# Design Philosophy and Requirements of Granular Wear Surface Thickness for Bridges Subjected to Extreme Truck Load

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Civil Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>cjce-2017-0023.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>21-May-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Oudah, Fadi; Amec Foster Wheeler, Civil/Structural/Architectural Norlander, Glen; Amec Foster Wheeler, Civil/Structural/Architectural</td>
</tr>
<tr>
<td>Is the invited manuscript for consideration in a Special Issue?:</td>
<td>N/A</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Gravel, Mechanistic Design, Mines, Wear Surface, Haul Truck</td>
</tr>
</tbody>
</table>
Design Philosophy and Requirements of Granular Wear Surface Thickness for Bridges Subjected to Extreme Truck Load

Fadi Oudah, Ph.D.¹ and Glen Norlander, P.Eng.²

¹Structural Engineering Specialist, AMEC Foster Wheeler, Calgary, Alberta, Canada. E-mail: fadi.oudah@amecfw.com

²Civil/Structural/Architectural Manager, AMEC Foster Wheeler, Calgary, Alberta, Canada. E-mail: glen.norlander@amecfw.com

ABSTRACT

With the increasing demand to build bridge systems to transport extremely heavy trucks in the mining industry, advancements in the current bridge design provisions are needed to account for the extraordinary weight and configuration of the mining trucks. There are no design provisions specifically developed to determine the granular wear surface thickness for haul road bridges. This research study proposed a design philosophy for bridge gravel wear surface design and developed a set of provisions for possible inclusion in international bridge and pavement codes. Three design requirements were developed, among which are two compulsory requirements and one optional requirement. The two compulsory design requirements include: Maintain gravel cohesion, and prevent concrete deck cracking during the passage of the design vehicle. The optional design requirement is: Minimize concrete deck cracking during the rare event of truck braking. Design recommendations and design aids pertaining to each design requirement based on detailed analytical modeling.

Keywords: Design Aids, Finite Element, Gravel, Mechanistic Design, Mines, Haul Truck, Wear Surface
Introduction

The growing demand to increase production while reducing cost in the mining industry promotes the need to design and construct bridges that convey extremely heavy mine haul trucks from the ore to the processing facility via the shortest route. In addition to designing for extreme static and impact loads induced by these heavy trucks, determining the thickness of the gravel wear coarse layer presents a major design challenge (Oudah et al. 2016; Oudah and Norlander 2016). Maintenance of the gravel surfaced haul roads supporting haul trucks requires frequent grading to sustain the original surface sections and profiles. This operation would be somewhat dysfunctional should the gravel surface become discontinuous when approaching the concrete deck of a bridge. In addition, a required depth of gravel over a bridge deck is beneficial in limiting the concentration of wheel loading and thus reducing the punching shear imposed on the concrete decks under the tires.

AMEC Foster Wheeler (AMEC FW) Oil and Gas Calgary Office has been involved in the design of a bridge system subjected to extraordinary vehicle load at one of Alberta’s Oil Sands mines. The bridge transports the world’s heaviest mining truck CAT 797 (> 600 ton). Aside from the complex design of the 135 m three-span bridge, the design of the gravel wear surface was a challenging task. Extensive literature review and consultation with bridge experts were conducted to examine the principle design parameters of the bridge wear surface. The collected information with this regard revealed the following:

- Research regarding the response of bridges subjected to extreme load is scarce.
- North American design codes do not include guidelines regarding the design of gravel wear surface subjected to extreme load.
- Surveying haul road bridges in North America suggested that the current practice of wear surface thickness design is based on subjective judgement.
Structural analysis of the bridge designed by AMEC FW indicated a significant contribution of the total maximum bridge moment and shear was attributed to the wear surface self-weight. For example, the contribution of the moment induced by the gravel weight varied from 13% to 40% of the total design moment for a 250 mm and 1250 mm thick gravel layer, respectively, when placed on a representative composite steel girder bridge configuration. It was, therefore, decided to conduct a rational design procedure to suggest a wear surface thickness that can provide a robust performance while imposing the smallest impact to the overall moments and shears. The Special Structures group at AMEC FW Calgary Office conducted a pioneering investigation to articulate the design philosophy for a bridge gravel wear surface. Design aids were developed for bridge systems conveying extremely heavy mining trucks for use in design and for possible inclusion in the North American Design Codes (CSA-S6, AASHTO LRFD, and AASHTO). The design aids provide simple, yet rational tools for design engineers in the mining industry.

Literature Review

Haul Road Surface Construction Material

Most mines do not use imported materials for haul road construction to minimize the construction cost. Survey results also show that 82% of mines use crushed run of mine (waste) for road surface, 36% use crushed pit run gravel, while the remainder of mines use shale, plant coarse reject, crushed sandstone or other material (Tannant and Regensburg 2001).

The key parameters in selecting the road surface material are the road adhesion and rolling resistance factors (Thompson and Visser 2000). The former factor refers to the resistance acting between the road and tire, while the latter refers to the amount of drawbar pull or tractive effort required to overcome the retarding effect between the haul truck tires and the
ground. Tractive effort is typically expressed in terms of percent road grade or in terms of resistance force as a percentage of the Gross Vehicle Operating Weight (GVOW). A great number of surface mining operations in North America are utilizing gravel since it offers a stable roadway, when constructed and maintained properly, that resists deformation and provides a relatively high coefficient of road adhesion, 0.55 to 0.85 (Kaufman and Ault 1977), and low rolling resistance, 2.0 to 2.7% of road grade (Tannant and Regensburg 2001). Frequent road maintenance is required after a haul road surface is constructed. Most of the maintenance consists of periodic grading to remove small ruts and potholes that are inevitably created by passing traffic (Collins et al. 1987; Thompson and Visser 2006).

**Mining Trucks**

The size and capacity of haul trucks used in surface mines has grown significantly over the last decade from trucks capable of moving 20 tons of material to vehicles that transport as much as 400 tons. Truck payload capacity follows the rapid advancement in tire technology for larger trucks. A variety of haul trucks for ore and waste transportation are used by different mines. The Oil Sand mines use the largest trucks, namely; CAT 777 (100 ton), CAT 793 (240 ton), Komat’su 830E (240 ton), Komat’su 930E (320 ton or 340 ton), and CAT 797 (623 ton). Coal mines typically use trucks with smaller capacities, approximately 220 ton, while smaller mining operations use trucks with payload capacities under 110 ton (Tannant and Regensburg 2001).

Large haul trucks typically have two axles with four tires on the rear axle to provide better manoeuvrability and a tighter steering radius. The design of tires is the limiting factor in the design of larger haul trucks, as larger gross weights imply higher load per tire (reaching up to 100 ton per tire).
Construction Practices versus Design Methods

The design of haul roads has not advanced at the same rate as the rapid development in the haul truck payload. Road-building technology from the early 70s is still being practiced today (Kaufman and Ault 1977). Haul road designs were entirely empirical until the early 1980s when the California Bearing Ratio (CBR) cover thickness design technique emerged. Despite the empirical nature of the technique, a mathematical approach to the calculation of the wear surface thickness was derived. This conventional design approach characterizes the bearing capacity of a given soil layer as a percentage of the bearing capacity of a standard-crushed aggregate (Thompson and Visser 1996; Thompson 1996). The bearing capacity of each layer is determined in accordance with ASTM D1883. The soil thickness is calculated based on the wheel load and the soil CBR ratio. The CBR approach is simple, but it encounters numerous disadvantages. The method assumes a constant elastic modulus for the layers of different materials, although each material has its own engineering properties. It is based fundamentally on empirical results applied to public roads subjected to a maximum axle load of 80 kN.

Developments over recent decades have offered an opportunity for more rational-based and rigorous haul road design procedures. The Mechanistic Design approach was developed based on the theories of mechanics and relates the road structural behavior and performance to traffic loading and environmental influences (Thompson and Visser 1997a; Thompson and Visser 1997b). This method is a hybrid, for practicality purposes, in the sense that empirical models are used to fill in the gaps that exist between the theory of mechanics and the performance of the road. Finite Element (FE) layered elastic models are used to examine the distribution of stress and strains within the soil layers in the Mechanistic design approach. The vertical stress and strain are limited to predefined critical limits. The critical stress corresponds to the ultimate compressive capacity of the gravel layer while the critical strain...
corresponds to the strain at which the gravel starts to lose structural integrity and degrades. The modulus of resilience, required to define the elastic properties of the road material, can be determined empirically using the AASHTO 1993 code, repeated load lab testing, or from back-analysis of in-situ Falling Weight Deflectometer (FWD) testing.

**Design Philosophy**

The proposed philosophy of designing the thickness of the gravel wear surface subjected to an extreme truck load is composed of fulfilling two compulsory requirements, and the optional fulfillment of a third requirement;

- **Compulsory requirement No. 1: Maintain gravel cohesion and integrity.** This design requirement is concerned with determining the minimum gravel dry density that will prevent the loss of the gravel soil integrity under the combined action of tire load and increased water content in the gravel layer.

- **Compulsory requirement No. 2: Prevent concrete deck cracking during the passage of the design vehicle.** This design requirement is concerned with maintaining an uncracked concrete deck during the passage of the design vehicle at a constant speed (i.e. primarily prevent punching shear of the concrete deck due to tire load).

- **Optional requirement No. 3: Minimize concrete deck cracking during the rare event of truck braking.** Industrial traffic typically travels at a constant speed with a predetermined frequency. No traffic jam or congestion is anticipated to occur in industrial traffic. Braking of industrial traffic over the bridge would typically take place in emergency events such as vehicle drifting. Depending on the site-specific conditions and the bridge design criteria, the design engineers have to determine the applicability of this design requirement and the necessity of implementing it in the design of the bridge. This optional design requirement prevents excessive concrete
deck cracking and ensures that the crack width is maintained below the bridge code
design requirements during the braking event. Minimizing the concrete deck cracking,
rather than preventing it from happening, was determined as an appropriate
proportional response to the extreme rare event of vehicle braking.

The above mentioned design requirements were investigated analytically in this research. The
first design requirement was established using the Mechanistic Design approach. The second
and third design requirements were established via Finite Element simulation of the tire load
applied to a bridge wear surface. The detailed descriptions of the previously mentioned
approaches in relation to the design requirements are discussed in the following sections.

**Design Vehicle**

The work presented herein was conducted based on the vehicular characteristics of the CAT
797 (Caterpillar 2013), which is typically used in Canada’s Oil Sand mining industry. The
623 ton haul truck represents the heaviest vehicle conveying ore and waste in Western
Canada. The configuration of the design vehicle is shown in Figure 1. The specified GVOW
of the two axle truck is 623 ton with a load per tire of 104 ton. The foot print area and tire
pressure represent two important elements in the design of wear surface depth. The tires of
the CAT797 truck (59/80R63), manufactured by Michelin or Bridgestone, have a foot print,
approximated as rectangle, of 1.15 m x 1.5 m and an inflation pressure of 600 kPa. The high
tire pressure places great stresses on the road surface while the large foot print area induces a
stress bulb extending deep into the wear layer resulting in the need for a well-designed and
well-compacted surface layer with sufficient bearing capacity and stiffness.
Design Requirement No. 1: Maintain gravel cohesion and integrity

The Mechanistic design approach was implemented to study the influence of varying both the thickness and the dry density (or water content) of the wear surface on the gravel cohesion. The fundamentals of this method, primarily used in the design of road pavement, are also applicable for the design of a gravel layer placed on a bridge concrete deck. The method controls the vertical stresses and strains in the gravel layer below critical limits. Two parameters are controlled by the Mechanistic Design approach; compressive stress and compressive strain in the gravel layer under the tire. The former parameter is concerned with the bearing capacity of the soil while the latter is concerned with the cohesion of the soil. In this context, cohesion is defined as the ability of the soil to maintain its integrity and it is controlled by the strain and stress state in the gravel wear surface layer. If the stress and/or strain exceed threshold values, the soil loses its cohesion and can no longer support the vehicle weight. The results drawn from this analysis will be used to suggest a minimum gravel dry density that is needed to sustain the functionality of the wear surface.

For well-compacted good quality gravel, the bearing capacity should not be a concern due to the low compressive stress applied onto the gravel layer. In fact, test results indicate a stress factor of safety around 6 for a typical crushed-aggregate surface layer (Tannant and Regensburg 2001). An upper compressive strain limit of 0.002 is generally adopted for design purposes while strains exceeding 0.0025 are usually associated with unacceptable structural performance (Tannant and Regensburg 2001).

A comprehensive sensitivity analysis was conducted to examine the influence of several design parameters on the variation of the vertical compressive strain in the gravel layer. The following parameters were considered in the sensitivity analysis: Concrete deck thickness, concrete compressive strength, gravel density, gravel layer thickness, and gravel-concrete.
deck interaction. The concrete deck thickness ranges between 500 mm and 600 mm. The concrete compressive strength ranges between 40 MPa and 60 MPa. Three gravel dry densities were considered; 98% (target compaction level), 95% and 92%. The decrease in the gravel dry density simulates the poor quality compaction or increase in water content. The gravel layer thickness ranges between 200 mm to 1500 mm. Unlike the conventional design of haul mine design roads, the gravel layer is resting on top of a concrete deck in bridges. Two extreme conditions were considered to simulate the gravel-concrete deck interaction; Full adhesion and No adhesion. The former condition corresponds to the situation in which the stresses are fully transferable between the gravel and the concrete deck, while the latter corresponds to the situation in which there is no traction between the two layers. The latter condition is also applicable when water is trapped between the concrete and gravel layer due to poor drainage.

**Mechanistic Design Approach**

**Geometry and Boundary Conditions**

Two-D FE models were developed and used to examine the strain distribution as shown in Figure 2. The gravel layer subjected to the tire load of the rear axle was considered in the FE simulation since it represents the most critical region. Due to the symmetric nature of the wheel loading about the longitudinal axes of the vehicle, only two tires were modeled. The applied tire pressure was 600 kPa based on the maximum tire inflation pressure of 59/80R63 tires used in CAT 797 trucks. The boundaries of the FE model extended for 1.0 times the width of the tire measured from the outside edges of the tire foot print (Tannat and Regensburg 2001). The width of the FE model was determined based on a sensitivity analysis. The stress bulb vanishes near the side boundaries of the model, and hence, the model implicitly accounts for the confinement effect. Mesh sensitivity analysis was
conducted to optimize the mesh density. Fully integrated plane strain linear brick elements were used in modeling the system.

In the Full adhesion FE model, both the gravel layer and the concrete deck were modeled with a perfect bond at the gravel-concrete interface i.e. full transfer of stresses between the two layers. The concrete deck was supported by roller supports. In the No adhesion FE model, only the gravel layer was modeled and it was supported by roller supports to simulate the sliding of the gravel layer over a stiff surface i.e. concrete deck.

Material Constitutive models

The modulus of elasticity, Poisson’s ratio, and unit density were 330 MPa (Tannant and Regensburg 2001), 0.4 (Tannant and Regensburg 2001), and 2150 kg/m$^3$ (Van Wieren and Anderson 1990), respectively, for the gravel layer. The modulus of elasticity of the concrete deck was calculated as a function of the concrete compressive strength $f'_c$ (CSA-S6-14). The Poisson’s ratio and unit density of the concrete material were 0.2 and 2400 kg/m$^3$ (Wight and MacGregor 2007), respectively.

Results and Discussion

Varying the thickness and the compressive strength of the concrete deck was found to have negligible effect on the response of the models, and hence, their effect is not examined in the remainder of this study. The decrease in the unit dry density of the gravel layer and the concrete deck-gravel interaction have significant impacts on the system response. The variation of the vertical compressive strain in the gravel layer as a function of the gravel layer thickness and the gravel-concrete deck interface assumption are shown in Figures 3-5. Two curves were plotted in each figure; with concrete deck (full adhesion with concrete) and without concrete deck (no adhesion with concrete). Assuming that the applied stresses on the gravel surface fully transfers to the concrete deck yields 33%, on average, lower maximum
vertical strain than if the no adhesion between the two layers was assumed. The no adhesion
with concrete curve represents the upper bound solution while the full adhesion represents the
lower bound solution to the problem. It is believed that the real behavior is somewhat in
between those two extreme boundary condition scenarios.

Requirement No. 1: Maintain gravel cohesion and integrity implies maintaining the strain
range, bounded by the extreme boundary condition scenarios, below the critical strain limit of
0.002. The strain range is lower than the critical strain limit in both the 98% and the 95% dry
density but higher than the critical strain for the 92% compaction. The change in the unit
density is manifested by the reduction of the gravel modulus of elasticity (an 8% drop in dry
density leads to a 37% drop in the gravel modulus of elasticity (Hopkins et al. 2007)). The
increase in the thickness of the gravel layer has a minor effect on decreasing the strain range.
The granular surface layer is recommended to meet the test requirements of MicroDeval loss
test to ensure durability requirements. Furthermore, high resistance to impact and abrasion is
a mandatory requirement for the selection and quality-control of the granular surface
material.

It was concluded that varying the wear surface thickness has a negligible influence on its
cohesion while the gravel unit dry density has the most significant impact on the response of
the system. Consequently, the Mechanistic design approach does not predict a minimum
gravel thickness. The wear surface granular layer is a manufactured product, and the water
contact can be typically controlled to achieve a minimum of 100% to 98% compaction level.
Nonetheless, severe weather conditions, poor drainage system, or poor bridge maintenance
may increase the water contact in the wear surface layer, which leads to a drop in the
compaction level. The analysis results suggest that the wear surface shall be compacted to at
least a 98% compaction level, while the dry density of the gravel layer should not drop
beyond 95% of Standard Proctor maximum dry density at any time during the surface life of
the bridge.

**Design Requirement No. 2: Prevent concrete deck cracking during the**

**passage of the design vehicle**

A primary purpose of using a granular wear surface on the bridge deck is to distribute wheel
loads over a greater area in addition to providing continuity of surface with the haul road.
Load distribution is necessary to avoid areas of stress concentrations and punching shear
failure of the concrete deck due to elevated tensile stress within the concrete deck. Advances
in computational mechanics and in the computers available for performing the calculations
have greatly improved our ability to examine the road surface response under moving static
and dynamic vehicular load. Detailed FE analysis was conducted to determine the impact of
gravel thickness on the tri-axial stress state in the gravel layer and the concrete bridge deck.
Sensitivity analysis was conducted with regard to the concrete deck thickness, gravel layer
thickness, and concrete deck post-tensioning to develop design aids that serve the purpose of
this design requirement.

**Finite Element Approach**

**Geometry and Boundary Conditions**

Representative FE models were developed using LS-DYNA software to examine the
application of the tire load on the response of the gravel layer and the concrete deck. The
geometry and the boundary conditions of the FE models are shown in Figure 6 and 7
respectively. The plane area of the FE models was 6 m x 6 m. The thickness of the concrete
deck varied from 300 mm to 500 mm, while the thickness of the gravel layer varied from 400
mm to 1500 mm. The bridge girder spacing was 3 m, which represents the typical girder
spacing in bridges used to transport industrial traffic. The vertical translational degrees of
freedom were constrained at two parallel lines at the deck soffit resembling the boundary condition imposed by the bridge girders. Similarly, roller supports were positioned at the transverse and longitudinal boundaries of the gravel layer in order to simulate the confining effect of adjacent gravel volume. The concrete deck and the gravel layer were modeled using constant stress solid elements with an hour glassing option. Mesh sensitivity analysis was used to determine the optimum number of elements in the model.

The Michelin 59/80R63 tire consists of a tread, carcass, belts, bead, and wheel ring. Only the tread, the belts, and the wheel ring were modeled since they control the stiffness and the response of the moving tire as shown in Figure 8. The wheel ring was modeled as rigid elements. The tread belts, and wheel ring were modeled using Belytschko-Tsay shell elements with two through-section integration points. The thicknesses of the tread, belt, and wheel ring were 127 mm, 20 mm, and 20 mm, respectively, based on design specifications (Bridgestone 2015). The truck was positioned in the middle of the gravel and concrete FE models to produce the maximum bending on the concrete deck.

The interaction between the concrete and gravel layers was modeled as a surface-to-surface contact with a coefficient of friction of 0.55 (Paikowsky et al. 2010). The coefficient of friction of the tire-gravel interface was 0.35 (Noon 1994). The equivalent post-tensioning stress applied to the concrete deck, as shown in Figure 7, is discussed in the Load Application section.

**Material Constitutive Models**

The gravel was modeled using the Drucker-Prager material model. The model takes into account the confining effect in enhancing the gravel capacity and enables the shape of the surface to be distorted into a more realistic definition for soils. The gravel density was set to 2200 kg/m³ (CSA-S6-14). The elastic shear modulus, Poisson’s ratio, and angle of friction
were 69 MPa, 0.25, and 1.0122 rad (Reid et al. 2004), respectively, while the cohesion value was 0.05 MPa (Wu and Thomson 2007).

The response of the gravel material model was validated using FE simulation against experimental behavior of granular soils subjected to the tri-axial state of stress conducted by Verdugo and Hoz (2006). Series of Isotropically consolidated drained (CID) triaxial compression tests were conducted at confining pressures in the range of 200 to 600 kPa on samples with height/diameter ratio of 2. Tests were conducted in strain-controlled manner with a deformation rate of 0.1%/min. The samples were prepared by the method of wet tamping using distilled water in a proportion of 5% in weight, and were compacted to an initial relative density of 70-80%. The cylindrical samples were modeled using constant stress solid elements with an hour glassing option using the above mentioned material mechanical properties. The results of the FE gravel model are compared with the experimental test results in Figure 9. The FE and experimental data were plotted in terms of deviatoric stress versus axial strain. The stiffness, strength, and ultimate strain of the FE simulation are, in general, in good agreement with the experimental test results. The Drucker-Prager material model along with the assigned mechanical properties were, therefore, validated against the mechanical response of compacted granular material under tri-axil state of compressive stresses.

The concrete was modeled using the Winfrith Concrete Model, which is a basic plasticity model that includes strain softening in tension, strain rate effects, and confining effects. The assigned concrete density was 2400 kg/m$^3$ while the Poisson’s ratio was 0.2 (Wight and MacGregor 2009). The assigned concrete compressive strength was 60 MPa and the modulus of elasticity was 32.1 GPa (CSA-S6-14). The material model was validated against the response of concrete cylinders subjected to confining pressure as detailed in Schwer (2010).
The tire tread was modeled as an elastic material with a density of 910 kg/m$^3$, modulus of elasticity of 50 MPa, and Poisson’s ratio of 0.3 (Reid 2001). The steel belt and the wheel ring were modeled as elastic materials with a density of 7800 kg/m$^3$, modulus of elasticity of 200 GPa, and Poisson’s ratio of 0.3 (Reid 2001).

Load Application

Oudah and Norlander (2016) conducted extensive sensitivity analysis to examine the dynamic response of bridge systems subjected to extremely heavy mining trucks. The analysis results recommended a Dynamic Load Allowance (DLA) value of 0.19 for the design of bridges conveying CAT 797 trucks. In this study, the specified GVOW of the CAT 797 was factored up by 19% to account for the dynamic response of the moving vehicle over the bridge surface. One-sixth of the factored GVOW was assigned to the wheel ring.

The wheel inflation and application of tire self-weight, gravel self-weight, concrete self-weight, and transverse concrete post-tensioning were applied during the explicit dynamic relaxation phase. The explicit dynamic relaxation phase is a transient analysis phase that precedes regular transient analysis and is typically used to preload a model before onset of transient loading. The explicit dynamic relaxation phase terminates and the solution automatically proceeds to the transient analysis phase when the distortional kinetic energy is sufficiently reduced, i.e. the solution undergoes a form of damping during this phase.

The wheel inflation was conducted using AIRBAG_SIMPLE_PRESSURE_VOLUME card in LS-DYNA. The applied inflation pressure was calculated as follows:

$$\text{Pressure} = \beta \frac{CN}{\text{Relative Volume}}$$

(1)
Relative Volume = \frac{Current Volume}{Initial Volume} \tag{2}

The constant $CN$ was set to 0.00032 (Reid 2001), while the scale factor $\beta$ was set to unity.

The concrete deck is typically composed of concrete panels connected to each other and post-tensioned longitudinally and transversely. Three scenarios were considered with regard to the concrete deck post-tensioning; zero post-tensioning, post-tensioning with 12.7 mm 7-wire 1860 MPa strands spaced at 300 mm and post-tensioned to 70% at transfer, 12.7 mm 7-wire 1860 MPa strands spaced at 150 mm and post-tensioned to 70% at transfer. The former and latter post-tensioning levels correspond to uniform stresses of 1 MPa and 2 MPa, respectively, applied uniformly on the transverse face of the concrete deck as shown in Figure 7. The post-tensioning was applied during the explicit dynamic relaxation phase.

Results and Discussion

The results of the sensitivity analysis are presented in terms of design aids developed specifically to facilitate a practical design procedure of the gravel wear surface in accordance to the Design Requirement No. 2: Prevent concrete cracking during the passage of the design vehicle. The design-aid diagrams in Figures 10-12 are illustrated in terms of the concrete tensile stress level at the bottom of the concrete deck versus the thickness of the gravel layer.

Three figures were generated corresponding to the previously mentioned concrete deck transverse post-tensioning scenarios. For each post-tensioning level, three concrete deck thicknesses were considered; 400 mm, 450 mm, and 500 mm. Linear interpolation between the figures is permitted should the desired post-tensioning level and/or the concrete deck thickness do not fall within the ones included in the figures.
The design curves shown in Figures 10-12 were developed based on the FE analysis results and factored up for design purposes in accordance to the following procedure. The curves were developed as the summation of the FE results and three standard deviations (FE+3σ). The addition of three standard deviations to the mean value of the FE results establishes a 99% level of confidence in the design of the gravel wear surface thickness, assuming a normal distribution of the FE results. This procedure accounts for the variance between the FE analysis results, given the assumptions adopted in developing the models, and the actual behavior of concrete bridge decks. The variance corresponds to a coefficient of variation of 0.05 (Ellingwood et al. 1980). Thus, the FE+3σ represents a more reliable measure for design purposes.

Based the proposed design-aids, design engineers shall follow the following steps in designing the thickness of the gravel wear surface to satisfy the Design Requirement No. 2:

1. Select the design post-tensioning level (graph ordinate).
2. Select the concrete deck compressive strength \( f'^c \).
3. Select the concrete deck thickness (graph abscissa).
4. The intersection of the inclined concrete deck thickness curve with the horizontal line representing the concrete capacity suggests the minimum thickness of gravel wearing surface for design purposes.

For example, for a 450 mm thick concrete deck, 60 MPa concrete deck compressive strength, and 12.7 mm 7-wire 1860 MPa strands spaced at 300 mm and post-tensioned to 70% at transfer (1MPa reaction stress), the minimum design gravel thickness that is needed to avoid cracking in the concrete deck under vehicle load is 450 mm.
Design Requirement No. 3: Minimize concrete deck cracking during the rare event of truck braking

The concrete deck-wear surface-vehicle dynamic interaction during the braking event of CAT 797 vehicle is a complex phenomenon due to the involvement of several influential parameters in the dynamic response of the system. As such, advanced nonlinear Finite Element simulation was conducted to examine the response behavior of the wear surface gravel layer to fulfil the optional Design Requirement No. 3. The objective of the FE analysis was to propose a gravel thickness design factor that satisfy the philosophy of the Design Requirement No. 3. The design factor shall be applied to the gravel thickness determined based on Design Requirement No. 2.

Typical configuration of concrete thickness, gravel thickness, and transverse post-tensioning designed in accordance to the Design Requirement No. 2 (refer to design aids shown in Figure 10-12) were considered in the FE simulation. The configuration has 450 mm concrete deck, 500 mm gravel layer, and 1 MPa equivalent transverse post-tensioning.

Finite Element Approach

Geometry and Boundary Conditions

The geometry and the boundary conditions of the FE braking model were similar to those used in examining Design Requirement No. 2, except for the longitudinal dimension of the concrete deck and the gravel layer. The length of the two layers were extended for 60 m as shown in Figure 13.

Material Constitutive Models

The material constitutive models of the concrete deck, gravel wear surface, and tire were similar to those used in conducting the FE analysis pertaining to Design Requirement No. 2.
Load Application

The concrete self-weight, gravel self-weight, tire load, and concrete deck transverse post-tensioning were applied during the explicit dynamic relaxation phase. Additional pulse force generated due to the tendency of the vehicle to overturn about its center of gravity, referred to as the pitch effect, was applied in the proceeding transit dynamic phase. The pitch force was calculated using simple mechanics given the dimensional properties of the vehicle, speed, and surface friction. The pitch force was found to be 0.57 times the vehicle’s weight distributed to the front axle. The wheel ring was subjected to an initial translational velocity and angular velocity about the rotational axis corresponding to the maximum truck speed (18.8 m/s) in the transit phase.

Results and Discussion

The FE braking model was first validated against a simple mechanics-based analytical solution. Given the vehicle dimensions, mass, and tire-to-gravel friction, the braking deceleration and distance were calculated as 5.4 m/s² and 32.6 m, respectively, based on the mechanics-based analytical solution. The percentage difference between the aforementioned values and the ones obtained from running the FE braking model was 4% and 9% for the braking deceleration and braking distance, respectively. Therefore, the FE braking model was reasonably accurate in predicting the response of the gravel, concrete, and tire interactions.

Analysis results show a significant increase in the stress level at the deck soffit as illustrated in Figure 14 for a travel time of 1 second. Snapshots of the braking event are also shown in the figure for multiple time periods. The static stresses were increased by 110% at the peak braking force. This is attributed to the fact that the dynamic impact force generated by braking of the CAT 797 is approximately 114% times the static force. This elevated vertical force is due to the pulse induced by the pitching effect on the front wheels.
The gravel thickness and/or the concrete deck thickness required to maintain an un-cracked concrete deck is extremely large in the event of vehicle braking. Preliminary results indicate a minimum gravel thickness of 1850 mm required to maintain an un-cracked 500 mm thick concrete deck. This extraordinary thick gravel layer will place tremendous dead weight on the structure and results in significant material and construction costs even though the probability of a truck braking hard over the bridge is extremely low. As such, the design criterion under braking action is stated as follows:

Localized cracking at the bottom of the concrete deck is allowed to occur under the extreme event of braking given that the crack width is maintained below the maximum crack width at serviceability limit state specified by the bridge code CSA S6-14.

The maximum crack width permitted by CSA S6-14 for a prestressed concrete deck at the serviceability limit state is 0.15 mm (Clause 8.12.3.1). Based on the strain gradient in the concrete deck, the analysis results indicate a minimum gravel thickness of 700 mm to maintain crack widths below the maximum limit. Thus, a design factor of 1.55 shall be applied to the gravel wear surface thickness determined based on the Design Requirement No. 2, if the design engineer decides to fulfil the optional Design Requirement No. 3.

**Conclusions and Design Recommendations**

In the absence of scientific-based studies for determining acceptable depths of a gravel wear course over concrete bridge decks under heavy haul truck traffic, this article outlined a detailed rational approach aimed at providing a basis to optimize the wear course layer thickness. A design philosophy composed of satisfying two compulsory design requirements and one optional design requirement was proposed. Advanced structural analysis including Mechanistic design and nonlinear Finite Element modeling were conducted to develop design
aids pertaining to the proposed three design requirements. The design requirements and the developed design aids are outlined as follows:

- **Compulsory Design Requirement No. 1: Maintain gravel cohesion and integrity.**
  
  This design requirement is concerned with determining the minimum gravel dry density to maintain the integrity of the wear surface. The gravel layer shall be compacted to 98% of Standard Proctor maximum dry density. The water content shall not drop beyond 95% during the service life of the bridge.

- **Compulsory Design Requirement No. 2: Prevent concrete deck cracking during the passage of the design vehicle.**
  
  This design requirement is concerned with maintaining an un-cracked concrete deck during the passage of the design vehicle at a constant speed. The design-aid diagrams shown in Figures 9-11 shall be used to determine the minimum gravel thickness.

- **Optional Design Requirement No. 3: Minimize concrete deck cracking during the rare event of truck braking.**
  
  This requirement accounts for the behaviour of the bridge deck in the rare event of vehicle braking. The design engineers shall determine the applicability of this requirement based on the project-specific design criteria. A factor of 1.55 shall be applied to the gravel thickness determined based on Design Requirement No. 2.

The above-mentioned design philosophy and design requirements are recommended for consideration by the related code committees of the North American pavement and bridge design codes (CSA-S6, AASHTO LRFD, and AASHTO) to account for the increasing number of bridges designed to transport extremely heavy mining trucks. The design approach is rational-based and provides a simple tool for bridge engineers to design the thickness of bridge granular wear surface.
Acknowledgments

The authors would like to acknowledge AMEC Foster Wheeler Oil and Gas Canada, Calgary office for financial support toward this research project.

References


Oudah, F. and Norlander, G. “Dynamic load allowance factors for bridges subjected to extreme live loads,” (Submitted to the Journal of Bridge Engineering, Jan 2016)


Verdugo R. and Hoz, K. 2006. Strength and stiffness of coarse granular soils. Soil Stress-
Strain Behavior: Measurement, Modeling and Analysis Geotechnical Symposium,
Roma, Italy, March 16-17, 243-252.

Wight, J. K., and MacGregor, J. G. 2009. Reinforced Concrete, Mechanics and Design. 5th

Wu W., and Thomson R. 2007. A study of the interaction between a guardrail post and soil
during quasi-static and dynamic loading. International Journal of Impact Engineering,
34(5), 833-898.
List of Figures:

Figure 1: Configuration, wheel loads, and axle loads of CAT 797 truck

Figure 2: Loading and boundary conditions for the Mechanistic design approach

Figure 3: Variation of vertical strain with change in gravel layer thickness (98% dry density)

Figure 4: Variation of vertical strain with change in gravel layer thickness (95% dry density)

Figure 5: Variation of vertical strain with change in gravel layer thickness (92% dry density)

Figure 6: Geometry of the FE model for Design Requirement No. 2

Figure 7: Boundary condition and equivalent post-tensioning of the FE model for Design Requirement No. 2

Figure 8: FE modelling of the tire components

Figure 9: Gravel FE model validation against experimental results

Figure 10: Gravel thickness design diagram under static loading without concrete post-tensioning

Figure 11: Gravel thickness design diagram under static loading for an equivalent post-tensioning stress of 1 MPa

Figure 12: Gravel thickness design diagram under static loading for an equivalent post-tensioning stress of 1 MPa

Figure 13: Geometry of the FE model for Design Requirement No. 3

Figure 14: Tensile stress history response due to vehicle braking
CAT 797

Wheel loads, kN

Axle loads, kN

1038
2077
4153

7.2 m

8 m

6.5 m

4.4 m

1.5 m

1.15 m

9.5 m
Design of Gravel Layer Thickness (98% Dry Density)

- Vertical strain in gravel layer, $\varepsilon_y$ (mm/mm)
- Gravel layer thickness, $h_g$ (mm)

Critical strain

Strain range

with concrete deck (full adhesion with concrete)
without concrete deck (no adhesion with concrete)
Design of Gravel Layer Thickness (95% Dry Density)

Vertical strain in gravel layer, $\varepsilon_Y$ (mm/mm)

Gravel layer thickness, $h_y$ (mm)

Critical strain

Strain range

- Blue line: with concrete deck (full adhesion with concrete)
- Red line: without concrete deck (no adhesion with concrete)
Design of Gravel Layer Thickness (92% Dry Density)

![Graph showing the relationship between vertical strain in gravel layer, $\varepsilon_y$ (mm/mm), and gravel layer thickness, $h_y$ (mm), for different adhesion conditions. The graph includes a critical strain and a strain range.]

- **With concrete deck (full adhesion with concrete):**
  - Blue line

- **Without concrete deck (no adhesion with concrete):**
  - Red line
Tire = Tread + Belt + Wheel Ring
Concrete tensile capacity at $f'_c=70$ MPa

- $f'_c=60$ MPa
- $f'_c=50$ MPa

Thickness of gravel wearing surface (mm)

Equivalent transverse post-tensioning of the concrete slab = 0
Concrete tensile capacity at $f'_c=70$ MPa

- $f'_c=60$ MPa
- $f'_c=50$ MPa

Equivalent transverse post-tensioning of the concrete slab = 2 MPa

Concrete slab:
- 500 mm
- 450 mm

Concrete tensile stress at the bottom of the concrete deck (MPa)

Thickness of gravel wearing surface (mm)