Functional assessment of MeCP2 in Rett syndrome and cancers of breast, colon and prostate

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Biochemistry and Cell Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>bcb-2016-0154.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Invited Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>14-Sep-2016</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>PANDEY, SOMNATH; TEXAS TECH UNIVERSITY HEALTH SCIENCES CENTER, IMMUNOLOGY & MOLECULAR MICROBIOLOGY PRUITT, KEVIN; TEXAS TECH UNIVERSITY HEALTH SCIENCES CENTER, IMMUNOLOGY & MOLECULAR MICROBIOLOGY</td>
</tr>
<tr>
<td>Keyword:</td>
<td>MeCP2, Rett syndrome, colon cancer, breast cancer, prostate cancer</td>
</tr>
</tbody>
</table>
Functional assessment of MeCP2 in Rett syndrome and cancers of breast, colon and prostate

Somnath Pandey¹ and Kevin Pruitt¹*

¹Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

#Address correspondence to: Kevin Pruitt, kevin.pruitt@ttuhsc.edu

Phone number: 806-743-2523

Fax number: 806-743-2334

*Present address: Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX-79430, USA

Key Words: MeCP2, Rett, colon cancer, breast cancer, prostate cancer
Abstract

Ever since the first report that mutations in methyl-CpG-binding protein 2 (MeCP2) causes Rett syndrome (RTT), a severe neurological disorder in females world-wide, there has been a keen interest to gain a comprehensive understanding of this protein. While the classical model associated with MeCP2 function suggests its role in gene suppression via recruitment of co-repressor complexes and histone deacetylases to methylated CpG-sites, recent discoveries have brought to light its role in transcription activation, modulation of RNA splicing and chromatin compaction. Various post-translational modifications (PTMs) of MeCP2 further increase its functional versatility. Involvement of MeCP2 in pathologies other than RTT, such as tumorigenesis however, remains poorly explored and understood. This review provides a survey of the literature implicating MeCP2 in breast, colon and prostate cancer.

Introduction

MeCP2 is an X-chromosome associated gene, identified as the founding member of methyl-CpG binding domain (MBD) containing protein (Lewis et al. 1992). Our current knowledge regarding MeCP2 remains incomplete, despite its discovery some 24 years ago. The requirement of MeCP2 function is exemplified most notably in pathological conditions linked with RTT and other disorders namely classical autism, neonatal encephalopathy and X-linked mental retardation (Amir et al. 1999; Couvert et al. 2001; Lam et al. 2000; Beyer et al. 2002; Schanen et al. 1998). RTT involves an apparent normal development of female(s) upto 7-18 months of age during which they achieve the expected motor, social and language milestones, followed by regression of acquired skills (Hagberg et al. 1983; Hagberg and Witt-Engerstrom 1986). While RTT is most
frequently seen in females than males (1 in every 15,000 females) (Hanefeld 1985), the latter have a shorter lifespan and often develop fatal neonatal or congenital encephalopathy (Kankirawatana et al. 2006; Villard et al. 2000). MeCP2 is an epigenetic reader that recognizes and binds to not only 5-methyl cytosine but also, 5-hydroxymethyl-cytosine on DNA (Mellen et al. 2012). Recent works have implicated MeCP2 in various cancers (Song et al. 2016; Muller et al. 2010; Ballestar et al. 2003). Works from our own lab suggests the potential role MeCP2 plays in the progression of colon cancer (Pandey et al. 2015).

Herein we begin with an introduction of MeCP2 followed by the multi-faceted functions it is involved in, by interacting with various co-regulators or by undergoing multiple PTMs. This review article examines the evidence for involvement of MeCP2 in the cancer of the breast, colon and prostate. We stress the notion that MeCP2 is a key epigenetic protein that is aberrantly regulated in cancer.

MeCP2: Structure and function

The pioneering works from Bird lab identified a nuclear protein, MeCP which preferentially bound methylated DNA without any sequence specificity and was thought to play a role in the inaccessibility of methylated CpG (Meehan et al. 1989; Meehan et al. 1990). Later experiments from the same lab demonstrated that MeCP was actually two distinguishable proteins – MeCP1 and MeCP2, with MeCP1 needing at least twelve symmetrically methylated CpGs while MeCP2 was able to bind a single methylated CpG base pair (Meehan, Lewis, and Bird 1992). Corroboration of the methyl-binding activity of MeCP2 came from studies by Lewis et al. in 1992. They showed that MeCP2-LacZ fusion protein was incapable of localizing to centromeric heterochromatin in methyl-
transferase-deficient mouse cells. By constructing deletions of full length MeCP2, Nan et al. discovered the minimal region (MBD, ~85 amino acids long) required to bind DNA containing one or more symmetrically methylated CpGs. Additionally they also demonstrated that MBD binds to DNA as a monomer (Nan, Meehan, and Bird 1993).

Wakefield et al. in 1999, proposed the solution structure of recombinant MBD of MeCP2 via nuclear magnetic resonance (NMR) spectroscopy. They reported the structured core (amino acids 95-162) adopted a novel fold and formed a wedge shaped structure composed of a four-stranded anti-parallel β-sheet on one side and an α-helix on the C-terminus end. Two anti-parallel β-strands are connected by an unstructured loop of five amino acid residues comprised of one positively charged and two polar residues (Wakefield et al. 1999). They also report that the DNA binding surface of MeCP2, the MBD, is rich in basic amino acids, lysine and arginine. The Bird lab recently published a high-resolution X-ray co-crystal structure of MBD bound to symmetrically methylated DNA (20 bp fragment of mouse brain-derived neurotrophic factor, BDNF) (Ho et al. 2008). Their model contradicted the previous proposed hypothesis that the stability of MBD-DNA interaction is brought about by hydrophobic association. The study revealed that the methyl-group predominately makes contact with tightly bound water molecules and that MeCP2’s MBD, instead of recognizing the methylated CpG per se, interacts with the water molecules at the major groove of the methylated DNA (Ho et al. 2008).

Transcription repression domain (TRD) of MeCP2 was next characterized using an in vitro β-actin transcription assay, wherein the effects of fusion proteins made using Gal4 DNA binding domain and varying fragments of MeCP2 fragments were tested for
their ability to repress a reporter gene construct containing Gal4 binding sites near the promoter (Nan, Campoy, and Bird 1997). Rigorous experimentation led to the identification of a minimal MeCP2 region encompassing amino acids 205-310, sufficient to cause transcriptional silencing of a reporter gene construct. Both native and recombinant rat MeCP2 led to transcriptional repression \textit{in vitro} from methylated promoters but not from non-methylated promoters (Nan, Campoy, and Bird 1997).

Recent findings from Huda lab have allowed for the characterization of two clusters of AT-Hook domains within MeCP2 (Baker et al. 2013). Such domains are found to be highly conserved among species and play a key role in DNA binding of chromatin-associated, non-histone proteins of the high-mobility group (HMG), where they were described for the first time (Reeves and Nissen 1990). Figure 1B shows the location of AT-Hook domains in the two MeCP2 isoforms.

Recent investigations have identified intrinsic disorder in MeCP2 e2 isoform using FoldIndex algorithm (Adams et al. 2007). Over a concentration range of \(~1000\) fold, MeCP2 is found to be monomeric in both low and high salt solutions. Circular dichroism spectroscopy has predicted MeCP2 monomer to be \(~60\%) unstructured in conditions where it preferentially recognizes CpG dinucleotides and can form compact chromatin (Adams et al. 2007). The same study carried out experiments involving protease digestion of MeCP2 and identified structurally distinct domains which are collectively organized into tertiary structure possessing coil-like hydrodynamic properties, exhibiting the intrinsic disorder in MeCP2 sequence. Both MBD and TRD when expressed as individual fragments have the potential to function as non-specific DNA binding
segments. The various structural attributes of MeCP2 provide a basis for its multi-
functional role in vitro and in vivo (Adams et al. 2007).

MBD-dependent functions

A schematic representation of the MeCP2 domains is shown in Figure 1B. In an effort to
discover protein factors mediating methyl-dependent repression, the same group used
co-immunoprecipitation (Co-IP) assays and showed that TRD interacts with a co-
repressor complex comprised of mSIN3A and histone deacetylases to result in the
alteration of chromatin structure via post-translational modifications of histone tails (Nan
et al. 1998; Jones et al. 1998). These two studies were instrumental in demonstrating
that firstly, an indirect method exists by which MeCP2 can introduce alterations in
chromatin architecture by recruiting histone deacetylases, and secondly that DNA
methylation and histone deacetylation, the two global gene regulation mechanisms, can
be linked by MeCP2 (Figure 2), together with the finding that pharmacological inhibition
of deacetylase activity can partially relieve the methylation-dependent silencing. Such
partial alleviation of transcription repression was indicative of involvement of other
potential repressive modes.

MeCP2 interacts with various proteins to execute its functions in regulating cellular
physiology. In an in vitro myogenesis system, MeCP2 N-terminus has been shown to
associate with heterochromatin protein 1 (HP1) via Co-IP assays (Agarwal et al. 2007).
Using immunocytochemistry, the study reported that HP1 localization to
heterochromatin correlated with MeCP2 presence. HP1 is known to bind with H3K9me3
and interact with Suv39H1 methyltransferase (Yamamoto and Sonoda 2003), further
linking the presence of MeCP2 at heterochromatic regions.
Maintenance DNA methyltransferase I (DNMT1) is known to interact with the TRD of MeCP2 (Kimura and Shiota 2003), indicating that MeCP2 may potentially be involved in faithful copying of methylation marks during DNA replication. Contrary to this, works from (Nan, Meehan, and Bird 1993), underscored that binding to hemi-methylated DNA of MeCP2 MBD, is negligible and so does not support the finding of hemi-methylated DNA being bound by MeCP2.

Using Co-IP assays, Bird group found that methyl-binding domain of MeCP2 interacts with α-thalassemia/mental retardation, X-linked, ATRX protein (a SWI2/SNF2 DNA helicase/ATPase that is mutated in ATRX syndrome) (Nan et al. 2007). They reported that point mutations within the MBD of MeCP2 that caused RTT syndrome inhibited its interaction with ATRX. In a DNA methylation-dependent manner, MeCP2, can recruit the helicase domain of ATRX to heterochromatic foci in living mouse cells, allowing for a tempting speculation that ATRX may be involved in the epigenetic regulation of genes bound by MeCP2 (Nan et al. 2007).

A recent study revealed that MeCP2 is required for ATRX and CTCF binding to the H19 ICR and further suggested that MeCP2 and ATRX are involved in maintenance of nucleosome configuration conducive for CTCF binding to bring about regulation of gene expression at a subset of imprinted domains (Kernohan et al. 2014).

MeCP2 TRD binds c-Ski, encoded by the proto-oncogene c-Ski (Kokura et al. 2001). Immunostaining analysis has demonstrated co-localization of MeCP2 and c-Ski in the nuclear heterochromatic region. The magnitude of repression brought about by Gal4-MeCP2 fusion protein was abolished following over expression of dominant negative form of c-Ski. Also, antibody-mediated neutralization of Ski and Ski-related novel
proteins, c-Ski and sno, led to the abrogation of transcription repression by Gal4-MeCP2 which suggest a role of the ski gene family in methylation-dependent transcription repression.

MeCP2 TRD and the amino-terminal domain were demonstrated to interact directly with the ETS domain of PU.1 (ETS family of factors) by various pull-down and immunoprecipitation assays (Suzuki et al. 2003). PU.1 transcriptional activity was found to be repressed by MeCP2 on a reporter construct containing trimerized PU.1 binding sites and that this transcription suppression can be rescued by TSA, a histone deacetylase inhibitor. By performing pull-down assays, it was discovered that MeCP2 preferentially associates with the complex containing PU.1-mSIN3A-HDAC1 and not with PU.1-CBP. ChIP-PCR assays using undifferentiated murine erythroleukemia cells (MEL) demonstrated that MeCP2 and PU.1 are enriched at PU.1-binding site present on the reporter construct and that present in the intron (intervening sequence 2 region) of β-globin gene, known to regulate its gene expression. It was also shown that during the course of erythroid differentiation of MEL cells, PU.1-mSIN3A-HDAC1 complex disappeared from this region (Suzuki et al. 2003). Thus by forming a complex with mSIN3A and HDAC1, MeCP2 can repress PU.1. While underscoring the multi-functional nature of this protein, a recent review describes the various protein factors MeCP2 associates with (Guy et al. 2011). Figure 3 illustrates the minimal region required for the interaction of different candidate binding partners with MeCP2 e2 isoform.

MeCP2 Isoforms
Our understanding of MeCP2 location, expression patterns, and functionality increased with the discovery of a previously unknown isoform MeCP2B (Mnatzakanian et al. 2004). The new isoform e1, or MeCP2B, is a splice variant whose translation start site begins at exon 1 of MeCP2, foregoes exon 2 and encompasses full-length exons 3 and 4 to give rise to a 498 amino acid long protein, while the known isoform e2 or MeCP2A begins at exon 2, followed by full-length exons 3 and 4 to yield a 486 amino acid protein (Figure 1). Hence the two isoforms differ at their N-terminus. MeCP2 e2 is expressed in skeletal muscle, liver, spleen and prostate while MeCP2 e1 is expressed primarily in fetal and adult brain and brain sub-regions. In the adult human brain, MeCP2 e1 expression is ten times the expression of MeCP2 e2 (Mnatzakanian et al. 2004). These findings indicate that important differences between these two isoforms remain to be identified.

MeCP2 post-translational modifications (PTMs)

MeCP2 PTMs make possible the intricacies of MeCP2 transcriptional modulation. While many PTMs of MeCP2 have been found to date, phosphorylation of MeCP2 remains the most well studied. MeCP2 phosphorylation was first noted in 2003 when Chen et al (Chen et al. 2003) found that MeCP2 selectively binds to the promoter III of BDNF gene and functions to negatively regulate its expression. They discovered that membrane depolarization of rat cortical neurons in response to increased KCl triggers calcium-dependent phosphorylation and exiting of MeCP2 from BDNF promoter and facilitates chromatin remodeling to allow for BDNF transcription. Hence, MeCP2 is pertinent in regulating genes involved in neuronal activity and the dysregulation of that role might be the causative factor for RTT.
De novo phosphorylation of MeCP2 at S421 (serine residue at 421 position) in cultured rat neurons, triggered by neuronal activity followed by an influx of calcium was reported in 2006 (Zhou et al. 2006). In this study, it was demonstrated that phosphorylation of MeCP2 at serine 421 residue was selectively induced in vivo in response to synaptic activity driven via either light exposure or via pharmacologically induced seizures in rodents. Phosphorylation at this site results in de-repression of BDNF transcription and regulates MeCP2-dependent dendritic growth and spine maturation. Western blot analysis from whole cell extracts prepared from a 4-week old male mouse revealed that ser421 phosphorylation occurred specifically in the brain and not in any other tissue analyzed. These observations indicate that by inducing phosphorylation of MeCP2, neuronal activity orchestrates a gene expression program to bring about nervous system maturation and the disruption of which may underlie the RTT phenotype in individuals with MeCP2 mutation.

Mass spectrometry analysis has shown serine 80 residue of MeCP2 to be phosphorylated in rodents either basally or when subjected to seizures (Tao et al. 2009). Neuronal activity triggers dephosphorylation of ser80 while S80A mutant contributes to reduced association of MeCP2 to several gene promoters and concomitantly altering their expression (Tao et al. 2009).

Using a dephosphorylation mimetic MeCP2 S421A mouse, it was shown in vivo, that loss of ser421 phosphorylation leads to an abnormal development of dendrites and synapse, and a defective behavioral response to new experience (Cohen et al. 2011), suggesting that RTT is a disorder of experience-dependent neuronal development.
Studies using tandem mass spectrometry (MS/MS) have reported the presence of multiple MeCP2 PTMs, viz., phosphorylation, acetylation and ubiquitination (Gonzales et al. 2012) in SH-SY5Y cells ectopically expressing MeCP2. Gonzales et al. discovered that phosphorylation at S80 or S229 residue of MeCP2 selectively alters interactions with chromatin factors such as SMC3 and HP1, and co-factors such as SIN3A and YB-1, \textit{in vivo}. MeCP2 phosphorylation was found to be indispensable to bring about differentiation-induced activation and/or repression of receptor tyrosine kinase (RET), and early growth response factor 2 (EGR2), MeCP2 target genes (Gonzales et al. 2012). It is worth mentioning that MeCP2 was found to be acetylated at lysine residues 305, 307 and 321.

Phosphotryptic mapping was utilized in 2013 to identify three novel MeCP2 phosphorylation sites (S86, S274, and T308) following neuronal stimulation (Ebert et al. 2013). Various agents such as those that increase intracellular cAMP level, neuronal activity, or BDNF, can differentially induce phosphorylation of these sites, suggesting the epigenetic regulatory role of MeCP2 of gene expression, by integrating various environmental signals. T308 phosphorylation was shown to prevent the interaction of MeCP2 TRD and the nuclear receptor-corepressor (NCoR) complex and hence decreasing MeCP2’s ability to cause transcription repression (Ebert et al. 2013).

Neuronal stimulation in knock-in mice harboring a typical human RTT missense mutation R306C, failed to elicit T308 phosphorylation, indicating that loss of MeCP2 T308 phosphorylation may potentially contribute to RTT. Ebert et al., further showed that mice bearing MeCP2 T308A mutation exhibited reduced induction of a subset of neuronal activity-regulated genes and to RTT-like phenotype. Hence, neuronal
stimulation-dependent T308 phosphorylation regulates MeCP2’s interaction with the NCoR complex and that RTT phenotype in humans could be attributed, in part, to the failure of activity-dependent phosphorylation of MeCP2 at T308 residue and the subsequent loss of phosphorylation-controlled MeCP2-NCoR complex interaction. Figure 3 illustrates the distribution of different phosphorylation sites over MeCP2 domain map. Excellent reviews have highlighted the role of multiple other MeCP2 phosphorylation sites (Bellini et al. 2014; Ausio, Martinez de Paz, and Esteller 2014). The role of protein acetylation in regulating cell physiology is becoming increasingly appreciated (Yang and Seto 2008). Recent studies have reported MeCP2 to be acetylated (Choudhary et al. 2009; Zocchi and Sassone-Corsi 2012; Gonzales et al. 2012; Pandey et al. 2015), and because little is known about how acetylation influences MeCP2 function, it remains an active area of research. Over expression of SIRT1 deacetylase was shown to result in reduced acetylation of mouse MeCP2 e1 isoform at lysine 464 (K464) or human lysine 461, when MeCP2 was ectopically expressed in HEK293 cells (Zocchi and Sassone-Corsi 2012). ChIP-qPCR analysis of hippocampus tissue revealed that MeCP2 enrichment at exon IV of BDNF was significantly increased in SIRT1Δex4 mice relative to wild-type control mice and was linked to decreased BDNF expression in SIRT1Δex4 mice (Zocchi and Sassone-Corsi 2012).

In an attempt to identify endogenously acetylated lysine(s) in MeCP2 in multiple cancer cell line models, we pharmacologically inhibited SIRT1 and using tandem MS/MS, identified various acetylated lysines (K22, K135, K171, K200, K256, K271 and K289) (Pandey et al. 2015). Our acetylation mimetic mutant, MeCP2 K171Q, elicited decreased binding to chromatin remodeling proteins, ATRX and HDAC1, as compared
MeCP2-WT and was associated with retarded growth and proliferation of RKO colon cancer cells in which it was over expressed (Pandey et al. 2015). Figure 3 illustrates the distribution of different acetylation sites over MeCP2 e2 isoform domain map. Sumoylation of MeCP2 has been found to occur on K223, that brings about the recruitment of deacetylase complex HDAC1/2 and the deacetylation mimetic mutant, K223R, inhibits transcriptional repression function of MeCP2 in primary cortical neurons (Cheng et al. 2014). Furthermore, sumoylation at K223 plays a pertinent role in regulating the formation of excitatory synapse. Many other MeCP2 PTMs such as the methylation and ubiquitination of lysine residues have been reported elsewhere (Bellini et al. 2014). The above mentioned PTMs of MeCP2 elevate its ability to function dynamically within various cells of the body, thereby necessitating the need to characterize other modifications of MeCP2.

TRANSCRIPTIONAL ACTIVATOR

While attempting to delineate the molecular mechanism(s) fundamental to neuropsychiatric disorders resulting from either MeCP2 depletion or over-expression (clone including regions responsible for both e1 and e2 isoforms) in mice while analyzing patterns of gene expression in mouse hypothalamus, it was observed that, although in both cases, the expression levels of thousands of genes was altered, majority of the genes (~85 %) were surprisingly upregulated by MeCP2 (Chahrour et al. 2008). MeCP2 was found to interact with the transcriptional activator, cyclic-AMP response element binding protein 1 (CREB1) while occupying the promoter of an activated target gene did not interact with the same while occupying a repressed target gene promoter. Interestingly, findings from the same lab later extended the observation
in the cerebellum, wherein a multitude of genes were found to be upregulated in MeCP2-Tg mice (over-expressing MeCP2) and downregulated in MeCP2-null mice in consistence with MeCP2’s role as a transcriptional modulator capable of both increasing and decreasing the expression of genes (Ben-Shachar et al. 2009). Such investigations are indicative that gene expression alterations in various regions of the brain occur following MeCP2 loss or gain of function. The role of MeCP2 as a modulator has been recently review by others (Delcuve, Rastegar, and Davie 2009). Figure 4 illustrates how MeCP2 can function as a transcriptional activator.

REGULATION OF RNA SPlicing

Examples mentioned above provide insights to the various roles MeCP2 plays by interacting with multiple proteins. MeCP2 e2 isoform can associate with DNA/RNA binding protein, Y-box binding protein (YB-1) and regulate reporter minigene splicing (Young et al. 2005). The same group further demonstrated that RNA mediates interaction between YB-1 and MeCP2 and that this interaction was not disrupted when R106W-MeCP2 (RTT mutant form of MeCP2) was used or a functional methyl-binding domain of MeCP2 is not absolute for its interaction with YB-1. Such results together with the findings that a mouse model of RTT (MeCP2-308 mutant) shows abnormal alternative splicing pattern as compared to MeCP2-WT (Young et al. 2005), is indicative of MeCP2’s role in regulating splicing.

It was later reported that MeCP2 is increasingly present at the heavily methylated alternatively spliced exons (ASEs) and that inhibition of DNA methylation results in firstly, abnormal splicing of ASEs and secondly, disrupts the methylation specific targeting of MeCP2 (Maunakea et al. 2013). Genetic ablation of endogenous MeCP2
was found to cause increased acetylation of histone H4 and abnormal skipping events associated with ASEs which overlapped to a great degree with the skipping of exons observed when HDACs were pharmacologically inhibited. These findings thus suggest that intragenic CpG-methylation enhances recognition of exons by serving as a docking site for MeCP2 which in turn brings about the recruitment of HDACs to maintain the local hypoacetylation of histones to modulate alternative RNA splicing.

MBD-INDEPENDENT FUNCTIONS

A rapid increase in MeCP2 research has occurred ever since the discovery that MeCP2 is an etiological factor for Rett syndrome (RTT) (Amir et al. 1999). As opposed to the earlier methyl-binding activity of MeCP2, recent findings uncover its ability to bind to chromatin and DNA independent of CpG-methylation status (Georgel et al. 2003; Nikitina et al. 2007; Yasui et al. 2007; Chahrour et al. 2008; Ben-Shachar et al. 2009). Studies discussed below involve the usage of MeCP2 e2 isoform.

In vitro studies demonstrating histone deacetylase-independent compaction via formation of secondary and tertiary chromatin structures assembled by MeCP2 led to its understanding as a complex nuclear protein, with a key role in globally regulating chromatin architecture (Georgel et al. 2003). This study employed sophisticated electron cryo-microscopy to characterize complexes formed between non-methylated 12-mer nucleosome arrays and recombinant human MeCP2, or specific missense (R133C) or non-sense (R168X) MeCP2 mutants and revealed the novel finding that chromatin condensing region(s) of MeCP2 reside in domains other than the methyl-binding domain.
Such findings served as a foundation for a later study that utilized various truncated forms of human MeCP2 to demonstrate that the methylation independent interaction with nucleosome positioning-sequence was mediated by the C-terminal domain, and also indicated a partial methyl-specific interaction being mediated via the MBD (Nikitina et al. 2007). Results from electron microscopy analysis revealed the capability of MeCP2 to modulate nucleosome array structure by trans-interaction with multiple arrays and in-cis compaction of an array.

In an attempt to identify novel genes targeted by MeCP2, Horike et al., sequenced MeCP2-binding sites in mouse brain and mapped an imprinted gene cluster on chromosome 6 that contained two genes, Dlx5 and Dlx6 (Horike et al. 2005). These genes showed two fold higher expression in MeCP2-null mice than those of MeCP2-WT mice. Analyzing ChIP-coupled loop assays showed that MeCP2 mediated the formation of silent chromatin-derived 11-kb chromatin loop at the Dlx5-Dlx6 locus and that this loop was absent in MeCP2-null mice. While this indicates a new mechanism of MeCP2 driven gene regulation, recent works from a study has refuted against these findings (Schule et al. 2007).

Involvement in Breast Cancer

One of the most common malignancies observed in women is breast cancer and it remains one of the leading causes of mortality worldwide, despite the progress made in the past 15-20 years (Yang et al. 2015; Murphy and Morris 2012).

An early report linking MeCP2 with breast cancer via in vitro studies showed that partially methylating the promoter region of breast cancer predisposition gene *BRCA1*, results in a MeCP2-dependent inhibition of gene expression (Magdinier et al. 2000).
was reported that dysregulation of MBD domain containing proteins MeCP2 and MBD2, occurs in human breast cancer, following the quantification of their transcripts in normal breast and in benign and neoplastic breast tumors via RT-PCR analysis (Billard et al. 2002).

A study in 2003 for the first time established a link between MeCP2 mRNA and estrogen receptor status. The authors not only showed high MeCP2 mRNA expression levels in neoplastic tissues than in non-neoplastic tissues, but also discovered higher MeCP2 transcript levels in estrogen receptor positive (ER+) breast cancer samples than those present in estrogen negative breast cancer specimen (Muller et al. 2003).

In an effort to demonstrate existence of gene specific binding or association pattern of MBD proteins in cancer cells, Ballestar et al, showed that MeCP2 was one of the select MBD proteins that was uniquely in association with Ras association domain family 1A gene (RASSF1A), ectonucleotide pyrophosphatase/ phosphodiesterase 4 (ENPP4), phosphatidylinositol 4-phosphate 5-kinase (PIP5K) and retinoic acid receptor B2 gene (RARB2) promoters (Ballestar et al. 2003). Such studies reveal that while certain methylated CpG sequences interact with only one MBD protein, others can associate either multiple or all of them. Thus, breast cancer involves MeCP2-dependent inhibition of BRCA1 gene expression, together with elevated MeCP2 gene expression in neoplastic tissues and increased localization of MeCP2 at the promoters of various tumor suppressor genes (TSGs).

An investigation aimed at characterizing MeCP2 target sequences in MCF-7 breast cancer cells, employed a preparative-ChIP assay to create a library containing MeCP2 bound sequences, such as the retrotransposons (mostly with Alu repeats), matrix-
associated regions (MARs), CpG islands, and others (Koch and Stratling 2004). The study used multiple techniques including indirect immunofluorescence microscopy and concludes that the preference of MeCP2 at these regions is due to its sequence recognizing information potential (guanine nucleotide bases adjacent to CpG orTpG) as demonstrated in earlier foot-printing assays (Weitzel, Buhrmester, and Stratling 1997).

Epigenetic silencing of estrogen receptor-α (ER-α) gene as a result of CpG hypermethylation correlates with the interaction and binding of MBD proteins including MeCP2, histone deacetylase 1 (HDAC1), and DNA methyl-transferases (DNMTs) proteins to the ER promoter in MDA-MB-231 breast cancer cells, and whose treatment with 5-aza-2’-deoxycytidine (inhibitor of DNMTs) and trichostatin A (inhibitor of HDAC activity) results in the vacating of the promoter by repressor complex comprising of MeCP2 and other MBD proteins, together with DNMTs and HDAC1 (Sharma et al. 2005). This treatment further correlates to increased transcription activation marks (H3Ac, H4Ac and H3K4me2) and decreased repressive marks (H3K9me2), leading to the re-expression of ER-α gene. Such studies involving the use of epigenetic drugs allows for a deeper understanding of the fundamental molecular mechanisms of chromatin remodeling resulting in ER reactivation. Findings from such studies aid in developing therapeutic strategies against breast cancer via epi-drugs. It was later shown that the repressive complex comprising of MeCP2, HDAC1 and DNMT1, while present at ER-α promoter in ER-negative MDA-MB-468 cells, remained absent at the same region in ER-positive MCF-7 cells (Rasti et al. 2012). MDA-MB-468 cells express a mutant p53 whose binding to HDAC1, DNMT1 and MeCP2 is not altered at ER-α promoter. Investigating ER-α gene silencing in these cells showed that down regulating
DNMT1 or HDAC1 led to the disassembly of mutant p53 and the repressive complex from ER-α gene promoter and this was consistent with the ER re-expression following partial demethylation of ER-α promoter (Arabsolghar, Azimi, and Rasti 2013). HDAC1 plays a key role in ER-α gene silencing due to its deacetylase activity and for the assembly of DNMT1 in the repressive complex. Also, mutant p53 binds to ER-α gene promoter via direct association with HDAC1 and indirect association with DNMT1 and MeCP2 in 468 cells (Arabsolghar, Azimi, and Rasti 2013).

An inhibitor of zinc-dependent deacetylases, valproic acid (VPA), brings about the shutoff of ER-α promoter in a reversible manner via invoking recruitment of MeCP2 transcription repressor resulting in decreased levels of mRNA encoding ER-α and subsequent loss of the protein in ER-positive breast cancer cells (Reid et al. 2005).

While characterizing epigenetic deregulation status in three breast cancer cells representing different stages of human breast cancer, Tryndyak et al., showed significant epigenetic alterations in breast cancer cells as compared to normal mammary epithelial cells MCF-10-2A and demonstrated that the more malignant MDA-MB-231 cells have a greater loss of CpG methylation followed by aberrant expression of DNMT1, MBD proteins: MeCP2 and MBD2, reduced Suv4-20h2 leading to loss of H4K20me3, and H4-hyperacetylation as compared to MCF-7 cells (Tryndyak, Kovalchuk, and Pogribny 2006). Such results suggest that malignant breast cancer cells are associated with greater epigenetic deregulation, including aberrant expression of MeCP2, which may potentially be an indicative of aggressive tumor phenotype during tumorigenesis.
Epigenetic changes in mammary gland following exposure to ionizing radiation (IR) and the induced carcinogenesis in a rat model of breast cancer has been studied. IR exposure results in global DNA hypomethylation together with reduced levels of de novo DNA methyltransferase (DNMT3a and 3b), maintenance methyltransferase (DNMT1) and MeCP2 and linked to cell cycle control mechanisms and was in part associated to activation of DNA repair pathway (Loree et al. 2006). Following irradiation, apoptosis was significantly increased and was paralleled by a noticeable increase in cellular proliferation.

Mechanistic studies involving malignant breast cancer have shown that kallikrein-related peptidase 6 (KLK6), TSG silencing is due to formation of repressive chromatin mediated by histone deacetylation and CpG methylation-dependent binding of MeCP2 at its proximal promoter (Pampalakis et al. 2009). Stable overexpression of KLK6 in MDA-MB-231 cells exhibits reversal of malignant phenotype i.e., decreased proliferation rates, reduced cellular motility, inhibition of anchorage-independent growth, and reduced in vivo orthotopic tumor formation in severe combined immunodeficiency (SCID) mice. This suggests that via potential inhibition of epithelial-to-mesenchymal transition (EMT), KLK6 might exert a protective role against metastatic breast cancer.

Utilizing a luciferase assay, it has been shown that in MCF-7 cells, MeCP2 can repress select target gene promoters namely, CD44, phosphatase and tensin homologue (PTEN), Cyclin D2 and glioma-pathogenesis related protein 1 (GLIPR1) (Muller et al. 2010).

Bisulfite sequencing analysis revealed that leukemia inhibitory factor (LIF) regulating progression of various types of cancer, is hypermethylated within the promoter region,
in normal breast epithelial cells but highly demethylated with cancer progression (Shin, Park, and Jang 2011). In line with this observation, enrichment of MeCP2 and H3K9me2 decreased with breast cancer progression while H3K4me2 activation mark increased inversely together with increased binding of Sp1 transcription factor at such hypomethylated sites. Genetic ablation of LIF lead to substantial reduction of cellular growth and colony formation in breast cancer cells analyzed (Shin, Park, and Jang 2011).

Immunohistochemistry analysis reveals MeCP2 protein to be significantly higher in invasive ductal carcinoma (IDC) specimen than in non-neoplastic lesions (Xu et al. 2012).

Upregulated in breast cancer, a disintegrin and metalloprotease domain-containing protein 12 (ADAM-12) is subjected to transcriptional suppression by Z-DNA-forming negative regulatory element (NRE) present at its 5′-UTR, facilitates binding to epigenetic regulator, MeCP2 and nuclear family of transcription factors, NF1C and NF1X, contributing to its low expression in normal cells and tissues (Ray et al. 2013).

Natural compounds including curcumin, epigallocatechin gallate (EGCG), resveratrol, and others have been shown to cause reversal of epigenetic modification by reducing the protein expression of DNMT1, MeCP2 and HDAC1 (Mirza et al. 2013).

Anti-cancer peptide SA12 binds to MeCP2 in vitro and results in upregulation of p53 and PTEN expression and further inducing apoptosis by targeting Bcl-2 family and related caspases in SKBr-3 cells (Yang et al. 2015).

Analysis of ~9221 human tumor samples from TCGA has allowed for the finding that MeCP2 is a frequently amplified oncogene in a number of tumors including triple...
negative breast cancer (TNBC) (Neupane et al. 2016). Over-expressing MeCP2 e2 isoform in human mammary epithelial cells (HMECs) enables anchorage independent growth to a level almost similar to that resulting from an infection with activated HRAS while the longer e1 isoform fails to enable such growth (Neupane et al. 2016). The same study further showed that while both the isoforms could activate PI3K pathway, only MeCP2 e2 isoform is capable of activating MAPK pathway in HMECs during growth factor deprivation. Such investigations have revealed MeCP2 functionality in different cellular contexts.

Above mentioned studies underscore the alteration in epigenetic process in ER-positive and TNBC cells and the role MeCP2 plays in silencing TSGs or promoting cancer survival.

Involvement in Colon cancer

Strong E-cadherin (ECAD) TSG expression and a lack of promoter CpG methylation in normal colonic mucosa and other well-differentiated adenocarcinoma has been observed, while both mucinous adenocarcinoma and signet-ring cell carcinoma display complete CpG methylation and strong MeCP2 expression patterns when 29 cases of colorectal carcinoma were analyzed in Indonesia (Darwanto et al. 2003). Loss of MeCP2 expression was found to be correlated to ECAD re-expression.

Patients with RTT are known to have gastrointestinal pathologies, owing to loss of parasympathetic control. A recent study reported the risk of colon cancer in a RTT patient (Yilmaz et al. 2014). Genome-wide studies in YB5 cells (a clonal derivative of the SW48 colon cancer cell line), demonstrated that re-expression of basally silenced and hypermethylated genes by the combinatorial action of carboplatin and decitabine
was significantly better than when induced by the two drugs alone. The combination also brought about the inhibition of HP1α expression accompanied by increase in H3K4me3 and H3K9ac at the reactivated gene promoters together with decreased binding of MeCP2 and MBD2 (Qin et al. 2015). Hence the epigenetic synergy shown by the combination of a platinum analog, carboplatin, and decitabine can be used treat various cancers.

As mentioned earlier, specifically targeting SIRT1 deacetylase by pharmacological drugs, we discovered MeCP2 to be endogenously acetylated in RKO colon cancer cells (Pandey et al. 2015). K171 residue identified via mass spectrometry analysis as an acetylated site was particularly interesting as it was conserved from Xenopus species to Homosapiens. Chromosomal associated proteins such as HDAC1, MeCP2 and ATRX are known to bring about chromatin remodeling including repression of TSG expression. We observed reduced binding of ATRX and HDAC1 to our acetylation mimetic mutant, MeCP2 K171Q (Pandey et al. 2015). A different approach involving the pharmacological inhibition of SIRT1 too showed consistent result. Transient and stable over expression of K171Q mutant in colon cancer cells showed retarded growth and proliferation as compared to those over expressing MeCP2-WT. This shows the role of specific MeCP2 lysine residue in regulating cell physiology and growth characteristics.

A recent study demonstrated that genetic ablation of MeCP2 in DLD-1 colorectal cancer cells results in cell cycle arrest at G0/G1 phase, decrease in cell viability, and also leads to inhibition of cell migration (Song et al. 2016). Results from this study that inhibition of MeCP2 function in DLD1 cells leading to decreased cell growth are in consensus with our study of MeCP2 K171Q mutant showing retarded growth in RKO cells. This
suggests that MeCP2 may serve as a potential target towards treating colorectal cancer.

In an unbiased screen for identification of drugs which reactivated basally suppressed genes in colon cancer cells, led to the identification of classical epigenetic drugs (inhibitors of DNA methylation and histone deacetylation) and 11 other pharmacological drugs which led to induction of methylated-CpG island promoters of not only endogenous TSGs but also the basally silenced promoters driving a GFP based reporter gene in multiple colon cancer cells (Raynal et al. 2016). Most of these pharmacological drugs were cardiac glycosides that did not alter DNA CpG-methylation locally or histone modifications (acetylation and methylation) globally, but instead affected calcium signaling by altering calcium-calcmodulin kinase II (CamKII) activity thereby causing nuclear exclusion of MeCP2. Further inhibition of CamKII activity prevented gene reactivation and rescued drug induced cancer cell toxicity and killing (Raynal et al. 2016). These findings indicate that calcium signaling pathway can be targeted to prevent MeCP2-mediated TSG silencing in colon cancer.

Involvement in Prostate cancer

Prostate cancer remains to be the first and most common cancer affecting men in the United States and is a disease of older men (Mehta and Armstrong 2016). In a majority of prostate cancers, glutathione S-transferase 1 (GSTP1) gene promoter is subjected to hypermethylation and inactivation. While studying epigenetic regulation of GSTP1 gene, Clark group has discovered that (Stirzaker et al. 2004); firstly, histone H3 acetylation is independent of gene expression. Secondly, seeds of DNA methylation promotes histone deacetylation. Thirdly, spreading of DNA hypermethylation across CpG islands is not
associated to MeCP2 but MBD2 binding and finally, H3K9me2 histone methylation ensues only after histone deacetylation and is linked to hypermethylation of CpG islands. Such findings provide insight into the molecular and mechanistic events responsible for aberrant hypermethylation of CpG-islands and hence suppression of such TSGs in prostate cancer cells.

Inhibition of MeCP2 expression has been shown to prevent growth in prostate cancer cells, while its ectopic expression confers growth advantage (Bernard et al. 2006). Such over-expression of MeCP2 allows androgen dependent LNCaP cells to grow and maintain the tumorigenic phenotype in absence of androgen stimulation by preserving a constant level of c-Myc during an androgen depleted condition. Furthermore, MeCP2 over-expressing LNCaP cells were demonstrated to have a functional p53 pathway and retain their sensitivity to chemotherapeutic drugs (Bernard et al. 2006).

Tissue inhibitor of matrix metalloproteinase-2 (TIMP2) involved in cell growth and invasion, is a TSG mostly expressed in normal tissues but silenced in glioblastomas and lung tumors (Mohanam et al. 1995). TIMP2 has a CpG methylated gene promoter and remains suppressed in prostate cancer cells while is expressed is normal prostate epithelial cells (Pulukuri et al. 2007). ChIP assay revealed presence of MeCP2 at methylated TIMP-2 gene promoter in prostate cancer cells, while absent in normal cells and combinatorial treatment of decitabine and TSA restored its expression and as a consequence resulted in reduced tumor cell invasion. Prostate tumors expressing low TIMP-2 levels showed CpG methylation of its gene promoter (Pulukuri et al. 2007). These findings indicate that reduced TIMP-2 gene expression is linked to its promoter
CpG methylation and MeCP2 localization, and that this may play a key role in progression of prostate cancer during invasion and metastasis.

MeCP2-knockdown in PC3 prostate cancer cells results in low proliferating cells compared to parental cells or those that are deficient in MBD1. MeCP2 deficient cells are also associated with elevated apoptosis while MBD1-deficient and parental cell show almost on par apoptosis (Yaqinuddin et al. 2008). Assays such as the Boyden chamber invasion and wound healing migration assays reveal that MeCP2-knockdown cells were both less invasive and migratory than MBD1-deficient cells. mRNA expression profiles of MeCP2- and MBD1-depleted cells show significant differences when compared to each other, and also when compared to the control (Yaqinuddin et al. 2008). Thus, MeCP2 and MBD1 have non-redundant functions in prostate cancer cells, or that their gene suppression affects independent cellular processes, and each protein could regulate distinct sets of genes involved in proliferation, invasion, migration and apoptosis.

Growth arrest and DNA damage inducible, alpha (GADD45alpha) plays a key role in DNA repair, cell cycle control and apoptosis (Zhan 2005). GADD45alpha expression in PC3 cells is higher than that in LNCaP and DU145 cells by 12- and 17-fold respectively (Ramachandran et al. 2009). An inverse correlation exists between GADD45alpha expression and methylation at 5' four CpG region in the proximal promoter of the gene. Reactivation of GADD45alpha expression has been seen in DU145 and LNCaP cells following pharmacological inhibition of DNA methylation. MeCP2 localizes to the 4 CpG region in DU145 cells and its knockdown leads to increased GADD45alpha expression. Increased GADD45alpha expression via either 5-azacytidine pre-treatment or by
recombinant GADD45alpha expression, leads to increased sensitivity to docetaxel (Ramachandran et al. 2009). Hence GADD45alpha is epigenetically regulated and serves as a potential target for treatment against prostate cancer.

A recent study aimed at investigating the importance of green tea polyphenols (GTPs) showed that human prostate cancer LNCaP cells when exposed to GTPs (1-10 µg/ml) for 1-7 days results in GSTP1 re-expression in a concentration- and time-dependent manner which was associated with decreased DNMT1 activity (Pandey, Shukla, and Gupta 2010). Time-dependent GTP treatment of LNCaP cells results in decreased transcript and protein levels of HDAC 1-3; MBD1, MBD4 and MeCP2, and increased levels of acetylated histones H3 and H4. Exposing LNCaP cells to GTP does not lead to global hypomethylation as indicated by methylation-specific PCR results for LINE-1 promoter, infact maintains genomic integrity as prometastatic gene S100P expression is decreased in contrast to treatment with decitabine that results in global hypomethylation and increased S100P expression (Pandey, Shukla, and Gupta 2010). GTP thus acts as a chemotherapeutic agent due to lack of its toxicity and ability to alter DNA methylation and histone modifications.

In DU145 cells it has been demonstrate that MeCP2 binds to the methylated target gene promoters, Cyclin D2 and GLIPR1, and that this binding is lost following treatment with decitabine (Muller et al. 2010). Above studies thus accentuate that epigenetic deregulation in prostate cancer involves aberrant enrichment of MeCP2 at hypermethylated gene promoters and that either removal of CpG methylation or targeting MeCP2 itself is key to regain TSG re-expression and decreasing cancer growth.
Exposing LNCaP cells to curcumin (CUR) has been demonstrated to result in demethylation of the proximal 14 CpG sites of Neurog1 gene and result in the restoration of its expression (Shu et al. 2011). While having limited effects on the expression of MBD proteins; MBD2, MeCP2, and DNMT proteins; DNMT1 and DNMT3a, CUR exposure led to significantly reduced binding of MeCP2 at Neurog1 gene promoter and had varying effects on the expression of HDACs, but decreased the total HDAC activity. Cur treatment resulted in decreased H3K27me3 binding at the Neurog1 gene promoter as well as a decrease at the global level in LNCaP cells (Shu et al. 2011).

MeCP2 knockdown in PC3, LNCaP, and normal murine NIH3T3 cells results in a defective cell cycle progression and a significant decrease in cellular proliferation, together with cellular aggregation in S/G2M phase of cell cycle without leading to either a severe apoptosis- and/or senescence-like outcome (Babbio et al. 2012). MeCP2-depleted PC3 cells show substantial decrease in lamin A, lamin B1, lamin C and lamin B receptor (LBR), and immunofluorescence microscopy on such cells demonstrate the appearance of an altered nuclear lamina and nuclear rim (Babbio et al. 2012). Such results indicate that cells deficient in MeCP2 lose their ability to correctly assemble their nuclear envelope (NE) as they have decreased levels of NE components, like lamins and LBR, and hence are associated with decreased cellular proliferation and viability. MeCP2 may thus potentially act as a “bridge” between chromatin and NE, facilitating stability of the chromatin at nuclear periphery.

Exposure of LNCaP and DU145 cells with sulforaphane (SFN), an organosulfur compound rich in cruciferous vegetables results in decreased activity and expression of
human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, that is associated with alterations at the hTERT promoter region in chromatin dynamics and compaction involving histone PTMs, H3K4me2 and H3K18Ac (Abbas et al. 2016), linked with prostate cancer recurrence (Seligson et al. 2005). ChIP-qPCR indicated that MeCP2 occupancy is elevated at hTERT promoter region with increased nucleosomal density following SFN treatment (Abbas et al. 2016). These results underscore the role SFN mediates in suppression of hTERT in prostate cancer cells and the inherent capacity of such organosulfur compounds to change the chromatin dynamics and provide a novel dietary approach by which phytochemicals provide chemoprevention.

Summary

This review highlights various intricate roles MeCP2 plays in different cellular contexts. Owing to its unusual structural features and continually increasing list of PTMs and candidate binding partners, MeCP2 can differentially regulate gene expression. There is a slow-yet steady increase in appreciation that such features of MeCP2 are exploited by cancer cells. The dire consequence of elevating or suppressing MeCP2’s role in pathogenic condition like cancer mentioned herein, make them attractive targets for therapeutic intervention. Nonetheless, MeCP2’s involvement in the basic regulatory aspects in different tissues such as the brain, becomes a limitation. There is thus an increasing need for gaining a deeper comprehension of MeCP2 biology.

References

including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A', *Oncogene*, 24: 4894-907.

Figure legends

Figure 1. Approximate representation of MeCP2 isoforms and their domain maps.

A. MeCP2 e1 isoform is encoded by exons 1, 3 and 4 and has a translational start site (TSS) in exon 1 while MeCP2 isoform 2 is encoded by exons 2, 3 and 4 with its TSS located in exon 2. B. Domain map of MeCP2 isoforms is shown. N, N-terminal; MBD, Methyl-binding-domain; A-T Hook domain; TRD, Transcriptional repression domain; His-rich, Histidine-rich domain; Pro-rich, Proline-rich domain, C, C-terminal.
Figure 2. MeCP2 is transcriptional suppressor. MeCP2 recognizes CpG-methyl groups on DNA via its MBD domain and recruits co-repressor mSIN3A and HDAC1 to cause histone deacetylation, chromatin compaction and hence target gene suppression.

Figure 3. Distribution of different post-translational modifications (PTMs) on MeCP2 domain map. Approximate distribution of different PTMs over MeCP2 (e2 isoform) domain map is shown. Amino acids marked in black, red and blue color respectively represent, sites for acetylation, phosphorylation and sumoylation. An approximate amino acid scale is represented at the top of the domain map. Below the domain map are candidate binding partners of MeCP2 showing minimal region required for interaction (represented by horizontal lines).

Figure 4. MeCP2 is a transcription activator. MeCP2 interacts with CREB1 at target gene promoters and provides accessibility to RNA Polymerase II to result in gene expression.
338x451mm (96 x 96 DPI)
Figure 2

338x451mm (96 x 96 DPI)
Figure 3

338x451mm (96 x 96 DPI)