equally likely to belong to either Class 1 (highest performing group), Class 2 (intermediate performing group) or Class 3 (lowest performing group) and therefore perform according to the related profile as indicated earlier in Figure 2.
<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>S.E. - B</th>
<th>Wald</th>
<th>df</th>
<th>Exp(B)</th>
<th>95% CI EXP (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>.43</td>
<td>.23</td>
<td>3.51</td>
<td>1</td>
<td>.93</td>
<td>.60 – 1.47</td>
</tr>
<tr>
<td>Group 1</td>
<td>-.07</td>
<td>.23</td>
<td>.09</td>
<td>1</td>
<td>.90</td>
<td>.64 – 1.78</td>
</tr>
<tr>
<td>Group 2</td>
<td>.06</td>
<td>.26</td>
<td>.06</td>
<td>1</td>
<td>1.07</td>
<td>.80 – 1.33</td>
</tr>
<tr>
<td>Group 3</td>
<td>-.60</td>
<td>.35</td>
<td>2.96</td>
<td>1</td>
<td>.55</td>
<td>2.77 – 1.09</td>
</tr>
<tr>
<td>Group 4</td>
<td>.01</td>
<td>.31</td>
<td>.00</td>
<td>1</td>
<td>1.01</td>
<td>.55 – 1.83</td>
</tr>
<tr>
<td>Group 5</td>
<td>-.08</td>
<td>.28</td>
<td>.09</td>
<td>1</td>
<td>.92</td>
<td>.54 – 1.58</td>
</tr>
<tr>
<td>Class 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-.13</td>
<td>.26</td>
<td>.27</td>
<td>1</td>
<td>.80</td>
<td>.47 – 1.49</td>
</tr>
<tr>
<td>Group 1</td>
<td>-.23</td>
<td>.26</td>
<td>.74</td>
<td>1</td>
<td>.82</td>
<td>.33 – 1.50</td>
</tr>
<tr>
<td>Group 2</td>
<td>-.20</td>
<td>.31</td>
<td>.42</td>
<td>1</td>
<td>.70</td>
<td>.34 – 1.44</td>
</tr>
<tr>
<td>Group 3</td>
<td>-.36</td>
<td>.39</td>
<td>.84</td>
<td>1</td>
<td>.70</td>
<td>.31 – 1.13</td>
</tr>
<tr>
<td>Group 4</td>
<td>-.35</td>
<td>.37</td>
<td>.92</td>
<td>1</td>
<td>.59</td>
<td>.31 – 1.13</td>
</tr>
<tr>
<td>Group 5</td>
<td>-.53</td>
<td>.33</td>
<td>2.55</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. *p < .001; N = 5000; Class 1 is the reference category; Group 1 = Non-ESL, CA Born (n = 4185); Group 2 = ESL, CA Born (n = 308); Group 3 = Non-ESL, Non-CA born but living in country less than 5 years (n = 76); Group 4 = ESL, Non-CA born but living in country less than 5 years (n = 123); Group 5 = Non-ESL, Non-CA born but living in country 5 years or more (n = 199); Group 6 = ESL, Non-CA born but living in country 5 years or more (n = 109)
Chapter 5 Discussion

The purpose of this study was to move beyond the total scores of a large-scale assessment in order to gain better insight into the mathematical performances of Ontario’s Grade 6 learners. In doing so, it aimed to provide evidence of learner strengths and weaknesses in different aspects of mathematics education on which to base remedial decisions for the improvement thereof.

Using the responses of a random sample of 5,000 Grade 6 learners to 28 multiple choice mathematics items on the 2013/2014 EQAO Junior Division assessment, an Exploratory Factor Analysis (EFA) was firstly performed, in order to investigate the dimensionality characteristics of the assessment. This was followed by a Latent Class Analysis (LCA) to determine learner strengths and weaknesses related to the established mathematical dimensions, and their related strands. Lastly, a multinomial logistic regression analysis was performed, in order to examine the extent to which mathematics performance profiles were predicted by student background factors, such as language and length of residency in Canada. This chapter discusses the findings of these analyses, study limitations and lastly recommendations for future research and education.

5.1 What Characterizes the Dimensionality of the EQAO Mathematics Achievement Test Administered to Grade 6 Students in Ontario Public Schools?

The multiple choice mathematics items on the EQAO assessment were characterized as measuring the ability of learners in three interrelated, yet separate, mathematical dimensions. These being the ability of learners to apply mathematical knowledge related to procedural knowledge and conceptual understanding to solve problems in various strands (Factor 1), the ability to apply process or thinking skills such as problem solving or reasoning skills to solve problems in “Area” (Factor 2), and lastly, the ability to apply process or thinking skills to solve
problems in various mathematical strands. The three factors produced, achieved on average, moderate reliability scores.

These findings, regarding the characteristics of the dimensions, were considered valuable, as they allowed for the comparison of learner abilities in two essential elements of mathematical proficiency, as aligned with the *Principles and Standards for School Mathematics* (NCTM, 2000), and as a result, also with the Ontario mathematics curriculum, which shares the same foundations. Only once this happens, namely learner ability measured directly in relation with mathematical curriculum expectations, can we begin an effective process of remediation (Kilpatrick et al., 2001). These elements were that of mathematical knowledge consisting of procedural and conceptual knowledge, as measured by Factor 1 of this study, and process or thinking skills, such as problem solving and reasoning, as measured by Factor 2 and 3. Factor 2 and 3 were determined to differ based solely on the content of the items included in the assessment. This finding highlights concerns regarding the fair representation of all curriculum expectations on the assessment and thus warrants further investigation.

The fact that the ability to apply mathematical knowledge, and the ability to apply thinking skills in order to solve mathematical problems, were found to be sufficiently unique dimensions to warrant their use using the multiple choice items on this largescale mathematics assessment, adds further value to the findings of this study. These findings are valuable in that they attest to the future potential for assessment organizations to report learner performances beyond that of total scores as demanded by those in the educational field. However, since the factors achieved only moderate reliability scores, we are reminded of the need for these tests to be designed upon foundations aligned with those of the curriculum expectations they are employed to assess from the start, in order for them to meet better test properties (Chudowsky & Pellegrino, 2003; Rogers, 2014).
5.2 In which Mathematical Dimensions and Related Strands do Students Demonstrate Strengths and Weaknesses in their Mathematical Achievement?

Three classes were determined to best describe the performances of all Grade 6 learners in the established dimensions and their related strands. Class 1 was described as the highest performing and second largest group consisting of 32.1% of the learners, Class 2 was described as the intermediate performing and largest group consisting of 45.2% of the learners, and lastly, Class 3 was described as the lowest performing and smallest group consisting of only 22.7% of the learners from the sample.

The results of this analysis further revealed that all three classes performed weaker in their ability to apply thinking skills in order to solve problems, either specifically surrounding the topic of Area or in various strands, than in their ability to apply mathematical knowledge in order to do the same. The performances of those in Class 1 were described as especially strong in the mathematical knowledge dimension (Factor 1), and strong in the thinking dimensions (Factor 2 and 3). Class 2 was described as strong in the mathematical knowledge dimension, but weak in the thinking skills dimensions, and lastly, Class 3 was described as moderately weak in the mathematical knowledge and thinking skills dimensions. The discrepancy between performances in the two subdomains, namely mathematical knowledge and thinking skills, thus appeared to be largest for those in Class 2, the intermediate performing and largest group.

The findings concerning the overall performances of students in the two subdomains of mathematical knowledge and thinking skills aligns with those concerning the performances of U.S students, as described by Kilpatrick et al. (2001). They highlight that research evidence over the past 30 years has consistently indicated that, although U.S students do not fare badly in applying their knowledge to solve basic mathematical problems, they tend to have a limited
understanding of mathematical concepts, and are noticeably deficient in their ability to apply mathematical thinking skills to solve even simple problems.

It may, however, be argued that this finding, namely a weaker performance in thinking skills than mathematical knowledge, is to be expected given the fact that applying thinking skills in order to solve problems is a more challenging task than simply applying what you know (Schoenfeld, 2007). However, studies have also found that a strong mathematical knowledge base leads to a better ability to apply thinking skills to solve deeper problems (Stokke, 2015). Thus, given the inter-relatedness of these two dimensions, together with the large discrepancy between them for those in Class 2 (strong mathematical knowledge but weak thinking skills), these findings demonstrate a weakness in the majority of Ontario’s Grade 6 learners to apply thinking skills to solve deeper mathematical problems. This finding holds important recommendations for future research and mathematics educational practices as will be discussed in the section below.

Upon further investigation of learner performances in each of the strands as they relate to the dimensions, it was determined that all three classes performed much weaker in their ability to apply mathematical knowledge in the Data Management and Probability strand than in the other strands. This strand was also determined to be the weakest in the thinking skills dimension, along with Patterning and Algebra. This finding contradicts those of Tatsuoka, Corter and Tatsuoka (2004) in which it was found that students in the U.S. appeared to perform poorest in Geometry and Spatial Sense. Given the inter-relatedness of mathematical knowledge and ability to apply thinking skills as previously highlighted by Stokke (2015), this finding concerning Data Management and Probability attests to a knowledge base weakness for Grade 6 Ontario learners, specifically surrounding this strand. As for the results surrounding Patterning and Algebra, they appear to provide further support for the weak ability of the learners to apply thinking skills,
given their relatively strong mathematical knowledge surrounding this strand. These findings also hold valuable recommendations for educational practices in Ontario which will be further discussed below.

5.3 To What Extent Are Mathematics Performance Profiles Predicted by Student Background, such as Language and Residence Status?

Findings from this analysis revealed that language background and length of residence in Canada did not significantly predict performance profile membership. Therefore, regardless of group allocation based on these variables, all learners were equally likely to achieve a Class 1 (high performing), Class 2 (intermediate performing) or Class 3 (low performing) profile as described in this study.

These findings contradict the Jang et al. (2013) study on the performance of learners in reading. In that study, it was found that different reading patterns were achieved based on ELL and length of residence status. It was further determined that non-English speakers outperformed monolinguals in reading achievement after living in the country for five years or more. These findings, therefore, do not appear to hold true for the performances of learners in mathematics based on these variables, as all learner groups were equally likely to achieve one of the three performance profiles produced in this study. However, it needs to be acknowledged that this study focused on ESL designation, as opposed to ELL status, which may have contributed to the differences in findings. Nonetheless, these findings are considered valuable in that they provide reassurance of the fact that the test results were not confounded by differences in language proficiency and that the EQAO test was not biased towards first language speakers.

The findings of this study further contradict those that found that English first language speakers outperformed those for whom English was not their first language (Abedi & Lord,
Therefore, they help shed perceptions of differences in mathematical performances based solely on the aspect of language background. This finding holds important implications for mathematics education for these population groups, as well as future research.

5.4 Study Limitations

The following study limitations have been recognized, and should thus be taken into consideration when reviewing these findings: Firstly, this study analyzed the mathematical performances of learners based on the results of a standardized test only. We are, therefore, reminded of the fact that many factors influence test scores over and above that which is random. These include the testing situation, tester characteristics, and test-taker characteristics (Kaplan & Saccuzzo, 2009). For this reason, it is important that learner performances in other assessment environments also be considered, such as classroom-based assessment activities.

Secondly, the findings of this study were based solely on learner performances on the multiple choice items. According to Schoenfeld (1992), most multiple choice items are machine graded, which limits their ability to measure learner conceptual understanding and problem solving abilities to the degree that most people would like. For this reason, it is important that future studies consider including the open response questions included on the assessment for a better reflection of learner conceptual understanding and problem solving.

Thirdly, this study included performances of learners based solely on a single EQAO administration and its data. Although EQAO proclaims to instill rigorous test equating procedures to ensure that test difficulty and discrimination properties are not compromised across years (Rogers, 2013), this does not guarantee that learner performances can be generalized to all Grade 6 learners. Furthermore, this study focused on only those who took the English
version of the test, therefore, generalizing these findings to those who took the French version should be done cautiously.

Lastly, the small ESL population size in comparison to the non-ESL population limits the findings of this group, and may therefore not accurately reflect their performances. Furthermore, this study used ESL designation as opposed to ELL status. ESL designation is a program in which learners are enrolled or unenrolled throughout the year. Therefore, these findings may not reflect that of the entire ELL population.

5.5 Recommendations and Future Research

In light of recent poor mathematical performances of Ontario’s elementary learners, the education minister announced its “Renewed Math Strategy,” designed for the purposes of combatting further decline (Brown, 2016). In this strategy, requirements for improving the performances of learners in mathematics were announced, such as all learners in Grade 1-8 to receive at least 60 minutes of mathematics instruction per day, further support for weaker schools in terms of more professional development for teachers, as well as more support for learners and parents surrounding this discipline. As this study made apparent in the beginning, such strategies risk being only blanket approaches that do not really target the heart of the problem, if not accompanied by further insight into the results upon which they are based.

This study was conducted in an attempt to gain such insight, and found that, although Ontario Grade 6 learners display strong mathematical knowledge, the majority are particularly weak in applying thinking skills such as reasoning and problem solving to solve deeper mathematical problems. It was further determined that learners are particularly weakest in the Data Management and Probability strand for both mathematical knowledge and thinking skills dimensions, as well as the Patterning and Algebra strand in the latter dimension. It was lastly
determined that background variables of language and length of residence, did not significantly predict performance and profile achievement, and that both ESL and non-ESL learners were equally likely to belong to high, intermediate and low performing groups, regardless of length of residence in Canada. Based on these findings, the following recommendations surrounding future research endeavors and educational practices specifically in conjunction with mathematics education in Ontario, will be discussed below.

The *Ontario Curriculum, Grades 1-8: Mathematics, 2005* document indicates that the ultimate goal for mathematics education is to develop learner proficiency beyond that of content knowledge, and therefore, also calls for the development of a deeper understanding of the discipline, along with essential thinking skills. In order to accomplish these goals, the curriculum highlights that instructional practices need to deviate from a sole focus on direct teaching methods, to incorporate methods of teaching and learning through problem solving, in other words, problem-based learning approaches. Stokke (2015) blames this greater emphasis of teaching mathematics using problem-based teaching strategies, for the recent decline of Ontario learners’ mathematical performances. She argues that the lack of direct instruction has robbed learners of a sound knowledge base from which to draw upon when attempting to solve deeper mathematical problems, hence the weakness in this area.

However, the findings from this study provides evidence that contradicts this argument, as results point to the fact that the majority of Grade 6 learners in Ontario actually do possess strong mathematical knowledge. This finding may, therefore, perhaps be an indication of the fact that a large portion of Ontario teachers still rely predominantly on teaching mathematics using traditional direct teaching methods, as opposed to those better suited to meet current curriculum goals and expectations. This finding therefore warrants further investigation into current teaching trends, and holds valuable insight as to where to direct efforts for remediation.
In order to meet reformed curriculum goals and expectations, teaching practices need to change, for which the teacher is the key actor (Ross & McDougall, 2006). Therefore, this study supports those calling for increased efforts directed at teachers and the need to reshape their roles and perceptions of what it means to “teach” mathematics in a reformed curriculum classroom. For instance, Milgram (2007) urges for strategies directed at ensuring that teachers truly understand what it means to teach using problem-based teaching methods to develop thinking skills. He further illustrates that teaching thinking skills, such as problem solving, is a challenging task, as it is in itself complex, involving both verbal and nonverbal mental processes. For this reason, it is essential that learners solve problems for which the answer is not apparent, and requires a novel idea, if we wish to effectively develop these skills (Milgram, 2007). Such a teaching and learning process, requires that teachers step back, allowing learners to grapple with the task before them, as well as interact with each other, stepping in only when necessary to guide the process (Milgram, 2007).

Changing the role of the teacher from the traditional sole knowledge bearer and transferor, to one in which he/she shares the responsibility of learning with students, is however, only one of 10 dimensions that requires attention when urging teachers to adopt instructional practices better suited to accomplish curriculum goals and expectations (Ross & McDougall, 2007). Ross and McDougall (2006) further illustrate that, in order to ensure that teaching for deeper understanding, as aligned with current reformed mathematics education, takes place, teachers need to consider change in all 10 of these dimensions. These dimensions as cited in Ross and McDougall (2006), are summarized as follows: 1) the need for program scope; 2) access to all forms of mathematics by students; 3) raising self-confidence of students by teachers; 4) complex and open-ended student tasks; 5) instruction that focuses on constructing mathematical ideas through self-discovery; 6) change in the role of teachers to that of co-learner
and co-knowledge creator; 7) solving of mathematical problems with the aid of manipulatives; 8) classroom organization in a manner that promotes sharing and interaction for solutions; 9) authentic assessment, and lastly; 10) a conception of mathematics as a dynamic subject by teachers.

Specifically regarding the first dimension, namely, the need for program scope, Ross and McDougall (2006) describe it as urging teachers to teach multiple mathematical strands with increased attention on those less commonly taught, such as the Data Management and Probability, and Patterning and Algebra strands. The results of this analysis indicated that learners were weakest in precisely these two strands, therefore, perhaps providing evidence in support of the fact that these strands are given less attention by Ontario teachers when teaching the mathematics curriculum expectations. This finding, therefore, provides added support for the need to further promote the implementation of these 10 dimensions of teaching for deeper understanding as indicated above, so as to ensure that teachers view all curriculum strands as equally important and deserving of attention.

In calling for these increased efforts directed at changing the way in which mathematics teaching and learning occurs in classrooms, it is important to acknowledge the fact that this is easier said than done. Teaching in a manner that supports the development of a deeper understanding for mathematics and promotes thinking skills, is a lengthy process that takes time (Milgram, 2007). A commodity in short supply, for the teacher already feeling pressured to cover all curriculum expectations before mandatory accountability assessments take place (Milgram, 2007). Therefore, not only does this study call for increased efforts directed at changing teacher perceptions and instructional practices in the classroom, but also for policy makers to consider practical constraints placed on teachers that may restrict the implementation thereof.
Lastly, the need to predict mathematical performances of learners based on background variables is made apparent by Hinton (2014), who found that early success in mathematics predicts future success. Therefore, for the sake of early intervention, especially for the lowest performing group identified in this study, it is urged that further research studies be directed at determining background variables that better predict performances. However, it is further urged that such studies focus on class or profile membership as used in this study, as opposed to overall mathematics performances used in the past. In this way, not only will we be able to better identify low, intermediate and high performers, but also their related strengths and weaknesses upon which specific remedial efforts can be targeted. As for the equal likelihood of ESL and non-ESL learners to achieve either low, intermediate or high performing profiles, this study recommends future studies targeted at shedding perceptions of non-English speakers underperforming in relation to first language speakers that have perhaps been shaped by previous studies. Without doing so, we risk assuming the need for remediation directed at one group, whilst ignoring the needs of others.
References

