Lactoferrin and lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Biochemistry and Cell Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bcb-2016-0090.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>07-Nov-2016</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Jiang, Rulan; University of California at Davis  
Suzuki, Yasushi; Saraya Co. Ltd., Biochemical laboratory  
Du, Xiaogu; University of California, Davis, Nutrition  
Lonnerdal, Bo; University of California at Davis       |
| Keyword:       | lactoferrin, sophorolipids, dermal fibroblasts, internalization, gene expression |

https://mc06.manuscriptcentral.com/bcb-pubs
Lactoferrin and lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression

Rulan Jiang¹, Yasushi A. Suzuki², Xiaogu Du¹, and Bo Lönnerdal¹

¹ Department of Nutrition, University of California, Davis; ² Biochemical Laboratory, Saraya Co. Ltd., 24-12 Tamate, Kashiwara, Osaka

Address correspondence to:
Bo Lönnerdal, PhD
Department of Nutrition
University of California
Davis CA 95616, USA
Phone: (530) 752-8347
Fax: (530) 752-3564
E-mail: bllonnerdal@ucdavis.edu
Abstract: Lactoferrin (Lf) is an iron-binding multifunctional protein, mainly present in external secretions. Lf is known to penetrate skin and may thus exert its multiple functions in skin. Sophorolipids (SLs) are glycolipid biosurfactants, which have been shown to enhance absorption of commercial bovine Lf (CbLf) in model skin via forming an assembly with CbLf. In the present study, uptake and post-internalization localization of bovine Lf (bLf), CbLf, and human Lf (hLf) with or without forming assemblies with SLs in human dermal fibroblasts (HDFn) were determined using $^{125}$I-labeled Lfs and confocal microscopy, respectively. Our results show that all three Lfs were internalized by HDFn; although SLs did not significantly affect uptake of Lfs, it changed Lf localization by accumulating Lfs to the perinuclear region. Furthermore, microarrays were used to investigate transcriptional profiling in HDFn in response to CbLf, SLs, or CbLf-SLs-assembly treatments. Transcriptome profiling indicates that CbLf may play roles in protection of skin from oxidative stress, immunomodulatory activities, and enhancement of wound healing. The assembly had similar effects but dramatically modulated transcription of some genes. SLs alone modified signaling pathways related to lipid metabolism, as well as synthesis of sex hormones and vitamins. Thus, CbLf may exert beneficial effects on skin, and these effects may be modulated by SLs.

Key words: lactoferrin, sophorolipids, dermal fibroblasts, internalization, gene expression
Introduction

Lactoferrin (Lf) is an iron-binding protein mainly present in external secretions such as breast milk, saliva, tears, bile, and pancreatic fluids (Lönnerdal 2009). It is a multifunctional protein involved in a wide range of activities, such as immunomodulation, and promotion of cell proliferation (Vogel 2012). Effects of Lf on skin comprise promotion of skin wound healing (Takayama and Aoki 2012), improvement of inflammatory lesions of acne vulgaris (Kim et al. 2010; Mueller et al. 2011), up-regulation of proliferation of dermal fibroblasts and keratinocytes (Engelmayer et al. 2008; Tang et al. 2010), and attenuation of UV-induced photo damage (Murata et al. 2014). Lf is known to penetrate skin (Ishii et al. 2012) and has high water solubility. Therefore, it may be feasible to add Lf to water-based cosmetics. In general, Lf exerts its multiple functions via two mechanisms; 1) working as a transcription factor to transactivate gene expression (He and Furmanski 1995), or 2) binding to a specific receptor to initiate signaling pathways (Jiang and Lönnerdal 2014). Commercial bovine Lf (CbLf) is available, but its bioactivities may not be the same as those of bLf isolated in the laboratory due to different processing conditions. Human Lf (hLf) and bovine Lf (bLf) may differ in functions as hLf and bLf only share 69% amino acid sequence identity (Lönnerdal et al. 2011). Iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) may also function diversely because they have markedly different conformations (Grossmann et al. 1992). For this reason, apo- and holo- forms of several Lfs were investigated in the present study.

Sophorolipids (SLs) are glycolipid biosurfactants, generated by fermentation of a number of non-pathogenic yeasts. Each SL is consisted of a dimeric sugar, a sophorose,
and a long chain hydroxyl fatty acid with 16 or 18 carbon atoms. SLs can form a vesicle-like structure to promote transport of substances into cells through size reduction and encapsulation (Imura et al. 2014; Zhou et al. 2004). SLs produced by Starmerella bombicola have been shown to enhance CbLf absorption by model skin up to 1.7-fold via forming an assembly with CbLf. Moreover, SLs significantly regulated gene expression upon the CbLf treatment (Ishii et al. 2012). In addition to being biodegradable surfactants, SLs possess skin compatibility, anti-inflammation (Bluth et al. 2006), and antimicrobial activities (Azim et al. 2006; Diaz De Rienzo et al. 2016; Solaiman et al. 2015), as well as good moisturizing and depigmenting properties (Lundov et al. 2009). Therefore, SLs have been applied in various cosmetic formulations (Morya et al. 2013; Van Bogaert et al. 2007; Varvaresou and Iakovou 2015).

The objectives of the present study were to examine uptake and post-internalization localization of apo- and holo-Lfs, as well as effects of Lfs and SLs on dermal fibroblasts, and thus to provide preliminary data and a scientific basis for addition of Lf and SLs to cosmetic products. To address the objectives, we examined whether hLf, bLf, and CbLf were internalized by human dermal fibroblasts (HDFn) by using I-125 labeled Lfs and the post-internalization localization of Lfs in HDFn by confocal microscopy. The microarray is a powerful tool to identify genes simultaneously relevant to various treatments (Papp et al. 2012), and we therefore used microarrays to characterize global transcription profiles of CbLf-, SLs-, and CbLf-SLs-assembly-treated human dermal fibroblasts (HDFn).
Materials and methods

Preparation of hLf and bLf

Human-Lf (hLf) and bovine Lf (bLf) were isolated from milk as described previously (Lönnerdal et al. 2011). To examine the purity and concentration of Lf in each eluted fraction, each sample (10 µL) was subjected to SDS-PAGE and gels were stained with Coomassie Brilliant Blue R-250 (Sigma, St Louis, MO). Based on the gel results, only Lf isolated from fraction 2 with an elution buffer containing the higher concentration of NaCl (1.0 mol/L) was used for subsequent experiments. CbLf (~15% iron saturation) was purchased from Morinaga Milk Industry Co, Ltd. (Tokyo, Japan).

Iron-free Lf (Apo-Lf) and iron saturated Lf (holo-Lf) were prepared as described previously (Lopez et al. 2008; van Berkel et al. 1995).

Preparation of SLs and Lf-SLs-assemblies

SLs were produced by Starmerella bombicola NBRC10243. Stock solutions of SLs and Lf-SLs-assemblies were prepared using methods described previously (Ishii et al. 2012).

Cell culture

Human dermal fibroblasts (HDFn, Cascade Biologics, Portland, OR) were maintained in a humidified incubator at 37°C under an atmosphere of 5% CO₂ in Medium 106 supplemented with Low Serum Growth Supplement (LSGS, Cascade Biologics, Portland, OR). The medium was changed every other day, and cells between passages 5-10 were used in the present study.
Lf uptake

All Lfs were labeled with $^{125}\text{I}$ (GE Healthcare, Waukesha, WI) using the Iodogen (Pierce, Rockford, IL) method. HDFn were seeded on 24-well plates ($2.5 \times 10^3$ cells/cm$^2$). After cells were cultured for 10 days, D10 HDFn on 24-well plates were incubated in supplement-free medium (SFM) containing $^{125}\text{I}$-labeled Lf samples (100 µg/mL), or Lf-SLs-assembly (100 µg/mL Lf and 10 µg/mL SLs) for 30 min at 37°C. Cells were rinsed with ice-cold PBS 3 times and then liquefied with NaOH (1 mol/L). After cells were solubilized, cell-associated radioactivity was quantified in a gamma counter (Packard Minaxi γ; Meriden, CT). Non-specific binding was assessed by incubation with unlabeled Lf (100-fold molar excess) and subtracted from total uptake, resulting in specific uptake.

Indirect fluorescence

HDFn were seeded and grown on Lab-TekII chambered slides (Nalge Nunc International, Naperville, IL) overnight. After cells were treated with Lfs (100 µg/mL), Lf assemblies (100 µg/mL), or SLs (10 µg/mL) in SFM for 30 min at 37°C, cells were rinsed with PBS, fixed with phosphate-buffered paraformaldehyde (4%, 0.4 mL/well) for 10 min at room temperature, and then permeabilized with Triton X-100 (0.2%) in PBS for 10 min. Cells were subsequently blocked with blocking buffer (5% heat-inactivated rabbit serum and 1% BSA in PBS, 0.5 mL/well) for 20 min. After the blocking buffer was removed, cells were rinsed with PBS. Lf was subsequently probed with rabbit anti-hLf (2 µg/mL, Abcam, Cambridge, MA), or goat anti-bLf (2 µg/mL, Bethyl Laboratories, Montgomery, TX), and then Alexa 488-conjugated-anti-rabbit or Alexa 488-conjugated-
anti-goat IgG (1 µg/mL; Molecular Probes, Eugene, OR) in blocking buffer for 30 min. The nucleus was stained with TOPO-3 (1:1000 in blocking buffer, Molecular Probe, Eugene, Oregon) for 30 min. After several rinses, coverslips were mounted with ProLong Gold Antifade Reagent (Invitrogen Molecular Probes) and sealed with nail polish. A confocal laser scanning microscope (FV1000, Olympus America, Inc., Melville, NY) was used to perform immunofluorescence imaging, and image analysis software systems (Olympus America, Inc.) were applied to analyze the images. The density of Lf fluorescence and the ratio of perinuclear to total internalized Lf in 20 cells from four slides for each treatment group were measured by using analytical tools from Image J (http://imagej.nih.gov/ij/). The perinuclear area was defined as the cytoplasmic area encircling the nucleus and having a radius around 10 µm.

RNA extraction and array hybridization

HDFn (6-well plate, 2.5 x 10^3/cm^2) were grown for 24 h and then treated with CbLf (100 µg/mL), SLs (10 µg/mL), or CbLf-SLs-assembly for 24 h. RNA was subsequently extracted with Trizol (Invitrogen), and then purified by the RNease kit (Qiagen) according to the manufacturer's instructions. Measurement of RNA yield was performed using a NanoDrop 1000A Spectrophotometer (Thermo Fisher Scientific, Waltham, MA), and RNA quality was evaluated by Bioanalyzer RNA Nano Chips (Agilent Technologies, Inc., Santa Clara, CA) following the manufacturer's procedure. Total RNA samples were amplified and labeled with biotinylated nucleotides using a kit (Ambion, TotalPrep -96 RNA Amplification Kit). Bioanalyzer analysis was then carried out to verify if cRNA was at the expected the 1.2 kb average size before applying to
beadchips (HumanHT-12 v.4.0, Illumina, San Diego). Beadchips were scanned with the Illumina iScan using standard conditions.

**Microarray data analysis**

GenomeStudio (Illumina) was utilized for microarray data analysis and quantile normalization was carried out to normalize the microarray data. Only probe sets with adjusted p-value < 0.05 were selected for subsequent analysis and totally 13716 genes were analyzed. The differentially expressed genes were selected following two criteria: fold-change >1.5 for up-regulation, and fold-change < 0.5 for down-regulation. Samples were clustered with a centroid linkage method on the horizontal axis, and the lengths of the branches were measure by a Euclidean algorithm. Pathway analysis was conducted using IPA (Ingenuity® Systems, [www.ingenuity.com](http://www.ingenuity.com)) and the Core analysis included in IPA was chosen to interpret data in the context of biological processes, pathways, and networks. A p-value was calculated using the right-tailed Fishers exact test for each canonical pathway and p-values less than 0.05 were considered significantly relevant. Heatmapper ([http://www.heatmapper.ca/](http://www.heatmapper.ca/)) was used to generate the heatmap.

**The accession number**

Microarray results have been deposited in the NCBI Gene Expression Omnibus ([http://www.ncbi.nlm.nih.gov/geo/](http://www.ncbi.nlm.nih.gov/geo/)) and are available through the accession number (GSE84144).

**Quantitative real-time PCR**
RNA (1 µg) was reverse-transcribed to cDNA using a high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA) following the manufacturer’s instructions. Gene-specific primers are listed in table 1. Real-time polymerase chain reaction (RT-PCR) was performed on the cDNA reaction mixture (2 µL) and SYBR Green (Thermo Scientific) using the iCycler real-time PCR system (Bio-Rad). The cycling parameters were 95°C for 15 sec, 60°C for 30 sec, and 72°C for 30 sec. Linearity of the dissociation curve was analyzed using the iCycler software and the mean cycle time of the linear part of the curve was designated as Ct. Each sample was analyzed in sextuplicate and normalized to GAPDH using the following equation: fold change $=2^{(Ct_{\text{Gene}} - Ct_{\text{GAPDH}})}$. Values are shown as mean fold change ± standard deviation, relative to the non-treated control (set to 1).

**Statistical analysis**

Data represent means ± standard deviations from at least 3 independent experiments. Comparisons between the treatment and control were conducted using one-way ANOVA (Prism Graph Pad, Berkeley, CA). $P<0.05$ was considered to be statistically significant.

**Results**

**Apo- and holo-Lf are internalized by HDFn**

To determine if bLf and CbLf were internalized by HDFn, they were labeled with $^{125}$I by using the Iodogen method. Based on our pilot study, the Lf receptor (LfR), originally isolated from the human small intestine (Suzuki et al. 2001), and LRP1,
functional LfR in fibroblasts (Takayama et al. 2003), displayed peak expression at day 10 (data not shown). D10 HDFn were therefore used for uptake experiments. As shown in Fig. 1, CbLf and bLf were internalized by HDFn, and no differences were found in uptake between HDFn incubated with LFs and Lf-SLs-assemblies. As a comparison, we included hLf and the results were similar to those for the two bovine LFs. All apo-forms of Lf showed significantly higher uptake than holo-forms of Lf, suggesting that conformation differences influence internalization of Lf by HDFn. Apo-bLf exhibited the highest uptake among all Lfs.

Indirect fluorescence detection was next conducted to examine if SLs influence intracellular localization of Lfs after internalization. The results from confocal microscopy confirmed that all Lfs were internalized by HDFn (Fig. 2). The post-internalization localization of all Lfs was altered by SLs as significant amounts of hLf, bLf, and CbLf were localized in the perinuclear area upon treatments with Lf-SLs-assemblies. Localization of LFs was not affected by iron saturation for any of the LFs. Although the major part of Lfs was localized in the cytoplasm, co-localization of Lf and the nucleus was observed for all treatments, suggesting that all the Lfs are capable to enter the nucleus of HDFn and thereby exert multiple functions.

**Microarray analysis of HDFn treated with CbLf, SLs, and CbLf-SLs-assembly**

Since any practical application of Lf will be dependent upon commercially available bLf, effects of CbLf, SLs, or CbLf-SLs-assembly on HDFn were investigated by microarray analysis. According to the cluster analysis (Fig. 3) and heatmap (Fig. 4), transcription of genes was differentially and significantly regulated by CbLf, SLs, and
CbLf-SLs-assembly. The cluster analysis of the entire genome indicates that the three biological replicates were consistent, and that CbLf and CbLf-SLs-assembly displayed similar effects. As shown in Fig. 3, CbLf- and CbLf-SLs-assembly-treated samples formed distinct clusters, separately from the control and SLs-treated samples, indicating that CbLf and CbLf-SLs-assembly significantly altered transcriptional profiles of HDFn, and that SLs-treated HDFn exhibited the weakest transcriptional response. Consistently, the heatmap generated by markedly modified genes also showed that CbLf and CbLf-SLs-assembly significantly changed gene transcription of HDFn, and similar effects on HDFn were found in presence of CbLf or CbLf-SLs-assembly (Fig. 4).

As shown by a Venn diagram (Fig. 5), CbLf, SLs, and CbLf-SLs-assembly significantly regulated gene transcription in HDFn. Total genes modulated by CbLf, SL, and CbLf-SLs-assembly were 1520, 100, and 1472, respectively. 1263 genes, about 86% of genes changed by CbLf were modified by both CbLf and CbLf-SLs-assembly, indicating that SLs forming an assembly with CbLf only slightly change effects of CbLf on transcription profiling. Although SLs alone significantly stimulated transcription of some genes, the effects were much weaker than those initiated by CbLf and CbLf-SLs-assembly.

Validation of microarray results by Real-time PCR

To verify results from the microarray analysis, six genes (FABP3, COL7A1, CXCL6, PLIN2, CPA4, and EDN1) were selected for real-time PCR analysis in terms of expression intensity and various patterns of gene expression regulated by CbLf, SLs, or CbLf-SLs-assembly (Fig. 6). For example, the FABP3 gene was selected because this
gene was significantly modified by all three treatments, and the EDN1 gene was chosen because only SLs had a significant effect on transcription of this gene. The results from these six genes were consistent with results from the microarrays and the $R^2$ of association analysis was higher than 0.95 (Fig. 6G), indicating that the two data sets were strongly correlated. Thus, results from the microarray assays were validated.

**Effects of CbLf and CbLf-SLs-assembly on proliferation of HDFn**

CbLf and CbLf-SLs-assembly significantly stimulated transcription of genes involved in cellular proliferation. As shown in Supplemental table 1, these genes comprised kinases, transcription factors, cell cycle regulators, growth factors, and components of the extracellular matrix. CbLf and the assembly showed similar effects, except for few genes on which CbLf had stronger effects than the assembly. Since SLs did not significantly modulate transcription of any of these genes listed in the Table, only results for CbLf and CbLf-SLs-assembly are shown.

According to pathway analysis ($p<0.05$), a number of signaling pathways induced by CbLf and the assembly are involved in regulating transcription of proliferation related genes (Supplemental table 3). PI3K/AKT, PDGF, and IGF-1 pathways were three major signaling pathways by which CbLf and CbLf-SLs-assembly increased proliferation of HDFn. In addition, CbLf-SLs-assembly activated VEGF signaling to exert its proliferative effects on HDFn.

**Effects of CbLf and CbLf-SLs-assembly on transcription of genes involved in migration of HDFn**
In agreement with enhancing effects of Lfs on migration of dermal fibroblasts (Engelmayer et al. 2008; Francis et al. 2011), both CbLf and CbLf-SLs-assembly significantly promoted transcription of genes mediating cell migration (Supplemental table 1), including growth factors, extracellular matrix and related enzymes, suggesting that CbLf and CbLf-SLs-assembly may play a role in enhancement of cell migration.

**CbLf and CbLf-SLs-assembly up-regulated expression of genes involved in generation of the extracellular matrix**

Our results show that CbLf and CbLf-SLs-assembly markedly enhanced transcription of components of the extracellular matrix (ECM) (Supplemental Table 1), which is consistent with previous reports showing that CbLf promoted secretion of hyaluronan in human normal dermal fibroblasts (Saito et al. 2011; Takayama et al. 2003). Compared with effects regulated by CbLf, the assembly had stronger or weaker effects on transcription of some genes, such as TIMP, PLOD2, and VCAN. Expression of collagen I, the most abundant collagen in skin, was significantly up-regulated by CbLf. Besides proteins of the ECM, CbLf and CbLf-SLs-assembly also enhanced transcription of enzymes required for construction of ECM, and increased transcription of inhibitors for matrix metalloproteinases (MMPs), which degrade collagens. Put together, CbLf and CbLf-SLs-assembly up-regulated ECM synthesis via promotion of synthesis of ECM components and their required enzymes, as well as up-regulation of MMP inhibitors.

**CbLf and CbLf-SLs-assembly promoted transcription of genes involved in resistance against oxidative stress**
CbLf and CbLf-SLs-assembly significantly increased the potential for oxidative stress resistance in dermal fibroblasts via stimulating transcription of genes (Supplementary table 1) involved in removal of reactive oxygen species (ROS), particularly superoxide dismutase (SOD). Two signaling pathways modified were found to be involved in antioxidant reactions, namely NRF2 oxidative stress response, and the antioxidant action of vitamin C (Supplementary table 3).

**Effects of CbLf and CbLf-SLs-assembly on expression of genes involved in Immunomodulatory activities**

CbLf and CbLf-SLs-assembly considerably stimulated transcription of genes related to immunomodulatory effects. As shown in Supplementary table 1, expression of genes for cytokines, chemokines, and kinases were dramatically increased. The immunomodulatory effects were mediated by several signaling pathways (Supplementary table 3). Dominant signaling pathways including IL-6, iNOS, Tweak, IL-8, and IL-17A signaling mediated effects triggered by both CbLf and CbLf-SLs-assembly.

**Effects on lipid metabolism and other effects of SLs on HDFn**

CbLf, CbLf-SLs-assembly, and SLs promoted cholesterol biosynthesis of HDFn (Supplementary tables 2&4). Although CbLf, assembly, and SLs activated similar signaling pathways to enhance cholesterol biosynthesis, the treatment with SLs alone exhibited the highest efficacy. In addition to the effect on lipid metabolism, SLs enhanced biosynthesis of estrogen, androgen, and vitamin A &D (Supplementary table 5).
Pathway analysis summary

CbLf and CbLf-SLs-assembly significantly regulated gene transcription profiling of HDFn. A large number of genes involved in diverse biological processes are up-regulated in the transcriptional response. Based on the pathway analysis, CbLf and CbLf-SLs-assembly play critical roles in cellular functions (Supplementary table 6). The major functions regulated by CbLf and CbLf-SLs-assembly consisted of positive regulation of cellular assembly and organization, as well as cell cycle progression. The main effects of SLs on dermal fibroblasts comprise regulation of lipid metabolism, vitamin and mineral metabolism, and molecular transport (Supplementary table 7).

Discussion

Lfs can be internalized by dermal fibroblasts, and SLs may influence effects triggered by CbLf via changing the intracellular localization of internalized Lfs. SLs have been shown to increase CbLf absorption by model skin (Ishii et al. 2012), probably via facilitating transport of CbLf through multiple layers of the epidermis. However, SLs did not affect the rate of CbLf internalization by HDFn as evident by internalization of $^{125}$I-labeled Lfs. Instead, SLs changed the intracellular localization of CbLf and may thus affect its physiological functions. Compared with holo-forms of Lfs, all apo-forms of Lfs displayed higher uptake, suggesting that conformation differences play a role in Lf internalization by HDFn and may thereby modify effects of Lfs on dermal fibroblasts. Apo-Lf has less compact conformation than holo-Lf (Baker and Baker 2004), so the LfR binding site in apo-Lf may have higher chances to access the LfR on the membrane of HDFn, leading to higher uptake of apo-Lf by HDFn.
CbLf and CbLf-SLs-assembly significantly up-regulated transcription of genes involved in cellular proliferation. Major proliferation-related signaling pathways activated by CbLf and CbLf-SLs-assembly were PI3K/AKT, platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF-1) signaling pathways. Additionally, the assembly activated VEGF (vascular endothelial growth factor) signaling. Lf has been reported to stimulate proliferation of dermal fibroblasts (Ishii et al. 2012), and induced proliferation of keratinocytes via activating the ERK signaling pathway (Tang et al. 2010). Fibroblasts are the predominant cells in the dermis, and they play essential roles in maintaining skin homeostasis and forming a heterogeneous cell population which produces ECM components including collagens, elastin, and glycoproteins (Martin 1997). A complex ECM network organized by dermal fibroblasts provides water retention and remarkable biomechanical properties to skin (Vedrenne et al. 2012). Renewal of the epidermis is much slower in elderly due to the unique extension of cell cycles (Kohl et al. 2011), and aging fibroblasts display a slower rate of proliferation than fetal fibroblasts (Khorramizadeh et al. 1999), suggesting that chronological aging at least partly results from decreased replicative capacity of dermal fibroblasts. Thus, promoted proliferation of dermal fibroblasts may result in improvement of skin health through increasing generation of ECM components and stimulating renewal of the epidermis.

CbLf and CbLf-SLs-assembly may be involved in facilitating migration of dermal fibroblasts (Supplementary table 1) via stimulating expression of ECM and related transcription factors, as well as growth factors. The migration of human skin cells is very complex, and it is crucial for skin wound healing and remodeling. Platelet derived growth factor (PDGF) is well characterized for its functions on growth and motility of
dermal fibroblasts, and it is believed to participate in wound healing processes (Li et al. 2004). CbLf and CbLf-SLs-assembly dramatically stimulated transcription of both PDGF and PDGF receptor (PDGFRB), suggesting that they may be associated with enhancement of cell migration via increasing PDGF transcription. In addition to PDGF, CbLf and the assembly also enhanced transcription of FGF, another important growth factor related to cell motility (Li et al. 2004). Two recombinant hLfs have been shown to promote wound repair via stimulation of cell proliferation and migration of dermal fibroblasts, as well as synthesis of ECM components (Engelmayer et al. 2008; Takayama and Aoki 2012; Tang et al. 2010). Cell migration and proliferation are two essential steps for re-epithelialization in skin wound healing and remodeling (Clark et al. 1996). CbLf and CbLf-SLs-assembly significantly enhanced transcription of genes tightly related to cell migration and proliferation in dermal fibroblasts, implying that Lf may play important roles in wound repair.

CbLf and CbLf-SLs-assembly remarkably promoted transcription of genes involved in synthesis of extracellular matrix via enhancing transcription of ECM components, promoting lysyl hydroxylation via stimulating transcription of related enzymes, and inhibiting collagen degradation by increasing transcription of metallopeptidase inhibitor 3 (Supplementary table 1). CbLf has been documented to increase secretion of hyaluronan by increasing transcription of hyaluronan synthase 2 (HAS2), and elevate COL1A1 transcription in normal human dermal fibroblasts (Saito et al. 2011). Consistently, transcription of HAS2 and collagen I was considerably up-regulated by CbLf and CbLf-SLs-assembly. In particular, the effect of the assembly on HAS2, a major hyaluronan synthase in dermis, was more potent than that of CbLf.
Collagens I and III are the most abundant collagens present in skin, and lysyl hydroxylation is needed for cross-link formation to stabilize collagen networks in the extracellular space (Krieg and Aumailley 2011), whereas hyaluronic acid fills the connective tissue and is responsible for its strength (Delalle-Lozica 2010). Photo-aged skin contains an abundance of degraded and disorganized collagen fibrils and has a reduced production of type I and type III procollagen (Fisher et al. 2002; Talwar et al. 1995). Increased collagen synthesis or protection from collagen breakdown are potential mechanisms for anti-aging effects (Chiu and Kimball 2003).

CbLf and CbLf-SLs-assembly may protect skin from oxidative stress via stimulating expression of related genes and activating anti-oxidative signaling pathways. Covering the entire outer surface of the body, human skin is the largest organ and is constantly exposed to sunlight stress, including ultraviolet (UV) light irradiation. Reactive oxygen species (ROS) damage cellular DNA, lipids, and proteins (Berlett and Stadtman 1997). There are two types of skin aging; one is chronological aging, which is due to the passage of time, and another is premature aging or photo-aging owing to environmental aggressors (Iddamalgoda et al. 2008). ROS generated from oxidative cell metabolism and UV-exposure cause oxidative damage to cellular components, such as cell walls, lipid membranes, mitochondria, and DNA. ROS facilitates both photo-aging and chronological aging (Fisher et al. 2002). Based on the free radical theory, excess ROS generated from oxidative metabolism result in cellular damage, which is a major cause of aging (Hensley and Floyd 2002). CbLf and the assembly significantly activated the NRF2-mediated oxidative stress response and antioxidant action of vitamin C to exert their anti-oxidant effects. Nrf2 is a transcription factor known to initiate a cellular...
response to defend cells against the deleterious effects of environmental toxicants (Kensler et al. 2007). Vitamin C is an electron donor, and it eliminates most ROS (Padayatty et al. 2003). CbLf and CbLf-SLs-assembly may remove ROS through activating these two signaling pathways and thus diminish both photo-aging and chronological aging to some extent. In agreement with our results, an in vivo study conducted in hairless mice found that oral supplementation with Lf prevented UV-induced skin damage (Murata et al. 2014). Consequently, CbLf and CbLf-SLs-assembly treatments may lead to healthy and younger looking skin.

CbLf and CbLf-SLs-assembly may play roles in immunomodulatory activities by enhancing transcription of chemokines, cytokines, and related enzymes. Skin is an effective barrier between the organism and the environment to prevent invasion of pathogens and to protect against toxins (Proksch et al. 2008). CbLf and CbLf-SLs-assembly may activate IL-6, iNOS, Tweak, IL17A, and IL-8 signaling pathways to prepare or protect dermal fibroblasts against microbial invasion (Supplementary table 3), which may be beneficial for facilitating the wound healing process by reducing the risk of infection. The antimicrobial activities and immunomodulatory effects of Lf have been extensively documented (Siqueiros-Cendon et al. 2014; Vogel 2012; Wakabayashi et al. 2014). Microbiological contamination happens easily in cosmetics with high water content, and it causes potential harmful effects to the consumers (Lundov et al. 2009). Addition of Lf to cosmetics may not only prevent microbiological contamination of the product, but also protect the skin from insults from bacteria and viruses.

CbLf, CbLf-SLs-assembly, and SLs may all upregulate cholesterol biosynthesis of HDFn. The enhanced cholesterol synthesis may be associated with up-regulation of
hyaluronan synthesis as indicated in Supplementary table 1, since activities of hyaluronan synthase rely on lipid (Ontong et al. 2014). Moreover, cholesterol is an important ingredient of cell membrane, and it is essential to maintain permeability, fluidity, and protein functions of cell membrane (Espenshade and Hughes 2007). Thus, upregulation of cholesterol may be beneficial for the skin. Additionally, SLs were reported to reduce subcutaneous fat accumulation by increasing leptin synthesis in adipocytes (Lourith and Kanlayavattanakul 2009). Therefore, further studies using animal models are needed to clarify effects of SLs on lipid metabolism.

In addition to the effects on cholesterol biosynthesis, SLs alone were involved in synthesis of sex hormones and vitamins (Fig. 10.). Human skin is both a hormone target and an endocrine gland (Slominski et al. 2013). Estrogens shows a serial positive effects on human skin, such as protection against skin aging, and acceleration of wound healing (Thornton 2005). Moreover, SLs may stimulate synthesis of vitamin A and D, which also have favorable effects on skin. For examples, vitamin A and vitamin D both mediate proliferation and differentiation of skin epithelial cells (Bikle 2015; Randolph and Simon 1997). There are no reported effects of SLs on the synthesis of sex hormones and vitamins, and these effects need to be further validated.

Taken together, Lf is absorbed by dermal fibroblasts and may exert benefical effects on skin health; SLs did not significantly influence internalization and bioactivities of Lf on dermal fibroblasts. Anti-oxidation effects, immunomodulatory activities, and enhancement of wound healing are major possible effects of Lf on dermal fibroblasts (Fig. 7). Lf may exert beneficial roles in skin health by stimulation of proliferation, promotion of life span of dermal fibroblasts, enhancement of synthesis of ECM
components, and increase in oxidative stress resistance. Moreover, Lf may stimulate wound repair as Lf up-regulated transcription of genes involved in promotion of proliferation, and migration of dermal fibroblasts, as well as enhancement of production of ECM components. Topical application of Lf to skin should be further investigated by evaluating changes at the protein level and also in vivo experiments, i.e. animal and human studies.
Acknowledgment

We gratefully acknowledge the assistance of Siranoosh Ashtari at the Expression Facility at University of California, Davis with microarray assays.
References


He, J., and Furmanski, P. 1995. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373(6516): 721-724. doi: 10.1038/373721a0.


Fig. 1. Uptake of Lfs by HDFn. After D10 HDFn were incubated in supplement-free medium containing 125I-labeled Lf samples (100 µg/mL with or without SLs: 10 µg/mL) for 30 min at 37°C, cell-associated radioactivity was quantified in a gamma counter. Data are shown as means ± SD for three independent experiments (n=5). Differences between Lf and Lf-SLs-assembly groups were analyzed using one-way ANOVA. *p<0.001.
Fig. 2. Subcellular localization of internalized Lf in the presence or absence of SL. After cells were treated with Lfs (100 µg/mL) or Lf-SLs-assemblies in supplement free medium for 30 min at 37°C, cells were stained with green fluorescence (Lf) and red fluorescence (nucleus). (A&B): hLf, (C&D): bLf, (E&F): CbLf. Data are shown as means ± SD for three independent experiments (n=3). Differences between Lf and Lf-SLs-assembly groups were analyzed using one-way ANOVA. Scale bar: 10 µm. *p<0.001, #p<0.05, **p<0.01.

254x190mm (96 x 96 DPI)
Fig. 3. Clustering of genes expressed in HDFs treated with Lf and SLs. Hierarchical clustering of 12 samples based on expression levels of 13716 probes detected in the microarray. Samples were clustered with a centroid linkage method on the horizontal axis, and the lengths of the branches were measured by a Euclidean algorithm. The vertical axis represents the degree of correlation between samples, and the lengths of the branches indicate similarities between samples or genes.
Fig. 4. Heatmap representation of the genes significantly regulated by CbLf, CbLf-SLs-assembly, and SLs. Probe sets for genes significantly regulated (adjusted p value <0.05, fold change ≥3.0 or ≤0.3) were selected and reported in a heatmap. Each row represents a different probe set, and columns pertain to data collected from HDFn treated with CbLf, SLs, or CbLf-SLs-assembly.

254x190mm (96 x 96 DPI)
Fig. 5. Global analysis of transcriptomic changes in the presence of CbLf, SLs, and CbLf-SLs-assembly indicated by Venn diagrams. Venn diagrams represent genes significantly regulated by CbLf, SLs, and CbLf-SLs-assembly. Differentially expressed genes were selected following three criteria: fold change >1.5 for up-regulation, fold-change < 0.5 for down-regulation, and detection probability greater than 0.95 in all samples.
Fig. 6. Real-time PCR verification of microarray results. (A) FABP3 (B) COL7A1 (C) CXCL6 (D) PLIN2 (E) CPA4 (F) EDN1. (G) Associations between results from microarrays and RT-PCR were analyzed, and all were shown to have R² > 0.95. Values are shown as mean fold-changes ± SD for three independent experiments (n=5), relative to control (non-treated control, set to 1). * p<0.001, ** p<0.01
Fig. 7. Plausible physiological functions of topically applied CbLf and CbLf-LSs-assembly through activation of HDFn. According to the pathway analysis on microarray data, Lf is likely to activate HDFn to exert multiple functions such as anti-aging, wound healing, anti-microbial, cell proliferation, and cholesterol biosynthesis facilitating effects.
<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABBP3 Forward</td>
<td>AGCCTAGCCCAGCATCACTA</td>
</tr>
<tr>
<td>FABBP3 Reverse</td>
<td>AACCCACACCGAGTGACTTC</td>
</tr>
<tr>
<td>COL7A1 Forward</td>
<td>CCCATGAGGCACCAGATACT</td>
</tr>
<tr>
<td>COL7A1 Reverse</td>
<td>GCTGACTCCACCTTCGAGAC</td>
</tr>
<tr>
<td>CXCL6 Forward</td>
<td>TGTGGACGCTGACGGTGCAG</td>
</tr>
<tr>
<td>CXCL6 Reverse</td>
<td>AACTTGCTTCCCGTTCTTCA</td>
</tr>
<tr>
<td>PLIN2 Forward</td>
<td>ACTGGCTGCTAGGTCCCTTT</td>
</tr>
<tr>
<td>PLIN2 Reverse</td>
<td>GTCTCCTGGCTGCTCTTGTC</td>
</tr>
<tr>
<td>CPA4 Forward</td>
<td>TCGGAAGTGAGGGTGAAATC</td>
</tr>
<tr>
<td>CPA4 Reverse</td>
<td>GTAGCTGTGACGTCGATGA</td>
</tr>
<tr>
<td>EDN1 Forward</td>
<td>TCCTCTGCTGGTTCTGACT</td>
</tr>
<tr>
<td>EDN1 Reverse</td>
<td>ATGGAAGCCAGTGAGATGG</td>
</tr>
<tr>
<td>GAPDH Forward</td>
<td>CAAACGAATTGGGCTACAGCA</td>
</tr>
<tr>
<td>GAPDH Reverse</td>
<td>GGTGGTCAGGGGTCTTACT</td>
</tr>
</tbody>
</table>