The larval sensilla on the antennae and mouthparts of five species of Cossidae (Lepidoptera)

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Zoology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjz-2016-0225.R1</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>31-Jan-2017</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Xu, Lili; Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control; Jiangsu Academy of Forestry
 | Pei, Jiahe; Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control
 | Wang, Tao; Mentougou Forestry Station
 | Ren, Lili; Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control
 | Zong, Shixiang; Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control |
| Keyword: | Larva, Host migration, SEM, Carpenter moth, Cossidae |

https://mc06.manuscriptcentral.com/cjz-pubs
The larval sensilla on the antennae and mouthparts of five species of Cossidae (Lepidoptera)

Running title: Larval sensilla of Cossidae

Lili Xuab, Jiahe Peia, Tao Wangc, Lili Rena*, Shixiang Zonga*

a Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, P. R. China

b Jiangsu Academy of Forestry, Nanjing, 211153, P. R. China

c Mentougou Forestry Station, Beijing, 102300, P. R. China

*Corresponding author.

Lili Xu and Jiahe Pei contributed equally to this work.

Beijing Forestry University, (No.) 35 E(ast) Qinghua Road, Haidian District, Beijing

Author for correspondence:

Lili Ren

Beijing Key Laboratory of Forest Pest Control;

Beijing Forestry University, Beijing 100083, P. R. China

Email: lily_ren@bjfu.edu.cn

Tel: +8613811074592

Shixiang Zong

Beijing Key Laboratory of Forest Pest Control;

Beijing Forestry University, Beijing 100083, P. R. China

Email: zongsx@126.com

Tel: +8613681389851
The larval sensilla on the antennae and mouthparts of five species of

Cossidae (Lepidoptera)

Lili Xuab, Jiahe Peia, Tao Wangc, Lili Ren*, Shixiang Zong*

Abstract

Most species in Cossidae family can migrate from one host to a new one in later larval instars, which is different from other bark and wood boring insects. In this study, we selected *Eogystia hippophaecolus* (Hua, Chou, Fang and Chen, 1990), *Deserticossus artemisiae* (Chou et Hua, 1986), *Deserticossus arenicola* (Staudinger, 1879), *Yakudza vicarious* (Walker, 1865), and *Streltzoviella insularis* (Staudinger, 1892) to understand how these species locate new hosts in their larval stages. Scanning electron microscopy was used to determine the typology, morphology, number and distribution of sensilla on the antennae, maxillary palps, galeas, and labial palps of these five species. There were no differences in typology, morphology and number of sensilla between the five species. We observed antenna with three to four short sensilla basiconica, two sensilla chaetica, four sensilla basiconica, and one sensillum styloconicum. The maxillary palp had seven short sensilla basiconica, one sensillum digitiformium, and two sensilla placodea. The maxillary galea had three short sensilla basiconica, two sensilla styloconica, and one sensillum chaeticum. The labial palp had one short sensillum basiconicum and one sensillum styloconicum. Our results will provide a basis for further studies on the feeding, host-transfer behaviors, and electrophysiology of this group of forest pests.

Key words: Larva; Host migration; SEM; Carpenter moth; Cossidae.
1 **Introduction**

Bark and wood boring insects reside inside living xylem or the phloem of trees, at least during part
2 of their life cycles. Most of these insects, such as Bark beetles, Bark Weevils, Buprestids, and
3 Longhorn beetles (Lieutier et al. 2004) will not migrate from the tree they bored into during larval
4 stages. Only a minority, such as Cossidae and Aegeriidae, show host migration (Gao and Qin 1983;
5 Hu et al. 1987; Zong et al. 2005; Wang et al. 2011; Yang et al. 2012b; Liu 2013; Sun et al. 2015).
6 *Eogystia hippophaecolus* (Hua, Chou, Fang and Chen, 1990), *Deserticossus artemisiae* (Chou et
7 Hua, 1986), *Deserticossus arenicola* (Staudinger, 1879), *Yakudza vicarius* (Walker, 1865), and
8 *Streltzoviella insularis* (Staudinger, 1892), are five species in the family Cossidae Leach of
9 Lepidoptera, and were previously classified in the same genus *Holcocerus* Staudinger (Yakovlev
10 2006). The larvae of these species bore into the trunks and roots of foliage trees species, which
11 can weaken and lead to the death of the plants. The larvae of these insects have caused
12 enormous losses to many forestation projects in China, and have adversely affected the
13 implementation of desertification control and the urban greening programs (Hua et al. 1990). *E.
14 hippophaecolus* is the major insect of the sea buckthorn (Zong et al. 2005, 2006). The hosts of *D.
15 artemisiae* are *Artemisia ordosica* Krasch and *Salix mongolica* Siuzew (Sun et al. 2015). *Y.
16 vicarius* infests *Ulmus pumila* L., *Robinia pseudoacacia* L., *S. babylonica* L., *Populus* spp., and
17 other broadleaf trees (Tong 2013; Yang et al. 2012a). The hosts of *S. insularis* are *Broussonetia*
18 *papyrifera* (L.) Vent., *Sophora japonica* L., *U. pumila* L., *Fraxinus chinensis* Roxb., and *Ginkgo*
19 *biloba* L., among others. The above five species, except *Y. vicarius*, are reported to engage in
20 inter-hosts migration, when the host can no longer offer sufficient nutrients or is broken by the
21 wind, the larvae crawl onto the soil or the surface of the ground under the tree and migrate to
another host plant. Besides, the larvae of five species, except *S. insularis*, conduct intra-host migration, moving from the trunk to the roots to overwintering (Gao and Qin 1983; Hu et al. 1987; Zong et al. 2005; Wang et al. 2011; Yang et al. 2012b; Sun et al. 2015).

The sensilla of insect larvae play a significant role in self-protection, host selection, food searching, and feeding behavior (Zacharuk 1980; Zacharuk and Shields 1991; Cobb 1999). The sensilla of lepidopteran larvae are involved in recognizing food high in nutrient content, and excluding interference from surroundings. (Boer and Hanson 1987; Albert 2003). Sensilla in larvae also provide the larvae with information on temperature, humidity, and danger in the environment. A large number of cephalic sensilla have been observed in lepidopteran larvae, including phytophagous pests such as *Choristoneura fumiferana* (Clemens, 1865) (Albert 1980, 2003), *Antheraea assamensis* Helfer, 1837 (Goldsmith et al. 2014), the suborder Ditrysia (Grimes and Neunzig 1986), *Manduca sexta* (L., 1763) (Kent 1987), *Mamestra configurata* Walker, 1856 (Shields 1994), *Homoeosoma nebulella* Denis and Schiffermüller, 1775 (Faucheux 1995), and *Lymantria dispar* (L., 1758) (Shields 2009), among others. Previous research on the sensilla of boring insects has primarily focused on fruit borers: for example, *Helicoverpa armigera* (Hübner, 1808) (Keil 1996; Tang et al. 2014), *Carposina sasakii* Matsumura, 1900 (Liu et al. 2011), and *Grapholita molesta* (Busck, 1916) (Song et al. 2014), among others. However, there have been no studies of the cephalic sensilla of bark and wood boring insects that engage in host migration.

With the aim of gaining a better understanding of the olfaction and gustation mechanisms that affect behavior during trunk host migration, we investigated the typology and distribution of cephalic sensilla on the antennae, maxillary palps, galeas, and labial palps of the larvae of five Cossidae species. The results of this study will provide a theoretical foundation and practical
guidance for future electrophysiological and electrochemical experiments on these larvae.

Materials and methods

Insects

The larvae of *E. hippophaecolus* were collected in Jianping, Liaoning Province. The larvae of *Y. vicarius* and *D. artemisiae* were collected in Yanchi, Ningxia Hui Autonomous Region, in January 2014. The larvae of *S. insularis* were collected in the Haidian District, Beijing, in May 2014. The larvae of *D. arenicola* were collected in Yulin, Shanxi Province. The larvae were preserved in 75% ethanol. The total larvae developing stage number varied in those five species. However, all the larvae of these five species observed in our study were in their last developing stage.

Scanning electron microscopy

The heads of the larvae were excised under an anatomical microscopy (Leica EZ4D, Germany), and were washed with phosphate buffer solution and 75% ethanol for 3 min each. After washing, the specimens were dehydrated in an ascending series of ethanol (80%, 85%, 90%, 95%, 100%, and 100% for 20 min each). The specimens were fixed on a stub, air-dried in natural conditions for 24 h, and then sputter-coated with gold by an E-1010 sputter ion instrument (HITACHI, Japan). After these procedures, the samples were examined with an S-3400N scanning electron microscope (HITACHI, Japan) at an accelerating voltage of 0.5–30 kV.

Data analyses

The types of sensilla were identified according to Schneider (1964), Zacharuk (1980), Zacharuk and Shields (1991), and Sen (1988). The numbers of sensilla on antenna, maxillary palp, galea, and labial palp were low and easily identified, which permitted the direct counting of sensilla. All sensilla were counted and measured for length and diameter, and the means and standard deviations were calculated.
deviations were calculated from at least ten larvae of each species. ImageJ (Broken Symmetry Software, USA) was used for the measurements, and the data calculations and statistical analyses were performed with Microsoft Excel 2003 (Microsoft, USA). The micrographs of the sensilla were processed using Photoshop CS6.0 (Adobe Systems, USA). The schematic representation was rendered using Easy PaintTool SAI (SYSTEMAX Software Development, Japan).

Results

The morphology of the heads of the five species of larvae is shown in Fig. 1. All species had six ocelli and numerous sensilla chaetica.

Antenna

General morphology of the antenna

The antennae of the larvae were located on both sides of the head and lateral to the mandibles within sunken antennal sockets, which allowed the antennae to extend and contract (Fig. 1). The antennae had three segments, and the lengths of each segment are shown in Table 1. The longest segment was the first, with a junctional membrane without sensilla, and the second segment, embedded within the first segment, was cylindrical and could retract into the first segment. The third segment was similar to the second in morphology, although shorter, and was located dorsally on the second segment (Fig. 2).

Typology and morphology of sensilla

The typology of antennal sensilla did not differ between the five species. The sensilla types on the antennae included short sensilla basiconica, sensilla basiconica, sensilla styloconica, and sensilla chaetica (Fig. 3). The morphological characteristics of these sensilla are shown in Tables 2 and 3.

Short sensilla basiconica
The two types of short sensilla basiconica were similar in morphology with short and upright cones. Those two types, short sensilla basiconica type 1 and short sensilla basiconica type 2, were distinguished based on their length, basal diameter, shape, and whether with a terminal pore.

Short sensilla basiconica type 1. These sensilla had inconspicuous sockets, rigid and stout basal shafts that gradually narrowed to the tips, which were blunt and without terminal pore. The wall of the shaft was smooth with a comparatively large ecdysial pore that faced the middle of the second segment of the antenna (Fig. 4A).

Short sensilla basiconica type 2. These sensilla located in the slight elevated sockets and were hemispherical in shape. The surface was smooth, the tip was blunt and without terminal pore, but with an ecdysial pore (Fig. 4B).

Sensilla basiconica

The sensilla basiconica were cones with thick basal shafts, blunt tips, and slightly raised sockets. A large number of tiny sensillar wall pores were observed. The two types of these sensilla, b.1 and b.2, were distinguished based on the length, distribution pattern of the wall pores, and the basal diameter.

Sensilla basiconica type 1. These sensilla were abundant with wrinkled wall pores and a circle of round ecdysial pores on the basal shaft. Each circle contained four to six round cuticular pores (Fig. 4C).

Sensilla basiconica type 2. These sensilla were cone-shaped with a round ecdysial pore on the blunt tips and wrinkled wall pores. The basal diameter and length were much smaller than those of b.1 (Fig. 4D).

Sensilla styloconica
These sensilla (sensilla styloconica type 1) were structured in two parts with smooth parts. The upper part of a sensillum styloconicum was the sensory cone with blunt tip without terminal pore and the lower part was the stylus which resembles a circular table in shape. The ratio of the length of the sensory cone and the length of the stylus was approximately 2:1 (Fig. 4E).

Sensilla chaetica

Overall, the characteristics of sensilla chaetica were similar, and these sensilla were slender, tall, and straight, similar to pointed spines with sharp tips, with smooth walls. All these sensilla were without sensory pores. Based on the morphological characteristics of the socket, and the length and basal diameter, these sensilla were separated into two types, i.e., sensilla chaetica type 1 and sensilla chaetica type 2.

Sensilla chaetica type 1. They had shallow, longitudinal grooves along the shafts and deep, round, flexible sockets (Fig. 2).

Sensilla chaetica type 2. They had smooth walls and swollen, tight sockets. The bases of the shafts were broad, but the apices were sharp. Compared with sensilla chaetica type 1, the length and basal diameter of sensilla chaetica type 2 were significantly smaller (Fig. 4F).

The distribution of sensilla

The distribution of sensilla on the antenna is shown in Fig. 4, and the schematic representation of the dorsoanterior aspect of the distribution of the sensilla on the antenna is shown in Fig. 10A. No sensilla were found on the first antennal segment. On the second segment, two sensilla chaetica (sensilla chaetica 1 and sensilla chaetica 2), one sensillum basiconicum type 1, one short sensillum basiconicum type 1, and one or two short sensilla basiconica type 2 were observed. The sensillum chaeticum type 1 was on the ventral surface, and the sensillum chaeticum type 2 was on the dorsal
surface, of the distal segment. Two sensilla basiconica type 1 located on the distal margin of the segment. The short sensillum basiconicum type 1 located between the sensillum chaeticum type 1 and the sensillum basiconicum type 1 on the ventral surface, and the short sensillum basiconicum type 2 distributed between the third segment and the short sensillum basiconicum type 1. On the third segment, one sensillum styloconicum type 1 was on the external, ventral surface, one sensillum basiconicum type 1 was on the ventral surface, and one sensillum basiconicum type 2 was on the dorsal surface. One short sensillum basiconicum type 1 was observed in the middle of the segment.

Maxillary palp

General morphology of the maxillary palp

The maxillary palp located on the palpifer and had two segments. The lengths of the larval maxillary palps of the five species are presented in Table 1. The first segment was cylindrical and the longest, and its shape resembled a conical frustum (Fig. 5).

Typology and morphology of sensilla

The typology of sensilla of the maxillary palps was not different among the five species of larvae. The types of sensilla on the maxillary palp included short sensilla basiconica, sensilla digitiformia, sensilla placodea, and sensilla styloconica (Fig. 6). The morphological characteristics of the sensilla are presented in Tables 2 and 4.

Short sensilla basiconica

Short sensilla basiconica type 3. They had inconspicuous sockets and smooth walls. The tips were always flattened and were blunt, with a terminal pore. The basal and apical diameters were approximately equal (Fig. 7A).
Short sensilla basiconica type 4. The basal shafts of these sensilla were thick and narrowed gradually to the tips, which were blunt and had a round terminal pore. The length of short sensilla basiconica type 4 was shorter than that of the other types (Fig. 7B).

Short sensilla basiconica type 5. Sensillum of this type had inconspicuous socket and blunt tip with a terminal pore (Fig. 7C).

Sensilla styloconica

The basal regions of these sensilla (sensilla styloconica type 2) were swollen, and the basal shafts were not transparent. The upper part was a cone with a blunt tip bearing a fractured apical pore. The ratio of the lengths of the upper and the lower parts was approximately 5:1 (Fig. 7D).

Sensilla digitiformia

Sensilla digitiformia were plate-like in shape and located on the bottom of a depression in the cuticle. The base was connected to the cuticle but the apex was separated. The walls of the sensilla had abundant, closely spaced, wrinkled wall pores (Fig. 7E).

Sensilla placodea

Sensilla placodea were oval in shape and located on the bottom of a depression in the cuticle, and the walls had closely spaced, wrinkled wall pores (Fig. 7F).

The distribution of sensilla

On the first segment of the maxillary palp, no sensilla were observed. On the dorsal surface of the second segment, one sensillum digitiformium and two sensilla placodea were observed. On the tip of the second segment, one sensillum styloconicum type 2, one short sensillum basiconicum type 3, five short sensilla basiconica type 4, and one sensillum basiconicum type 5 were observed. The sensillum styloconicum type 2 was on the inside of the tip, and the short sensillum basiconicum
type 3 was on the ventral surface of the tip. The short sensilla basiconica type 4 distributed in a

circle, and the short sensillum basiconicum type 5 was on the outside of the tip (Figs. 6, 10B).

Maxillary galea

General morphology of the maxillary galea

The maxillary galea had one segment and located on the inner side of the palpifer, with a shape

similar to a circular table. The lengths of the maxillary galeas are shown in Table 1.

Typology and morphology of sensilla

The types of sensilla on the galeas of the larvae included short sensilla basiconica, sensilla

styloconica, and sensilla chaetica. The morphological characteristics of those sensilla are shown in

Tables 2 and 5.

Short sensilla basiconica

Short sensilla basiconica type 6. These sensilla had swollen basal regions that gradually narrowed
to blunt and rounded tips without apical pores. The surface of the shafts was smooth with no wall
pore (Fig. 8A).

Short sensilla basiconica type 7. The basal regions of these sensilla were rigid and stout, with a
round ecdysial pore on the dorsal surface. The tips were blunt and often bifurcated (Fig. 8B).

Short sensilla basiconica type 8. For these sensilla, the morphological characteristics were
identical to those of short sensilla basiconica type 7, although the size was much smaller (Fig. 8C).

Sensilla styloconica

The stylus was a cylinder; the sensory cone had a blunt tip and an apparently round apical pore.

The ratio of the lengths of the sensory cone and the stylus was approximately 1:4 (Fig. 8D).

Sensilla chaetica
The sensilla chaetica (sensilla chaetica type 3) was flat and located in a sunken socket, which had a smooth surface. The basal and middle diameters were approximately the same, and gradually narrowed to a sharp tip without terminal pore (Fig. 8E).

The distribution of sensilla

On the apical portion of the galea, two sensilla styloconica type 3, three short sensilla basiconica (one short sensillum basiconicum type 6, short sensillum basiconicum type 7, and short sensillum basiconicum type 8), and one sensillum chaeticum type 3 were observed. The two sensilla styloconica type 3 distributed in the middle of the lobe, the short sensillum basiconicum type 6 was between the two sensilla styloconica type 3. The short sensillum basiconicum type 7 was close to the inner side of the ventral surface, and the short sensillum basiconicum type 8 located on the ventral surface. The sensillum chaeticum type 3 was on the dorsal surface of the lobe (Figs. 5, 10C).

Labial palp

General morphology of the labial palp

The labial palp located on the spinneret and was cone-shaped with only one segment. The lengths of the labial palps are shown in Table 1.

Typology and morphology of sensilla

Two types of sensilla were found on the labial palp, i.e., sensilla styloconica and short sensilla basiconica (Fig. 9). The morphological characteristics of them are shown in Tables 2 and 6.

Sensilla styloconica type 4

In contrast to sensilla styloconica type 3, the distal part of sensilla styloconica type 4 had a longer cone with a blunt tip with an apical pore. The ratio of the lengths of the upper and the lower parts
was approximately 3:1.

Short sensilla basiconica

These sensilla (short sensilla basiconica type 9) were cones with smooth surface and round, blunt tips without apical pore.

The distribution of sensilla

One sensillum styloconicum type 4 was observed on the ventral surface, and one short sensillum basiconicum type 9 was observed on the dorsal surface, on the apical region of the labial palp (Figs. 9, 10D).

Discussion

The sensory equipment is identical in the five species of larvae, despite 4 of them show inter-hosts migration and *Y. vicarius* does not. This might be because of hosts of *Y. vicarius* included elm, poplar, and other broadleaf trees, which have well-developed root systems that provide sufficient nutrition for growth and reproduction of the larvae. Therefore, we speculate that the larvae of *Y. vicarius* most likely transfer to a new host after the death of the old host.

Antenna

The typology, distribution, and quantity of larval antennal sensilla of the five species studied were similar to those of other lepidopteran larvae, Tineidae (Faucheux 1984), *H. nebulella* (Faucheur 1995), *G. molestia* (Song et al. 2014), and *C. sasakii* (Liu et al. 2011). However, other free living Lepidoptera such as *M. sexta* have one more type of sensilla, the sensillum campaniformium, on the base of the second segment of the antenna. But *M. sexta* don’t have sensillum which is similar to short sensilla basiconica type 2 (Kent et al. 1987). The single sensillum recording of Dethier
have shown that the antennal sensilla chaetica in larvae of Lepidoptera act as mechanoreceptors. They have a similar morphology to that of the sensilla chaetica in our study. When larvae move to a new host via the soil or the ground surface, sensilla chaetica may function to sense and avoid objects that cause damage to the head and antennae (Gao and Qin 1983; Hu et al. 1987; Zong et al. 2005; Wang et al. 2011). Sensilla chaetica type 1 of the five Cossidae species located on the ventral edge of the antenna, and its extreme length would allow the larvae to make initial contact with the external environment. Sensilla chaetica type 1 had loose and sunken sockets, that allowed them to move freely during the mechanoreception and avoid damages to the sensilla; therefore, larval responses to multi-faceted environments are facilitated. The sensilla chaetica type 2 located laterally on the antenna, and the function of these sensilla may be in detection of the lateral environment to avoid damage to the antenna and sensilla. The sensilla basiconica of the antennae of lepidopterans have been studied extensively, and these sensilla are likely to be involved in detecting plant volatiles and carbon dioxide (Dethier 1937; Dethier 1941; Morita and Yamashita 1961). The abundant wall pores on the surface of the sensilla basiconica of these five species suggested that they would be involved in the olfaction, according to Zacharuk and Shields (1991). During host transfer behaviors of these larvae, the sensilla basiconica may detect long-distance plant secondary metabolic substances and nutrients, which play an important role in the process of selecting a suitable host. A study by Schoonhoven (1967) on Dendrolimus pini (L., 1758), M. sexta and a study of Song et al. (2014) on G. molesta (Busck) have shown that sensilla morphologically similar to short sensilla basiconica type 1 and sensilla styloconica may react to temperature changes. For these larvae, these sensilla may be involved in the choice of suitable overwintering sites and new hosts, and in the determination of appropriate times to
transfer to roots to survive the winter.

Maxillary palp

On the tip of the maxillary palp, seven short sensilla basiconica and one sensillum styloconicum were observed with pores on apical parts. The distribution and quantity of the sensilla were similar to those of Tineidae (Faucheux 1984b), *H. nebulella* (Faucheux 1995), *G. molestata* (Song et al. 2014) and *C. sasakii* (Liu et al. 2011). Five short sensilla basiconica with apical pores and three short sensilla basiconica with wall pores have been observed in *H. armigera* (Tang et al. 2014).

The differences in the number and morphology of the sensilla indicated that the five species studied might engage in trunk boring. Short sensilla basiconica on the maxillary palp are widely regarded as tactile chemosensilla (Albert 1980; Stange and Stowe 1999; Song et al. 2014). In an electrochemical experiment on the maxillary palp of *C. fumiferana* by Albert (2003), both sensilla styloconica and short sensilla basiconica have been tested to react to carbohydrates, which suggests that these sensilla may be involved in feeding activities. The study of Dethier and Kuch (1971) has suggested that the sensilla on the maxillary palp play an important role in determining plant nutritional status and identifying secondary substances, such as sugars, amino acids, and salts. When the host is in a state of extreme weakness, the maxillary sensilla of the larvae may evaluate the nutritional status of the plant to determine whether to stay or migrate to a new host.

Sensilla digitiformia, which had consistent structures, were similar to those of other lepidopterous larvae (Faucheux 1984b, 1995, 1999; Grimes and Neunzig 1986; Keil 1996; Song et al. 2014).

Based on the research of Stange and Stowe (1999), sensilla digitiformia act as receptors for CO₂, although Albert (1980) has suggested that these sensilla may function in mechanoreception.

According to Stange and Stowe (1999), sensilla placodea may also be receptors for CO₂ and
function in olfaction. These sensilla may be important for host-migration behavior and for selecting a suitable host.

Maxillary galea

Grimes and Neunzig (1986) have studied the distribution and quantity of sensilla on the galeas of 41 species of lepidopteran larvae, including Prionoxystus sp., C. niponensis, and G. molesta. By contrast, the larvae of the five Cossidae species have one sensillum chaeticum, whereas the other species have three; however, the distribution and quantity of the other sensilla types are similar. In many other larvae, transmission electron microscopy of sensilla styloconica with apical pores has revealed four gustatory sensory neurons and a neuron for mechanoreception, which function in chemoreception and mechanoreception, respectively, and may play important roles in larval feeding (Albert 1980; Shields 2009; Tang et al. 2014). In electrophysiological studies of Albert (1980) on C. fumiferana, the sensilla have been shown to detect sugars, salt, amino acids, and plant secondary substances, which would allow a nutritional evaluation of the plant material and a subsequent adjustment of insect feeding behavior. Therefore, these sensilla may have a role in feeding and the reselection of a host for the larvae. Short sensilla basiconica, located between the two sensilla styloconica, have been referred to as sensilla basiconica CSB in the study of Grimes and Neunzig (1986). These might function in mechanoreception and in other interactions with the environment. In the study of Marnestra configurata, Shields (1994) has named the sensilla of this types “basiconic sensilla S”, and suggested they have the ability to detect temperature changes. Short sensilla basiconica type 2 and short sensilla basiconica type 3 have located ventral to the two sensilla styloconica, and, according to Shields (1994), they have tubular bodies that are assumed to act as mechanoreceptors for the detection of mechanical vibrations during feeding and eating.
and changes in the environment to protect them from mandibles. Additionally, short sensilla basiconica type 2 and short sensilla basiconica type 3 of the five Cossidae larvae might adjust the location of the sensilla styloconica to avoid injury during the processing and ingestion of food. Sensilla chaetica of the five Cossidae larvae might be mechanoreceptors that participate in detecting the environment and the hardness of the food to protect the galeas, and adjust the movement of the mandibles according to previous studies (Zacharuk and Shields 1991; Liu et al. 2011).

Labial palp

Sensilla quite similar with sensilla styloconica and short sensilla basiconica of the five Cossidae larvae have been also observed on the labial palps of *C. niponensis* and *G. molesta*, and named “sensillum styloconicum” and “sensillum chaeticum”, but their ultrastructure and function have not been defined (Liu et al. 2011; Song et al. 2014). Based on electrophysiological experiments with *C. fumiferana* and *H. nebulella*, the sensilla of these types, which are similar to these two sensilla in the present report, may act as mechanoreceptors (Albert 1980; Faucheux 1995). On the larvae of the five species, the labial palp was dorsal to the spinneret and located on the upper side of the throat; therefore, it might be used to detect the hardness of food before eating, and coordinate the movement of the mandible and the spinneret.

Conclusion

In the present paper, we investigated the distribution, typology, and quantity of sensilla on the antennae, maxillary palps, galeas, and labial palps of the five Cossidae species larvae. We also discussed the putative function of different sensilla in larval behaviors such as host migration: short sensilla basiconica might be gustatory receptors that act mostly as mechanoreceptors;
sensilla styloconica on antennae (which are aportal) might function as thermoreceptors, while
those on the other appendages (which are uniporous) might have a gustatory function; sensilla
basiconica might function as olfactory receptors. Our study could serve as a basis for further
studies on the feeding, self-protection, host-transfer behaviors, and electrophysiology of these
forest pests. Our study has showed that the sensillum equipment of larval antennae and mouthparts
is identical in the phytophagous insects (Albert 1980; Shields 1994, 2009; Faucheux 1995;
Goldsmith et al. 2014), the keratinophagous insects (Faucheux 1994a, 1999) and the wood boring
insects (this paper).
Acknowledgements

We greatly appreciated the help from the delicate work of Miss. Junna Shi in the Bio-research Center of Beijing Forestry University for the SEM test. The Fundamental Research Funds for The National Natural Science Foundation of China (Grant no. 31470651) supported this project.
References

1 Faucheux, M.J. 1984b. Morphologie des sensilles des pièces buccales des larves kératophages de
3 197-204.
5 Nat. Ouest Fr. (éd.) Nantes. pp. 296.
7 Goldsmith, A., Dey, S., Kalita, J., and Choudhury, R. 2014. Ontogeny of mouthpart sensilla of
9 120-132.
10 Grimes, L.R., and Neunzig, H.H. 1986. Morphological survey of the maxillae in last-stage larvae
12 Am. 79(3): 510-526.
13 Hua, B.Z., Zhou, Y., Fang, D.Q., and Chen, S.L. 1990. The Cossid Fauna of China (Lepidoptera:
17 Keil, T.A. 1996. Sensilla on the maxillary palps of Helicoverpa armigera caterpillars: in search of
18 the CO2-receptor. Tissue Cell, 28(6): 703-717.

Figure Legends

Figure 1. Ventral view of the heads of the five species

E. *Streltzoviella insularis*. A = antenna; L = labrum; LP = labial palp; Mx = maxilla; S = stemmata; Sp = spinneret.

Figure 2. General morphology of the antennae of the five species

Figure 3. Distribution of sensilla on the antennae of the five species

A. *Eogystia hippophaecolus*, left antenna. B. *Deserticossus artemisiae*, right antenna. C. *D. arenicola*, right antenna. D. *Yakudza vicarius*, right antenna. E. *Streltzoviella insularis* Staudinger, left antenna. 1-2 = short sensilla basiconica type 1-2; b.1 = sensilla basiconica type 1; b.2 = sensilla basiconica type 2; ch.1 = sensilla chaetica type 1; ch.2 = sensilla chaetica type 2; sty.1 = sensilla styloconica type 1.

Figure 4. SEM micrograph of sensilla on the antenna

A. Short sensilla basiconica type 1 with a subterminal pore. B. Short sensilla basiconica type 2 with a terminal pore. C. Sensilla basiconica type 1 with wall pores and ecdysial pores. D. Sensilla basiconica type 2 with wall pores and an ecdysial pore. E. Sensilla styloconica type 1. F. Sensilla chaetica type 2. In figures A, B, C and D, white arrows show ecdysial pore. In figures C and D, black arrows show wall pores.

Figure 5. General morphology of the maxillae, and the distribution of sensilla on maxillary galeas of the five species
A. *Eogystia hippophaecolus*, right maxilla.
B. *Deserticossus artemisiae*, right maxilla.
C. *D. arenicola*, right maxilla.
D. *Yakudza vicarius*, left maxilla.
E. *Streltzoviella insularis*, right maxilla.

I = 1st segment; II = 2nd segment; G = maxillary galea; MP = maxillary palp; 6–8 = Short sensilla basiconica type 6–8; sty.3 = sensilla styloconica type 3; ch.3 = sensilla chaetica type 3.

3. D = sensilla digitiformia; P = sensilla placodea.

Figure 6. Distribution of sensilla on the maxillary palps of the five species

A. *Eogystia hippophaecolus*, left maxillary palp.
B. *Deserticossus artemisiae*, left maxillary palp.
C. *D. arenicola*, left maxillary palp.
D. *Yakudza vicarius*, left maxillary palp.
E. *Streltzoviella insularis*, right maxillary palp.

3–5 = short sensilla basiconica type 3–5; sty.2 = sensilla styloconica type 2; D = sensilla digitiformia; P = sensilla placodea.

Figure 7. Sensilla on the maxillary palp

A. Short sensilla basiconica type 3 with terminal pore.
B. Short sensilla basiconica type 4 with terminal pore.
C. Short sensilla basiconica type 5 with terminal pore.
D. Sensilla styloconica type 2 with terminal pore.
E. Sensilla digitiformia with cuticular pores.
F. Sensilla placodea with cuticular pores.

In figures A, B, C and D, white arrows show ecdysial pore. In figures E and F, black arrows show wall pores.

Figure 8. Sensilla on maxillary galea

A. Short sensilla basiconica type 6.
B. Short sensilla basiconica type 7, the white arrow shows the ecdysial pore.
C. Short sensilla basiconica type 8, the white arrow shows the ecdysial pore.
D. Sensilla styloconica type 3, the black arrow shows the terminal pore.
E. Sensilla chaetica type 3.

Figure 9. Distribution of sensilla on the labial palps of the five species

A. *Eogystia hippophaecolus*.
B. *Deserticossus artemisiae*, left labial palp.
C. *D. arenicola*, left labial palp.
Figure 10. Schematic representation of the antenna, maxillary palp, galea and labial palp

A. Dorsoanterior aspect of the right mesal antenna. B. Dorsoanterior aspect of the right mesal maxillary palp. C. Dorsoanterior aspect of the left mesal maxillary galea. D. Dorsoposterior aspect of the left mesal labial palp. 1-9 = short sensilla basiconica type 1-9; b.1 = sensilla basiconica type 1; b.2 = sensilla basiconica type 2; ch.1 = sensilla chaetica type 1; ch.2 = sensilla chaetica type 2; sty.1-4 = sensilla styloconica type 1-4; D = Sensilla digitiformia; P = sensilla placodea.
Figure 1. Ventral view of the heads of the five species

209x226mm (300 x 300 DPI)
Figure 2. General morphology of the antennae of the five species

209x59mm (300 x 300 DPI)
Figure 3. Distribution of sensilla on the antennae of the five species

209x140mm (300 x 300 DPI)
Figure 4. SEM micrograph of sensilla on the antenna

209x133mm (300 x 300 DPI)
Figure 5. General morphology of the maxillae, and the distribution of sensilla on maxillary galeas of the five species

209x140mm (300 x 300 DPI)
Figure 6. Distribution of sensilla on the maxillary palps of the five species

209x143mm (300 x 300 DPI)
Figure 7. Sensilla on the maxillary palp

209x171mm (300 x 300 DPI)
Figure 8. Sensilla on maxillary galea

209x50mm (300 x 300 DPI)
Figure 9. Distribution of sensilla on the labial palps of the five species

209x135mm (300 x 300 DPI)
Figure 10. Schematic representation of the antenna, maxillary palp, galea and labial palp

224x241mm (300 x 300 DPI)
Tables

Table 1 The lengths (µm) of antennae, maxillary palps, galeas, and labial palps of five species

<table>
<thead>
<tr>
<th>Species</th>
<th>Lengths of appendages¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-I</td>
</tr>
<tr>
<td>E. hippophaecolus</td>
<td>134.2±17.4</td>
</tr>
<tr>
<td>D. artemisiae</td>
<td>116.9±10.6</td>
</tr>
<tr>
<td>D. arenicola</td>
<td>110.2±5.4</td>
</tr>
<tr>
<td>Y. vicarius</td>
<td>109.6±15.4</td>
</tr>
<tr>
<td>S. insularis</td>
<td>101.2±9.1</td>
</tr>
</tbody>
</table>

¹ A-I, A-II, and A-III are segments 1–3 of the antenna, respectively; M-I and M-II are segments 1 and 2 of the maxillary palp; G is the maxillary galea; and L is the labial palp.
Table 2 Comparative morphology and distribution of all types of sensilla on the antennae, maxillary palps, galeas, and labial palps of the five species

<table>
<thead>
<tr>
<th>Type</th>
<th>Distributed on body part</th>
<th>Morphological characteristics of sensilla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wall</td>
</tr>
<tr>
<td>s.b.1</td>
<td>antenna</td>
<td></td>
</tr>
<tr>
<td>s.b.2</td>
<td>antenna</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.b.3</td>
<td>maxillary palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.b.4</td>
<td>maxillary palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.b.5</td>
<td>maxillary palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.b.6</td>
<td>maxillary galea</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.b.7</td>
<td>maxillary galea</td>
<td>Ecdysial pore</td>
</tr>
<tr>
<td>s.b.8</td>
<td>maxillary galea</td>
<td>Ecdysial pore</td>
</tr>
<tr>
<td>s.b.9</td>
<td>labial palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>b.1</td>
<td>antenna</td>
<td>wall pores and ecdysial pores</td>
</tr>
<tr>
<td>b.2</td>
<td>antenna</td>
<td>Wall pores and one ecdysial pore</td>
</tr>
<tr>
<td>sty.1</td>
<td>antenna</td>
<td>Smooth</td>
</tr>
<tr>
<td>sty.2</td>
<td>maxillary palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>sty.3</td>
<td>maxillary galea</td>
<td>Smooth</td>
</tr>
<tr>
<td>sty.4</td>
<td>labial palp</td>
<td>Smooth</td>
</tr>
<tr>
<td>s.d</td>
<td>maxillary palp</td>
<td>Wall pores</td>
</tr>
<tr>
<td>s.p</td>
<td>maxillary palp</td>
<td>Wall pores</td>
</tr>
<tr>
<td>ch.1</td>
<td>antenna</td>
<td>Shallow grooves</td>
</tr>
<tr>
<td>ch.2</td>
<td>antenna</td>
<td>Smooth</td>
</tr>
<tr>
<td>ch.3</td>
<td>maxillary galea</td>
<td>Smooth</td>
</tr>
</tbody>
</table>
Table 3 The lengths and diameters (µm) of all sensilla types on the antennae

<table>
<thead>
<tr>
<th>Type²</th>
<th>Length</th>
<th>Diameter</th>
<th>Length</th>
<th>Diameter</th>
<th>Length</th>
<th>Diameter</th>
<th>Length</th>
<th>Diameter</th>
<th>Length</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.b.1</td>
<td>10.2±1.6</td>
<td>3.1±0.2</td>
<td>10.3±3.0</td>
<td>3.1±0.9</td>
<td>9.0±2.5</td>
<td>3.0±0.4</td>
<td>12.2±3.4</td>
<td>3.2±0.5</td>
<td>10.1±3.2</td>
<td>3.0±0.5</td>
</tr>
<tr>
<td>s.b.2</td>
<td>3.7±0.9</td>
<td>4.1±0.6</td>
<td>2.4±0.6</td>
<td>3.7±0.6</td>
<td>3.1±0.7</td>
<td>4.7±1.1</td>
<td>3.1±0.6</td>
<td>4.1±1.0</td>
<td>1.8±0.5</td>
<td>2.8±0.8</td>
</tr>
<tr>
<td>b.1</td>
<td>19.6±3.6</td>
<td>13.5±3.0</td>
<td>16.2±3.9</td>
<td>13.3±3.0</td>
<td>18.7±3.6</td>
<td>14.2±2.9</td>
<td>23.2±4.4</td>
<td>13.1±3.1</td>
<td>19.1±3.6</td>
<td>11.3±2.9</td>
</tr>
<tr>
<td>b.2</td>
<td>25.7±0.8</td>
<td>22.4±0.4</td>
<td>3.3±0.9</td>
<td>2.8±0.5</td>
<td>3.6±0.7</td>
<td>3.3±0.3</td>
<td>4.2±0.8</td>
<td>3.6±0.4</td>
<td>3.2±0.9</td>
<td>3.0±0.6</td>
</tr>
<tr>
<td>sty.1</td>
<td>28.6±4.3</td>
<td>10.2±1.1</td>
<td>23.8±5.9</td>
<td>8.1±1.3</td>
<td>20.0±5.7</td>
<td>10.0±1.0</td>
<td>27.0±1.9</td>
<td>9.2±1.5</td>
<td>21.7±1.3</td>
<td>7.7±1.1</td>
</tr>
<tr>
<td>ch.1</td>
<td>545.0±47.4</td>
<td>19.7±2.0</td>
<td>492.6±97.1</td>
<td>12.7±2.0</td>
<td>516.5±32.9</td>
<td>16.9±1.8</td>
<td>535.5±69.8</td>
<td>17.5±2.8</td>
<td>471.0±55.1</td>
<td>12.3±3.8</td>
</tr>
<tr>
<td>ch.2</td>
<td>29.6±4.6</td>
<td>4.7±0.4</td>
<td>16.4±6.1</td>
<td>3.1±0.7</td>
<td>18.6±4.5</td>
<td>4.1±0.7</td>
<td>25.4±6.2</td>
<td>3.7±0.9</td>
<td>16.8±4.0</td>
<td>3.0±1.1</td>
</tr>
</tbody>
</table>

¹ All sensilla of each type on the antenna of at least ten larvae were measured; means ± standard deviations are shown. ² s.b.1 = short sensilla basiconica type 1; s.b.2 = short sensilla basiconica type 2; b.1 = sensilla basiconica type 1; b.2 = sensilla basiconica type 2; sty.1 = sensilla styloconica type 1; ch.1 = sensilla chaetica type 1; ch.2 = sensilla chaetica type 2.
Table 4 The lengths and diameters (µm) of all sensilla types on the maxillary palps

<table>
<thead>
<tr>
<th>Type²</th>
<th>E. hippophaecolus</th>
<th>D. artemisiae</th>
<th>D. arenicola</th>
<th>Y. vicarious</th>
<th>S insularis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
</tr>
<tr>
<td>s.t.b.3</td>
<td>9.0±0.6</td>
<td>4.1±0.7</td>
<td>4.7±0.9</td>
<td>2.9±0.4</td>
<td>6.5±1.2</td>
</tr>
<tr>
<td>s.t.b.4</td>
<td>6.8±0.8</td>
<td>4.6±0.5</td>
<td>4.5±0.9</td>
<td>3.1±0.3</td>
<td>5.3±0.8</td>
</tr>
<tr>
<td>s.t.b.5</td>
<td>10.9±0.9</td>
<td>4.5±0.4</td>
<td>5.9±1.2</td>
<td>3.1±0.3</td>
<td>8.0±1.6</td>
</tr>
<tr>
<td>sty.2</td>
<td>11.3±1.1</td>
<td>5.1±0.4</td>
<td>6.1±1.5</td>
<td>5.0±0.7</td>
<td>8.2±1.2</td>
</tr>
<tr>
<td>s.d</td>
<td>6.5±1.2</td>
<td>12.8±1.1</td>
<td>7.9±1.0</td>
<td>6.8±1.5</td>
<td>9.8±2.3</td>
</tr>
<tr>
<td>s.p</td>
<td>4.6±0.3</td>
<td>5.4±0.4</td>
<td>3.5±0.8</td>
<td>5.3±0.1</td>
<td>3.4±0.7</td>
</tr>
</tbody>
</table>

¹ All sensilla of each type on the maxillary palp of at least ten larvae were measured; means ± standard deviations are shown. ² s.b.3-5 = short sensilla basiconica type 3-5; sty.2 = sensilla styloconica type 2; s.d = sensilla digitiformia; s.p = sensilla placodea.
Table 5 The lengths and diameters (µm) of all sensilla types on the maxillary galeas

<table>
<thead>
<tr>
<th>Types²</th>
<th>E. hippophaecolus</th>
<th>D. artemisiae</th>
<th>D. arenicola</th>
<th>Y. vicarious</th>
<th>S. insularis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
</tr>
<tr>
<td>s.t.b.6</td>
<td>16.2±1.8</td>
<td>3.9±0.6</td>
<td>13.7±1.9</td>
<td>4.4±0.1</td>
<td>13.4±3.4</td>
</tr>
<tr>
<td>s.t.b.7</td>
<td>30.8±1.6</td>
<td>14.6±1.3</td>
<td>23.2±5.0</td>
<td>9.1±2.2</td>
<td>27.0±4.0</td>
</tr>
<tr>
<td>s.t.b.8</td>
<td>16.5±1.8</td>
<td>12.2±1.4</td>
<td>10.5±3.5</td>
<td>7.7±1.6</td>
<td>13.3±3.6</td>
</tr>
<tr>
<td>sty.3</td>
<td>35.0±0.8</td>
<td>18.1±2.0</td>
<td>22.9±3.4</td>
<td>13.4±1.7</td>
<td>25.0±4.2</td>
</tr>
<tr>
<td>ch.3</td>
<td>48.7±5.5</td>
<td>12.9±1.2</td>
<td>21.7±2.9</td>
<td>6.5±2.4</td>
<td>43.8±5.4</td>
</tr>
</tbody>
</table>

¹ All sensilla of each type on the maxillary galea of at least ten larvae were measured; means ± standard deviations are shown. ² s.b.6-8 = short sensilla basiconica type 6-8; sty.3 = sensilla styloconica type 3; ch.3 = sensilla chaetica type 3.
Table 6 The lengths and diameters (µm) of all sensilla types on the labial palps

<table>
<thead>
<tr>
<th>Types</th>
<th>E. hippochaecolus</th>
<th>D. artemisiae</th>
<th>D. arenicola</th>
<th>Y. vicarious</th>
<th>S insularis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
</tr>
<tr>
<td>s.t.b.9</td>
<td>12.1±1.8</td>
<td>6.1±1.1</td>
<td>8.0±1.0</td>
<td>4.8±0.5</td>
<td>10.9±3.0</td>
</tr>
<tr>
<td>sty.4</td>
<td>59.9±8.9</td>
<td>24.1±4.7</td>
<td>40.6±6.0</td>
<td>13.4±1.5</td>
<td>48.5±9.3</td>
</tr>
</tbody>
</table>

1 All sensilla of each type on the labial palp of at least ten larvae were measured; means ± standard deviations are shown. 2 s.b.9 = short sensilla basiconica type 9; sty.4 = sensilla styloconica type 4.