A Meta-Analytic Review of Selected Adverse Drug Events (ADEs) of Long-Term Prescription Opioids for Chronic Non-Cancer Pain (CNCP)

By

Matthew J Pelcowitz

A thesis submitted in conformity with the requirements for the degree of Master of Science

Institute of Medical Science
University of Toronto

© Copyright by Matthew J Pelcowitz 2016
Abstract

Background: Opioids are considered one of the most effective analgesics. However, knowledge on opioid adverse drug events (ADEs) is limited and the current state of the literature has remained elusive. Purpose: This meta-analytic review focused on five selected adverse drug events (SADEs) (misuse, abuse, addiction, overdose, and death) of prescription opioids to surmise the overall state of this literature and evaluate quality of reporting and risk of bias. Methods: Studies were acquired from research databases, including: MEDLINE, EMBASE, CINAHL, PsycINFO, CENTRAL, and Business Source Premier. Results: Ninety studies satisfied inclusion and exclusion criteria and were included. Quality of reporting of SADEs, determined via McHarm, risk of bias, assessed using a Cochrane guideline, and overall event rates of SADEs are reported. Conclusion: Results revealed that quality of reporting was poor and risk of bias was high. Findings suggest that quality of reporting of SADEs and risk of bias must be improved.
Acknowledgements

I am grateful to Professor Andrea Furlan for her guidance and support, both of which have been integral to my progress in this thesis and my academic development. I would also like to acknowledge the feedback and suggestions provided by the members of my Progress Advisory Committee: Professor Claire Bombardier and Professor Carlo Ammendolia, both of which helped refine the scope and goals of my thesis.

I would like to express my sincere gratitude to my parents, Audrey and David, for their continued love and support; they inspire me to constantly try to better myself and be tenacious. I also wish to thank my siblings, Sam and Ilana, my grandparents, Sheila and Harry Nozetz, and Gertie Pelcowitz. I am grateful to have shared good times with my siblings and grandparents and I have learned a lot from them.

I would like to thank Cynthia Chen for her statistical guidance and assistance with the meta-analytic parts of my thesis. I would also like to thank Quenby Mahood, a librarian at the Institute for Work & Health who greatly contributed to the literature search conducted for my thesis.

Lastly, I would like to thank Jonathan Shilo Lipszyc; more affectionately known as “Big J”. His life-long mentorship, guidance and wisdom has been instrumental in my growth as a person and academic progression, in particular for this Master of Science.
Summary of Contributions

Claire Bombardier and Carlo Ammendolia helped refine the scope and goals of the thesis and offered continued feedback to enhance the manuscript. Quenby Mahood executed the initial literature search that captured studies up until August 2012. Similarly, Quenby Mahood provided assistance with the retrieval of studies when necessary (i.e. could not be retrieved from an electronic database). Andrea Furlan et al. constructed the risk of bias guideline used to assess the five types of bias (performance bias, selection bias, measurement bias, attrition bias, and confounding bias). Jaemin Kim provided assistance when necessary for the risk of bias assessment. Cynthia Chen provided statistical assistance for the meta-analysis and subsequent meta-regressions.
Table of Contents

Contents
Abstract ... ii
Acknowledgements ... iii
Summary of Contributions ... iv
Table of Contents ... v
List of Tables ... viii
List of Figures ... ix
List of Acronyms ... x

1 Literature Review ... 1
 1.1 Overview ... 1
 1.2 Prescription medication: efficacy, effectiveness and safety 1
 1.3 Beneficial reporting bias ... 4
 1.3.1 Research on beneficial reporting bias .. 5
 1.4 Beneficial reporting bias in systematic reviews and meta-analyses 8
 1.5 Impact of poor quality of reporting and high risk of bias 9
 1.6 PRISMA – standardized guideline for systematic reviews and meta-analyses 11
 1.7 Brief background of opioids and the ADE of prescription opioids 13
 1.8 Literature on ADEs of prescription opioids ... 15
 1.9 Explanation and aim of meta-analytic review 16
 1.9.1 Explanation of McHarm ... 17
 1.9.2 Explanation of risk of bias instrument .. 20
 1.9.3 Research questions, hypotheses, and objectives 23

2 Methods ... 27
 2.1 Types of studies .. 27
 2.2 Participants ... 27
 2.3 Interventions ... 29
 2.4 Outcomes .. 29
 2.5 Electronic searches ... 31
 2.6 Manual searches .. 31
Appendix A - Risk of Bias Table

Appendix B – Risk of Bias Flow Chart

Appendix C – Search Terms and Strategy
List of Tables

Table 1. Examples of common ADRs and ADEs of opioids... 2
Table 2. Length of participant opioid exposure: R^2 and p-value for each SADE outcome 59
Table 3. Misuse 3- to 11- months: R^2 and p-value for each moderator variable 63
Table 4. Misuse 12- months or longer: R^2 and p-value for each moderator variable 64
Table 5. Abuse 3- to 11- months: R^2 and p-value for each moderator variable 66
Table 6. Abuse 12- months or longer: R^2 and p-value for each moderator variable 68
Table 7. Addiction 3- to 11- months: R^2 and p-value for each moderator variable 70
Table 8. Addiction 12- months or longer: R^2 and p-value for each moderator variable 71
Table 9. Overdose: R^2 and p-value for each moderator variable ... 72
Table 10. Death: R^2 and p-value for each moderator variable .. 74
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRISMA checklist</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Flowchart of included studies</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Number of Studies Published by Year</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Number of Studies by Country</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Distribution of McHarm scores across all 90 included studies</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Weighted event rate by attrition bias</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Weighted event rate by measurement bias</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Weighted event rate by selection bias</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>Weighted event rate by performance bias</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>Weighted event rate by confounding bias</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>Weighted event rate by adverse drug event outcomes</td>
<td>61</td>
</tr>
</tbody>
</table>
List of Acronyms

ADEs Adverse Drug Events
SADEs Selected Adverse Drug Events
ADRs Adverse Drug Reactions
CNCP Chronic Non-Cancer Pain
RCTs Randomized Controlled Trials
COs Controlled Observational Studies
NCOs Non-Controlled Observational Studies
ROB Risk of Bias
PRISMA Preferred Reporting Items for Systematic Reviews
CMA Comprehensive Meta-Analyses Software
I² Study heterogeneity
R² Coefficient of determination
1 Literature Review

1.1 Overview
The current meta-analytic review commences with a review of the literature on adverse drug events (ADEs) and prescription opioids. The Literature review discusses the overall quality of the ADE literature in general, and then subsequently frames this discussion of ADE literature in the context of prescription opioids. Subsequently, the Methods section follows, which was structured using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Next, results are explicated in the Results section, which includes both the meta-analyses and meta-regressions that were performed. Findings are further considered and examined in the Discussion section, followed by closing thoughts in the Conclusion section and then future considerations in the Future Directions section.

1.2 Prescription medication: efficacy, effectiveness and safety
Prescription medication is an integral part of healthcare and medicine and is a convenient treatment modality that help alleviate patient symptoms. In a 2007-2008 National Health and Nutrition Examination Survey, in the United States, 48% of the population had taken at least one prescription medication. Similarly, in Canada, results from the 2007 to 2011 Canadian Health Measures Survey revealed that 41% of 6- to 79- year olds had taken at least one prescription medication. However, the widespread use of prescription medications has resulted in increased health care costs, and prescription medications account for the second most costly component of healthcare in Canada, with an annual expenditure of $29 billion (14% of the healthcare budget)\(^1\). A substantial portion of this annual expenditure stemming from prescription medication has been attributed to complications regarding patient safety, and a difficulty in understanding and addressing these complications. Clinicians face challenges in distinguishing what characteristics
are associated with greater risks to safety among patients, and efforts have been primarily reactive rather than preventive. Unfortunately, this reflects a systematic problem among the studies that investigate patient safety of prescription medications.

Prior to employing a drug into medical practice, its efficacy (the extent to which a drug has the ability to bring about beneficial change in the practice of medicine under predetermined circumstances), effectiveness (the extent to which a drug achieves its intended result in the traditional clinical setting), and safety must be assessed. The safety of a drug is a term that is often used in the literature to encompass both adverse drug reactions (ADRs) and adverse drug events (ADEs). ADRs are defined as: a patient injury resulting from a medication, either because of a pharmacological reaction to a normal dose, or because of a preventable adverse reaction to a drug resulting from an error (i.e. nausea). ADEs are defined as: unintended, undesirable, or unexpected effects of prescribed medications or of medication errors that require discontinuing a medication or modifying the dose; require initial or prolonged hospitalization; result in disability; require treatment with a prescription medication; result in cognitive deterioration or impairment; are life-threatening; result in death; or result in congenital anomalies. ADEs are least examined in the literature (less than efficacy, effectiveness, and ADRs) and will be the focus of this review.

A table below is provided for review with common ADRs and ADEs of prescription opioids. Both the listed ADRs and ADEs were informed from extant literature using the definitions provided above.

Table 1. Examples of common ADRs and ADEs of opioids

<table>
<thead>
<tr>
<th>Adverse Drug Reactions (ADRs) of opioids</th>
<th>Adverse Drug Events (ADEs) of opioids</th>
</tr>
</thead>
</table>

2
<table>
<thead>
<tr>
<th>Nausea</th>
<th>Misuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>Abuse</td>
</tr>
<tr>
<td>Constipation</td>
<td>Addiction</td>
</tr>
<tr>
<td>Drowsiness</td>
<td>Overdose</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Death</td>
</tr>
<tr>
<td>Insomnia</td>
<td>Dependence</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Aberrant Behaviour(s)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Selling medication(s)</td>
</tr>
<tr>
<td>Pain</td>
<td>Hording medication(s)</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>Double doctoring</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Alternative route of administration (i.e. snorting medication)</td>
</tr>
<tr>
<td>Scarring</td>
<td>Medically/self- induced coma</td>
</tr>
</tbody>
</table>

Randomized controlled trials (RCTs) are generally considered the gold standard for scientific research and clinical trials and are thus regularly used to assess the efficacy, effectiveness, and safety of medical interventions\(^5\). Stolberg, Norman and Trop (2004) purport that the strength of RCTs derive from the four hallmarks of the study methodology that collectively elucidate the efficacy and effectiveness of medical interventions. These hallmarks include: random assignment of patients to treatment conditions, a control, or comparison group, blinding the patients, care providers, and evaluators about which treatment each participant is receiving, and low participant attrition rates. These characteristics of RCTs are predominantly focused on the examination of the efficacy or effectiveness of a medical intervention and overlook potential ADEs that threaten patient safety\(^6\). Indeed, Hammad, Pinheiro, and
Neyarapally (2011) explain RCTs are rarely designed to evaluate ADEs and are thus susceptible to limitations that may hamper their ability to fully characterize the safety profiles of drugs. These limitations include: premature trial discontinuation, restriction of statistical analyses to patients that completed the trial, and differences in adherence to treatment between randomized groups, which may either artificially inflate or decrease the event rate of ADEs. The authors conclude that RCTs could minimize these limitations of safety and ADEs by employing more thoughtful study designs; planned follow-up; and improved collection of treatment-specific ADEs.

Unfortunately, ADEs will likely remain a secondary objective compared to both effectiveness and efficacy due to the inherent methodological biases evident in a majority of RCTs. However, this lack of focus on ADEs extends beyond only RCTs and reflects a historical bias that favours the reporting of beneficial treatment effects.

1.3 Beneficial reporting bias
Historically, scientific literature has been characterized by a beneficial reporting bias (a form of publication bias). This bias includes preferential reporting of beneficial treatment effects and ultimately results in underestimation or overlooking of ADEs. Many researchers have credited this reporting bias to a variety of causes. Studies require a substantial amount of funding, and although a portion of studies are funded from government grants and external awards, many receive funding from pharmaceutical companies. These pharmaceutical are for-profit organizations and therefore have a vested financial interest in the results of a study, which may directly, or indirectly influence reported research findings. More specifically, researchers may feel pressured to report more favourable findings of a medication. Others have attributed this bias to an inability to simulate the copious amounts of ADEs experienced by patients. This is
in part due to the strict inclusion and exclusion criteria that restrict participant involvement and yield homogenous samples, and consequently, the range of ADEs experienced from participants is restricted. For instance, specific ADEs are exclusively experienced when prescribed multiple medications and patients with concomitant medications are often excluded from studies.

Clinicians and researchers have also preferred reporting therapeutic benefits due to perceived importance for publication and impact10. Limited fiscal resources also bias studies. Longitudinal studies require a great deal of financial resources, which numerous studies are unable to obtain. Therefore, the majority of published studies are of shorter duration (i.e. cross-sectional), and ADEs that often take longer to transpire (i.e. addiction) are either not reported in these shorter studies, or done so inadequately8.

1.3.1 Research on beneficial reporting bias

Numerous studies have supported the notion of beneficial reporting bias. In 1998, Bardy conducted a review to determine the extent of beneficial reporting bias in clinical trials. One hundred and eighty-eight clinical drug trials were retrieved from the Finnish National Agency for Medicines. Outcomes from the studies were classified as either positive, inconclusive, or negative. The total number of trials with positive (beneficial effects), inconclusive, or negative outcomes was 111, 33 and 44, respectively. Bardy concluded that there was substantial evidence of selective reporting bias for positive outcomes. He attributed the greater number of studies with positive outcomes to the higher propensity for these studies to result in submission of final report to regulatory authorities compared to studies with inconclusive or negative outcomes11.

More recently, Saini et al. (2014) conducted a review to determine the extent and nature of selective non-reporting of ADE outcomes, defined as: the incomplete or partial reporting of an ADE outcome, in clinical studies that were part of a cohort of extant systematic reviews. The
review included 92 systematic reviews of RCTs and non-randomized studies published in the Cochrane Library between 2012 and 2013, and 230 systematic reviews published between 2007 and 2011 from other databases (i.e. DARE). Eighty-six percent of reviews from the Cochrane Library did not include full data from the main ADE of interest. Furthermore, sub-group analysis of the individual studies included in the systematic reviews from Cochrane Library revealed that primary ADEs were inadequately reported in 76% of these included primary studies. In a subsequent sub-group analysis, which included the primary studies from the 230 systematic reviews from various other databases, primary ADEs were inadequately reported in 47% of included primary studies. The authors also examined outcome reporting bias, which was defined as selection (on the basis of the results) of a subset of the original variables recorded for inclusion in a study publication. The authors reported that outcome reporting bias was found in 86% of all systematic reviews (from Cochrane Library and various other databases). Overall, the authors concluded that the majority of primary studies in their sub-group analyses inadequately reported ADE outcomes. Additionally, the number of reviews that contained selective non-reporting of ADEs was significantly high. The authors further added that the declaration of important ADEs and the quality of the reporting of ADEs must be improved in both primary studies and systematic reviews12.

Systematic reviews similar to Bardy and Saini et al. have spurred increased research on ADEs and researchers have started to acknowledge this overwhelming bias in reporting beneficial treatment effects. Indeed, many researchers are encouraging the responsible reporting of study results and greater inclusion of ADE outcomes, and numerous researchers have suggested methods for improving the reporting of ADEs13.

6
Leape (2002) examined both voluntary external reporting systems (regulated by the individual/researcher) and mandatory external reporting systems (reporting systems run by state departments of health). He concluded that on the basis of either evidence of changes made to improve patient safety, or the number of reports received, current voluntary and mandatory reporting systems are ineffective and problematic. In place of these ineffective reporting systems, Leape argues to emulate reporting systems such as the Aviation Safety Reporting System, of which Charles Billings is the architect. Systems such as these promote safe (pilots are immune from disciplinary action if they report promptly), simple (a one-page report), and worthwhile (experts analyze the 30,000 confidential annual reports and disseminate recommendations to pilots and the Federal Aviation Administration) reporting14.

Molokhia, Tanna, and Bell (2009) echo Lucian’s criticisms. These authors reviewed the reporting of ADEs across a comprehensive set of studies using four data sources, which included: MEDLINE, EMBASE, Cochrane Library, and National Library. The authors argue that there is much improvement needed in the ADEs literature and suggest that there are numerous limitations with the current methods for the reporting of ADEs. The authors purport numerous inconsistent findings between studies and suggest utilizing computerized techniques. These computerized techniques should include web-based reporting and computerization of medical health records with prescription data to improve reliability and consistency13.

Edwards et al. (1999) assessed the quality of assessment and reporting of ADEs in the pain context. These researchers examined 52 randomized, double-blind clinical trials of single-dose acetaminophen, or ibuprofen compared with a placebo in moderate-to-severe postoperative pain. The authors noted that many trials reported incomplete findings of ADEs and that different methods of assessing ADEs resulted in different reported event rates. For instance, patient diaries
yielded significantly more ADEs when compared to other ADE collections. The inconsistency in findings and the lack of methodological rigor employed by these studies lead the researchers to conclude that much improvement is needed in the reporting of ADEs in clinical trials. The authors believe that the first line of attack should be implementing guidelines for the reporting of ADEs to improve consistency between studies.15

McGauran et al. (2010) also examined reporting bias of ADEs in the pain context. These researchers examined a wide spectrum of pain, including: acute pain, such as migraines and vaccinations, and more enduring chronic pain, such as pain experienced during Alzheimer’s disease and HIV/AIDS. The authors concluded that there was an overwhelming amount of reporting bias of ADEs in the pain literature, both for acute and chronic pain, and across a variety of medical interventions. The authors also discuss pragmatic concerns regarding this reporting bias. They comment: “reporting bias is widespread in the medical literature and has harmed patients in the past.”8

1.4 Beneficial reporting bias in systematic reviews and meta-analyses

Beneficial reporting bias is not only evidenced in primary studies, but also occurs in systematic reviews and meta-analyses. In 2013, Golder, Loke and Zorzela conducted a systematic review assessing the literature on adverse effects (which included both ADRs and ADEs) from 1994 to 2011. A total of 849 reviews, published from 1994 to 2011 were included in the systematic review. All records in the Cochrane Database of Systematic Reviews (CDSR) and Database of Abstracts of Reviews of Effects (Dare) were scanned for publications that had harm(s) (which included numerous ADRs and ADEs) as a main outcome of interest. CDSR and Dare were chosen for this systematic review due to their major collection of systematic reviews on health care, which includes systematic reviews from MEDLINE and EMBASE. From 4656
CDSR reviews and 11062 DARE abstracts screened, 918 full reports were retrieved and 849 met the established inclusion criteria (799 from DARE, 50 from CDSR). Overall, 1% (50/4656) of CDSR reviews and 7% (799/11062) of DARE systematic reviews were exclusively focused on ADRs and ADEs. The authors claim that this low proportion of total reviews is consistent with metrics of ADR and ADE data reported in the published literature and argue that there is a need for more reviews on ADRs and ADEs. Additionally, the authors purport that there was a universal dominance of systematic reviews limiting search strategies to MEDLINE and only including primary studies that were RCTs. The inclusion of predominantly RCTs is problematic as the majority of studies that examine ADRs and ADEs are non-controlled observational studies.

Golder, Zorzela and Loke have also examined quality of reporting of ADRs and ADEs in systematic reviews. In a 2014 article published by Golder, Zorezela, Loke et al. the researchers examined quality of reporting of ADRs and ADEs in systematic reviews. The authors searched CDSR and DARE databases for systematic reviews published from January 2008 to April 2011 that had ADRs and ADEs as their main outcome. For the purposes of their review, ADRs were defined as: adverse reactions, and ADEs were defined as: unintended complications associated with a healthcare intervention. Of 4644 reviews identified, 309 were systematic reviews or meta-analyses primarily assessing ADRs and/or ADEs. The authors noted that these 309 systematic reviews compounded the poor reporting of ADR and ADE data evidenced in primary studies, either by failing to report ADRs and/or ADEs, or doing so inadequately.

1.5 Impact of poor quality of reporting and high risk of bias

The lack of rigor and systematic approach among the majority of studies that examine ADEs often results in poor quality of reporting and high risk of bias, and numerous studies have
demonstrated that poor quality of reporting and/or high risk of bias inflate/overestimate the event rate of ADEs19. Abdel-Sattar, Krauth, Anglemyer, and Bero (2014) conducted a meta-analysis to examine the relationship between risk of bias criteria, research outcomes, and study sponsorship in a cohort of preclinical thiazolidinedione (TZD) animal studies. One hundred and twelve studies satisfied inclusion criteria and were subsequently included. The authors concluded that most studies reported favourable results (88 of 112) and conclusions (95 of 112) supporting TZD. Overall, studies that were of poorer quality and contained higher risk of bias reported more favourable efficacy findings and contained significantly larger ADE estimates. Additionally, the authors noticed that there was poor conflict of interest reporting across all included studies20.

Similarly, Dantas (2007) conducted a systematic review of the quality of homeopathic pathogenetic trials (HPTs) published from 1945 to 1995. The literature was comprehensively searched and 156 HPTs satisfied inclusion criteria and were included in the review. The authors noted that a significant majority of HPTs were of low methodological quality and most studies contained design flaws, which resulted in poor quality of reporting. The authors further explicate that more patient symptoms and ADEs were reported in studies of poorer quality compared to higher quality studies21.

Tan et al. (2014) also conducted a review on what they referred to as: “unhelpful information about ADRs and ADEs”. The authors noted that there was poor quality of reporting across the majority of studies they reviewed. Furthermore, both ADRs and ADEs were over-reported in studies with poorer quality of reporting; this was especially true for ADRs, but still a prominent factor in the reporting of ADEs. The authors argue that there needs to be less
heterogeneity in reported studies and a more systematic approach must be utilized to improve study quality and report more accurate estimates of ADRs and ADEs19.

To combat this overestimation caused by poor quality of reporting and high risk of bias, researchers have suggested that primary studies, systematic reviews, and meta-analyses employ standardized terms and guidelines for ADR and ADE data. This standardized approach may help improve the quality of reporting of ADRs and ADEs and lower risk of bias in studies, ultimately resulting in more accurate event rates of ADRs and ADEs22.

1.6 PRISMA – standardized guideline for systematic reviews and meta-analyses

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) is a standardized guideline that consists of an evidenced-based minimum set of items/guidelines for reporting in systematic reviews and meta-analyses. PRISMA comprises of a 27-item checklist and four-phase flow diagram. In following these reporting items and diagrams PRISMA hopes to encourage transparency and improved reporting in systematic reviews and meta-analyses. PRISMA has been increasingly used in numerous systematic reviews and meta-analyses and is thought to be an effective resource23. Below the PRISMA checklist is included for review.
PRISMA 2009 Checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist Item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and recommendations of key findings; systematic review registration number.</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td></td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td></td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td></td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td></td>
</tr>
<tr>
<td>Information sources</td>
<td></td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and data last searched.</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td></td>
</tr>
<tr>
<td>Study selection</td>
<td></td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td></td>
</tr>
<tr>
<td>Data collection process</td>
<td></td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td></td>
</tr>
<tr>
<td>Data items</td>
<td></td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td></td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td></td>
<td>Describe methods used for assessing risk of bias for individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td></td>
</tr>
<tr>
<td>Summary measures</td>
<td></td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td></td>
</tr>
<tr>
<td>Synthesis of results</td>
<td></td>
<td>Describe the methods of handling data and combining results of studies. If done, including measures of consistency (e.g., I²) for each meta-analysis.</td>
<td></td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td></td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td></td>
</tr>
<tr>
<td>Additional analyses</td>
<td></td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td></td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
<td>Study selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study characteristics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk of bias within studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results of individual studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthesis of results</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present results of each meta-analysis done, including confidence intervals and measures of consistency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk of bias across studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present results of any assessment of risk of bias across studies (see item 15).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression) [see item 18].</td>
<td></td>
</tr>
<tr>
<td>DISCUSSION</td>
<td></td>
<td>Summary of evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).</td>
<td></td>
</tr>
<tr>
<td>LIMITATIONS</td>
<td></td>
<td>Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).</td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td></td>
<td>Provide a general interpretation of the results in the context of other evidence, and implications for future research.</td>
<td></td>
</tr>
<tr>
<td>FUNDING</td>
<td></td>
<td>Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. PRISMA checklist

12
In 2010, Moher et al. assessed PRISMA and quality of reporting in systematic reviews. The authors reviewed previously published systematic reviews on the quality of reporting of systematic reviews prior to the development of PRISMA, and subsequent to its release. The authors reported that systematic reviews contained improved quality of reporting, especially improvement in reporting biases following the development of PRISMA. However, the authors conclude that the quality of reporting in systematic reviews is still not optimal, which is likely due to a majority of systematic reviews not utilizing PRISMA. The authors believe if PRISMA were used more consistently across systematic reviews the quality of these reviews would drastically improve. Therefore, future systematic reviews and meta-analyses are encouraged to utilize PRISMA.

Similarly, Knobloch, Yoon and Vogt (2011) believe PRISMA can lower risk of bias in systematic reviews and meta-analyses on ADEs. The authors claim publication bias is a major problem in evidenced based medicine, which is in part due to positive outcome studies and systematic reviews and meta-analyses being preferentially published. This unequal distribution of studies has dire consequences on healthcare and often leads to a systematic failure in clinical decisions. Furthermore, Knobloch, Yoon and Vogt report that the majority of publication bias that occurs in systematic reviews and meta-analyses emerges mostly during the study-selection process. The authors recommend that subsequent systematic reviews and meta-analyses use PRISMA due to its transparency and precision during the study-selection process in systematic reviews and meta-analyses.

1.7 Brief background of opioids and the ADE of prescription opioids

In medicine, opioids represent chemicals that produce pharmacological effects similar to opiates (i.e. morphine). The oldest known opioid is opium (a Greek name which means juice),

13
which is extracted from the opium poppy. Opium is thought to have been known since prehistory (from when humans first appeared until recorded history) and archeologists have found ample evidence to suggest opium was extensively used in ancient historical eras. However, it was a Swiss physician, Paracelsus (1493-1541) that reintroduced opium for medicinal purposes in Western Europe. Soon after, practitioners quickly noticed many ADRs and ADEs that manifested following the use of opium and cautioned the public of its use.

Throughout the 17th and 18th century, numerous opium-specific books were published that exposed the risks associated with opioids. However, the 19th century was focused on further understanding the therapeutic benefits of opium, while ADRs and ADEs remained largely unexamined. In 1804, Friedrich Sertürner, a German pharmacist assistant discovered morphine along with its analgesic properties. In 1808, William Collen furthered Sertürner research and noted that opium interrupts message flow (impulses) from the nerves to the brain and vice-versa, which ultimately results in the abolishment of all painful sensitivity.

The discovery of morphine and the analgesic effects of opium lead to a plethora of medical and social problems. According to mortality data, one third of all lethal poisonings were due to opium and morphine overdose; taken both as a source of pleasure and for medicinal purposes. Historians attribute opium’s effects on increased mortality to a lack of understanding and investigation on the ADEs associated with opium. Indeed, many historians often refer to the 19th century as: “the war on opium.”

Despite the increased mortality spurred from opium and morphine, concepts of tolerance, withdrawal symptoms, addiction, and psychic and physical dependence were only widely discussed later, in the 20th century.
1.8 Literature on ADEs of prescription opioids

As previously discussed, the ADEs of prescription opioids remained largely unstudied until the 20th century (Duarte, 2005). Following which, numerous studies have been published that have elucidated the great number of ADEs associated with prescription opioids. However, many researchers have expressed concern regarding the literature that has been published.

Oosten et al. (2015) conducted a systematic review of studies that reported on ADEs of commonly prescribed opioids for cancer-related pain. Twenty-five studies were included that examined one or more of the following prescription opioids: morphine, oxycodone, fentanyl, methadone, or hydromorphone. Oosten and his colleagues concluded that studies on the ADEs of prescription opioids were severely lacking, and among studies that have been published, there was an immense amount of heterogeneity. They further add, due to the lack of systematic assessment and reporting, the relative rates of ADEs per type of opioid are unknown, and therefore, there is an urgent need for studies with standardized outcome measures and reporting.

Similarly, Moore and McQuay (2005) conducted a systematic review to examine the event rate of ADEs of oral prescription opioids for chronic non-malignant pain in RCTs. Thirty-four trials with 5,546 patients were included and almost all opioids used were for treating moderate rather than severe pain. The authors noted that there was a large amount of clinical heterogeneity in condition, opioid, opioid dose, duration, and use of titration across all included studies. Additionally, most trials were of shorter duration, often less than four weeks, and few titrated the dose of opioids, which means that results generated from these studies are of limited applicability to longer-term use of opioids in clinical practice. Moore and McQuay suggest that subsequent studies employ standardized outcome measures and reporting and aspire to examine...
longer-term implications of prescription opioids in order to limit heterogeneity and produce more generalizable results29.

Baladini, Von Korff, and Lin (2012) conducted one of the few systematic reviews on the long-term ADEs of prescription opioids. Studies published in peer-reviewed journals from 2005 to 2011 were retrieved using major databases, including: MEDLINE, Agency for Healthcare Research and Quality Clinical Guidelines and Evidence Reports, and the Cochrane Database of Systematic Reviews. Seventy-four studies satisfied inclusion criteria and were included in the systematic review. The authors’ purported that chronic opioid therapy is associated with numerous ADEs, including: overdose and death. However, significant gaps remain regarding the spectrum of potentially long-term opioid-related ADEs. As a result, the authors suggest that better constructed systematic trials be completed to address these gaps and to strengthen our knowledge of long-term ADEs of prescription opioids30.

1.9 Explanation and aim of meta-analytic review

Explanation: Opioids are considered one of the most effective analgesics with well-established therapeutic benefits. Furlan et al. (2012) published a met-analysis of 62 RCTs that examined the benefits of prescription opioids and concluded that there was ample evidence of therapeutic benefits from patients prescribed opioids. Moreover, while the therapeutic benefits of opioids have been copiously documented, ADEs that result from prescription opioids have not received similar scrutiny31. Indeed, many researchers have voiced their concern on the need for more studies and studies of greater quality and low risk of bias that examine the ADEs of prescription opioids; a widely prescribed drug that causes many ADEs32.

Accordingly, the current meta-analytic review focused on five selected adverse drug events (SADEs), which included: misuse, abuse, addiction, overdose and death. These five
SADEs were selected due to their dangerous, often life-threatening consequences, and due to their event rates being largely unknown. In addition, the five SADEs are among the most serious to occur while taking prescription opioids, and consequently, most literature and discussion has been focused around them33. Finally, it was not feasible to include other ADEs as there has not been an adequate amount of literature published.

Aim of meta-analytic review: To extract the event rate of SADEs (misuse, abuse, addiction, overdose and death) and evaluate each primary study’s quality of reporting and risk of bias to inform patients and healthcare professionals of the risk of potential serious, life-threatening SADEs associated with prescription opioids and to ameliorate ADE studies. In addition, specific moderator variables (quality of reporting of SADEs, risk of bias, study design, active versus passive collection of SADEs, current or previous mental health disorder(s) and/or substance use disorder, and length of participant opioid exposure) were examined to determine if they explain variance in SADEs between studies. (The aforementioned moderator variables were selected due to their purported significance in relation to the ADEs of prescription opioids)34.

1.9.1 Explanation of McHarm

Numerous instruments have been developed to evaluate the methodological quality of primary studies and systematic reviews. However, these instruments do not adequately address the evaluation of ADEs, and the few quality-rating instruments that do consider ADEs merely evaluate the presence or absence of reporting and do not evaluate the quality of reporting. Indeed, recognizing and evaluating ADEs may require methodological considerations that differ from those used for assessing the benefits of treatment interventions. For instance, many ADEs are not easily anticipated, and consequently, are not adequately screened in trials. Conversely,
some ADEs are so common that their presence alone is of no consequence, rather the severity of
the symptom is of relevance. Thus, McMaster University Evidence-based Practice Centre
(commonly referred to as McHarm), sponsored by CCOHTA, developed a quality assessment
checklist specific to ADE outcomes for primary studies.

The McHarm is the only instrument that evaluates both the quality of reporting of ADEs
and the methodology used in the collection of ADEs data. This comprehensiveness is an
important strength of the McHarm as the methodology and reporting of ADEs are directly
related. For instance, if a study employs a flexible methodology where participants report ADEs
experienced in a spontaneous manner, some participants may experience less severe ADEs (i.e.
misuse of a prescribed drug) but not report them. As an example, a participant may accidentally
misuse (forget to take medication on numerous occasions) their medication and believe that
doing so was a minor event that is of no consequence and should not be reported. Conversely,
studies that employ more rigid methodologies ensure participants are aware of the ADEs being
examined and consequently if these ADEs are experienced the principal investigator is made
aware. Unfortunately, studies with robust methodologies are often not exhaustive and only
investigate specific ADEs (overlooking other ADEs). In both cases, the methodology employed
by a study influences which ADEs are collected and subsequently reported.

The current meta-analytic review used the McHarm, to assess the quality of reporting of
SADEs (misuse, abuse, addiction, overdose and death) of prescription opioids. The McHarm is
comprised of 15 questions that are answered in the format of “yes”, “no”, or “unsure” – with an
overall score ranging from 0 to 15 points (higher scores signify better ADE quality of
reporting).
The McHarm has also been proven to be a highly reliable and valid instrument. Santaguida et al. (2011) tested the reliability and the validity of the McHarm instrument. These researchers used a Delphi Consensus exercise with six experts to assess the reliability and construct validity of the McHarm. The researchers concluded that reliability testing demonstrated acceptable levels (internal consistency all studies= 0.82; 95% CI 0.79 to 0.85, and intra-class correlation= 0.95, 95% CI 0.91 to 0.98). Construct validity was evaluated with the Chou and Helfand scale and received a score of 0.66. Discriminant validity was also assessed with the Jadad scale and received a score of 0.22. Both construct and discriminant validity were deemed acceptable. However, reliability and validity measures varied between surgical and pharmacological studies, which suggests that the type of medical intervention may be a potential influence. More specifically, Santaguida et al. purported that the McHarm demonstrated higher ratings of reliability and validity for pharmacological studies compared to studies that examined surgical interventions. Nonetheless, reliability and validity ratings suggested that the McHarm contains high inter-rater and intra-rater reliability and high construct and discriminant validity when used to assess both surgical and pharmacological studies.35

The McHarm is the ideal instrument to assess the quality of SADEs in the current meta-analytic review. The current review focused on opioid medications, which are pharmacological in nature. Therefore, the higher ratings of reliability and validity the McHarm exemplifies for pharmacological studies further strengthens results generated from the McHarm in the current meta-analytic review. In addition, the more inclusive aspects of the McHarm: the evaluation of the methodology used for ADE collection and the reporting of ADEs ensures that the current meta-analytic review accurately and completely assesses the quality of SADEs in each included primary study.
1.9.2 Explanation of risk of bias instrument

Systematic reviews and meta-analyses allow researchers to review and evaluate extant literature in a specific area of study. The inferential strength and validity of these reviews is contingent on the level of quality of the primary studies being assessed. More specifically, systematic reviews and meta-analyses that include more rigorous studies may report more robust research findings. Conversely, reviews that contain lower quality studies often report confounded or inconsistent findings that may be invalid. Many researchers agree that the most important factor in determining the level of quality and validity of a study’s reported findings is risk of bias.

In systematic reviews and meta-analyses, bias occurs when there is a systematic error, or deviation from empirically valid results or inferences. Biases can lead researchers to either underestimate (minimize the true effect of an intervention) or overestimate (overstate the true effect of an intervention) the actual effect of an intervention. Overestimation often leads researchers to report findings which are considered false positive (erroneously concluding an intervention is effective if the less rigorous studies are biased toward overestimating an intervention’s effect). Conversely, underestimation leads researchers to publish findings which are considered false negative (erroneously concluding no effect if the less rigorous studies are biased towards underestimating an intervention’s effect). Biases also differ in magnitude – different biases influence the outcome of interest in varying degrees. “Small” biases are much less likely to influence the outcome of interest and are minor compared with the observed (actual) effect. Conversely, “large” biases have a significant effect on the outcome of interest, which may result in the publication of an invalid finding (the reported finding is entirely due to bias). Unfortunately, it is impossible to know to what extent biases have affected the results of a particular study. However, studies have suggested that flaws in experimental design,
care/treatment administration, data collection, and the statistical analyses carried out may render a study’s findings biased. Although these flaws may contribute to the development of a bias, the presence of a bias is not certain. Indeed, the results of a study may be unbiased despite a methodological flaw. Therefore, it is considered more appropriate to report a study’s risk of bias than conclude with certainty that a bias exists within a given study.

Despite the development of numerous risk of bias instruments, many researchers fail to assess risk of bias in their systematic reviews and meta-analyses. This is in part due to the specificity of each of these instruments. For the most part, the risk of bias tools available examine a single form of bias and fail to provide guidelines for assessing other forms of bias. Additionally, current risk of bias tools often only determine risk of bias for a single study design (i.e. RCTs). A comprehensive tool that assesses all forms of bias is currently lacking in the literature.

There are five major forms of risk of bias. All five of these biases may significantly influence the reported results of a study. These biases include: selection bias, performance bias, measurement bias, attrition bias, and confounding bias. Selection bias refers to the inclusion criterion used to select for participants included in a study. Selection bias occurs when the participants in a study are not a representative sample of the population of interest and participants contain systematic differences in baseline characteristics. Performance bias refers to the care or treatment being provided to participants. This bias occurs when there are systematic differences between participants in either the care that is being provided, or in exposure to factors other than the intervention(s) of interest. Measurement bias refers to poor measuring of the outcome of interest, which may either be systematically or randomly executed. This bias may
occur when either blinding is not implemented, the instruments used to assess the outcome of interest(s) is not reliable and/or valid, or the timing when the outcome of interest is assessed differs between participants included in the study. Attrition bias refers to the attrition, or retention of participants over the course of a study. This bias occurs when there are systematic differences in withdrawals from a study between the groups being compared. Intention-to-treat is another aspect of attrition bias and occurs when the results of a study are based on all participants that were randomized at the start of a study, regardless of participant withdrawal. This is done to avoid the effects of crossover and dropout, which may break the random assignment to the treatment groups in a study; therefore, reducing the risk of attrition bias. The final major form of bias is confounding bias. Confounding bias refers to whether the measurement of confounders are reliable and valid. This bias occurs when a variable, which acts as a confounder has not been adequately adjusted for in a study’s analysis.

Furlan et al. (2015) developed a comprehensive risk of bias instrument that measures all five major forms of risk of bias across three prominent study designs, which include: RCTs, observational-controlled trials, and non-controlled observational trials (the risk of bias instrument is available for review in Appendix A and Appendix B). This risk of bias instrument was created by combining and adjusting previous risk of bias instruments that have proven reliable and valid. In doing so, Furlan et al. have created a risk of bias tool that is comprehensive, reliable and valid. More specifically, each risk of bias instrument’s criterion (question) for the assessment of risk of bias was considered and adaptations and additions were made. The end result was a comprehensive, precise, accurate, reliable and valid criterion (question(s)) for each of the five major forms of risk of bias. The risk of bias instrument has also been published as a Cochrane methodology further lending support to its credibility.
1.9.3 Research questions, hypotheses, and objectives

Primary research question: What is the overall quality of reporting of SADEs and risk of bias in primary studies that investigate SADEs (misuse, abuse, addiction, overdose, and death) of prescription opioids?

Secondary research question: Does quality of reporting of SADEs and risk of bias explain the variance between event rates of SADEs in primary studies?

Tertiary research question: Do moderator variables, including: active versus passive collection of SADEs, study design, participant length of exposure to opioids, and prior and/or current mental health disorder(s) and substance use disorder explain the variance between event rates of SADEs in primary studies?

The hypotheses for the current meta-analytic review were developed a priori and include:

Hypothesis 1: Overall, quality of reporting of SADEs, assessed by McHarm will be *low* and risk of bias, assessed by Furlan et al. (2015) risk of bias instrument will be *high* in studies that investigate SADEs of long-term prescription opioids.

Hypothesis 2: Studies with inferior quality of reporting of SADEs, assessed by McHarm and/or risk of bias, assessed by Furlan et al. (2015) risk of bias instrument will yield *higher* event rates compared to studies with superior quality of reporting of SADEs and/or no risk of bias.
Hypothesis 3: If moderator variables are found to explain variance of event rates between studies (statistically significant associations with moderator variable(s)), SADEs should be:

Hypothesis 3 a): higher in studies with inferior quality of reporting (lower McHarm) compared to studies with superior quality of reporting (higher McHarm).

Hypothesis 3 b): higher in studies as risk of bias (risk of bias via Furlan et al. (2015) risk of bias instrument) compared to studies that are not at risk of bias (no risk of bias via Furlan et al. (2015) risk of bias instrument).

Hypothesis 3 c) higher in studies with active collection (question 5 of the McHarm) of SADEs compared to passive collection (question 6 of the McHarm).

Hypothesis 3 d): higher in non-controlled observational studies and **lower** in RCTs (observational controlled studies will be in-between the two).

Hypothesis 3 e): higher in studies where participants were exposed to opioids for longer.

Hypothesis 3 f): higher in studies with prior or current mental health disorder(s) and/or substance use disorder.

Primary objective: evaluate the overall quality of reporting of SADEs, risk of bias, and event rates of SADEs (misuse, abuse, addiction, overdose, and death) in studies that investigate SADEs of prescription opioids in CNCP patients, and subsequently inform clinical practice by promoting safer prescribing of opioids.
Secondary objective: examine whether specific moderator variables explain variance in reported event rates of SADEs and subsequently disclose whether any of the moderator variables help predict patient characteristics that increase risk of SADEs of prescription opioids.

Tertiary objective: provide recommendations for subsequent studies to improve quality of reporting of ADEs and lower risk of bias and encourage further research on ADEs of prescription opioids.
2 Methods

The methods section of this meta-analytic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The guideline promotes transparency and precision to ensure that all necessary information is made available to reviewers in a concise and coherent structure.

2.1 Types of studies

Included primary studies were either randomized controlled trials (RCTs), controlled observational studies, or non-controlled observational studies. Letters, editorials, commentaries, conference proceedings, meeting abstracts, lectures and addresses, narrative reviews, and qualitative research were excluded. This review was limited to studies published in English, and only studies that examined the event rate of selected adverse drug events (SADEs) (misuse, abuse, addiction, overdose, and death) over a minimum of 3 months or longer were included to ensure consistency across included studies and to allow for cross study comparisons. In addition, adverse drug events (ADEs) in general, especially the five included in the current review, require longer to transpire and certain ADEs may be transient in nature (i.e. misuse/abuse of an opioid medication intermittently). Therefore, studies that examined event rates at one given point in time were excluded.

2.2 Participants

Patients suffering from chronic non-cancer pain (CNCP) - defined as pain persisting for 3 months or longer - that are over the age of 17 and not pregnant were included. Seventeen years of age was selected based on extant literature on prescription opioids and ADEs. A list of conditions associated with CNCP is provided for review below, and includes conditions such as: low back pain and other musculoskeletal pain, neuropathic pain, osteoarthritis, rheumatoid
arthritis, fibromyalgia, headaches and migraines, complex regional pain syndrome, reflex sympathetic dystrophy, and causalgia.

Studies that focused exclusively on cancer, acute post-operative pain, ischemic pain due to vascular disease, pancreatitis, abdominal pain, sickle cell disease, and Crohn’s disease were excluded due to the broad differences in patient profiles and treatment.

List of conditions associated with CNCP

Complete Body:
- Arthritis
- Bursitis
- Central Sensitization and Opioid Induced Hypersensitivity
- Chronic Fatigue Syndrome
- Complex Regional Pain Syndrome
- Diabetes and Diabetic Neuropathy
- Fibromyalgia
- Multiple Sclerosis
- Myofascial Pain Syndrome
- Nephritis
- Non Specified Neuropathic Pain (Mono or Poly Neuropathy)
- Osteoarthritis
- Osteoporosis
- Phantom Limb Pain
- Pinched Nerve
- Post-Spinal Chord Injury Pain
- Post-Surgical Chronic Pain
- Rheumatoid Arthritis
- Shingles (Herpes Zoster) and Post-Herpetic Neuralgia
- Sickle Cell Disease
- Stroke Pain
- Tendonitis

Lower Leg, Ankle and Foot Conditions:
Achilles Tendon Rupture
Paraplegia
Phantom Limb Pain
Quadriplegia (Tetraplegia)
Sciatica
Shin Splints
Spinal Disc Herniation
Spinal Stenosis
Stroke Pain

Lower Back:

- Chronic Lower Back Pain
- Degenerative Disc Disease
- Facet Arthropathy
- Sacro-Iliac Joint Pain
- Sciatica
- Spinal Disc Herniation
- Spinal Stenosis

2.3 Interventions

A prescribed opioid had to be taken daily or almost daily for a duration of three months or longer. Opioids were operationalized as: any opiumlike drug prescribed for the alleviation of chronic pain; common medications that fall within this class of drug (opioids) include: hydrocodone, oxycodone, morphine, codeine, and related drugs\(^{27}\).

Studies that used common modes of administration for chronic pain populations were included, such as: oral, transdermal, transmucosal or rectal routes of administration. Studies that focused on opioids administered intrathecally, intramuscularly, or intravenously with pumps were not included due to their infrequent use outside of specialized pain clinics, and patients treated in tertiary care (i.e. specialized pain clinics) are considered different from patients treated in primary or secondary care.

2.4 Outcomes

Studies with one or more of the following outcomes of interest were included: misuse, abuse, addiction, overdose, and/or death.
Misuse, defined as: use of an opioid in ways other than those intended by the prescribing physician (synonyms in the literature: problematic opioid use, absence of prescribed opioid in urine, injecting or snorting an opioid, crushing an opioid, non-compliant with opioid medication, non-compliance, and failure to adhere to PRN dose of prescribed opioids)\(^{39}\).

Abuse, defined as: the intentional self-administration of a medication for a non-medical purpose such as altering one’s state of consciousness (i.e. 'getting high') (synonyms: using an opioid for purposes other than pain, using an unsanctioned dose of an opioid for recreational purposes, elevating one’s prescribed opioid for non-pain related reasons without knowledge of the prescribing physician, and aberrant drug-related behaviour due to likely association with drug abuse)\(^{40}\).

Addiction, defined as: a diagnosis via DSM-V, or comparable diagnostic criteria (i.e. ICD-9-CM) and characterized by behaviours that include one or more of the following: impaired control over drug use, compulsive use, continued use despite harm/adverse reactions, and craving (the 4 Cs)\(^{40}\).

Overdose, defined as: central nerve system depression caused from a prescribed opioid with the following characteristics: impaired level of consciousness, low respiratory rate, and myosis. Intentional and accidental overdose were included, and fatal and non-fatal overdose were included as well\(^{40}\).

Death, defined as: cessation of life caused from prescription opioid(s), commonly determined from a death certificate\(^{40}\).

As an important note, fatal overdose was classified as both overdose and death as the outcome is relevant for both.
2.5 Electronic searches

The sample of studies included in the current meta-analytic review were obtained from major research databases, including: MEDLINE, EMBASE, CINAHL, PsycINFO, CENTRAL, and Business Source Premier, using a comprehensive search strategy; all databases were exhaustively searched from their inception dates.

Two separate electronic searches were conducted using the same standardized search strategy via the OVID platform. The first electronic search was conducted by a librarian at the Institute for Work & Health with extensive experience in literature searches. The initial electronic search retrieved studies from the aforementioned databases until August 2012. The second electronic search was conducted by the author in October 2015 with the supervision from the same librarian. This subsequent search was conducted to update included studies until October 2015.

The search terms used for both electronic searches were informed from extant literature and were developed by a group of researchers with expertise in opioids and systematic reviews and meta-analyses. The search terms are available for review in Appendix C.

2.6 Manual searches

Reference lists of retrieved studies and recently published (less than 5 years) studies and reviews were manually searched. Searchers were also supplemented by persons involved in the meta-analytic review that searched their personal files for relevant studies that had not been captured by the electronic searches. Conference proceedings, lectures and newsletters in the field of opioids and ADEs were also consulted to ensure an exhaustive list of included studies. If a study was retrieved from one of the manual searchers listed above, it was included in the current review.
2.7 Selection of studies

Studies were first reviewed using titles and abstracts to ensure their relevance to the current meta-analytic review. If deemed relevant, the full text of a study was reviewed and a decision was made of whether the study satisfied inclusion and exclusion criteria. At each stage of the study selection process, two independent reviewers were involved in study selection, and if disagreement arose, concordance was achieved through dialogue and discussion. However, if disagreement persisted, a third reviewer was consulted to mediate over the disagreement and provide resolution.

Pilot tests were conducted to ensure both reviewers had a similar understanding of inclusion criteria. This process was done prior to the first level of screening of titles and abstracts and again prior to the full text screening. The same concordance process was used during the pilot stage.

2.8 Data extraction

A detailed data extraction protocol was created a priori, which included: the process/methods for extracting data, which data would be extracted, and the protocol for missing, or insufficient data. The data that were selected to be extracted was informed from extant ADE systematic reviews and meta-analyses that have suggested their significance in the ADE literature. Subsequently, each study was thoroughly reviewed and all relevant outcomes were noted. The studies were then read a second time (and subsequently, if needed) and the reviewer actively searched for relevant information/data for extraction. Data which were extracted included: reference ID, reviewer date, author, year, language, journal/source, where a study was conducted, ethnicity/race, source(s) of funding, conflict of interest statement, interpretation of conflict of interest statement, mean age, age range, gender, prior treatment, population of interest, recruited participants, drop-outs/discontinuation, final sample, number of groups,
previous or current mental health disorder(s) and/or substance use disorder(s), diagnosis of cancer, study design, length of chronic pain, length of participant opioid use, length of participant opioid use over study, active versus passive collection of SADEs, outcome of interest (misuse, abuse, addiction, overdose, and/or death), event rate of outcome of interest, and additional thoughts.

If during the data extraction process data was unclear, or not provided, then a decision was made on which information to include, or the field on the data extraction table was filled with N/A (non-applicable to the current study). For instance, if an average length of chronic pain, or opioid duration was included in the article, along with a range (i.e. 3 months – 3 years), the study was included if the range satisfied the minimum length for inclusion (3 months). Additionally, the average length reported in the study was entered in the data extraction table. Another example of insufficient data occurred when a study did not include a conflict of interest statement. When such an issue arose, “N/A” was entered into the data extraction table and a decision was made - based on the reviewer’s interpretation of the article – if the study contained any indication of conflicts of interest. Similarly, when the event rate of SADE outcomes was extracted, if only a percentage was included in the study (i.e. not the number of participants that experienced the SADE outcome), then estimation was used to determine the number of participants that most closely approximated the percentage recorded in the study.

Below is the data extraction guideline for review.

Data Extraction Guideline
RefID: Unique identifier for each article generated by Reference Manager. If the study was published in more than one article, we considered only one study with multiple publications, but the primary study is the main RefID.

Reviewer, Date: Two dates are included; the date the first reviewer extracted data from an article and the date the second reviewer extracted the data.

STUDY CHARACTERISTICS

Author, Year: The surname of the first author listed in a publication and the year in which the article was published. The author and year were used along with each article’s RefID to identify individual articles/publications.

Language: Language in which the full article was written. If the study provided an English abstract but the text was in a non-English, then the language of the full text was extracted.

Journal/Source: The name of the journal, or source (i.e. book, website) the article was published. If an article was published in numerous sources the earliest publication was used.

Where study was conducted: The country where the article/study was conducted. If the study spanned across several countries, all of them were included.

Source(s) of funding (copy from the paper): The source of funding listed in each publication, which included both monetary and nonmonetary (facilities, equipment) sources of funding.

Conflict of interest statement: In each publication, if a conflict of interest statement was found it was included. “None” was used for publications that did comment on conflict of interest.
Conflict of interest (our interpretation): The reviewer’s interpretation of whether a publication contains conflict of interest. The reviewer’s interpretation is based on his/her overall impression of a publication and its conflict of interest statement.

Study design: The way in which the study was conducted (methodology)/design of a study. Study designs included: randomized controlled trials, double-blind randomized trials, single-blind randomized trials, adaptive clinical trials, nonrandomized trials, observational trials, cohort trials, case-control trials, cross-sectional trials, and ecological trials.

POPULATION

Ethnicity, Race (copy from the paper): The number of participants of each ethnicity/race (referred to differently across studies) included in the study (ethnicities/races were copied verbatim).

Age (mean): Mean age of all participants. If the study provided mean age by subgroup of patients, we calculated the weighted mean.

Age (range): The age range of participants included in the study sample (youngest and oldest age). If the study provided range by subgroup of participants, we calculated the weighted mean/average of all included age ranges.

Gender: The percentage of male participants included in the study sample. If another numerical value was included instead of percent it was adjusted and changed. In addition, if the percentage of female participants was listed the percentage of male participants was deduced/calculated and included.
Prior treatment: Pain treatments/therapies prescribed to patients prior to study involvement. If numerous treatments/therapies were included all of them were listed. Additionally, the treatment had to have been related to the ailment the researchers were examining. For instance, if chronic pain was the area of interest only treatments/therapies for chronic pain were included.

How was chronic pain defined (months): How long did the pain condition have to be present for participants to receive a diagnosis of chronic pain?

Population of interest: The population which the authors/researchers would like to examine for their study. From this population, the study sample is recruited.

Recruited participants: The participants/patients recruited to participate in the study from the population of interest.

Dropouts/Discontinuation: The number of participants that had participated in the study and voluntarily withdrew from, or were asked to leave the study before its conclusion. If drop-outs were not discussed in a publication “0” was assigned.

Final sample: The total number of participants that participated from the start of the study until its conclusion. These participants were recruited from the population of interest and satisfied the study’s inclusion and exclusion criteria. If the final sample for each individual group was used each group’s final sample was added and their sum was included.

Number of groups: The number of samples included in a study. If this number differed depending on which variables/measures were examined the largest number of samples was used.

OPIOIDS
Duration of opioid use (months): Total duration of opioid use prior to study involvement. This includes the minimum amount of time a participant had to be prescribed opioids prior to study inclusion.

Duration of opioid use (over study, measured in months): The length of time participants used opioids during the study. If a range was given then the minimum length of opioid use was used. Moreover, if the duration varied depending on the study group then the minimum length of opioid use was used.

OUTCOMES

Outcome(s) assessed: Five outcomes were considered in this systematic review: opioid misuse, abuse, addiction, overdose, and death. Each study’s outcomes/results were assessed and categorized under these five outcome measures. Outcomes were assessed independently by two reviewers, both of which used the aforementioned definitions for each outcome.

Results: The data authors collected from the participants during the study. Absolute values were used. Therefore, if percentages were used they were changed to absolute values. In addition, if a range was used the middle/mean of the range was used as the absolute value from the study.

MISSING OR INSUFFICIENT DATA

Length of chronic pain and/or opioid(s): If an average length of chronic pain, or opioid duration was included in the article, along with a range (i.e. 3 months – 3 years), the study was included if the range satisfied the minimum length for inclusion (3 months), and the average length reported in the study was entered in the data extraction table. If the average length could
not be calculated or was not reported in the journal article, then the minimum length of chronic pain and/or exposure to opioids was used.

Conflict of interest statement: When a study did not include a conflict of interest statement, “N/A” was entered into the data extraction table and a decision was made - based on the reviewer’s interpretation of the article – if the study contained any indication of conflicts of interest.

Event rate of SADE: When the event rate of SADE outcomes was extracted, if only a percentage was included in the study (i.e. not the number of participants that experienced the SADE outcome), then estimation was used to determine the number of participants that most closely approximated the percentage recorded in the study.

Participant race/ethnicity: If participant ethnicity/race was not reported in a study, then “N/A” was entered into the data extraction table under “Ethnicity/Race”. In addition, the way in which “Ethnicity/Race” was reported in the article was copied verbatim into the “Ethnicity/Race” column of the data extraction table. However, “Ethnicity/Race” was reclassified according to pre-specified categories in adjacent columns following the “Ethnicity/Race” column. More specifically, “White” was reclassified as “Caucasian” “Black was reclassified as “African American”, and “N/A” was reclassified as “Unknown”.

Current or previous mental health disorder(s) and/or substance use disorder(s): All studies only indicated whether current or previous mental health disorder(s) and/or substance use disorder(s) were present among the entire included sample of participants. However, studies did not specify the exact number of participants from the sample that currently have, or had been diagnosed with a previous mental health disorder and/or substance use disorder. Therefore, if the
study mentioned that previous or current mental health disorder(s) and/or substance use disorders were present among the entire sample, “Yes” was included in the data extraction table. If none of these disorders were reported at all, then “No” was listed.

Seven variables from the data extracted, which were selected a priori, were included in subsequent meta-regressions as moderator variables, and included: McHarm score, active versus passive collection of SADeS, risk of bias, study design, length of participant opioid exposure, and current or previous mental health disorder(s) and SUD. These variables were included as moderator variables due to their significance in extant literature on the SADeS (specifically, misuse, abuse, addiction, overdose, and death) of prescription opioids34.

To ensure that the data were extracted accurately and completely, a second reviewer, that has experience with scientific literature and study-methodology read all included studies and checked the completed data extraction to ensure there were no errors. If disagreement arose between reviewers regarding data extracted, the reviewers met and expressed their opinions regarding the disagreement. If consensus was reached between the reviewers then the data decided on was included in the data extraction table. However, if disagreement persisted, a third reviewer was consulted to mediate over the disagreement and provide resolution.

2.9 Quality of reporting of SADeS

Following data extraction, the McHarm instrument was completed for each included study35. The McHarm is an instrument/checklist that evaluates the quality of reporting of ADEs in studies, systematic reviews, and meta-analyses. The instrument/checklist evaluates both the quality of reporting of ADEs and the methodology used in the collection of ADEs data. The checklist is comprised of 15 questions that are answered in the format of “yes”, “no”, or “unsure” – with an overall score ranging from 0 to 15 points (higher scores signify better ADEs reporting).
Scores from the McHarm are normally provided as an integer (i.e. 8)35. However, for the current study, scores from the McHarm were reported as a percentage instead of an integer. This adaptation was necessary due to the diversity of studies included in the current meta-analytic review. For instance, question 12 of the McHarm: “Was the NUMBER of participants that withdrew or were lost to follow-up specified for each study group?” was not applicable to studies that employed a retrospective design (i.e. examined previously recorded patient charts). These studies were therefore provided a McHarm score out of 14, instead of the possible 15 for other studies. To accommodate for these studies, a percentage either out of 14, or 15 was used for each study’s McHarm score.

A second reviewer was also involved in the assessment with the McHarm. Both reviewers attended a training session with Dr. Andrea Furlan. After both reviewers had an understanding of the McHarm instrument, and consensus was reached on McHarm exercises, the reviewers scored each study independently. After each reviewer completed 10 studies throughout the scoring process, the reviewers randomly selected 5 and compared their scores. If the scores were identical then another 10 studies were assessed using the McHarm. If there were disagreements, resolution was reached, either through conversation between the reviewers, or if necessary, through mediation with a third reviewer.

As previously discussed in the introduction, in the “Rationale of McHarm” subsection, the McHarm is considered highly reliable and valid, especially when used to assess pharmacological interventions (i.e. opioids)35.

2.10 Risk of bias

Risk of bias was assessed using a comprehensive risk of bias guideline constructed by Furlan et al. (2015)37. The risk of bias guideline is comprised of numerous risk of bias
assessment tools, including: Cochrane, Downs & Black, Sign Methodology Checklist 3: Cohort Studies, McHarm, Newcastle-Ottawa, and Jill Hayden’s prognosis tool. This risk of bias instrument assesses five major forms of risk of bias, including: selection bias, performance bias, measurement bias, attrition bias, and confounding bias. The type of bias examined is contingent on the design of the study being assessed. This is due to certain biases being more likely to occur, or incapable of occurring in specific study designs. To be more specific, selection bias, performance bias, measurement bias, and attrition bias were assessed for all RCTs. For controlled observational studies, selection bias, measurement bias, attrition bias, and confounding bias were measured. Finally, for non-controlled observational studies, only measurement bias was assessed.

The risk of bias guideline used in the current meta-analytic review is comprised of risk of bias tools that have repeatedly demonstrated excellent validity and reliability, and therefore Furlan et al. (2015) risk of bias guideline is considered to have high validity and reliability. However, to further ensure both reliability and validity, a second reviewer also assessed risk of bias.

To ensure reliability and accuracy of risk of bias assessment, a second reviewer also assessed risk of bias. The two reviewers participated in training sessions with Dr. Andrea Furlan.

After each reviewer completed 10 studies throughout the assessment process, the reviewers randomly selected 5 and compared their scores. If the risk of bias assessments were identical then another 10 studies were assessed and the process was repeated. However, if disagreement arose between the reviewers on a risk of bias measure, the two reviewers discussed the disagreement and each provided their rationale. If consensus was reached then the agreed
upon risk of bias outcome was used. However, if disagreement persisted, a third reviewer was consulted for consensus.

After all included studies were assessed using the risk of bias guideline, both reviewers interpreted the results using a table and flow chart, which were also constructed by Furlan et al. (2015)\(^37\) (see Appendix A for the table and Appendix B for the flow chart). Furlan et al.’s (2015)\(^37\) guideline for interpreting risk of bias was also created from the same risk of bias materials used for their guideline for assessing risk of bias. The table ranks the questions used to assess risk of bias with a rank, ranging from 1 to 3 (1 is important, 2 is more important, and 3 is very important). Using the ranking criterion established in the risk of bias table, the flow chart was followed to determine a study’s risk of bias. The overall theme of the flow chart follows that higher ranked/more important questions have more of an influence in determining if risk of bias is present in a study\(^37\).

\subsection{2.11 Event rates}

The event rate for each outcome of interest was determined in each study. To do so, the number of participants prescribed opioids with CNCP that experienced either misuse, abuse, addiction, overdose, and/or death were divided by the total number of CNCP patients prescribed opioids (some studies included separate samples, one of which included CNCP patients and the other with cancer patients with chronic pain). In studies that included multiple study-groups of interest, separate event rates were calculated for each group and included in the analyses. As discussed previously, if only a percentage was included in the study (i.e. not the number of participants that experienced the SADE outcome), then estimation was used to determine the number of participants that most closely approximated the percentage recorded in the study. Two reviewers calculated the event rates for each study to ensure reliability and validity. If
disagreement occurred, consensus was reached through discussion, or if necessary, a third reviewer was consulted.

If a study reported an event rate for more than one SADe of interest (i.e. misuse and abuse), then the study was included in both analyses for which an event rate was extracted. Therefore, although there were 90 included studies, the amount of event rates reported across all five SADe outcomes (misuse, abuse, addiction, overdose, and death) could be greater than 90.

2.12 Synthesis of results

The current meta-analytic review used Comprehensive Meta-analysis Software (CMA) to analyse data. CMA is a statistics software that is specifically designed for meta-analyses and enables the user to conduct specific meta-analytic techniques, including meta-regressions. CMA software also allows for analyses to be performed in either a fixed effects model or a random effects model, sometimes referred to as a mixed effects model. The random effects model was ultimately selected as it is better suited for the data and purported results from the current meta-analytic review. The random effects model assumes that the studies/data included in a meta-analysis and meta-regression are a random sample and do not include all possible “levels” of studies/data available. Although the current meta-analytic review has exhaustively searched the literature on chronic pain and opioids, it must be acknowledged that some studies may have not been retrieved. In addition, the inclusion criteria used for this meta-analytic review were deliberately specific (the primary objective of this review was to examine pain and long-term opioid use in chronic populations), and therefore, all “levels” of pain and opioids (i.e. acute pain, nonconventional routes of opioid administration) were not included in this review.
For each SADE (misuse, abuse, addiction, overdose, and death) outcome a meta-analysis was conducted to determine the amount of heterogeneity of reported event rates between studies. For each SADE outcome, two separate meta-analyses were planned to be conducted, which were contingent on participant opioid exposure. Studies that included participants with opioid exposure from 3- to 11- months were analysed together, and studies with participant opioid exposure of 12- months or longer were included in a separate meta-analysis. This was informed from extant literature that purports length of participant opioid exposure significantly influences the event rates of the SADEs examined in the current meta-analytic review\(^4\). However, when the moderator variable: length of participant opioid exposure was examined, studies for the SADE outcomes (misuse, abuse, addiction, overdose, and death) were combined and analysed only according to outcome (and not further divided contingent on length of opioid exposure). This was to ensure that length of opioid exposure could be accurately assessed.

Heterogeneity between studies was assessed using the \(I^2\) statistic. \(I^2\) is traditionally used in meta-analyses and it measures the percentage of total variation (heterogeneity) across studies that is due to heterogeneity rather than chance (i.e. sampling error)\(^4\). Percentages of 25\% (\(I^2=25\)), 50\% (\(I^2=50\)), and 75\% (\(I^2=75\)) represent low, medium, and high heterogeneity, respectively\(^4\). The statistic is calculated using \(100\% \times (Q-df)/Q\), where \(Q\) is the Cochran’s heterogeneity statistic, which is chi-squared distributed\(^4\). In the current meta-analytic review, if an \(I^2\) value of 75\% or greater was evidenced then subsequent meta-regressions were executed using specified moderator variables, which were determined a priori, and include: quality of reporting of SADE (McHarm score), active versus passive collection of SADEs, risk of bias, study design, length of participant opioid exposure, and current or previous mental health disorder(s) and SUD to examine whether one or more of the aforementioned moderator variables

44
explained the heterogeneity reported from I^2. These variables were included as moderator variables due to their purported significance in the SADEs (specifically misuse, abuse, addiction, overdose, and death) of prescription opioids.

An R^2 value and p-value were reported for each meta-regression conducted. The R^2 statistic is a number that indicates the proportion of the variance in the dependent variable (event rates of SADEs) that is predictable from the independent variable (moderator variable being examined). An R^2 value can either be low, medium, or high. More specifically, an R^2 of 0-0.5 is considered low and represents a weak correlation between the dependent and independent variable, an R^2 of 0.51-0.74 is considered medium and represents a moderate correlation, and an R^2 value of 0.75-1 is considered high and represents a strong correlation.

The reported p-value indicates whether a meta-regression is statistically significant (the probability of obtaining a result equal to or more extreme than what was actually observed, when the null hypothesis is true), and it is important to report as it is an independent measure from R^2. More specifically, a high R^2 value may not represent a statistically significant p-value, whereas a low R^2 value may be statistically significant. To determine whether a p-value is statistically significant an alpha level (level of significance) must be established (a priori). The most common alpha level in scientific literature is 0.05 (5%) and this alpha was used in the current meta-analytic review as well.

If a statistically significant p-value (0.05 or less) was reported for a meta-regression (a continuous moderator variable (i.e. McHarm) was found to be statistically significant), then a correlation coefficient was calculated to determine the impact and direction of impact that each moderator variable had on reported SADE event rates. For categorical variables (i.e. risk of...
bias), predicted event rate was used to compare the dichotomies of each categorical variable. Predicted event rate determines the event rate that is expected within a given sample of studies. Therefore, by comparing the predicted event rate for studies that are grouped in one dichotomy of a categorical variable (i.e. risk of bias) to studies that are grouped in the other dichotomy (i.e. no risk of bias) conclusions can be drawn regarding how a categorical variable influences event rate. More specifically, the dichotomy of the categorical variable with the higher predicted event rate results in higher expected event rates, and vice versa.

For each moderator variable, a multivariate analysis was planned to be used. A multivariate analysis, compared to a univariate analysis, allows for multiple variables to be analysed concurrently in one meta-regression. Multivariate analysis is the preferred approach as it allows for more variables to be analysed, using fewer meta-regressions, which decreases the chance of a type 1 error occurring (false positive – incorrect rejection of the null hypothesis).

To examine whether inferior (low) overall quality of reporting of SADEs and high risk of bias resulted in inflated/higher event rates of SADEs (hypothesis #2), a correlation coefficient and p-value were reported. For risk of bias (a categorical variable), two correlation coefficients were reported and compared to determine whether risk of bias resulted in higher or lower event rates of SADEs, and vice versa. However, for quality of reporting, one coefficient was reported as it was measured using a continuous variable (McHarm score) and the direction (+ versus -) was examined to determine the direction of the relationship (if higher McHarm scores result in higher or lower event rates, and vice versa).

2.12.1 Additional analyses
Descriptive statistics were also utilized. More specifically, overall event rates were reported on the five included SADE outcomes (misuse, abuse, addiction, overdose, and death).
Additionally, demographic data were reported and figures and graphs were utilized to represent these data.

Cohen’s kappa coefficient was another statistical technique that was used in the current meta-analytic review. This statistic measures inter-rater agreement between two individuals when comparing a categorical variable, and Cohen’s kappa coefficient is generally thought to be one of the more robust statistics due to its ability to account for agreement that may occur by chance. Therefore, concordance rates between the two reviewers on the risk of bias assessment (categorical variable; either yes (presence of bias), or no (absence of bias)) were determined using Cohen’s kappa coefficient. A coefficient of 0 to 0.5 is considered low inter-rater agreement, 0.5 to 0.8 is considered moderate inter-rater agreement, and 0.8 to 1 is considered higher inter-rater agreement.

Concordance on the McHarm was measured using the Intraclass correlation coefficient. This coefficient is used to measure concordance between two reviewers when comparing quantitative measurement. The coefficient is considered highly reliable and valid when comparing quantitative data, and is therefore suitable to assess concordance on the McHarm, which is measured on a scale from 0 to 15, and 14 in the current meta-analytic review. Similar to Cohen’s kappa coefficient, a coefficient of 0 to 0.5 is considered low inter-rater agreement, 0.5 to 0.8 is considered moderate inter-rater agreement, and 0.8 to 1 is considered higher inter-rater agreement.
3 Results

The current meta-analytic review comprised of two separate literature searchers. The first literature search contained studies until August 2012 and yielded 16,288 studies, of which 16,109 were excluded. The remaining 179 studies had their full-text screened and 68-116 were ultimately included in the meta-analysis and subsequent meta-regressions. Subsequently, a second literature search was conducted to update studies published until October 2015. The second literature search yielded 2,193 studies, of which 2,154 were excluded. The remaining 39 studies had their full-text screened and 14-130 were ultimately included. Eight 131-138 additional studies were retrieved from manual searches of relevant systematic reviews, conference proceedings, and personal archives. Ultimately, a final sample size of 90 49-138 studies was included.
Figure 2. Flowchart of included studies
3.1 Study Characteristics

Of the 90 included studies, 53 were non-controlled observational (NCO), 30 were controlled observational (CO), and 7 were randomized-controlled trials (RCTs). Studies were published through years 1979 and October 2015. The years with the fewest published studies (one study) included: 1979, 1985, 1997, 1999, and 2002. The years 2005 and 2010 had the most published studies, including 8 and 15, respectively. Numerous authors published studies between the years of 1979 to October 2015. Manchikanti published the greatest number of studies, including 9 in the following years: 2001, 2003, 2003, 2004, 2004, 2005, 2005, 2006, and 2008. As demonstrated in Figure 3, there has been an overall increase in the number of studies published over time (with few exceptions). In fact, this increase of studies over time was statistically significant and regression analysis revealed a correlation coefficient of 0.31 with a p-value of 0.01.

![Number of Studies by Year](image)

Figure 3. Number of Studies Published by Year
Studies were retrieved from a wide variety of journals; Pain Medicine contained the most published studies with 12, 58, 59, 74, 92, 100, 104, 111, 112, 122-124, 137. Seventy-four studies were conducted in America, 11, 50, 55, 58, 59, 68, 73, 78, 93, 105, 133, 138 in Europe, 4, 60, 95, 110, 134 in Canada, and 1, 75 in China (see Figure 2). Participant races/ethnicities included: Caucasian, African American, Hispanic, Other, Native American, Asian, Multiracial, Native Hawaiian/Pacific Islander, and Unknown. Data on participant race/ethnicity was only available in 39 studies, 49, 53, 56, 57, 63, 64, 66, 67, 69-74, 79, 96, 97, 100, 104, 106, 108, 109, 113-115, 118, 120-123, 125, 127, 129, 130, 133, 137.

![Number of Studies by Country](image)

Figure 4. Number of Studies by Country

Participants had a mean age of 51.6 years, a median age of 50.6 years, with a standard deviation (SD) 8 years, and ranged in age from 18 to 105 years. Data on age was only available in 69 studies, and 21 studies, and 49, 53, 57, 62, 63, 79, 86, 88, 89, 99, 101, 107, 111-114, 117, 118, 127, 131, 132 did not contain mean age of participants and
did not contain information on range of age of participants. Overall, there was a mean of 41.4\% of participants that were male. There was wide variability between studies, which ranged from sample sizes of 95\% male to 16\% male. Fourteen studies did not include information on participant sex.

Funding sources were disclosed for 58 studies. Additionally, 46 studies contained a conflict of interest statement, and among these, 9 studies were deemed to have conflict of interest, which was a decision made from both reviewers based on pre-specified criteria, created a priori. The total sample size across all 90 studies was 2467,677, with a mean sample size across studies was 27,418, median of 198.5 and a SD of 117,728, which ranged from a sample size of 20 to a sample size of 840,606 people. Participants had numerous chronic pain diagnoses/conditions, including: neuropathic pain, osteoarthritis, rheumatoid arthritis, chronic neck pain, chronic back pain, sacroiliac joint dysfunction, chronic headaches, irritable bowel syndrome, fibromyalgia, degenerative disc disease, inflammatory bowel disease, lumbar spinal stenosis, and chronic fatigue syndrome.

Studies had a mean length of opioid exposure of 11.68 months; 52 studies with participant opioid exposure between 3- to 11- months and 38 studies with participant opioid exposure of 12- months or longer. Sixty-nine studies employed active collection of selected adverse drug events (SADEs) (participants are asked about the occurrence of specific SADEs in structured
questionnaires or interviews at pre-specified intervals, question number 5 of the McHarm), whereas 21 studies employed a passive approach to the collection of SADEs (participants report SADEs on their own initiative and are not probed with active ascertainment, question number 6 of the McHarm). Compared to NCO and CO studies, RCTs were much more likely to employ active collection of SADEs, with only one RCT using a passive approach to the collection of SADEs.

3.2 McHarm

The McHarm instrument is comprised of 15 questions, fifty-four \(^{52, 54, 57, 60, 61, 63, 65, 66, 69-74, 76, 78-81, 84, 85, 87-92, 95, 98, 101, 103, 105-107, 111, 114-121, 123-127, 129, 130, 135, 137}\) studies were marked out of 14 due to question 12 of the McHarm (Was the NUMBER of participants that withdrew or were lost to follow-up specified for each study group?) not being applicable. More specifically, these \(^{54, 57, 60, 61, 63, 65, 66, 69-74, 76, 78-81, 84, 85, 87-92, 95, 98, 101, 103, 105-107, 111, 114-121, 123-127, 129, 130, 135, 137}\) studies were retrospective in nature and therefore do not contain participant withdrawals. The remaining \(^{49-51, 53, 55, 56, 58, 59, 62, 64, 67, 68, 75, 77, 82, 86, 93, 94, 96, 97, 99, 100, 102, 104, 108-110, 112, 113, 122, 128, 131, 133, 134, 136, 138}\) studies were marked out of the full 15 questions on the McHarm instrument. To accommodate for these differences, a percentage either out of 14 or 15 was used for each primary study’s McHarm score.

Studies had a mean McHarm score of 57%, a SD of 9.5%, and ranged from the highest McHarm score of 80% (12 out of 15), which was a RCT, to the lowest score of 28.6% (4 out of 14), which was a NCO. Questions 2 (Were SERIOUS events precisely defined?) and 3 (Were SEVERE events precisely defined?) were most problematic across studies with only 10 studies receiving a “yes” for question 2, and 4 studies receiving a “yes” for question 3. Conversely, question 14 of the McHarm (Did the author(s) specify the NUMBER for each TYPE of harmful
event for each study group?) was least problematic with all studies receiving a “yes” on this question. Overall, RCTs had a mean McHarm score of 66%, compared to CO and NCO studies, which had a mean McHarm score of 56%.

![Number of Studies for McHarm](image)

Figure 5. Distribution of McHarm scores across all 90 included studies

3.3 Risk of bias

Risk of bias assessment showed that 71.4% (5 out of 7) RCTs were at risk for **performance bias**, 34.4% (31 out of 90) of studies were at risk for **measurement bias**, 40.5% (15 out of 37) were at risk for **selection bias**, 8.1% (3 out of 37) were at risk for **attrition bias**, and 90% (27 out of 30) were at risk for **confounding bias**.

Measurement bias was the only form of bias measured across all three (RCT, CO, NCO) study designs, and when compared to RCTs, NCO and CO studies had a much higher risk for measurement bias. More specifically, 36.1% (30 out of 83) of NCO and CO studies were at risk of measurement bias, whereas 14.3% (1 out of 7) RCTs were at risk for measurement bias.
3.4 Meta-analyses and meta-regressions: All studies

Across all 90 included studies, the McHarm had an inverse relationship with all five (misuse, abuse, addiction, overdose, and death) SADEs of -0.003 and a p-value of 0.99.

Moreover, studies that were at risk of performance bias had a predicted event rate of 0.15 and a p-value of 0.44, whereas studies that were not at risk of performance bias had a predicted event rate of 0.01 and a p-value of 0.44. Studies that were at risk of selection bias had a predicted event rate of 0.24 and a p-value of 0.43, whereas studies that were not at risk of selection bias had a predicted event rate of 0.18 and a p-value of 0.43. Studies that were at risk of measurement bias had a predicted event rate of 0.18 and a p-value of 0.68, whereas studies that were not at risk of measurement bias had a predicted event rate of 0.19 and a p-value of 0.68. Studies that were at risk of attrition bias had a predicted event rate of 0.02 and a statistically significant p-value of 0.004, whereas studies that were not at risk of attrition bias had a predicted event rate of 0.29 and a p-value of 0.004. Studies that were at risk of confounding bias had a predicted event rate of 0.26 and a p-value of 0.7, whereas studies that were not at risk of confounding bias had a predicted event rate of 0.22 and a p-value of 0.7.

Below are graphs for each type of risk of bias. The graphs demonstrate overall observed weighted event rate for all SADE outcomes for studies with risk of bias versus studies without risk of bias. These graphs illustrate the predicted event rates reported above. More specifically, types of bias that contain greater predicted event rates for studies at risk contain higher observed event rates (evidenced via taller bars in the graphs) compared to studies not at risk, and vice versa.
Figure 6. Weighted event rate by selection bias

Figure 7. Weighted event rate by measurement bias

Figure 8. Weighted event rate by attrition bias
3.5 Length of participant opioid exposure

Length of participant opioid exposure was analysed for each SADE outcome (misuse, abuse, addiction, overdose, and death). For each SADE outcome, the I^2 value was 99.72%, which represents a large amount of variance that is not explained due to chance (i.e. sampling error). Therefore, subsequent meta-regressions were conducted to determine whether length of participant opioid exposure explained the great amount of heterogeneity between studies for each SADE outcome. The table below reports the R^2 value and p-value for each SADE outcome. If a
statistically significant p-value was reported for any of the SADE outcomes, the correlation coefficient (with its p-value) is reported underneath the table.

Table 2. Length of participant opioid exposure: \(R^2 \) and p-value for each SADE outcome

<table>
<thead>
<tr>
<th>SADE outcome</th>
<th>(R^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misuse:</td>
<td>0.05</td>
<td>0.8</td>
</tr>
<tr>
<td>Abuse:</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Addiction:</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Overdose:</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Death:</td>
<td>0.49</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Length of participant opioid exposure was found to be a statistically significant moderator variable for abuse and death, with a p-value of 0.05 and 0.004, respectively. Further regression analysis revealed that the coefficient for abuse was 0.28 with a p-value of 0.05, and the coefficient for death was 0.24 with a p-value of 0.04.

The remaining moderator variables examined: study design, current or previous mental health disorder, current or previous substance use disorder (SUD), active versus passive collection of SADEs, McHarm, performance bias, measurement bias, selection bias, attritions bias, and confounding bias studies were separated into specific SADE outcomes (misuse, abuse, addiction, overdose, and death) and further divided by length of participant opioid exposure. More specifically, studies that contained participant opioid exposure ranging from 3- to 11-
months were grouped together, conversely, studies with participant opioid exposure of 12-months or longer were grouped.

3.6 Distribution of studies

Of the 90 included studies, 41 contained a misuse outcome, 28 contained an abuse outcome, 9 contained an addiction outcome, 13 contained an overdose outcome, and 11 contained a death outcome. Overall, there were 102 reported outcomes and 12 studies contained two reported SADE outcomes of interest. Subsequent meta-analyses and regressions are reported below. In addition, a figure is provided below that depicts the overall weighted event rate by adverse drug event outcome and length of participant opioid exposure. This graph is explored in further detail below.
Although a multivariate analysis was planned, for each moderator variable, a univariate analysis was used. In the literature, as a general rule of thumb, for each moderator variable included in a meta-regression, there should be 5 corresponding studies included in the analysis. Therefore, if a meta-regression wishes to run 2 moderator variables concurrently then there should be a minimum of 10 studies; for 3 moderator variables concurrently there should be 15 studies, and so on. Specific SADE outcomes in the current meta-analytic review (addiction,
overdose, and death) could not support more than one moderator variable analysed at a time. Therefore, to ensure consistency across outcomes, and to allow for cross-outcome comparisons, a univariate approach was utilized and each moderator variable was examined in a separate meta-regression.

3.7 Misuse

Overall, there were 41 studies that contained a misuse outcome. Twenty-three studies contained participants that were exposed to opioids for a length of between 3- to 11-months and 18 contained participants with opioid exposure of 12-months or longer. For the current meta-analytic review, misuse was defined as: use of an opioid in ways other than those intended by the prescribing physician. However, there was a lot of heterogeneity between studies on which misuse behaviours were examined, which included: negative urine drug screenings, administration of prescription opioid in ways other than prescribed (i.e. snorting), problematic opioid use (either using more than prescribed, or less), and obtaining more of the prescribed opioid from other physicians (sometimes referred to as “double doctoring”).

3.7.1 Participant opioid exposure of 3- to 11-months

The weighted event rate of misuse was 24.4%, with a standard error of mean (SEM) of 3.3, and a confidence interval of 14.2% to 38.6%. The lowest reported event rate of misuse across studies was 0.1% and the highest was 71.4%. The meta-analysis had a p-value of 0.001, and an I^2 value of 99.63%. Due to the great amount of heterogeneity evidenced from the I^2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity. The table below contains each examined moderator variable, the
amount of variance explained from the variable (R²), and whether the variance explained is statistically significant (p-value).

Table 3. Misuse 3- to 11-months: R² and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>R²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=23):</td>
<td>0</td>
<td>0.39</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=23):</td>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>Current or previous SUD (n=23):</td>
<td>0</td>
<td>0.82</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=23):</td>
<td>0.18</td>
<td>0.008</td>
</tr>
<tr>
<td>McHarm (n=23):</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Performance bias (n=2):</td>
<td>0.68</td>
<td>0.02</td>
</tr>
<tr>
<td>Measurement bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Selection bias (n=8):</td>
<td>0.68</td>
<td>0.02</td>
</tr>
<tr>
<td>Attrition bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Confounding bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
</tbody>
</table>
Active versus passive collection of SADEs, performance bias and selection bias were statistically significant moderator variables for misuse with participant opioid exposure from 3- to 11- months. Further regression analysis revealed that active collection of SADEs had a predicted event rate of 0.32 and a p-value of 0.008, whereas passive collection of SADEs has a predicted event rate of 0.18 and a p-value of 0.008, risk of performance bias had a predicted event rate of 0.42 and a p-value of 0.02, whereas studies that were not at risk for performance bias had a predicted event rate of 0.01 and a p-value of 0.02, and risk of selection bias had a predicted event rate of 0.42 and a p-value of 0.02, whereas studies that were not at risk for performance bias had a predicted event rate of 0.3 and a p-value of 0.02.

3.7.2 Participant opioid exposure of 12- months or longer

The weighted event rate of misuse in studies with participant opioid exposure of 12-months or longer was 11.4%, with a SEM of 5.4, and a confidence interval of 8.1% to 15.8%. The lowest reported event rate across studies was 0.9% and the highest was 98.8%. The meta-analysis had a p-value of 0, and an I² value of 98.15. Due to the great amount of heterogeneity evidenced from the I² value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

Table 4. Misuse 12- months or longer: R² and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>R²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=18):</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=18):</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Current or previous SUD</td>
<td>0</td>
<td>0.87</td>
</tr>
<tr>
<td>(n=18):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active versus Passive</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>collection of SADEs (n=18):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McHarm (n=18):</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias (n=18):</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Selection bias (n=7):</td>
<td>0</td>
<td>0.23</td>
</tr>
<tr>
<td>Attrition bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Confounding bias (n=6):</td>
<td>0.23</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Active versus passive collection of SADEs, measurement bias, and confounding bias were statistically significant moderator variables for misuse with participant opioid exposure of 12-months and longer. Further regression analysis revealed that active collection of SADEs had a predicted event rate of 0.22 and a p-value of 0.03, whereas passive collection of SADEs had a predicted event rate of 0.05 and a p-value of 0.03, risk of measurement bias had a predicted event rate of 0.06 and a p-value of 0.03, whereas studies that were not at risk of measurement bias had a predicted event rate of 0.24 and a p-value of 0.03, and risk of confounding bias had a predicted event rate of 0.2 and a p-value of 0.05, and studies that were not at risk for confounding bias had a predicted event rate of 0.66 and a p-value of 0.05.
3.8 Abuse

Overall, there were 28 studies that contained an abuse outcome. Seventeen contained participants that were exposed to opioids for a length of between 3- to 11- months and 11 contained participants with opioid exposure of 12 months or longer. For the current meta-analytic review, abuse was defined as: the intentional self-administration of a medication for a non-medical purpose such as altering one’s state of consciousness (i.e. getting high)\(^{40}\). However, there was heterogeneity between studies on which abuse behaviours were examined, which included: the use of an opioid to alter one’s state of consciousness, taking a prescribed opioid for reasons other than prescribed (pain), and continuing to use an opioid despite relief of pain symptoms or ineffectiveness.

3.8.1 Participant opioid exposure of 3- to 11- months

The weighted event rate of abuse in studies with participant opioid exposure of 3- to 11- months was 4.2%, with a SEM of 6.33, and a confidence interval of 4% to 4.4%. The lowest reported event rate across studies was 0.5% and the highest was 90%. The meta-analysis had a p-value of 0, and an \(I^2\) value of 98.94. Due to the great amount of heterogeneity evidenced from the \(I^2\) value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

Table 5. Abuse 3- to 11- months: \(R^2\) and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>(R^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=17):</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>Category</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=17):</td>
<td>0</td>
<td>0.56</td>
</tr>
<tr>
<td>Current or previous SUD (n=17):</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=17):</td>
<td>0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>McHarm (n=17):</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias (n=17):</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Selection bias (n=4):</td>
<td>0.04</td>
<td>0.33</td>
</tr>
<tr>
<td>Attrition bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Confounding bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
</tbody>
</table>

Measurement bias was a significant moderator variable for abuse in participants with opioid exposure of 3- to 11- months. Further regression analysis revealed that risk of measurement bias had a predicted event rate of 0.35 and a p-value of 0.05, whereas studies that were not at risk for measurement bias had a predicted event rate of 0.14 and a p-value of 0.05.

3.8.2 Participant opioid exposure of 12- months or longer

The weighted event rate of abuse in studies with participant opioid exposure of 12-months or longer was 11%, with a SEM of 7.84, and a confidence interval of 2.4% to 39%. The
The lowest reported event rate across studies was 0.1% and the highest was 94%. The meta-analysis had a p-value of 0.013, and an I^2 value of 99.82. Due to the great amount of heterogeneity evidenced from the I^2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

Table 6. Abuse 12- months or longer: R^2 and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=11):</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=11):</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Current or previous SUD (n=11):</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=11):</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>McHarm (n=11):</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias (n=11):</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Selection bias (n=6):</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Attrition bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Confounding bias (n=5):</td>
<td>0.43</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Confounding bias was a significant moderator variable for abuse in participants with opioid exposure 12-months and longer. Further regression analysis revealed that risk of confounding bias had a predicted event rate of 0.26 and a p-value of 0.03, whereas studies that were not at risk of bias had a predicted event rate of 0.001 and a p-value of 0.03.

3.9 Addiction
Overall, there were 9 studies that contained addiction outcome. Four contained participants that were exposed to opioids for a length of between 3- to 11-months and 5 contained participants with opioid exposure of 12-months or longer. For the current meta-analytic review, addiction was defined as: diagnosed via DSM-V (or comparable diagnostic assessments (i.e. International Statistical Classification of Diseases and Related Health Problems (ICD)) and characterized by behaviours that include one or more of the following: impaired control over drug use, compulsive use, continued use despite harm, and craving. There was not much heterogeneity in how addiction was operationalized and all studies either used a current or previous version of DSM or ICD-9-CM.

3.9.1 Participant opioid exposure of 3- to 11-months
The weighted event rate of addiction in studies with participant opioid exposure of 3- to 11-months was 6.7%, with a SEM of 5.14, and a confidence interval of 2.3% to 17.7%. The lowest reported event rate across studies was 1.2% and the highest was 23.7%. The meta-analysis had a p-value of 0, and an I^2 value of 86.78%. Due to the great amount of heterogeneity evidenced from the I^2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.
Table 7. Addiction 3- to 11- months: \(R^2 \) and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>(R^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=4):</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=4):</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Current or previous SUD (n=4):</td>
<td>0</td>
<td>0.80</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=4):</td>
<td>0.60</td>
<td>0.04</td>
</tr>
<tr>
<td>McHarm (n=4):</td>
<td>0.56</td>
<td>0.05</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Selection bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Attrition bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Confounding bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
</tbody>
</table>

Active versus passive collection of SADEs and McHarm were significant moderator variables for addiction in participants with opioid exposure from 3- to 11- months. Further regression analysis revealed that active collection of SADEs had a predicted event rate of 0.24
and a p-value of 0.04, and passive collection of SADEs had a predicted event rate of 0.04 and a p-value of 0.04. McHarm had a correlation coefficient of 0.52 and a p-value of 0.05.

3.9.2 Participant opioid exposure of 12- months or longer

The weighted event rate of addiction for studies with participant opioid exposure of 12-months or longer was 9.7%, with a SEM of 2.34, and a confidence interval of 6% to 15.4%. The lowest reported event rate across studies was 2.9% and the highest was 15.7%. The meta-analysis had a p-value of 0, and an I^2 value of 78.09%. Due to the great amount of heterogeneity evidenced from the I^2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

<table>
<thead>
<tr>
<th>Variable</th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=5):</td>
<td>0</td>
<td>0.78</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=5):</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Current or previous SUD (n=5):</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=5):</td>
<td>0.03</td>
<td>0.26</td>
</tr>
<tr>
<td>McHarm (n=5):</td>
<td>0</td>
<td>0.82</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias (n=5):</td>
<td>0.03</td>
<td>0.26</td>
</tr>
</tbody>
</table>
3.10 Overdose

Studies for overdose and death were not separated by length of participant opioid exposure due to an insufficient number of studies with participant exposure from 3- to 11-months. Therefore, studies were analysed in one group, and one meta-analysis was performed for all studies that examined overdose and one for all studies that examined death.

Overall, there were 13 studies that contained overdose outcome. For the current meta-analytic review, overdose was defined as: respiratory depression characterized by fatal or non-fatal overdose, both intentional and accidental.

The weighted event rate of overdose was 0.4%, with a SEM of 0.62, and a confidence interval of 0.1% to 1.2%. The lowest reported event rate across studies was 0% and the highest was 10%. The meta-analysis had a p-value of 0, and an I^2 value of 99.9. Due to the great amount of heterogeneity evidenced from the I^2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

Table 9. Overdose: R^2 and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=13):</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=13):</td>
<td>0</td>
<td>0.61</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Current or previous SUD (n=13):</td>
<td>0</td>
<td>0.98</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=13):</td>
<td>0</td>
<td>0.76</td>
</tr>
<tr>
<td>McHarm (n=13):</td>
<td>0</td>
<td>0.71</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Measurement bias (n=13):</td>
<td>0.01</td>
<td>0.37</td>
</tr>
<tr>
<td>Selection bias (n=7):</td>
<td>0.59</td>
<td>0.001</td>
</tr>
<tr>
<td>Attrition bias (n=7):</td>
<td>0</td>
<td>0.65</td>
</tr>
<tr>
<td>Confounding bias (n=7):</td>
<td>0.02</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Selection bias was the only statistically significant moderator variable for overdose.

Further regression analysis revealed that risk of selection bias had a predicted event rate of 0.06 and a p-value of 0.001, whereas studies that were not at risk of selection bias had a predicted event rate of 0.002 and a p-value of 0.001.
3.11 Death

Overall, there were 11 studies that contained death outcome. For the current meta-analytic review, overdose was defined as: cessation of life caused from a prescription opioid(s)40.

The weighted event rate of death was 0.4%, with a SEM of 0.74, and a confidence interval of 0.1% to 1.4%. The lowest reported event rate across studies was 0% and the highest was 8%. The meta-analysis had a p-value of 0, and an I2 value of 96.46. Due to the great amount of heterogeneity evidenced from the I2 value, subsequent meta-regression were conducted with specific moderator variables in an attempt to explain the heterogeneity.

Table 10. Death: R2 and p-value for each moderator variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>R2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design (n=11):</td>
<td>0</td>
<td>0.88</td>
</tr>
<tr>
<td>Current or previous mental health diagnosis (n=11):</td>
<td>0.03</td>
<td>0.28</td>
</tr>
<tr>
<td>Current or previous SUD (n=11):</td>
<td>0</td>
<td>0.49</td>
</tr>
<tr>
<td>Active versus Passive collection of SADEs (n=11):</td>
<td>0</td>
<td>0.44</td>
</tr>
<tr>
<td>McHarm (n=11):</td>
<td>0</td>
<td>0.96</td>
</tr>
<tr>
<td>Performance bias:</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>Bias Type</td>
<td>Value</td>
<td>p-value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Measurement bias (n=11)</td>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>Selection bias (n=6)</td>
<td>0.77</td>
<td>0.001</td>
</tr>
<tr>
<td>Attrition bias (n=6)</td>
<td>0.41</td>
<td>0.05</td>
</tr>
<tr>
<td>Confounding bias</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
</tbody>
</table>

Selection bias and attrition bias were statistically significant moderator variables for death. Further regression analysis revealed that risk of selection bias had a predicted event rate of 0.02 and a p-value of 0.001, whereas studies that were not at risk for selection bias had a predicted event rate of 0.001 and a p-value of 0.001. Risk of attrition bias had a predicted event rate of 0.001 and a p-value of 0.05, whereas studies that were not at risk of attrition bias had a predicted event rate of 0.02 and a p-value of 0.05.

3.12 Cohen’s Kappa Coefficient

Inter-rater agreement was high on the risk of bias assessments, with a Cohen’s kappa coefficient of 0.83. This signifies that there was high concordance of risk of bias decisions between the two reviewers. The Cohen’s kappa coefficient was calculated with all risk of bias assessments performed for all 90 included studies.

When disagreement arose between the two reviewers, reconciliation was achieved through discussion and the third reviewer did not have to be consulted for mediation.
3.13 Intraclass correlation coefficient

Inter-rater agreement was high on the McHarm, with an Intraclass correlation coefficient of 0.91. This signifies that there was high concordance of quality of reporting of SADEs between the two reviewers. The Intraclass correlation coefficient was calculated using all quality of reporting of SADEs performed for all 90 included studies.

When disagreement arose between the two reviewers, reconciliation was achieved through discussion and the third reviewer did not have to be consulted for mediation.
4 Discussion

The current meta-analytic review contained 3 hypotheses. Hypothesis 1: Overall, quality of reporting of selected adverse drug events (SADEs) will be low and risk of bias will be high in studies that investigate SADEs of long-term prescription opioids. Hypothesis 2: Studies with inferior quality of reporting of SADEs and/or risk of bias will yield higher event rates compared to studies with superior quality of reporting of SADEs and/or no risk of bias. Hypothesis 3: If moderator variables are found to explain variance of event rates between studies (statistically significant associations with moderator variable(s)), SADEs should be influenced accordingly.

Hypothesis 1 was confirmed, and in the opioid literature, the overall quality of reporting is low and the risk of bias is high among studies that examined selected adverse drug events (SADEs) (misuse, abuse, addiction, overdose, and death).

Overall, quality of reporting was low with a mean McHarm score of 57% across all 90 included studies. However, scores ranged widely from the highest McHarm score of 80% (12 out of 15), which was a RCT, to the lowest McHarm score of 28.6% (4 out of 14), which was a non-controlled observational study. Similarly, risk of bias was also problematic across the 90 studies. More specifically, 71.4% of RCTs were at risk for performance bias, 34.4% of studies (RCTs, CO, NCO) were at risk for measurement bias, 40.5% of RCTs and CO were at risk for selection bias, 8.1% of RCTs and CO were at risk for attrition bias, and 90% of CO were at risk for confounding bias. Confounding bias was most concerning with 90% of CO studies at risk for this bias, whereas attrition bias was least concerning with only 8.1% of studies at risk for this bias. However, this low percentage of studies at risk of attrition bias reflects the retrospective nature of a majority of studies, for which participant dropout/withdrawal is not relevant. Therefore,
these studies are considered not at risk for attrition bias and artificially decrease the risk for attritions bias.

Fifty-four \(^{52, 54, 57, 60, 61, 63, 65, 66, 69-74, 76, 78-81, 84, 85, 87-92, 95, 98, 101, 103, 105-107, 111, 114-121, 123-127, 129, 130, 135, 137}\) studies, which is 60\% of all included studies, used some form of retrospective methodology, and while retrospective studies are considered not at risk of attrition bias, participant attrition is not very relevant for these studies. In this literature (SADEs of prescription opioids) then, attrition bias is not as pertinent as other risks of bias, which should receive greater attention and consideration. However, the seven included RCTs employed prospective methodologies. Therefore, if RCTs become a more prominent study design attrition bias would become more relevant. But, as evidenced from the current meta-analytic review, RCTs are significantly lacking in the SADE literature of prescription opioids, and only comprised of 7.8\% (7 out of 90) of the sample of studies.

Hypothesis 2 was confirmed and studies with inferior (lower) quality of reporting of SADEs purported higher event rates of SADEs compared to studies with superior quality of reporting, which purported lower event rates. However, hypothesis 2 was partially confirmed for risk of bias and three forms of risk of bias (performance bias, selection bias and confounding bias) had higher event rates compared to studies that were not at risk for these biases.

For all SADEs (misuse, abuse, addiction, overdose, and death), across the 90 included studies, quality of reporting of SADEs was inversely related (-0.003) to event rates. This means that studies with superior quality of reporting of SADEs purported lower event rates, compared to studies with inferior quality of reporting, which purported higher event rates. However, this finding was not statistically significant (p-value of 0.99) and a coefficient of -0.003 represents a
weak correlation. Perhaps specific components/questions from the McHarm would be more strongly correlated with the event rates of SADEs, and in turn, may have more predictive value than the entire instrument.

Studies that were at risk for either, or all of performance bias, selection bias, and/or confounding bias purported higher event rates for all SADEs compared to studies that were not at risk for these biases. However, studies at risk for the remaining two forms of bias, which included: measurement bias and attrition bias purported lower event rates for all SADEs compared to studies that were not at risk for these biases. This finding demonstrates that risk of bias should not be thought of as one outcome measure, but that specific kinds of bias influence reported event rates differently.

Risk of attrition bias was the only risk of bias that had a statistically significant p-value of 0.004, and the largest difference between reported coefficients (studies at risk of attrition bias had a predicted event rate of 0.02, whereas studies that were not at risk of attrition bias had a predicted event rate of 0.29). This finding contradicts the earlier thought of attrition bias not being as relevant as other forms of bias in the SADE literature of opioids. However, this finding suggests that among studies where attrition bias is relevant (i.e. studies that are at risk of attrition bias), this form of bias is an important factor in reported event rates of SADEs.

While it may not seem especially concerning that studies at risk of performance bias, selection bias, and confounding bias overestimate/inflate event rates of SADEs as this would cause practitioners to be vigilant of these SADEs; overestimation has grievous consequences. In practitioners being especially cognizant of an overestimated SADE other ADEs may go unnoticed. Additionally, healthcare resources would be overused and potentially wasted when
these resources could have been allocated more effectively. Finally, overestimation of SADEs may cause patients to refuse otherwise effective medications. Therefore, it is of the utmost importance for the event rates of these SADEs to be accurately represented.

Hypothesis 3 was partially confirmed when moderator variables were found to be statistically significant/explain the variance in reported event rates of SADE outcomes.

Quality of reporting was only statistically significant for addiction only in participants with shorter opioid exposure, and had a correlation coefficient of 0.52 and a p-value of 0.05. This means that reported event rates of addiction were positively correlated with quality of reporting of SADEs in participants with shorter opioid exposure; indicating that studies with superior quality of reporting of SADEs purported higher event rates of addiction, whereas studies with inferior quality of reporting of SADEs purported lower event rates of addiction. This finding, while in contrast with the overall reported coefficient for the McHarm (-0.003), comprises of a larger/stronger coefficient and is statistically significant.

The more robust methodologies (i.e. DSM-V, or ICD-9-CM) used in studies that examine addiction may explain the positive relationship quality of reporting of SADEs has with addiction. Misuse and abuse were defined more diversely compared to addiction, and both contained the most studies, 41 and 28, respectively. Therefore, both misuse and abuse influenced the overall inverse correlation (-0.003) with quality of reporting of SADEs significantly more than addiction, which contained the least number of studies (n=9).

Overall, risk of bias explained more of the variance in reported SADE event rates than quality of reporting of SADEs. Selection bias was found to explain the most variance, with 3 statistically significant outcomes, and measurement bias and confounding bias followed with 2
statistically significant outcomes each. Selection bias was statistically significant for misuse in participants with shorter opioid exposure, and overdose and death. For all three of these outcomes, risk of selection bias resulted in a higher predicted event rate than studies that were not at risk. This indicates that risk of selection bias results in higher reported event rates across these outcomes (misuse, overdose and death) compared to studies not at risk.

Measurement bias was statistically significant and accounted for variance in misuse in participants with longer opioid exposure and abuse in participants with shorter opioid exposure. Findings for measurement bias varied, and for misuse, risk of measurement bias had a lower predicted event rate (0.06) compared to studies not at risk (0.24). Conversely, for abuse, studies that were at risk of measurement bias contained a higher predicted event rate (0.35) compared to studies not at risk (0.14). This suggests that due to the diverse ways in which misuse and abuse were measured (both contained the most diversity in the ways in which they were operationalized across studies), the way in which measurement bias influences event rates may be contingent on what SADE is being examined and how.

Confounding bias was statistically significant for misuse and abuse in participants with longer opioid exposure. It was the only risk of bias that was exclusively statistically significant for SADEs with longer participant opioid exposure. Intuitively, this make sense as the longer a patient is prescribed opioids, there are more potential confounders that can occur in the patient’s life (i.e. change in lifestyle, or a patient’s health may be an underlying cause for an SADE instead of the prescribed opioids). Therefore, while confounding bias was found to be the most concerning bias across all included studies, with 90% of studies at risk, controlling for confounding may not be as pertinent in studies that examine SADE outcomes in participants with shorter exposure to opioids.
The ways in which SADEs were collected and measured explained the most variance across SADE outcomes. More specifically, active versus passive collection of SADEs was significant for both misuse with shorter and longer participant opioid exposure and for addiction with shorter participant opioid exposure. For all three of these significant outcomes, passive collection of SADEs had a lower predicted event rate compared to active collection of SADEs, which indicates that active collection of SADEs results in higher reported event rates for misuse and addiction, whereas passive collection of SADEs results in lower reported event rates.

As previously discussed, measurement bias was statistically significant and accounted for variance in misuse with longer participant opioid exposure and abuse in participants with shorter opioid exposure. Collectively, the way in which SADEs are measured and collected are directly related. For instance, if a study employs a passive approach to the collection of ADEs, where participants report ADEs experienced in a spontaneous manner, then the way in which the ADE outcome is measured is not well-defined and there would be potential for risk of measurement bias. Conversely, studies that employ an active approach to the collection of ADEs also employ more rigidly defined measures of ADE outcomes and the potential for risk of measurement bias is significantly reduced. Therefore, results from the current meta-analytic review suggest that how SADEs are collected and measured/defined collectively explain a large portion of the variance in event rates of SADEs.

Active versus passive collection of SADEs also explained more variance in reported SADE event rates (statistically significant moderator variable for 3 SADE outcomes) than the entire McHarm score (quality of reporting of SADEs), which was only a statistically significant moderator variable for one SADE outcome. Therefore, it may be more worthwhile to focus on
the ways in which SADEs are collected; one aspect of quality of reporting of SADEs, instead of utilizing a comprehensive assessment of quality of reporting.

Length of opioid exposure was statistically significant for abuse and death, with a correlation coefficient of 0.28 and p-value of 0.05, and 0.24 and 0.04, respectively. These coefficients signify that studies with shorter length of participant opioid exposure resulted in lower event rates for abuse and death, and vice versa. Intuitively, this makes sense as both abuse, and especially death, often take time to transpire. Furthermore, it is believed that if a greater number of studies were included for addiction and overdose, length of participant opioid exposure would too be statistically significant. Finally, length of opioid exposure was least correlated with misuse (correlation coefficient of 0.01 and a p-value of 0.8), which is considered the least severe of the 5 SADE outcomes examined (misuse, abuse, addiction, overdose, and death); in fact, misuse was the only SADE outcome that had a higher event rate for participants with longer opioid exposure (24.4%), compared to participants with shorter opioid exposure (11.4%).

Findings from the current meta-analytic review on previous or current mental health disorders and/or substance use disorder contradict purported findings from extant literature. More specifically, previous studies have purported that patient’s with a current or previous mental health disorder(s) and/or substance use disorder are at an increased risk of ADEs. Therefore, it should be expected that the current meta-analytic review would replicate these findings and report that the moderator variables: current or previous mental health disorder(s) and/or substance use disorder were statistically significant and resulted in higher reported SADE event rates. However, participant mental health and substance use did not explain variance for any of the SADE outcomes examined. Unfortunately, a clear majority of studies specified
whether participants included in the study could have potentially had a mental health disorder or substance use disorder. However, these studies did not discuss whether the entire sample had been diagnosed in the past, or currently have a mental health disorder and/or substance use disorder, nor do studies specify the number of participants. Therefore, if this information was made available and/or current or previous mental health disorder(s) and substance use disorder were reported in a more transparent manner, then it is expected that findings from the current review would support extant literature.

These problems with reporting are important to consider when reflecting on the purported event rates in the current meta-analytic review. While the event rates for all five of the SADE outcomes (misuse, abuse, addiction, overdose, and death) are consistent with extant literature, these event rates should be interpreted cautiously. Further studies are needed to replicate findings to lend more support to these findings. Additionally, the studies included in this review contained low overall quality of reporting (comparable quality of reporting assessments for therapeutic benefit studies range from 65% to 90%, with most in-between the 70%-80% range) and high risk of bias (for risk of bias, 50% and above is considered high). The large amount of heterogeneity between these studies also demonstrates that an overall event rate for any of the SADE outcomes is not a representative measure, and instead, it is important to understand the cause behind this large amount of heterogeneity to gain insight on why the event rates of these SADEs vary significantly. Finally, the number of studies included in this review, in specific, for addiction, overdose and death were limited and a greater number of studies must be available to yield robust findings.

Despite problems with transparency and reporting, there has been an overwhelming increase in the number of ADE studies published, and Aronson, Derry and Loke (2002) noted
that there are roughly 3000 new studies each year. The authors further explicate that most of the primary studies published are in the form of anecdotal reports (30%) and informal studies (i.e. case reports) (30%). RCTs are significantly lacking in the ADE literature and Aronson et al. encourage prospective studies to utilize RCT methodologies. However, they explain it is important that RCTs that examine ADEs recruit large sample sizes and are conducted for longer periods of time to produce robust findings. Indeed, the literature included in the current meta-analytic review often contained large sample sizes, with a mean sample size of 27,418, and it is well-documented in extant literature that ADEs require longer periods of time to transpire.

Studies are also encouraged to examine opioid-related ADEs globally. Of the 90 studies included in the current-meta-analytic review, 74 were published in America, and 78 were conducted in North America. While the “opioid crisis” is most prevalent in America, studies published more broadly may shed light on novel approaches to alleviate ADEs experienced from patients. Additionally, the prevalence of opioid-related problems in America may reflect bias in the literature of studies being more frequently conducted and published in America. Researchers are also encouraged to explore whether systematic differences are exhibited in studies that have been conducted outside of America, specifically differences on the way in which ADE outcome measures are being operationalized and the collection of ADEs, both of which were found to be statistically significant and influence event rates for numerous ADE outcomes in the current meta-analytic review.

The poor quality of reporting of SADEs evidenced in the current meta-analytic review is consistent with extant literature. While specific studies have not been conducted on opioids, Edwards et al. (1999) assessed the quality of reporting of ADEs in the pain context. These researchers examined 52 RCTs that were double-blind clinical trials of single–dose
acetaminophen or ibuprofen compared with placebo in moderate-to-severe postoperative pain. They noted that many trials reported incomplete findings of ADEs and that different methods of assessing ADEs resulted in different reported event rates. For instance, patient diaries yielded significantly more ADEs compared to other ADE collection. The inconsistency in findings and the lack of methodological rigor employed by these studies lead Edwards et al. to conclude that much improvement and higher quality of reporting is necessary in the pain literature.

Kane-Gill et al. (2015) examined quality of reporting of ADEs more broadly and whether improvements of quality had been made over time. The authors searched MEDLINE, including dates from March 2013 to March 2014 and limited inclusion to studies that contained human participants and were published in English. One hundred studies were included in the review. Kane-Gill et al. noted that when they had compared their results with reviews previously published two decades earlier quality of reporting of both ADEs had improved over time. However, they noted that more improvement was required to ensure data are understandable and relatable to patient care – an objective the authors believe is strongly related to the how ADEs are collected and reported. In a separate analysis of the same study, Kane-Gill et al. examined quality of reporting of active diseases, social history, weight, race, other drugs and dose in the same 100 studies. They noted improvement in the overall quality of reporting of these variables, however, they explain that further improvement can be made regarding the frequencies in which they are reported, which ranged from 25% to 80%.

This finding is consistent with data retrieved from the current meta-analytic review. Data on participant race/ethnicity was only available in 39 studies. Similarly, data on age was only available in 69 studies, and 21 did not contain mean age of participants and 32 did not report the
age range of participants. Fourteen studies did not include information on participant gender, and only 43 studies contained a conflict of interest statement.

The high risk of bias reported in the current meta-analytic review is consistent with previous ADE literature. Bilandzic et al. (2016) conducted a systematic review on the risk of bias of non-randomized studies of adverse cardiovascular effects of thiazolidinedione (TZD) and cycloxygenase-2 (COX-2) inhibitors. They examined two systematic reviews of population-based, controlled non-randomized studies of the relationship between the use of TZDs and COX-2 inhibitors and major cardiovascular events. Two epidemiologists applied the Cochrane Risk of Bias Tool and made assessments. Bilandzic et al. purported 2 studies had low overall risk of bias, 14 had moderate risk of bias, and 5 had serious risk of bias. Similar to the current meta-analytic review, confounding bias was most problematic/prevalent and was found to be either moderate or severe in 76.2% of studies.

Importantly, while measurement bias was one of the less problematic biases in both Bilandzic et al. (2016) systematic review (14.3%) and the current meta-analytic review (34.4%), the great amount of variability in how ADE outcomes were defined and measured, especially the five (misuse, abuse, addiction, overdose, and death) included in the current meta-analytic review is a problem.

Perhaps RCTs may provide a solution to this problem. RCTs employ more definitive and standardized approaches when defining ADE outcomes. Additionally all 7 RCTs in the current meta-analytic review employed a standardized questionnaire when assessing a SADE outcome, providing further consistency.
The current meta-analytic review is one of the most comprehensive meta-analysis on the ADEs of prescription opioids. Previous systematic reviews and meta-analyses have focused on fewer ADE outcomes, specifically only abuse and addiction. Additionally, all have limited study inclusion to studies that contain higher quality of reporting and lower risk of bias; completely excluding poorly conducted studies. The current-meta-analytic review is exhaustive and used a comprehensive search strategy to ensure results and conclusions were robust and provide a representative narrative on the SADEs (misuse, abuse, addiction, overdose, and death) literature of prescription opioids. This is further reflected in the sample of studies included: 90, which is significantly higher than previous systematic reviews and meta-analyses which normally only include 10-50. Additionally, major databases were exhaustively searched, which included: MEDLINE, EMBASE, CINHAL, PsycINFO, CENTRAL, and Business Source Premier. The search strategy was developed and executed from a librarian at the Institute for Work & Health that has extensive experience with systematic reviews and meta-analyses.

Another strength of the current meta-analytic review is that it solely focused on SADEs of prescription opioids, and therefore, the methodology employed was strictly applicable to ADE outcomes. A majority of previous ADE reviews, especially ones focused on opioids, report on both the benefits and the ADEs of prescription opioids and this conflates specific methodologies that are meant for only ADEs or benefits. Consequently, these reviews are at risk of reporting inaccurate findings, or using less ideal methodologies and tools/instruments (i.e. McHarm can only be used to examine ADEs and adverse drug reactions (ADRs)). Additionally, the current meta-analytic review employed a risk of bias tool that is comprehensive and assesses five major risks of bias, including: performance bias, measurement bias, selection bias, attrition bias, and confounding bias. The risk of bias tool has also been published as a Cochrane methodology –
Cochrane is a key resource and world leader in risk of bias of ADEs. Finally, the current meta-analytic review examined important moderator variables that may influence the event rates of misuse, abuse, addiction, overdose, and/or death and may help inform clinical practice, specifically which patients are at increased risk for specific SADEs.

This review also contained a number of limitations. Only studies published in English were included and therefore relevant studies published in other languages may have been excluded. Moreover, for three outcomes: addiction, overdose and death there were a limited number of studies, which weakened the results and conclusions from these outcomes. Additionally, the limited number of studies required each moderator variable to be analysed separately (need 5 studies per moderator variable), which resulted in numerous regressions, increasing the chance of a type 1 error (false positive – incorrect rejection of the null hypothesis) occurring. There were also a very limited amount of RCTs included - only 7 RCTs satisfied inclusion criteria and were ultimately included in the meta-analysis and subsequent meta-regressions. In addition, while there were concrete definitions used for SADE outcomes, consistency in how outcomes were defined study to study were poor. Therefore, some studies that may contain pertinent information may have been excluded; this was especially pertinent for studies that included overdose as an outcome. More specifically, some studies did not expand on whether overdose events were fatal or non-fatal, and if this information was made available then overdoses that were fatal would have also been classified as a death outcome. Therefore, the number of studies that examine death may be underrepresented.

The way in which event rates were reported was another limitation. For numerous studies, only a percentage was reported as the event rate for an SADE outcome and the number of participants that experienced the SADE outcome was not available. In this case, estimation
was used to determine the number of participants that most closely approximated the percentage recorded in the study. Similarly, the moderator variables: current or previous mental health disorder and/or substance use disorder were not clearly defined in numerous studies. A clear majority of studies specified whether participants included in the study could have potentially had a mental health disorder or substance use disorder. However, these studies do not discuss whether the entire sample has been diagnosed in the past, or currently have a mental health disorder and/or substance use disorder, nor do studies specify the number of participants. Therefore, these moderator variables could have been confounded due to inaccurate data from studies. Additionally, only information from studies was used and no contact was made with authors from the studies. This was done to ensure that reported findings reflect what any layperson would retrieve from only the literature. However, if authors from the studies were contact then more accurate information may have been provided.

Notwithstanding these limitations, the findings from the current meta-analytic review provide a comprehensive assessment of the literature on the SADEs of prescription opioids, which was previously lacking. The review also elucidated the event rates of misuse, abuse, addiction, overdose, and death, which can help inform patients and healthcare providers of the risks of these SADEs. Recommendations can also be provided to improve the poor quality of reporting and high risk of bias in this literature. More specifically, RCTs that are of longer length with larger sample sizes should be executed to produce robust and valid findings. Results from the current meta-analytic review can also help inform clinical practice. Length of participant opioid exposure was an important factor that explained variance in reported event rates of abuse and death. Practitioners and clinicians should be cognizant of the length that a patient is prescribed an opioid and remain highly alert for signs of abuse, or potential risks for death the
longer a patient is prescribed an opioid. Although not statistically significant, length of patient opioid exposure should also be considered for addiction and overdose as extant literature has demonstrated that patients on opioids for longer are more likely to experience these ADEs. It is believed that these findings would have been replicated in the current meta-analytic review if more studies were available for these outcomes.

Prospective studies are encouraged to produce standardized definitions of ADE outcomes to provide consistency across the literature. It is difficult to draw strong general conclusions when ADE outcomes are defined and measured with an overwhelming amount of diversity. One way to improve consistency across studies is to use more precise and/or standardized language, which would allow for more generalized findings.

Perhaps, most importantly, conduct more studies. Literature on the ADEs of prescription opioids, especially addiction, overdose and death is significantly lacking and well-conducted studies with high quality of reporting and low risk of bias will help further advance our knowledge on prescription opioids and their ADEs, knowledge that can be used to inform clinical practice and improve patient care.
5 Conclusion

Overall, there has been an increase in the number of studies published on the adverse drug events (ADEs) of prescription opioids. However, further studies are required, especially studies with better quality of reporting and lower risk of bias in order to produce robust and accurate findings. In addition, studies were significantly lacking for three selected adverse drug event (SADE) outcomes, which included: addiction, overdose, and death, and more literature should focus on these serious, life-threatening ADEs of prescription opioids.

Rather than quality of reporting of SADEs as a whole, the specific assessment of active versus passive collection of SADEs from the McHarm explained variance across numerous SADE outcomes. Conversely, risk of bias explained more variance between studies, and each of the five risk of biases (performance bias, selection bias, measurement bias, attrition bias, and confounding bias) were statistically significant for at least one SADE outcome. However, the way in which risk of bias influenced the event rates of the SADE outcomes varied. Therefore, risk of bias should not be thought of as one outcome measure, but specific kinds of bias should be thought of independently.

Selection bias accounted for the most variance across SADE outcomes, with three statistically significant findings. However, measurement bias and confounding bias were not far behind with two statistically significant findings each. Length of participant opioid exposure was also statistically significant and explained variance in reported event rates of abuse and death. However, if more studies were available for addiction and overdose, both of which are serious ADEs, it is expected that length of participant opioid exposure would have also been statistically significant and account for the variance in reported event rates of addiction and overdose between studies.
6 Future Directions

The current meta-analytic review has explicated the event rates of five SADEs (misuse, abuse, addiction, overdose, and death) and provides a benchmark of the overall quality of reporting and risk of bias in this literature; both of which were previously unexplored. However, subsequent meta-analyses and systematic reviews are needed to replicate findings and support discoveries from this meta-analytic review. Besides the need for replication, primary studies on the SADEs of prescription opioids must comprise of better quality of reporting and lower risk of bias. Primary studies should also aspire to include larger sample sizes (~500 patients or greater) and examine SADEs for longer periods of time; ideally, 12- months or longer due to the five SADEs, and ADEs in general often requiring longer to transpire.

Prospective studies are encouraged to utilize tools such as PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to ameliorate quality of reporting and lower risk of bias. PRISMA consists of a 27-item checklist and four-phase flow diagram that is focused on promoting transparent and consistent reporting in systematic reviews and meta-analyses146. Similarly, primary ADE studies should use comparable tools, such as CONsolidated Standards of Reporting Trials (CONSORT)147 for randomized controlled trials (RCTs) and Strengthening the reporting of observational studies in epidemiology (STROBE)148 for observational studies. In doing so, prospective systematic reviews and meta-analyses will yield robust and meaningful findings.

An overwhelming majority of studies (74 out of 90 or 82.2%) from the current meta-analytic review were conducted in America. This is concerning as Canada has some of the highest rates of prescription-opioid consumption, and from 2006 to 2011, use of opioids in Canada rose by 32 percent149. Prospective studies should consider more diverse countries besides
America as both healthcare and patients drastically vary on a global scale. Looking towards the future, it would be worthwhile to compare the event rates of opioid ADEs globally, which could perhaps provide valuable insight into why opioid consumption and ADEs are particularly salient in North America.

Subsequent research should focus on the enormous amount of heterogeneity of SADE event rates that was reported in this meta-analytic review. It is important to understand this heterogeneity and explore its’ relationship with the included SADEs involved in prescription opioids. Findings may have potential implications for future research and clinical applications. Furthermore, the large amount of heterogeneity indicates that an overall event rate for any SADE would not be representative and/or meaningful as it would not be applicable to a vast majority of patients.

The moderator variables in the current meta-analytic could also be analyzed further. The current review examined the influence moderator variables had on event rates/occurrence of SADEs. However, these moderator variables may have an impact on the severity of the SADEs and/or the rate at which patients recover from them; both of which have important implications for healthcare. After clinicians have a more refined understanding of how these specific moderator variables influence ADEs, it would be worthwhile to develop a risk tool focused around these moderator variables. A comprehensive risk tool would allow clinicians to assess risk for specific ADEs on a patient by patient basis and for specific subsets of the patient population.

The way in which both the therapeutic benefits and ADEs of opioids are examined in studies is antiquated. The majority of opioid studies examine opioids in isolation to observe the
‘true effect’ an opioid medication has on chronic pain. However, current treatments in medicine are holistic and contain diverse treatment modalities150. For instance, opioids are normally used in combination with physiotherapy and/or massage therapy to treat chronic pain conditions. It is important to understand how these diverse treatments interact with one another and what their collective effect is on both therapeutic benefits and ADEs in chronic pain patients. Future studies are encouraged to examine the possible synergistic effect of these various treatment modalities.

In summary, the current meta-analytic review provides a benchmark of the current state of the SADE opioid literature and it has emphasized the need for improved quality of reporting and lower risk of bias in this literature. However, it is crucial that subsequent studies expand on these results in order to better understand opioid ADEs and ADEs in general. The onus is on future primary ADE studies to improve quality of reporting and lower risk of bias to allow for more meaningful findings that can inform healthcare and improve patient outcomes.
References

38. Bilandzic A, Fitzpatrick T, Rosella L, et al. Risk of Bias in Systematic Reviews of Non-Randomized Studies of Adverse Cardiovascular Effects of Thiazolidinediones and

Appendix A - Risk of Bias Table

RCT

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Bias</td>
<td>1. Was the method of randomization adequate?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Was the treatment allocation concealed?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3. Were the groups similar at baseline regarding the most important prognostic indicators?</td>
<td>1</td>
</tr>
<tr>
<td>Performance Bias</td>
<td>4. Was knowledge of the allocated interventions adequately prevented during the study from each of the following groups:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Care provider</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Outcome assessor</td>
<td>-</td>
</tr>
<tr>
<td>Measurement Bias</td>
<td>5. Were outcomes measured using valid and reliable methods/ instruments?</td>
<td>3</td>
</tr>
<tr>
<td>Attrition Bias</td>
<td>6. Was the timing of the outcome assessment similar in all groups?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7. Which of the following best characterizes loss to follow up?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>complete follow up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>small loss (less than or equal to 30%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>large loss to follow up (greater than 30%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Are the numbers of dropouts similar in both groups?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Are the characteristics of dropouts similar in both groups?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Were all randomized participants analyzed in the group to which they were allocated?</td>
<td>1</td>
</tr>
</tbody>
</table>
Confounding Bias

<table>
<thead>
<tr>
<th>Criteria met</th>
<th>Criteria Not met</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Observational Controlled

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Bias</td>
<td>1. Were the subjects asked to participate in the study representative of the entire population from which they were recruited?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2. Were the patients in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over the same period of time?</td>
<td>1</td>
</tr>
<tr>
<td>Measurement Bias</td>
<td>3. Was an attempt made to blind those measuring the main outcomes of the intervention?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4. Were the main outcome measures used accurate (valid and reliable)?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5. Was the measure of assessment of exposure is reliable?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6. Was the timing of the outcome assessment similar in all groups?</td>
<td>1</td>
</tr>
<tr>
<td>Attrition Bias</td>
<td>7. Which of the following best characterizes loss to follow up:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>complete follow up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>small loss (less than or equal to 30%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>large loss to follow up (greater than 30%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No description</td>
<td></td>
</tr>
<tr>
<td>Confounding Bias</td>
<td>Question</td>
<td>Score</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Are the numbers of dropouts similar in both groups?</td>
<td>n/a*</td>
</tr>
<tr>
<td></td>
<td>Are the characteristics of dropouts similar in both groups?</td>
<td>n/a*</td>
</tr>
<tr>
<td></td>
<td>8. Were main potential confounders measured using valid and reliable methods/instruments?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9. Were baseline characteristics comparable between groups? If unbalanced, were differences appropriately controlled in the analysis?</td>
<td>3</td>
</tr>
</tbody>
</table>

Observational Non-Controlled

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Bias</td>
<td>1. Were the main outcome measures used accurate (valid and reliable)?</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix B – Risk of Bias Flow Chart

Judging ROB criteria

Example:

Q1 (Very important question)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
</table>

Q2 (More important question)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
</table>

Q3 (Important question)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
</table>

Criteria Met

Criteria not met

Unclear if criteria met due to insufficient information

Judgement can be made by the reviewer
Appendix C – Search Terms and Strategy

Search terms:

1 chronic disease

2 injury

3 traumatic amputation

4 exp arm injury

5 sport injury

6 back pain.mp.

7 exp Low Back Pain

8 exp Backache

9 burn

10 contusion

11 dislocation

12 dorsalgia

13 electric injury

14 face pain

15 exp fracture
cartilage fracture

exp hand injury

headache

"headache and facial pain"

exp hip injury

exp ischialgia

laceration

exp leg injury

exp leg pain

limb pain

(lumbar adj pain).mp.

metatarsalgia

exp migraine

multiple trauma

myalgia

exp neck injury

neck pain
nociceptive pain

exp occupational accident

exp rupture

shoulder pain

soft tissue injury

exp spinal cord injury

spine injury

exp tendon injury

exp nervous system injury

traffic accident

musculoskeletal pain

coccyx.mp.

coccydynia.mp.

sciatica.mp.

spondylosis.mp.

lumbago.mp.

back disorder$.ti,ab.
or/1-49

chronic pain

chronic pain.ti,ab.

or/51-52

50 and 53

pain

arthralgia

arthritis

exp osteoarthritis

chronic arthritis

rheumatoid arthritis

breakthrough pain

chronic pain

chronic daily headache

chronic tension headache

chronic cluster headache

new daily persistent headache
drug induced headache

neuropathy

mononeuropathy

peripheral neuropathy

neuritis

polyneuropathy

exp radiculopathy

exp neuralgia

non-cancer pain?.ti,ab.

noncancer pain?.ti,ab.

non-malignant pain?.ti,ab.

nonmalignant pain?.ti,ab.

pelvis pain syndrome

intractable pain

referred pain

persistent pain?.ti,ab.

refractory pain?.ti,ab.
narcotic analgesic agent
buprenorphine
codeine
fentanyl
hydrocodone
hydromorphone
levorphanol
pethidine
methadone
morphine
morphine sulfate
(narcotic? or opiate?).ti,ab.
oxycodone
ibuprofen plus oxycodone
oxycodone plus paracetamol
oxymorphone
oxyneo.ti,ab.
pentazocine
paracetamol plus pentazocine
dextropropoxyphene
dextropropoxyphene napsilate
dextropropoxyphene plus paracetamol
dextropropoxyphene plus paracetamol
tramadol
paracetamol plus tramadol
butorphanol
tapentadol
or/86-114
(abilit$ adj3 work$).ti,ab.
absenteeism
daily life activity
exp affect
emotional disorder
walking
daily life activity
walking
difficulty
physical mobility
anxiety
car driving
driving ability
ADL disability
daily task?
disability
major depression
mood disorder
disability
disability benefit?
disability claim?.ti,ab.
disability duration.ti,ab.
disabled person
insurance
disability leave.ti,ab.
disability management.ti,ab.
disability payment?.ti,ab.
disability pension?.ti,ab.
disability prevention.ti,ab.
domestic activity$.ti,ab.
domestic skill?.ti,ab.
domestic task?.ti,ab.
productivity
exp emotion
exp employability
employee performance.ti,ab.
employment
employment status

frustration

functional ability

functional assessment

functional evaluation

functional disease

functional limitation

functional outcome

functional status

happiness

health

adolescent health

"men's health"

sexual health

"women’s health"

health behavior

"attitude to health"
illness behavior

patient attitude

(health adj3 perception?).ti,ab.

health status

exp "quality of life"

human activities

(job adj2 (loss or lost)).ti,ab.

job participation.ti,ab.

job performance

labo?r force participation.ti,ab.

labo?r market reentry.ti,ab.

labo?r market re-entry.ti,ab.

leisure

life satisfaction

lifestyle

long-term disabilit$.ti,ab.

longterm disabilit$.ti,ab.
((loss or lost) adj2 time).ti,ab.

((loss or lost) adj2 work$).ti,ab.

(maintenance adj2 work).ti,ab.

medical leave

exp mental health

occupational disabilit$.ti,ab.

occupational function$.ti,ab.

occupational integration.ti,ab.

patient reported outcome?.ti,ab.

personal activit$.ti,ab.

personal care.ti,ab.

personal impairment.ti,ab.

personal limitation?.ti,ab.

personal management.ti,ab.

satisfaction

personal task?.ti,ab.

exp motor activity
exercise
fitness
physical activity
physical capacity
physical function
physical well-being
pleasure
presenteeism
productivity
distress syndrome
psychological well being
convalescence
reemployment
re-employment
(return adj2 employment)
(return adj3 work)
role function
role participation
RTW
exp self care
self-rated health
sexual behavior
sexual dysfunction
sexual satisfaction
short-term disability
short-term disability
sick list
health insurance
national health insurance
private health insurance
public health insurance
exp sleep
exp sleep disorder
human relation
family relation
social behavior
social life
social network
family life
intimacy
job adaptation
recreation
social participation
social interaction
(stay$ adj3 work$).ti,ab.
mental stress
task performance
underactivity.ti,ab.
under activity.ti,ab.
unemployment
vitality.ti,ab.
wellbeing

work

work capacity

work disability

work function$.ti,ab.

work impairment?.ti,ab.

work incapacity.ti,ab.

work limitation?.ti,ab.

work outcome?.ti,ab.

work participation.ti,ab.

job performance

(work adj2 re-entry).ti,ab.

(work adj2 reentry).ti,ab.

work readiness.ti,ab.

work$ reintegration?.ti,ab.

work$ re-integration?.ti,ab.

work resumption?
work status.

workman compensation

exp suicide

accident

occupational accident

traffic accident

sick day?.

job satisfaction

exp school

exp education

extracurricular activities.

family involvement.

relationship?

marriage

divorce

memory

relocation.
panic
social isolation
kinesiophobia ti,ab.
immobilization
catastrophizing
or/116-292
death
accidental death
respiration depression
brain death
sudden death
drowning
excess dose?.ti,ab.
fatality
drug fatality
mortality
non-fatal$.ti,ab.
intoxication

drug intoxication

drug overdose

morphine addiction

premature mortality

hospitalization

intensive care

emergency

emergency care

emergency care

emergency treatment

emergency health service

suicide

central nervous system depression

respiratory failure

or/294-318

(aberrant adj3 behavio?r).ti,ab.

behavior disorder
(abuse? and opioid$).mp.

abuse liability.ti,ab.

addiction

analgesic agent abuse

crime

violence

diversion?.mp.

doctor shopping.ti,ab.

drug abuse

drug abuse pattern

drug dependence

drug misuse

drug seeking behavior

"excessive use".ti,ab.

"hazardous use?".mp.

"heavy use?".mp.

"illegal use?".mp.
illicit use?".mp.
intoxication?.mp.
drug control
"non-prescription use?".mp.
opiate addiction
"problem use".ti,ab.
psychoactive effect?.mp.
harm reduction
high risk behavior
risk reduction
street drug
withdrawal syndrome
drug withdrawal
intravenous drug abuse
substance abuse
snort$.mp.
crush$.mp.
356 skin pop$.mp.
357 rectal stuffing.mp.
358 vaginal stuffing.mp.
359 body stuffing.mp.
360 drug dependence treatment
361 methadone treatment
362 mood swing?.mp.
363 opiate substitution treatment
364 cocaine
365 diamorphine
366 social stigma
367 (manipulat$ adj3 behavio?r).mp.
368 or/320-367
369 falling
370 accident
371 body equilibrium
372 bone demineralization
bone density
osteolysis
bone mass
bone strength
exp bone
home accident
exp fracture
injury
cartilage fracture
occupational accident
exp metabolic bone disease
osteoporosis
postural instability.mp.
postural stability.mp.
slip$.mp.
stumble$.mp.
trip$.mp.
390 tumbl$.mp.
391 emergency
392 emergency care
393 exp emergency treatment
394 emergency health service
395 hospitalization
396 hospital admission
397 or/369-396
398 293 or 319 or 368 or 397
399 85 and 115 and 398
400 exp anesthesia
401 exp labor
402 labor pain
403 exp delivery pain
404 child birth
405 "immature and premature labor"
406 premature labor
pediatrics

pediatric rehabilitation

pediatric advanced life support

pediatric hospital

exp pediatric surgery

Parkinson disease

parkinsonism

exp fertility

exp palliative therapy

terminal care

newborn

newborn intensive care

perioperative period

kidney disease

kidney arteriovenous fistula

kidney colic

kidney collecting tubule
kidney dysfunction

or/00-424

399 not 425

animals/ or nonhuman

human

427 not 428

426 not 429

embryo/ or infant/ or child/ or preschool child/ or school child

adolescent/ or adult/ or aged

431 not 432

430 not 433

embryo/ or infant/ or child/ or preschool child/ or school child

adolescent/ or adult/ or aged

435 not 436

434 not 437

439 limit 438 to (book or book series or conference abstract or conference paper or "conference review" or editorial or erratum or letter or note or conference proceeding or report or short survey or trade journal)
440 438 not 439