Correction to “Relative Observability of Discrete-Event Systems and Its Supremal Sublanguages”

Kai Cai, Renyuan Zhang, and W. M. Wonham

Version Post-Print/Accepted Manuscript

Publisher's Statement © © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Correction to “Relative Observability of Discrete-Event Systems and Its Supremal Sublanguages”

Kai Cai, Renyuan Zhang, and W.M. Wonham

An error was found in the program that was originally used to compute the results of [1], Sec. V. Examples. Specifically, the generator displayed in Fig. 12, and multiple entries (4th, 7th row and 4th column) of Table 1 of [1] were incorrect. We present corrected results in the following.

Control of a Guideway under partial observation

Consider the same Guideway example as presented in Sec. V.A of [1], except that we choose the unobservable events to be 13 and 23. Applying the Algorithm 3 in [1], we obtain the generator displayed in Fig. 1. The resulting controlled behavior is verified to be relatively observable and controllable; moreover, it is strictly larger than the supremal normal and controllable sublanguage represented by the generator displayed in Fig. 2. The reason is as follows (refer to Fig. 11 in [1]). After string 11.13.10, \(V_1 \) is at state 3 and \(V_2 \) at 0. With relative observability, either \(V_1 \) executes event 15 (moving to state 4) or \(V_2 \) executes 21 (moving to state 1); in the latter case, the supervisor disables event 23 after execution of 21 to ensure mutual exclusion at (3, 3) because event 20 is uncontrollable. With normality, however, event 23 cannot be disabled because it is unobservable; thus 21 is disabled after string 11.13.10, and the only possibility is that \(V_1 \) executes 15.

Control of an AGV System under partial observation

Consider the same AGV example as presented in Sec. V.B of [1]. We select different subsets of controllable events to be unobservable, and apply the Algorithm 3 in [1] to compute the corresponding supervisors whose controlled behaviors are relatively observable and controllable. The computational results are displayed in Table I; the supervisors are state minimal, and controllability, observability, and normality are independently verified.

In addition, Footnote 1 (Sec. II of [1]) and the prescription “Note that in computing ... the controllability requirement” (Sec. IV of [1], the paragraph above Theorem 3) should be removed, because all events (not just controllable events) must be taken into account to ensure the correctness of Algorithm 3.

Finally, in Fig. 4 of [1] the ambient language should be revised to \(C = \{\alpha, \beta\}, \overline{C} = \{e, \alpha, \beta\} \).

ACKNOWLEDGEMENT

The authors would like to thank Prof. Joao C. Basilio for pointing out numerical errors in [1] which led to this correction.

REFERENCES

<table>
<thead>
<tr>
<th>(\Sigma_{\omega} = \Sigma - \Sigma_{\alpha})</th>
<th>State # of rel. obs. supervisor</th>
<th>State # of normal supervisor</th>
<th>Iteration # of Alg. 3 in [1]</th>
<th>Iteration # of Alg. 1 in [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>{13}</td>
<td>4406</td>
<td>3516</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>{21}</td>
<td>4348</td>
<td>0</td>
<td>2</td>
<td>399</td>
</tr>
<tr>
<td>{41,51}</td>
<td>3795</td>
<td>0</td>
<td>3</td>
<td>291</td>
</tr>
<tr>
<td>{31,43}</td>
<td>4215</td>
<td>1485</td>
<td>2</td>
<td>233</td>
</tr>
<tr>
<td>{11,31,41}</td>
<td>165</td>
<td>0</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>{13,23,31,33, 41,43,51,53}</td>
<td>563</td>
<td>0</td>
<td>3</td>
<td>583</td>
</tr>
</tbody>
</table>