Differences in growth and wood density in clones and provenance hybrid clones of Norway spruce

Journal: Canadian Journal of Forest Research
Manuscript ID: cjfr-2016-0285.R1
Manuscript Type: Article
Date Submitted by the Author: 19-Sep-2016
Complete List of Authors:
Levkoev, Eino; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry
Kilpeläinen, Antti; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry
Luostarinen, Katri; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry
Pulkkinen, Pertti; Natural Resources Institute Finland Haapastensyrjä Breeding Station, FI-16200
Mehtätalo, Lauri; University of Eastern Finland, P.O. Box 111, FI-80101, Faculty of Science and Forestry, School of Computing
Ikonen, Veli-Pekka; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry
Jaatinen, Raimo; Natural Resources Institute Finland Haapastensyrjä Breeding Station, FI-16200
Zhigunov, Anatoly; Saint-Petersburg State Forest Technical University, RU-194021, Institutskiy per 5, Forestry Faculty
Kangas, Jyrki; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry
Peltola, Heli; University of Eastern Finland, P.O. Box 111, FI-80101, School of Forest Sciences, Faculty of Science and Forestry

Keyword: bioeconomy, biomass, stem volume, phenotypic differences, wood density
Differences in growth and wood density in clones and provenance hybrid clones of Norway spruce

Eino Levkoev¹*,¹, Antti Kilpeläinen¹, Katri Luostarinen¹, Pertti Pulkkinen³, Lauri Mehtätalo², Veli-Pekka Ikonen¹, Raimo Jaatinen³, Anatoly Zhigunov⁴, Jyrki Kangas¹, Heli Peltola¹

¹) University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland. Eino Levkoev (eino.levkoev@uef.fi), Antti Kilpeläinen (antti.kilpelainen@uef.fi), Katri Luostarinen (katri.luostarinen@uef.fi), Veli-Pekka Ikonen (veli-pekka.ikonen@uef.fi), Jyrki Kangas (jyrki.kangas@uef.fi), Heli Peltola (heli.peltola@uef.fi).

²) University of Eastern Finland, Faculty of Science and Forestry, School of Computing, P.O. Box 111, FI-80101 Joensuu, Finland. Lauri Mehtätalo (lauri.mehtatalo@uef.fi)

³) Natural Resources Institute Finland Haapastensyrjä Breeding Station, FI-16200 Läyläinen, Finland. Pertti Pulkkinen (pertti.pulkkinen@luke.fi), Raimo Jaatinen (raimo.jaatinen@luke.fi).

⁴) Saint-Petersburg State Forest Technical University, Forestry Faculty, RUH194021, Institutskiy per. 5, Saint-Petersburg. Anatoly Zhigunov (a.zhigunov@bk.ru).

*Corresponding author: Eino Levkoev, +358 40 588 0005; eino.levkoev@uef.fi
Abstract

The growing forest bioeconomy calls for enhancing wood production in Finland. Accordingly, we studied phenotypic differences and correlations for growth and wood density traits in 25 Norway spruce (*Picea abies* (L.) Karst.) genotypes grown in a field trial established in the 1970s in southeastern Finland. We also studied the effect of geographical origin of parent-trees. The clones represented six southern Finnish and two southwestern Russian clones, and three Finnish-Swiss, eight Finnish-German, three Finnish-Latvian and three Finnish-Estonian hybrid clones. Some local Finnish clones (e.g., V43) and provenance hybrid clones (e.g., Finnish-German V449 and V381) clearly displayed higher stem volume than the clone average and relatively high overall wood density (and wood biomass yield). The increase in latitudinal transfer distance of parent-trees compared to the latitude of the trial seemed to decrease the height, breast height diameter and stem volume, but the effect was not significant (*p* > 0.05). The overall wood density was affected significantly only by latitude of father parent trees (*p* < 0.05). Wood density traits showed clearly lower phenotypic variation compared to other traits. Contrary to our hypothesis, none of the studied hybrids show superior properties compared to the local Finnish clones.

Keywords: bioeconomy, biomass, phenotypic differences, stem volume, wood density
Introduction

More efficient wood production is called for in Finland and elsewhere in Europe to fulfill the increasing demand for wood biomass in the growing forest bioeconomy, and to transfer towards a low-carbon and resource-efficient society in which fossil resources are substituted by renewables (The Finnish Bioeconomy Strategy 2014; Scarlat et al. 2015). At the same time, demand for multiple-use of forests (e.g., for recreation and nature conservation) is increasing, and nature’s ecosystem services must be secured and maintained. In general, increasing demand for wood biomass would increase environmental impacts due to the need to increase harvested forest area, unless the average amount of harvested wood per hectare could be increased in commercial forests. On the other hand, there are different ways to increase the resource-efficiency and wood production per hectare, such as the use of improved seed and seedling material in forest regeneration, proper spacing and thinning regimes, nitrogen fertilization and rotation length (Kellomäki et al. 2005; Routa et al. 2013; Pyörälä et al. 2014; Kilpeläinen et al. 2016).

In Finland, Norway spruce (Picea abies (L.) Karst.) is an important raw material source for forest bioeconomy as it accounts for 30% of the current volume of growing stock (Finnish Statistical Yearbook of Forestry 2014). To improve the resource-efficiency in wood production and to fulfill the growing demand of wood for forest bioeconomy, an increase of tailored wood production per unit land area is needed. However, this requires better understanding of how the genotype affects growth and wood property traits. In addition to genotype, environmental factors (e.g., temperature, water, light and nitrogen availability), in interaction with forest management, affect the growth and wood properties of tree stands (Kellomäki et al. 2005; 2008). Therefore, for the selection of suitable genotypes for forest regeneration at different sites and regions, growth and wood properties should both be considered. Adaptation capacity of genotypes in changing environmental conditions should also be considered as it crucially affects the survival, growth, and properties of trees (Kellomäki et al. 2005; 2008).
Until recently volume growth was typically used as a selection trait of primary importance in forest tree breeding, whereas less attention has been given to the genetic or phenotypic relationships among different growth and wood density traits (e.g., Karlsson and Rosvall 1993), despite these traits have a high inheritance and significant effect on the properties of wood products (Zobel and Buijtenen 1989; Zobel and Jett 1995; Skog et al. 2014). High wood density may be desirable, for example, for chemical pulp production (Ståhl 1998) and for gasification raw material (Wegner et al. 2010). However, selection of suitable genotypes for forest regeneration considering both high volume growth and wood density is a complicated task as genetic/phenotypic relationships observed between these traits are, in general, negative (Zobel and Jett 1995). Nonetheless, non-significant or weak positive relationships between these traits are observed, for example, in some Norway spruce clones (Zobel and Jett 1995; Bujold et al. 1996; Zubizarreta Gerendiain et al. 2007).

As selection for one trait will simultaneously affect other traits, different traits of interest should be evaluated simultaneously. For example, selection for both high stem volume and relatively high wood density may be possible by selection of genotypes with negligible relationships between these characteristics. Recently, Zubizarreta Gerendiain et al. (2007) found that some Finnish Norway spruce clones may have both a high stem volume and a relatively high wood density. Selection for both high stem volume and relatively high wood density may be possible also through hybridization (i.e. crossing local and foreign parent trees) and consequently the selection of hybrids combining these traits (Gerhold and Park 1986; Magnussen and Yeatman 1988; Ruotsalainen 2014).

The adaptation of different tree species and genotypes to climatic and site conditions is closely linked to geographic position (latitude, longitude and altitude) and photoperiod (Olsen 2010, Ruotsalainen 2010), which should also be considered in the selection of future seedling material (e.g., provenances, clones, hybrids) for practical forestry. This is because genotypes originating from milder climatic conditions (e.g., lower latitude and closer to sea level) tend to have, in general, longer growing periods and thus higher total growth (e.g., stem volume) associated with lower
wood density (White et al. 2007). This is opposite to the genotypes from harsh environments (Persson and Persson 1997; Skrøppa and Hylen 1999). In overall, the success of different genotypes and differences between them can be determined at relatively young stage (Ruotsalainen 2010). Large improvement in volume growth over a rotation length and economic profitability of forestry may be expected by using improved seed/seedling material in forest regeneration (Ahtikoski et al. 2012; Ruotsalainen 2014).

We studied phenotypic differences for growth and wood density traits and their relationships in 25 Norway spruce clones and provenance hybrid clones grown in a field trial established in the 1970s in southeastern Finland. In addition, we studied how geographical origin of parent-trees affected different traits. The studied genotypes represented six southern Finnish and two southwestern Russian clones, and three Finnish-Swiss, eight Finnish-German, three Finnish-Latvian and three Finnish-Estonian hybrid clones. Based on the previous studies, we hypothesized that some hybrid clones could have higher growth (e.g., stem volume) and overall wood density than the local Finnish clones.

Materials and methods

Experimental data

The material for this research was collected from a Norway spruce trial established in 1974 in Imatra, southeastern Finland (28°48’E, 61°08’N, 60 m a.s.l.; 1300 growing degree days). The trial is located on agricultural soil with site fertility conditions typical for cultivation of Norway spruce on mineral soils. The spacing of trees in the trial was 2 m × 2.5 m, and 119 genotypes (clones and hybrid clones) were replicated in 20 blocks (4 repetition trees per block, 80 trees per genotype). Blocks were not expected to affect the performance of the genotypes on relative homogenous agricultural soil. Mother trees of clones and hybrid clones were produced through controlled crosses.
between genotypes. The age of the mother trees varied from two to four years at the time of cloning, and this range was not expected to affect the results of this work (Rautanen 1995).

The studied genotypes represented six southern Finnish and two southwestern Russian clones, and three Finnish-Swiss, eight Finnish-German, three Finnish-Latvian and three Finnish-Estonian provenance hybrid clones (referred to hereafter as hybrids) (Table 1). In spring 2015, we randomly harvested eight to ten trees with a good cone crop for each genotype. Good cone crop was required for sample trees as their seed material was to be used for a follow-up study. The number of sample trees was taken to be enough for this type of cloned trial (see e.g., Zobel and Jett 1995). Sample trees were also previously harvested from this trial from some Finnish clones for research purposes (see e.g., Zubizarreta Gerendiain et al. 2007), but this was not expected to affect the growing conditions of our sample trees and consequently the results of this work. Related to the harvesting of sample trees, their height and stem diameters (at breast height, 1.3 m and at 6 m from the stem base) were measured for further calculation of the stem volume according to equations by Laasasenaho (1982). One sample disc from each sample tree was taken at a height of 1 m for measurements of intra-ring growth and wood property traits.

X-ray densitometry measurements

Radial wood segments 5 mm × 5 mm in size were cut in the south–north direction out of sample discs with a twin-blade circular saw. Thereafter, wood specimens were stored at fixed conditions, until they reached 12% moisture content (i.e., air dry). The wood specimens were then scanned in batches using a direct scanning ITRAX X-ray microdensitometer (Cox Analytical Systems, Göteborg, Sweden). ITRAX works with automatic collimator alignment (see Bergsten et al. 2001) at a geometrical resolution of 40 measurements per mm (0.025 mm × 1 mm). Based on previous
work by Zubizarreta Gerendiain et al. (2007), we used the standard X-ray intensity (30 kV, 35 mA) for X-ray measurements, with an exposure time of 20 ms.

The X-ray radiographic images were analyzed with the Density Profile Analyzer Package for Excel to determine intraring density profiles for each sample from pith to bark. This data was, then, processed by Excel macros (Microsoft, Redmond, Wash.) to determine from pith to bark for each individual ring: ring width (mm), earlywood and latewood widths (mm) and their percentages, mean wood density (g/cm3), minimum and maximum wood densities (g/cm3), earlywood and latewood densities (g/cm3). Similar to previous work by Zubizarreta Gerendiain et al. (2007), the mean of the maximum and minimum intraring densities were used as a threshold for earlywood (< mean) and latewood (> mean) in each ring.

Data analyses

Growth and wood density values measured for each individual ring were used to calculate the weighted cross-sectional means for wood density (WD), earlywood density (EWD) and latewood density (LWD) for each sample tree (disc). In addition, mean widths of the annual ring (RW), earlywood (EWW) and latewood (LWW) widths were determined for each sample tree as well as latewood percentage (LWW%). Stem mass was calculated for each tree by multiplying stem volume with WD, following the approach used by Kilpeläinen et al. (2010). Phenotypic coefficient of variation (CV, %) was also calculated by normalizing the standard deviation (σ) by the mean (μ) of the variable (e.g., LWW, LWD) for each genotype (CV (%) = σ × 100 / μ).

Statistical data analyses were undertaken in R software (R core team 2016). Differences in various growth traits (i.e. cross-sectional means for EWW, LWW, RW and LWW%, and final diameter at breast height, tree height, stem volume and stem mass, respectively) and wood density traits (i.e. weighted cross-sectional means for WD, EWD, LWD) between genotypes were tested with one-way analysis of variance (ANOVA). Pairwise analysis with a Tukey’s test ($p < 0.05$) was applied
for height, LWW, LWW (%), EWD, LWD WD, and Dunnett’s T3 test for D, V, SM, EWW, RW based on a test of the homogeneity of the variance (Levene’s test of equality of error variances). Relationships between different growth and wood density traits were studied using phenotypic correlation instead of genetic correlation because of the small number of sample trees per genotype (see e.g., Zubizarreta Gerendiain et al. 2007). This was also suggested earlier by Hannrup et al. 2000.

The phenotypic correlations \((r_p) \) between the property traits were computed by the Pearson’s correlation method:

\[r_p = \frac{\sigma_{p1p2}}{\sigma_{p1}\sigma_{p2}}, \]

where \(\sigma_{p1p2} \) is the phenotypic covariance between properties 1 and 2 and \(\sigma_{p1} \) and \(\sigma_{p2} \) are the phenotypic standard deviations for properties 1 and 2. Correlations were expected to be significant at \(p < 0.05 \). The CV\% and \(r_p \) were computed both for individual genotypes and as a mean of all the genotypes.

Linear mixed-effects modeling was used to study how the geographical origin of parent-trees affects diameter, height, stem volume and overall wood density of the genotypes. However, because of breeding approach, a co-linearity issue arises. This is because a change in the latitude is associated with a change in the longitude and the altitude. To avoid co-linearity between latitude and longitude, we did not include longitude of origin of parent-trees in our model. In a previous study by Barzdajn et al. (2016), no strong relationship was found between longitude and growth traits for European provenances of Scots pine \((\text{Pinus sylvestris} \ L.) \). Furthermore, the breeding approach and the design of the trial does not allow direct estimates of the effect of altitude on the traits studied. Therefore, we used a transformation approach to adjust altitudinal climate effects in terms of latitude. This was done by assuming that each hundred-meter increase in altitude corresponds to one-degree latitude transfer to the north, following previous work by Laaksonen (1976). Similar to previous works of Matyas and Yeatman (1992) and Persson and Beuker (1997), in the final models we used differences between the revised latitude values (including altitude effect) of parent-trees origins and that of the trial as explanatory variables. In addition, there were
only nine to eleven independent observations per each geographical variable, which hinders investigation on the effects of multiple geographical factors on the studied traits within one model. Therefore, the following general design of mixed linear model was used:

\[y_{ijk} = \beta_0 + \beta_1 x_{ijk} + a_i + b_{ij} + \epsilon_{ijk} \quad (1) \]

where \(y_{ijk} \) a trait studied (Table 7), \(\beta_0 \) is the intercept, \(\beta_1 \) is the fixed effect of the geographical variable \(x_{ijk} \) tested (\(x_{ijk} \) is adjusted latitude \(i \) either of mother or father parent-tree origin), \(a_i \) is the random effect of the geographical variable, \(b_{ij} \) is the random effect of genotype \(j \), and \(\epsilon_{ijk} \) is the error term (\(k \) stands for the individual trees within each genotype). The variability within each explanatory variable and between individual genotypes was estimated by using random intercepts in the models. Normality in the distribution of the residuals of final models was assessed using scatter and quantile-quantile plots. We applied lme4 package (Bates et al. 2015) for mixed-effects model analysis in R.

Results

Phenotypic variation in growth and wood density traits

Among the tree height, diameter at breast height and stem volume (Table 2), the lowest phenotypic variation was observed in height, followed by diameter and stem volume (range of overall means 5.5–23.4 %). Among the cross-sectional mean growth traits (Table 3), RW had the lowest phenotypic variation, followed by LWW and EWW (range 11.0–13.0 %). Among the cross-sectional mean wood density traits (Table 4), the lowest phenotypic variation was observed in LWD and EWD, followed by WD (range 3.7–4.3 %).

Local Finnish clone V43 had the largest stem volume and diameter (40.7 and 19.8 % higher than the mean over all genotypes). Finnish-Latvian hybrid V469 was the tallest (7.0 % higher than the mean). Also, Finnish-Latvian V471, Finnish-German V383 hybrids and local Finnish clone V48
were 4.3 to 6.7 % higher than the mean. Local Finnish clone V465, Finnish-German hybrids V449, V49 and V302 had 7.2 to 11.4 % larger diameters than the mean. Russian clone V327, local Finnish clone V465 and Finnish-German hybrids V382 and V49 had 15.7 to 21.3 % larger stem volumes than the mean (Table 2).

Local Finnish clone V43 had the largest RW (20.0 % higher than the mean). Also Finnish-German hybrids V49, V449, V302 had 8.8 to 10.8 % larger RW than the mean (Table 3). The Finnish-Swiss hybrid V455 had the highest WD (10.9 % higher than the mean), while Finnish-Latvian V471, Finnish-Swiss V456 and Finnish-German V447 hybrids had 5.4 to 6.9 % higher WD than the mean.

Stem mass as calculated based on stem volume and overall wood density was the largest for the Finnish clone V43 (41.6 % higher than the mean) and Finnish-German hybrids V382 and V381 (Table 2).

Phenotypic correlations between growth and wood density traits

The phenotypic correlation between height, diameter at breast height and stem volume was strong and positive, ranging from 0.65 between diameter and height to 0.94 between diameter and stem volume (p < 0.05). The phenotypic correlation between the cross-sectional mean growth traits varied from weak to strong, and ranged from 0.28 between EWW and LWW to 0.96 between EWW and RW. Among cross-sectional mean wood density traits, the phenotypic correlation varied from 0.70 between EWD and LWD to 0.92 between EWD and WD. Phenotypic correlations between diameter and WD (−0.41) and between stem volume and WD (−0.35) were, in general, negative and moderate (Table 5). However, also negligible insignificant phenotypic correlations between these traits were observed for Finnish-German hybrids V49 and V448, Finnish-Latvian hybrids V471 and V469 and Finnish clones V47, V48 and V43 (Table 6).
Effect of geographical origin of parent trees on different traits

In general, the increase of revised latitudinal transfer distance of parent trees, compared to the latitude of the trial tended to decrease the height, breast height diameter and stem volume, but the effect was not significant \((p > 0.05)\). The overall wood density was significantly affected only by revised latitude (altitude effect considered) of the father parent tree \((p < 0.05)\), a one-degree increase of which decreased wood density by 0.006 g/cm\(^3\) (Table 7).

Discussion

In this work we hypothesized that some provenance hybrid clones could simultaneously have both higher stem volume and overall wood density than the local Finnish clones. However, the stem volume and diameter were largest for local Finnish clone V43 (Figure 1). The Finnish-Latvian hybrid V469 was the tallest. Calculated stem mass was largest for the Finnish clone V43 and Finnish-German hybrids V382 and V381, in all of which WD was on average compared to all genotypes. The growth and wood density traits of some of our Finnish clones were previously studied also by Zubizarreta Gerendiain et al. (2007). This made us possible to compare their relative success between two time periods. Similar to this study, the Finnish clone V43 had, according to corresponding measurements made 10 years earlier, the largest diameter and stem volume of all Finnish clones (also highest WD and second highest H). In addition, clone V465 improved its ranking compared to the earlier study, unlike clone V47 (excluding WD). In both studies, the clones V328 and V332, originating from southern and southwestern Finland, had the lowest WD. However, the results of these two studies may not be fully comparable, as in our study one additional criteria in sample tree selection was good cone crop as seeds were planned to be used for a follow-up study in greenhouse and field conditions. These sampling criteria may have favored the largest trees in sample tree selection and could explain some changes in ranking between clones. On
the other hand, neither in the previous study the suppressed trees were used as sample trees because they are usually harvested in first commercial thinning and not thus providing saw log sized wood. In our study, wood density traits also showed considerably lower phenotypic variation compared to the growth traits, which is in line with earlier findings in Norway spruce and other coniferous species (for example Zobel and Jett 1995; Hannrup et al. 2004; Sofletea and Budeanu 2015). Phenotypic correlations for growth and wood density traits also revealed generally moderate and strong relationships. In particular, the relationship between stem volume and wood density was negative for most of studied genotypes. Thus, selection for one trait would simultaneously affect other traits as observed previously. This negative relationship between stem volume and wood density was also observed in earlier studies in Norway spruce (see e.g., Zobel and Jett, 1995; Raiskila et al. 2006).

Also in previous studies of Norway spruce, relatively large differences were observed for growth and wood density traits in different genotypes (e.g., Sofletea et al. 2015). It was also observed that growth of genotypes tend to decrease when the latitudinal transfer distance of parent-trees to the trial site increases. Andalo et al. (2005) observed this for White spruce (Picea glauca (Moench) Voss) and Barzdajn et al. (2016) for Scots pine. Also Kapeller et al. (2012) stated that geographical origin of parent trees (i.e., provenance) affects growth traits. However, in our study the change of latitudinal transfer distance of parent-trees (considering also altitude effect) compared to the latitude of the clonal trial did not explain performance of growth traits in different genotypes (p > 0.05). At the same time, in our study the transfer of father parent-tree genotypes from southward of Imatra negatively affected overall wood density (p < 0.05). Zubizarreta Gerendiain et al. (2009) reported similar kind of results in Norway spruce also in other Finnish trial. Unfortunately, the genotype crossing approach used in this work does not facilitate explaining these results in more detail.
In general, differences in the performance of genotypes at each trial site may also be partly explained by adaptation of parent-trees to certain environmental conditions, such as photoperiod (Ekberg et al. 1979) and prevailing temperature conditions of the growing season (Ståhl 1998; Skrøppa and Hylen 1999; Savva et al. 2006; Kapeller et al. 2013). In our work, the Finnish-German hybrids tend to show, on average, higher than the mean stem volume over all genotypes. This may imply that they can effectively utilize the growing season and adapt to prevailing climatic conditions in southeastern Finland. At the same time, all Finnish-Swiss and Finnish-Estonian hybrids showed relatively low growth and yield, revealing that they may cease growth earlier than other genotypes studied. The altitude differences of parent trees between the Finnish-German hybrids, and Finnish-Swiss and Finnish-Estonian hybrids, respectively, may partly explain these results. Under a warmer climate, the performance of different genotypes may also change in Northern Europe where the mean annual temperature is expected to increase 3 to 6 °C by 2100 (IPCC 2013).

In this work, some Finnish-German (V449, V381, V382, V383) and Finnish-Latvian (V469) hybrids showed both relatively high stem volume and overall wood density (Figure 2), despite negative relationship existing between these traits. Thus, hybridization could offer means to affect different traits (e.g., Gerhold and Park 1986; Magnussen and Yeatman 1988; Ruotsalainen 2014). However, based on some previous studies no general superiority has been expected from hybrids compared to the best parent-trees (see e.g. Ekberg et al. 1982; Gerhold and Park 1986). In fact, we found that local Finnish clone V43 had the highest stem volume and relatively high wood density while showing a negligible relationship between these traits. Saranpää (2003) also reported this negligible relationship, as did Zubizarreta Gerendiain et al. (2007) for the local Finnish clone V43 at a younger age in this same trial. However, a negligible relationship between these two traits does not necessarily mean that genotype has good performance in given growing conditions (see, e.g., Finnish clones V47 and V48, and Finnish-Latvian hybrid V471). In our study, Finnish clone V465
showed high stem volume and relatively high wood density and moderate negative correlation between these traits. On the other hand, resin canals and resin itself contribute to wood density values if not removed from softwoods like Norway spruce. This may be the case, particularly for stress induced resin canals (Nagy et al. 2000, Schmidt et al. 2011). Thus, the anatomical structure of wood should also be studied when planning to choose appropriate genotypes for further breeding based on wood density. This research still also lacks study on parent-trees, thus not making it possible to determine the contribution of the parents’ genotypes to different traits.

Conclusions

Our research revealed differences in growth and wood density in studied Finnish and Russian clones and provenance hybrid clones. It also demonstrated that by using proper genotypes for forest regeneration, we could enhance wood production, which in turn is needed to sustainability satisfy the growing demand for wood by forest bioeconomy. Selection for both high stem volume and relatively high wood density may be possible, for example, by selecting hybrids with these traits. This may be done also by selection of genotypes with a negligible relationship between them; such as the most productive genotype in our study, local Finnish clone V43. At the same time, the possibility exists to encounter genotypes, such as V465, with high stem volume, relatively high wood density and a negative relationship between these traits. In our study, the Finnish clone V43 showed the highest stem volume and relatively high wood density as well as low variation of the different traits studied, as was observed also in a previous study by Zubizarreta Gerendiain et al. (2007). However, as high wood density may be due to factors like high resin amount, the anatomy of wood should be taken into account in breeding before selecting genotypes based on their wood density. We also plan to study the anatomy of wood for genotypes used in this study (e.g., Finnish clone V43) in further studies, as well as the growth and adaptation capacity of the next tree.
generation of genotypes used in this study under changing environmental condition in greenhouses and field experiments, i.e. based on seed material provided from cones of our sample trees. Research of this type is required as increasing wood demand for bioeconomy will call for more detailed understanding on the raw material properties of wood for any kind of usage.

Acknowledgements

This research was supported by the Scholarship of “Heikki Väänänen fund” UEF in 2015. It was also supported by the FORBIO project (proj. 14970), led by Prof. Heli Peltola, at the School of Forest Sciences, University of Eastern Finland (UEF) and funded by the Strategic Research Council of the Academy of Finland. Tornator Company and city of Imatra are acknowledged for providing the sample trees for this study. BSc. Asko Harju, Mr. Aulis Leppänen and Mr. Veli Suihkonen from Natural Resources Institute Finland are thanked for help in measuring the sample trees and harvesting wood discs for this study. Mr. Jarmo Pennala from UEF, School of Forest Sciences is thanked for helping in X-ray analyses of wood specimens.

References

Table 1. Genotypes (Gtype) and the geographical origin of parent trees. In parenthesis for altitude variable are shown mean altitude values used for the modeling.

<table>
<thead>
<tr>
<th>Gtype</th>
<th>Geographical origin</th>
<th>Geographical location and elevation: mother parent tree</th>
<th>Geographical location and elevation: father parent tree</th>
<th>Sample trees/clone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Latitude (N)</td>
<td>Longitude (E)</td>
<td>Altitude m</td>
</tr>
<tr>
<td>V454</td>
<td>1/E1845 Muonio × E1771 Wintschgau</td>
<td>67° 58'</td>
<td>23° 40'</td>
<td>150-250 (200)</td>
</tr>
<tr>
<td>V455</td>
<td>3/E1845 Muonio × E1771 Wintschgau</td>
<td>67° 58'</td>
<td>23° 40'</td>
<td>150-250 (200)</td>
</tr>
<tr>
<td>V456</td>
<td>4/E1845 Muonio × E1771 Wintschgau</td>
<td>67° 58'</td>
<td>23° 40'</td>
<td>150-250 (200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V447</td>
<td>6/E1832 Rovaniemi × E1770 Spiegelau</td>
<td>66° 29'</td>
<td>25° 40'</td>
<td>250</td>
</tr>
<tr>
<td>V448</td>
<td>8/E1832 Rovaniemi × E1770 Spiegelau</td>
<td>66° 29'</td>
<td>25° 40'</td>
<td>250</td>
</tr>
<tr>
<td>V449</td>
<td>10/E1832 Rovaniemi × E1770 Spiegelau</td>
<td>66° 29'</td>
<td>25° 40'</td>
<td>250</td>
</tr>
<tr>
<td>V49</td>
<td>E5520 Loppi × E1893 Carlsfeld</td>
<td>60° 37'</td>
<td>24° 26'</td>
<td>120</td>
</tr>
<tr>
<td>V302</td>
<td>H3270 Loppi × E1766 Carlsfeld</td>
<td>60° 37'</td>
<td>24° 26'</td>
<td>120</td>
</tr>
<tr>
<td>V381</td>
<td>K1413 Pieksänmaa × E1890/2 Schielbach</td>
<td>62° 23'</td>
<td>27° 04'</td>
<td>160</td>
</tr>
<tr>
<td>V382</td>
<td>K1413 Pieksänmaa × E1890/6 Schielbach</td>
<td>62° 23'</td>
<td>27° 04'</td>
<td>160</td>
</tr>
<tr>
<td>V383</td>
<td>K1411 Pieksänmaa × E1890/8 Schielbach</td>
<td>62° 23'</td>
<td>27° 04'</td>
<td>160</td>
</tr>
<tr>
<td>V469</td>
<td>E2672 Loppi × E943/2 Goldingen</td>
<td>60° 44'</td>
<td>24° 30'</td>
<td>120</td>
</tr>
<tr>
<td>V470</td>
<td>E2672 Loppi × E943/3 Goldingen</td>
<td>60° 44'</td>
<td>24° 30'</td>
<td>120</td>
</tr>
<tr>
<td>V471</td>
<td>E2672 Loppi × E943/6 Goldingen</td>
<td>60° 44'</td>
<td>24° 30'</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Country (Abbreviation)</td>
<td>Location</td>
<td>Coordinates</td>
<td>Density</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>V325</td>
<td>Russia (R)</td>
<td>513/2 Pskov Oblast</td>
<td>57° 48' 28° 26'</td>
<td>100–200 (150)</td>
</tr>
<tr>
<td>V327</td>
<td>513/8 Pskov Oblast</td>
<td></td>
<td>57° 48' 28° 26'</td>
<td>100–200 (150)</td>
</tr>
<tr>
<td></td>
<td>Finland × Estonia (F × E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V386</td>
<td>K1420 Pieksänmaa × E949/1 Perawald</td>
<td>62° 22' 27° 04'</td>
<td>58° 00' 27° 30'</td>
<td>< 100 (99)</td>
</tr>
<tr>
<td>V388</td>
<td>K1420 Pieksänmaa × E949/4 Perawald</td>
<td>62° 22' 27° 04'</td>
<td>58° 00' 27° 30'</td>
<td>< 100 (99)</td>
</tr>
<tr>
<td>V389</td>
<td>K1420 Pieksänmaa × E949/5 Perawald</td>
<td>62° 22' 27° 04'</td>
<td>58° 00' 27° 30'</td>
<td>< 100 (99)</td>
</tr>
<tr>
<td></td>
<td>Finland (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V47</td>
<td>Tree157, +8 Pornainen</td>
<td>60° 29' 25° 30'</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>V328</td>
<td>E2969/5 Pornainen</td>
<td>60° 29' 25° 30'</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>V332</td>
<td>E2937/4 Pöytyä</td>
<td>60° 43' 22° 51'</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>V43</td>
<td>Tree300, +44 Miehikkälä</td>
<td>60° 47' 27° 30'</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>V48</td>
<td>Tree92, +44 Miehikkälä</td>
<td>60° 47' 27° 30'</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>V465</td>
<td>E3821/1 Ruokolahti</td>
<td>61° 19' 28° 55'</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Total no. of trees: 242
Table 2. Statistics for total height (H), diameter at breast height (D), stem volume (V) and stem mass (SM) for the genotypes. Different letters indicate differences among genotypes (p < 0.05)

<table>
<thead>
<tr>
<th>Gtype</th>
<th>Geographical origin</th>
<th>D, cm*</th>
<th>H, m</th>
<th>V, m³†</th>
<th>SM, kg‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean ± SD</td>
<td>% CV</td>
<td>Mean ± SD</td>
<td>% CV</td>
</tr>
<tr>
<td>V454</td>
<td>F × S</td>
<td>17.7 ± 1.2 befghj</td>
<td>91.6</td>
<td>6.9</td>
<td>16.82 ± 1.09 ab</td>
</tr>
<tr>
<td>V455</td>
<td>F × S</td>
<td>15.6 ± 2.2 begj</td>
<td>80.7</td>
<td>14.0</td>
<td>16.81 ± 1.06 ab</td>
</tr>
<tr>
<td>V456</td>
<td>F × S</td>
<td>17.3 ± 3.5 bcdefghj</td>
<td>89.6</td>
<td>20.1</td>
<td>17.51 ± 0.94 bcdefghj</td>
</tr>
<tr>
<td>V447</td>
<td>F × G</td>
<td>19.3 ± 2.0 bcdefghj</td>
<td>100.1</td>
<td>10.5</td>
<td>18.12 ± 1.29 bcdefghj</td>
</tr>
<tr>
<td>V448</td>
<td>F × G</td>
<td>20.1 ± 1.8 bcdefghj</td>
<td>103.7</td>
<td>8.8</td>
<td>17.91 ± 0.73 bcdefghj</td>
</tr>
<tr>
<td>V449</td>
<td>F × G</td>
<td>21.0 ± 2.3 acdefghj</td>
<td>108.5</td>
<td>11.1</td>
<td>18.30 ± 1.07 bcdefghj</td>
</tr>
<tr>
<td>V49</td>
<td>F × G</td>
<td>21.3 ± 1.8 acdefghj</td>
<td>110.1</td>
<td>8.3</td>
<td>18.55 ± 0.96 acdefghj</td>
</tr>
<tr>
<td>V302</td>
<td>F × G</td>
<td>21.5 ± 2.7 acdefghj</td>
<td>111.4</td>
<td>12.4</td>
<td>17.08 ± 0.79 acdefghj</td>
</tr>
<tr>
<td>V381</td>
<td>F × G</td>
<td>20.4 ± 2.3 acdefghj</td>
<td>105.4</td>
<td>11.1</td>
<td>18.31 ± 1.54 acdefghj</td>
</tr>
<tr>
<td>V382</td>
<td>F × G</td>
<td>20.5 ± 2.4 acdefghj</td>
<td>106.1</td>
<td>11.6</td>
<td>18.38 ± 1.09 acdefghj</td>
</tr>
<tr>
<td>V383</td>
<td>F × G</td>
<td>20.2 ± 1.9 acdefghj</td>
<td>104.6</td>
<td>9.4</td>
<td>18.92 ± 1.01 acdefghj</td>
</tr>
<tr>
<td>V469</td>
<td>F × L</td>
<td>20.2 ± 0.5 cdefghj</td>
<td>104.5</td>
<td>2.4</td>
<td>19.32 ± 0.38 cdefghj</td>
</tr>
<tr>
<td>V470</td>
<td>F × L</td>
<td>17.9 ± 2.9 acdefghj</td>
<td>92.8</td>
<td>16.4</td>
<td>18.39 ± 1.98 acdefghj</td>
</tr>
<tr>
<td>V471</td>
<td>F × L</td>
<td>18.3 ± 1.4 acdefghj</td>
<td>94.7</td>
<td>7.4</td>
<td>18.82 ± 0.83 acdefghj</td>
</tr>
<tr>
<td>V325</td>
<td>R</td>
<td>19.8 ± 1.7 acdefghj</td>
<td>102.4</td>
<td>8.3</td>
<td>18.05 ± 0.85 acdefghj</td>
</tr>
<tr>
<td>V327</td>
<td>R</td>
<td>20.5 ± 2.4 acdefghj</td>
<td>106.1</td>
<td>11.9</td>
<td>18.65 ± 1.22 acdefghj</td>
</tr>
<tr>
<td>V386</td>
<td>F × E</td>
<td>18.9 ± 1.8 acdefghj</td>
<td>97.6</td>
<td>9.5</td>
<td>18.66 ± 0.83 acdefghj</td>
</tr>
</tbody>
</table>

* Dunnett’s T3 test was applied here due to the heterogeneity of variance. In other cases Tukey’s test was applied.

† Values are the percentages of the genotype means relative to the mean of all 25 genotypes.
Table 3. Statistics for ring width (RW), earlywood (EWW) and latewood width (LWW), latewood percentage (LWW %), for the genotypes.

Different letters indicate differences among genotypes (p < 0.05)

<table>
<thead>
<tr>
<th>Gtype</th>
<th>Geographical origin</th>
<th>EWW, mm</th>
<th>LWW, mm</th>
<th>LWW, %</th>
<th>RW, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>V388</td>
<td>× E</td>
<td>17.1 ± 1.6</td>
<td>98.4</td>
<td>9.3</td>
<td>16.98 ± 0.66</td>
</tr>
<tr>
<td>V389</td>
<td>× E</td>
<td>18.1 ± 0.8</td>
<td>89.8</td>
<td>10.9</td>
<td>18.31 ± 0.68</td>
</tr>
<tr>
<td>V47</td>
<td>× E</td>
<td>18.1 ± 0.8</td>
<td>93.6</td>
<td>5.4</td>
<td>17.64 ± 0.72</td>
</tr>
<tr>
<td>V328</td>
<td>× E</td>
<td>20.0 ± 1.1</td>
<td>72.3</td>
<td>8.3</td>
<td>18.42 ± 1.10</td>
</tr>
<tr>
<td>V332</td>
<td>× E</td>
<td>16.1 ± 0.8</td>
<td>83.1</td>
<td>16.2</td>
<td>15.54 ± 0.81</td>
</tr>
<tr>
<td>V43</td>
<td>× E</td>
<td>23.1 ± 0.8</td>
<td>119.8</td>
<td>3.4</td>
<td>18.66 ± 0.82</td>
</tr>
<tr>
<td>V48</td>
<td>× E</td>
<td>19.5 ± 1.4</td>
<td>100.9</td>
<td>7.1</td>
<td>19.27 ± 0.82</td>
</tr>
<tr>
<td>V465</td>
<td>× E</td>
<td>20.7 ± 2.2</td>
<td>107.2</td>
<td>5.8</td>
<td>17.93 ± 1.39</td>
</tr>
<tr>
<td>All genotypes</td>
<td></td>
<td>19.3 ± 1.9</td>
<td>100.0</td>
<td>10.0</td>
<td>18.05 ± 1.00</td>
</tr>
</tbody>
</table>

*Dunnett’s T3 test was applied here due to the heterogeneity of variance. In other cases Tukey’s test was applied.

Values are the percentages of the genotypes means relative to the mean of all 25 genotypes.
<table>
<thead>
<tr>
<th>Variety</th>
<th>F × G</th>
<th>2.15 ± 0.16 bdghjk</th>
<th>112.9</th>
<th>7.2</th>
<th>0.60 ± 0.05 bc</th>
<th>96.1</th>
<th>9.0</th>
<th>22.83 ± 1.54 ab</th>
<th>84.8</th>
<th>6.7</th>
<th>2.75 ± 0.17 bcefhj</th>
<th>108.8</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V302</td>
<td>F × G</td>
<td>2.17 ± 0.39 bcdefghjk</td>
<td>113.9</td>
<td>18.1</td>
<td>0.63 ± 0.12 bcde</td>
<td>101.4</td>
<td>19.4</td>
<td>24.21 ± 5.67 abc</td>
<td>89.9</td>
<td>23.4</td>
<td>2.81 ± 0.39 bcdgfhj</td>
<td>110.8</td>
<td>14.0</td>
</tr>
<tr>
<td>V381</td>
<td>F × G</td>
<td>2.03 ± 0.26 bcdefghjk</td>
<td>106.3</td>
<td>12.6</td>
<td>0.68 ± 0.09 bcde</td>
<td>108.9</td>
<td>12.9</td>
<td>28.34 ± 2.58 bcdefg</td>
<td>105.3</td>
<td>9.1</td>
<td>2.71 ± 0.32 bcdgfhj</td>
<td>106.9</td>
<td>11.9</td>
</tr>
<tr>
<td>V382</td>
<td>F × G</td>
<td>1.97 ± 0.32 bcdefghjk</td>
<td>103.4</td>
<td>16.1</td>
<td>0.60 ± 0.06 bcde</td>
<td>96.1</td>
<td>9.4</td>
<td>25.98 ± 3.07 bcdeghj</td>
<td>96.5</td>
<td>11.8</td>
<td>2.57 ± 0.34 bcdefghj</td>
<td>101.6</td>
<td>13.3</td>
</tr>
<tr>
<td>V383</td>
<td>F × G</td>
<td>1.99 ± 0.21 bcdefghjk</td>
<td>104.5</td>
<td>10.5</td>
<td>0.65 ± 0.06 bcde</td>
<td>104.4</td>
<td>9.9</td>
<td>27.23 ± 3.12 abcedef</td>
<td>101.1</td>
<td>11.5</td>
<td>2.64 ± 0.23 bcdefghj</td>
<td>104.5</td>
<td>8.8</td>
</tr>
<tr>
<td>V469</td>
<td>F × L</td>
<td>1.98 ± 0.13 efghjk</td>
<td>103.6</td>
<td>6.7</td>
<td>0.62 ± 0.05 bcde</td>
<td>99.9</td>
<td>8.1</td>
<td>25.45 ± 1.69 abcd</td>
<td>94.6</td>
<td>6.7</td>
<td>2.60 ± 0.13 cddefghj</td>
<td>102.7</td>
<td>5.0</td>
</tr>
<tr>
<td>V470</td>
<td>F × L</td>
<td>1.68 ± 0.36 abcdefghjk</td>
<td>88.2</td>
<td>21.6</td>
<td>0.57 ± 0.07 b</td>
<td>92.1</td>
<td>11.5</td>
<td>28.30 ± 5.36 bcdefg</td>
<td>105.1</td>
<td>18.9</td>
<td>2.26 ± 0.40 acdefghj</td>
<td>89.2</td>
<td>17.7</td>
</tr>
<tr>
<td>V471</td>
<td>F × L</td>
<td>1.70 ± 0.11 acfghjk</td>
<td>89.0</td>
<td>6.6</td>
<td>0.61 ± 0.09 bcde</td>
<td>97.9</td>
<td>14.3</td>
<td>27.67 ± 2.54 abcedfg</td>
<td>102.8</td>
<td>8.5</td>
<td>2.31 ± 0.17 acdefghj</td>
<td>91.2</td>
<td>7.2</td>
</tr>
<tr>
<td>V325</td>
<td>R</td>
<td>2.07 ± 0.15 bdefghjk</td>
<td>108.3</td>
<td>7.1</td>
<td>0.66 ± 0.12 bcde</td>
<td>106.4</td>
<td>18.5</td>
<td>24.70 ± 2.84 abcd</td>
<td>91.8</td>
<td>11.5</td>
<td>2.73 ± 0.22 bcdefghj</td>
<td>107.8</td>
<td>8.2</td>
</tr>
<tr>
<td>V327</td>
<td>R</td>
<td>2.03 ± 0.26 bcdefghjk</td>
<td>106.4</td>
<td>12.8</td>
<td>0.61 ± 0.06 bcde</td>
<td>97.3</td>
<td>10.3</td>
<td>25.53 ± 3.55 abcd</td>
<td>94.8</td>
<td>13.9</td>
<td>2.64 ± 0.28 bcdefghj</td>
<td>104.2</td>
<td>10.5</td>
</tr>
<tr>
<td>V386</td>
<td>F × E</td>
<td>1.86 ± 0.22 edefghjk</td>
<td>97.5</td>
<td>11.6</td>
<td>0.59 ± 0.11 bcde</td>
<td>94.6</td>
<td>19.3</td>
<td>25.64 ± 3.34 abcd</td>
<td>95.2</td>
<td>13.0</td>
<td>2.45 ± 0.29 acdefghj</td>
<td>96.8</td>
<td>11.7</td>
</tr>
<tr>
<td>V388</td>
<td>F × E</td>
<td>1.72 ± 0.21 acdefghjk</td>
<td>90.1</td>
<td>12.2</td>
<td>0.57 ± 0.06 b</td>
<td>91.7</td>
<td>10.9</td>
<td>26.95 ± 3.57 bcdeghj</td>
<td>100.1</td>
<td>13.3</td>
<td>2.29 ± 0.21 acdefghj</td>
<td>90.5</td>
<td>9.3</td>
</tr>
<tr>
<td>V389</td>
<td>F × E</td>
<td>1.82 ± 0.26 acdefghjk</td>
<td>95.6</td>
<td>14.1</td>
<td>0.57 ± 0.05 b</td>
<td>91.8</td>
<td>8.5</td>
<td>25.98 ± 3.40 abcd</td>
<td>96.5</td>
<td>13.4</td>
<td>2.40 ± 0.26 acdefghj</td>
<td>94.7</td>
<td>11.0</td>
</tr>
<tr>
<td>V47</td>
<td>F</td>
<td>1.73 ± 0.20 acdefghjk</td>
<td>90.7</td>
<td>11.7</td>
<td>0.68 ± 0.08 bcde</td>
<td>109.4</td>
<td>11.5</td>
<td>30.21 ± 4.16 cdefg</td>
<td>112.2</td>
<td>13.8</td>
<td>2.41 ± 0.21 acdefghj</td>
<td>95.3</td>
<td>8.7</td>
</tr>
<tr>
<td>V328</td>
<td>F</td>
<td>2.03 ± 0.30 bcdefghjk</td>
<td>106.3</td>
<td>14.8</td>
<td>0.59 ± 0.08 bcde</td>
<td>94.3</td>
<td>13.6</td>
<td>24.86 ± 3.87 abcd</td>
<td>92.3</td>
<td>15.6</td>
<td>2.62 ± 0.33 bcdefghj</td>
<td>103.3</td>
<td>12.6</td>
</tr>
<tr>
<td>V332</td>
<td>F</td>
<td>1.66 ± 0.36 acdefghjk</td>
<td>86.9</td>
<td>21.7</td>
<td>0.42 ± 0.07 a</td>
<td>68.0</td>
<td>16.4</td>
<td>22.19 ± 5.35 a</td>
<td>82.4</td>
<td>24.1</td>
<td>2.08 ± 0.39 acdefghj</td>
<td>82.3</td>
<td>18.8</td>
</tr>
<tr>
<td>V43</td>
<td>F</td>
<td>2.31 ± 0.12 bdgj</td>
<td>120.8</td>
<td>5.2</td>
<td>0.73 ± 0.07 de</td>
<td>117.7</td>
<td>9.7</td>
<td>25.67 ± 2.12 bcdeghj</td>
<td>95.3</td>
<td>8.3</td>
<td>3.04 ± 0.14 bcfj</td>
<td>120.0</td>
<td>4.6</td>
</tr>
<tr>
<td>V48</td>
<td>F</td>
<td>2.02 ± 0.15 bdefghjk</td>
<td>106.1</td>
<td>7.6</td>
<td>0.55 ± 0.08 b</td>
<td>89.0</td>
<td>13.5</td>
<td>25.26 ± 2.57 abcd</td>
<td>93.8</td>
<td>10.2</td>
<td>2.58 ± 0.19 cdefghj</td>
<td>101.9</td>
<td>7.3</td>
</tr>
<tr>
<td>V465</td>
<td>F</td>
<td>1.97 ± 0.25 bcdefghjk</td>
<td>103.3</td>
<td>12.8</td>
<td>0.74 ± 0.08 e</td>
<td>118.4</td>
<td>11.1</td>
<td>29.37 ± 2.37 cdefg</td>
<td>109.1</td>
<td>8.1</td>
<td>2.71 ± 0.31 bcdefghj</td>
<td>107.0</td>
<td>11.3</td>
</tr>
<tr>
<td>All genotypes</td>
<td></td>
<td>1.91 ± 0.24</td>
<td>100.0</td>
<td>13.0</td>
<td>0.62 ± 0.10</td>
<td>100.0</td>
<td>12.4</td>
<td>26.92 ± 3.34</td>
<td>100.0</td>
<td>12.5</td>
<td>2.53 ± 0.27</td>
<td>100.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>
Table 4. Statistics for weighted average wood density (WD), earlywood (EWD) and latewood (LWD) densities for the genotypes. Different letters indicate differences among genotypes (p < 0.05)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Geographical origin</th>
<th>EWD, g/cm³</th>
<th>LWD, g/cm³</th>
<th>WD, g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>%</td>
<td>CV, %</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>V454 F × S</td>
<td>0.338 ± 0.017</td>
<td>defgh</td>
<td>101.0</td>
<td>5.0</td>
</tr>
<tr>
<td>V455 F × S</td>
<td>0.364 ± 0.013</td>
<td>j</td>
<td>108.8</td>
<td>3.6</td>
</tr>
<tr>
<td>V456 F × S</td>
<td>0.344 ± 0.020</td>
<td>fgh</td>
<td>102.8</td>
<td>5.9</td>
</tr>
<tr>
<td>V447 F × G</td>
<td>0.338 ± 0.005</td>
<td>efgh</td>
<td>101.1</td>
<td>1.5</td>
</tr>
<tr>
<td>V448 F × G</td>
<td>0.322 ± 0.016</td>
<td>bcde</td>
<td>96.1</td>
<td>5.0</td>
</tr>
<tr>
<td>V449 F × G</td>
<td>0.337 ± 0.009</td>
<td>cdefgh</td>
<td>100.7</td>
<td>2.7</td>
</tr>
<tr>
<td>V49 F × G</td>
<td>0.318 ± 0.007</td>
<td>abcd</td>
<td>95.0</td>
<td>2.1</td>
</tr>
<tr>
<td>V302 F × G</td>
<td>0.300 ± 0.012</td>
<td>a</td>
<td>89.5</td>
<td>4.1</td>
</tr>
<tr>
<td>V381 F × G</td>
<td>0.334 ± 0.011</td>
<td>bcdefgh</td>
<td>99.9</td>
<td>3.4</td>
</tr>
<tr>
<td>V382 F × G</td>
<td>0.345 ± 0.016</td>
<td>fgh</td>
<td>103.2</td>
<td>4.6</td>
</tr>
<tr>
<td>V383 F × G</td>
<td>0.342 ± 0.019</td>
<td>efgh</td>
<td>102.1</td>
<td>5.5</td>
</tr>
<tr>
<td>V469 F × L</td>
<td>0.352 ± 0.012</td>
<td>hj</td>
<td>105.3</td>
<td>3.5</td>
</tr>
<tr>
<td>V470 F × L</td>
<td>0.343 ± 0.015</td>
<td>fgh</td>
<td>102.4</td>
<td>4.0</td>
</tr>
<tr>
<td>V471 F × L</td>
<td>0.351 ± 0.009</td>
<td>ghj</td>
<td>104.9</td>
<td>2.6</td>
</tr>
<tr>
<td>V325 R</td>
<td>0.302 ± 0.012</td>
<td>a</td>
<td>90.3</td>
<td>3.9</td>
</tr>
<tr>
<td>V327 R</td>
<td>0.316 ± 0.014</td>
<td>ab</td>
<td>94.4</td>
<td>4.5</td>
</tr>
<tr>
<td>V386 F × E</td>
<td>0.351 ± 0.010</td>
<td>ghj</td>
<td>104.8</td>
<td>2.8</td>
</tr>
<tr>
<td>V388 F × E</td>
<td>0.345 ± 0.010</td>
<td>ghj</td>
<td>103.2</td>
<td>2.9</td>
</tr>
<tr>
<td>V389 F × E</td>
<td>0.352 ± 0.011</td>
<td>ghj</td>
<td>105.1</td>
<td>3.3</td>
</tr>
<tr>
<td>V47 F</td>
<td>0.331 ± 0.010</td>
<td>bcdef</td>
<td>98.9</td>
<td>3.0</td>
</tr>
<tr>
<td>V328 F</td>
<td>0.325 ± 0.013</td>
<td>bcdef</td>
<td>97.0</td>
<td>4.1</td>
</tr>
<tr>
<td>V332 F</td>
<td>0.317 ± 0.010</td>
<td>abc</td>
<td>94.8</td>
<td>3.2</td>
</tr>
<tr>
<td>V43 F</td>
<td>0.333 ± 0.005</td>
<td>bcdefgh</td>
<td>99.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V48 F</td>
<td>0.332 ± 0.013</td>
<td>bcdefgh</td>
<td>99.4</td>
<td>4.0</td>
</tr>
<tr>
<td>V465 F</td>
<td>0.334 ± 0.018</td>
<td>bcdefgh</td>
<td>99.8</td>
<td>5.3</td>
</tr>
<tr>
<td>All genotypes</td>
<td>0.335 ± 0.012</td>
<td></td>
<td>100.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

5 Values are the percentages of the genotype means relative to the mean of all 25 genotypes.
Table 5. Phenotypic correlations (r_p) between yield, growth, and wood density traits: diameter (D), height (H), stem volume (V), earlywood width (EWW), latewood width (LWW), ring width (RW), earlywood density (EWD), latewood density (LWD) and overall wood density (WD) over all genotypes.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>V</th>
<th>EWW</th>
<th>LWW</th>
<th>RW</th>
<th>EWD</th>
<th>LWD</th>
<th>WD</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.65*</td>
<td>0.94*</td>
<td>0.86*</td>
<td>0.39*</td>
<td>0.87*</td>
<td>−0.40*</td>
<td>−0.10</td>
<td>−0.41*</td>
</tr>
<tr>
<td>H</td>
<td>0.75*</td>
<td>0.52*</td>
<td>0.22*</td>
<td>0.52*</td>
<td>−0.07</td>
<td>0.21*</td>
<td>−0.08</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.80*</td>
<td>0.36*</td>
<td>0.81*</td>
<td>−0.33*</td>
<td>−0.04</td>
<td>−0.35*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWW</td>
<td>0.28*</td>
<td>0.96*</td>
<td>−0.55*</td>
<td>−0.16*</td>
<td>−0.58*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWW</td>
<td>0.53*</td>
<td>0.02</td>
<td>0.08</td>
<td>0.24*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW</td>
<td>−0.48*</td>
<td>−0.12</td>
<td>−0.44*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWD</td>
<td>0.70*</td>
<td>0.92*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWD</td>
<td></td>
<td></td>
<td></td>
<td>0.77*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *, p < 0.05
Table 6. Phenotypic correlations (r_p) between overall wood density (WD) and following variables: diameter (D), height (H), volume (V), earlywood width (EWW), latewood width (LWW), ring width (RW), earlywood density (EWD) and latewood density (LWD) for each genotype.

<table>
<thead>
<tr>
<th>Gtype</th>
<th>Geographical origin</th>
<th>Phenotypic correlation of WD with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>V454</td>
<td>F × S</td>
<td>-0.35</td>
</tr>
<tr>
<td>V455</td>
<td>F × S</td>
<td>-0.50</td>
</tr>
<tr>
<td>V456</td>
<td>F × S</td>
<td>-0.80*</td>
</tr>
<tr>
<td>V447</td>
<td>F × G</td>
<td>-0.22</td>
</tr>
<tr>
<td>V448</td>
<td>F × G</td>
<td>-0.03</td>
</tr>
<tr>
<td>V449</td>
<td>F × G</td>
<td>-0.75*</td>
</tr>
<tr>
<td>V49</td>
<td>F × G</td>
<td>-0.11</td>
</tr>
<tr>
<td>V302</td>
<td>F × G</td>
<td>-0.56</td>
</tr>
<tr>
<td>V381</td>
<td>F × G</td>
<td>-0.28</td>
</tr>
<tr>
<td>V382</td>
<td>F × G</td>
<td>-0.68*</td>
</tr>
<tr>
<td>V383</td>
<td>F × G</td>
<td>-0.30</td>
</tr>
<tr>
<td>V469</td>
<td>F × L</td>
<td>0.05</td>
</tr>
<tr>
<td>V470</td>
<td>F × L</td>
<td>-0.86*</td>
</tr>
<tr>
<td>V471</td>
<td>F × L</td>
<td>-0.07</td>
</tr>
<tr>
<td>V325</td>
<td>R</td>
<td>-0.54</td>
</tr>
<tr>
<td>V327</td>
<td>R</td>
<td>-0.38</td>
</tr>
<tr>
<td>V386</td>
<td>F × E</td>
<td>-0.78*</td>
</tr>
<tr>
<td>V388</td>
<td>F × E</td>
<td>-0.79*</td>
</tr>
<tr>
<td>V389</td>
<td>F × E</td>
<td>-0.95*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>V47</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>V328</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>V332</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>V43</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>V48</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>V465</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Note: *, p < 0.05
Table 7. Statistical characteristics of linear mixed-effect models for diameter (D), height (H), stem volume (V) and weighted average wood density (WD), based on transformed latitudinal transfer of mother parent tree genotypes (dtlatM) and father parent tree genotypes (dtlatF) with respect to the Imatra trial site.

<table>
<thead>
<tr>
<th></th>
<th>D, cm</th>
<th>H, m</th>
<th>V, m³</th>
<th>WD, g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>estimates</td>
<td>p-values</td>
<td>95% CI</td>
<td>estimates</td>
</tr>
<tr>
<td>x = dtlatM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>19.73</td>
<td>< 0.001</td>
<td>18.58–20.87</td>
<td>18.07</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>−0.16</td>
<td>0.309</td>
<td>−0.43–0.12</td>
<td>−0.06</td>
</tr>
<tr>
<td>var ((\alpha_i))</td>
<td>1.30²</td>
<td></td>
<td>0.00–2.24</td>
<td>0.79²</td>
</tr>
<tr>
<td>var ((b_{ij}))</td>
<td>1.19²</td>
<td></td>
<td>0.73–2.02</td>
<td>0.51²</td>
</tr>
<tr>
<td>var ((e_{ijk}))</td>
<td>2.02²</td>
<td></td>
<td>1.84–2.22</td>
<td>1.03²</td>
</tr>
<tr>
<td>x = dtlatF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>19.84</td>
<td>< 0.001</td>
<td>18.44–21.26</td>
<td>17.99</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>0.20</td>
<td>0.361</td>
<td>−0.20–0.62</td>
<td>0.005</td>
</tr>
<tr>
<td>var ((\alpha_i))</td>
<td>1.41²</td>
<td></td>
<td>0.00–2.35</td>
<td>0.82²</td>
</tr>
<tr>
<td>var ((b_{ij}))</td>
<td>1.10²</td>
<td></td>
<td>0.64–1.89</td>
<td>0.48²</td>
</tr>
<tr>
<td>(\text{var}(\varepsilon_{ijk}))</td>
<td>2.20^2</td>
<td>1.84–2.22</td>
<td>1.03^2</td>
<td>0.95–1.14</td>
</tr>
</tbody>
</table>
Figure 1. Stem volume (top), wood density (middle) and stem mass (bottom) calculated for individual genotypes as a percentage of the overall mean (solid line). Legend F, S, G, R, E. in Table 1
Figure 2. Relationship between mean stem volume (x-axis) and wood density (y-axis). The vertical and horizontal lines are the overall mean stem volume and wood density, respectively, for the 25 genotypes. Legend F, S, G, R, E. in Table 1.